$\begin{array}{l} \mbox{Introduction}\\ \mbox{Con}(\mathfrak{b}=\mathfrak{a}=\kappa<\mathfrak{s}=\lambda)\\ \mbox{The forcing construction}\\ \mbox{Open Questions} \end{array}$

MAD families, splitting families and large continuum

Vera Fischer

Kurt Gödel Research Center University of Vienna

April 2012

イロン イヨン イヨン イヨン

æ

$\begin{array}{l} \mbox{Introduction}\\ \mbox{Con}(\mathfrak{b}=\mathfrak{a}=\kappa<\mathfrak{s}=\lambda)\\ \mbox{The forcing construction}\\ \mbox{Open Questions} \end{array}$

General overview Matrix Iteration

- $con(\mathfrak{s} < \mathfrak{b})$ (Baumgartner, Dordal, 1984)
- ▶ $\mathsf{con}(\mathfrak{b} = \aleph_1 < \mathfrak{s} = \mathfrak{a} = \aleph_2)$ (Shelah, 1985)

•
$$\operatorname{con}(\mathfrak{b} = \kappa < \mathfrak{a} = \kappa^+)$$
 (Brendle, 1998)

•
$$\operatorname{con}(\mathfrak{b} = \kappa < \mathfrak{s} = \kappa^+)$$
 (F., Steprāns, 2008)

・ロン ・回 と ・ ヨ と ・ ヨ と

Theorem (Brendle, F., 2011)

Let $\kappa < \lambda$ be arbitrary regular uncountable cardinals. Then there is a ccc generic extension in which $\mathfrak{b} = \mathfrak{a} = \kappa < \mathfrak{s} = \lambda$.

Theorem (Brenlde, F., 2011)

Let μ be a measurable cardinal, $\kappa < \lambda$ regular such that $\mu < \kappa$. Then there is a ccc generic extension in which $\mathfrak{b} = \kappa < \mathfrak{s} = \mathfrak{a} = \lambda$.

・ロト ・同ト ・ヨト ・ヨト

For γ an ordinal, \mathbb{P}_{γ} is the poset of all finite partial functions $p: \gamma \times \omega \to 2$ such that $\operatorname{dom}(p) = F_p \times n_p$ where $F_p \in [\gamma]^{<\omega}$, $n_p \in \omega$. The order is given by $q \leq p$ if $p \subseteq q$ and $|q^{-1}(1) \cap F^p \times \{i\}| \leq 1$ for all $i \in n_q \setminus n_p$.

Let G be a
$$\mathbb{P}_{\gamma}$$
-generic filter and for $\delta \in \gamma$ let
 $A_{\alpha} = \{i : \exists p \in G(p(\alpha, i) = 1)\}$. Then
 $\{A_{\alpha} : \alpha \in \gamma\} \text{ is an a.d. family (maximal for } \gamma \geq \omega_1),$
 $if p \in \mathbb{P}_{\gamma} \text{ then for all } \alpha \in F_p(p \Vdash \dot{A}_{\alpha} \upharpoonright n_p = p \upharpoonright \{\alpha\} \times n_p),$
 $for all $\alpha, \beta \in F_p(p \Vdash \dot{A}_{\alpha} \cap \dot{A}_{\beta} \subseteq n_p).$$

イロト イポト イヨト イヨト

Introduction $Con(b = a = \kappa < s = \lambda)$ The forcing construction Open Questions

Adding a mad family Increasing s Iterating Suslin Posets

Let $\gamma < \delta$, G a \mathbb{P}_{γ} -generic filter. In V[G], let $\mathbb{P}_{[\gamma,\delta)}$ consist of all (p, H) such that $p \in \mathbb{P}_{\delta}$ with $F_p \in [\delta \setminus \gamma]^{<\omega}$ and $H \in [\gamma]^{<\omega}$. The order is given by $(q, K) \leq (p, H)$ if $q \leq_{\mathbb{P}_{\delta}} p$, $H \subseteq K$ and for all $\alpha \in F_p$, $\beta \in H$, $i \in n_q \setminus n_p$ if $i \in A_\beta$, then $q(\alpha, i) = 0$.

- ▶ That is for all $\alpha \in F_p, \beta \in H$, $p \Vdash \dot{A}_{\alpha} \cap \check{A}_{\beta} \subseteq n_p$.
- \mathbb{P}_{δ} is forcing equivalent to $\mathbb{P}_{\gamma} * \mathbb{P}_{[\gamma, \delta)}$.

イロト イポト イヨト イヨト

Introduction $Con(\mathfrak{b} = \mathfrak{a} = \kappa < \mathfrak{s} = \lambda)$ The forcing construction Open Questions

Adding a mad family Increasing s Iterating Suslin Posets

Property *

Let $M \subseteq N$, $\mathcal{B} = \{B_{\alpha}\}_{\alpha < \gamma} \subseteq [\omega]^{\omega} \cap M$, $A \in N \cap [\omega]^{\omega}$. Then $(\star_{\mathcal{B},A}^{M,N})$ holds if for every $h : \omega \times [\gamma]^{<\omega} \to \omega$, $h \in M$ and $m \in \omega$ there are $n \geq m$, $F \in [\gamma]^{<\omega}$ such that $[n, h(n, F)) \setminus \bigcup_{\alpha \in F} B_{\alpha} \subseteq A$.

Lemma A

If
$$G_{\gamma+1}$$
 is $\mathbb{P}_{\gamma+1}$ -generic, $G_{\gamma} = G_{\gamma+1} \cap \mathbb{P}_{\gamma}$, $\mathcal{A}_{\gamma} = \{A_{\alpha}\}_{\alpha < \gamma}$, where $A_{\alpha} = \{i : \exists p \in G(p(\alpha, i) = 1)\}$. Then $(\star_{\mathcal{A}_{\gamma}, \mathcal{A}_{\gamma}}^{\mathcal{V}[G_{\gamma}], \mathcal{V}[G_{\gamma+1}]})$ holds.

・ロン ・回と ・ヨン・

Introduction $Con(b = a = \kappa < s = \lambda)$ The forcing construction Open Questions

Adding a mad family Increasing s Iterating Suslin Posets

Lemma B Let $(\star_{\mathcal{B},A}^{M,N})$ hold, where $\mathcal{B} = \{B_{\alpha}\}_{\alpha < \gamma}$, let $\mathcal{I}(\mathcal{B})$ be the ideal generated by \mathcal{B} and the finite sets and let $B \in M \cap [\omega]^{\omega}$, $B \notin \mathcal{I}(\mathcal{B})$. Then $|A \cap B| = \aleph_0$.

イロン イヨン イヨン イヨン

Lemma C

Let $M \subseteq N$, $\mathcal{B} = \{B_{\alpha}\}_{\alpha < \gamma} \subseteq M \cap [\omega]^{\omega}$, $A \in N \cap [\omega]^{\omega}$ such that $(\star_{\mathcal{B},A}^{M,N})$. Let \mathcal{U} be an ultrafilter in M. Then there is an ultrafilter $\mathcal{V} \supseteq \mathcal{U}$ in N such that

- 1. every maximal antichain of $\mathbb{M}_{\mathcal{U}}$ which belongs to M is a maximal antichain of $\mathbb{M}_{\mathcal{V}}$ in N,
- (*^{M[G],N[G]}) holds where G is M_V-generic over N (and thus, by (1), M_U-generic over M).

Lemma D

Let $M \subseteq N$, $\mathbb{P} \in M$ a poset such that $\mathbb{P} \subseteq M$, G a \mathbb{P} -generic filter over M, N. Let $\mathcal{B} = \{B_{\alpha}\}_{\alpha \in \gamma} \subseteq M \cap [\omega]^{\omega}$, $A \in N \cap [\omega]^{\omega}$ such that $(\star_{\mathcal{B},A}^{M,N})$ holds. Then $(\star_{\mathcal{B},A}^{M[G],N[G]})$ holds.

Lemma E

Let $\langle \mathbb{P}_{\ell,n}, \dot{\mathbb{Q}}_{\ell,n} : n \in \omega \rangle$, $\ell \in \{0, 1\}$ be finite support iterations such that $\mathbb{P}_{0,n}$ is a complete suborder of $\mathbb{P}_{1,n}$ for all n. Let $V_{\ell,n} = V^{\mathbb{P}_{\ell,n}}$. Let $\mathcal{B} = \{A_{\gamma}\}_{\gamma < \alpha} \subseteq V_{0,0} \cap [\omega]^{\omega}$, $A \in V_{1,0} \cap [\omega]^{\omega}$. If $(\star_{\mathcal{B},A}^{V_{0,n},V_{1,n}})$ holds for all $n \in \omega$, then $(\star_{\mathcal{B},A}^{V_{0,\omega},V_{1,\omega}})$ holds.

イロト イポト イヨト イヨト

Introduction $Con(b = a = \kappa < s = \lambda)$ The forcing construction Open Questions

Adding a mad family Increasing s Iterating Suslin Posets

Lemma

Let \mathbb{P}, \mathbb{Q} be partial orders, such that \mathbb{P} is completely embedded into \mathbb{Q} . Let $\dot{\mathbb{A}}$ be a \mathbb{P} -name for a forcing notion, $\dot{\mathbb{B}}$ a \mathbb{Q} -name for a forcing notion such that $\Vdash_{\mathbb{Q}} \dot{\mathbb{A}} \subseteq \dot{\mathbb{B}}$, and every maximal antichain of $\dot{\mathbb{A}}$ in $V^{\mathbb{P}}$ is a maximal antichain of $\dot{\mathbb{B}}$ in $V^{\mathbb{Q}}$. Then $\mathbb{P} * \dot{\mathbb{A}} < \circ \mathbb{Q} * \dot{\mathbb{B}}$.

イロト イポト イヨト イヨト

Let $f : \{\eta < \lambda : \eta \equiv 1 \mod 2\} \rightarrow \kappa$ be an onto mapping, such that for all $\alpha < \kappa$, $f^{-1}(\alpha)$ is cofinal in λ . Recursively define a system of finite support iterations

$$\langle \langle \mathbb{P}_{\alpha,\zeta} : \alpha \leq \kappa, \zeta \leq \lambda \rangle, \langle \dot{\mathbb{Q}}_{\alpha,\zeta} : \alpha \leq \kappa, \zeta < \lambda \rangle \rangle$$

as follows. For all α, ζ let $V_{\alpha,\zeta} = V^{\mathbb{P}_{\alpha,\zeta}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- is a $\mathbb{P}_{\alpha,\eta}$ -name for $\mathbb{D}^{V_{f(\eta),\eta}}$.
- (4) If ζ is a limit, then for all $\alpha \leq \kappa$, $\mathbb{P}_{\alpha,\zeta}$ is the finite support iteration of $\langle \mathbb{P}_{\alpha,\eta}, \dot{\mathbb{Q}}_{\alpha,\eta} : \eta < \zeta \rangle$.

イロン イヨン イヨン イヨン

æ

Furthermore the construction will satisfy the following two properties:

(a) $\forall \zeta \leq \lambda \forall \alpha < \beta \leq \kappa$, $\mathbb{P}_{\alpha,\zeta}$ is a complete suborder of $\mathbb{P}_{\beta,\zeta}$, (b) $\forall \zeta \leq \lambda \forall \alpha < \kappa (\star^{V_{\alpha,\zeta},V_{\alpha+1,\zeta}}_{\mathcal{A}_{\alpha},\mathcal{A}_{\alpha}})$ holds.

イロト イポト イヨト イヨト

Proceed by recursion on ζ . For $\zeta = 0$, $\alpha \leq \kappa$ let $\mathbb{P}_{\alpha,0} = \mathbb{P}_{\alpha}$. Then clearly properties (a) and (b) above hold. Let $\zeta = \eta + 1$ be a successor ordinal and suppose $\forall \alpha \leq \kappa$, $\mathbb{P}_{\alpha,\eta}$ has been defined.

イロト イポト イヨト イヨト

- If $\zeta \equiv 1 \mod 2$ define $\dot{\mathbb{Q}}_{\alpha,\eta}$ by induction on $\alpha \leq \kappa$ as follows.
 - ► If $\alpha = 0$, let $\dot{\mathcal{U}}_{0,\eta}$ be a $\mathbb{P}_{0,\eta}$ -name for an ultrafilter, $\dot{\mathbb{Q}}_{0,\eta}$ a $\mathbb{P}_{0,\eta}$ -name for $\mathbb{M}_{\dot{\mathcal{U}}_{0,\eta}}$ and let $\mathbb{P}_{0,\zeta} = \mathbb{P}_{0,\eta} * \dot{\mathbb{Q}}_{0,\eta}$.
 - If α = β + 1 and U_{β,η} has been defined, by the ind. hyp. and Lemma C there is a P_{α,η}-name U_{α,η} for an ultrafilter such that ||_{P_{α,η}} U_{β,η} ⊆ U_{α,η}, every maximal antichain of M_{U_{β,η}} in V_{β,η} is a maximal antichain of M_{U_{α,η}} and (*V_{β,ζ},V_{β+1,ζ}). holds. Let P_{β,ζ} = P_{β,η} * M<sub>U_{β,η}. In particular P_{β,ζ}<0 P_{α,ζ}.
 </sub>

・ 同 ト ・ ヨ ト ・ ヨ ト

- If α is limit and for all $\beta < \alpha \ \dot{\mathcal{U}}_{\beta,\eta}$ has been defined (and so $\dot{\mathbb{Q}}_{\beta,\eta} = \mathbb{M}_{\dot{\mathcal{U}}_{\beta,\eta}}$) consider the following two cases.
 - ▶ If $cf(\alpha) = \omega$, find a $\mathbb{P}_{\alpha,\eta}$ -name $\dot{\mathcal{U}}_{\alpha,\eta}$ for an ultrafilter such that for all $\beta < \alpha$, $\Vdash_{\mathbb{P}_{\alpha,\eta}} \dot{\mathcal{U}}_{\beta,\eta} \subseteq \dot{\mathcal{U}}_{\alpha,\eta}$ and every maximal antichain of $\mathbb{M}_{\dot{\mathcal{U}}_{\beta,\eta}}$ from $V_{\beta,\eta}$ is a maximal antichain of $\mathbb{M}_{\mathcal{U}_{\alpha,\eta}}$ (in $V_{\alpha,\eta}$) and the relevant *-property is preserved.
 - If $cf(\alpha) > \omega$, then let $\dot{\mathcal{U}}_{\alpha,\eta}$ be a $\mathbb{P}_{\alpha,\eta}$ -name for $\bigcup_{\beta < \alpha} \mathcal{U}_{\beta,\eta}$. Let $\dot{\mathbb{Q}}_{\alpha,\eta}$ be a $\mathbb{P}_{\alpha,\eta}$ -name for $\mathbb{M}_{\dot{\mathcal{U}}_{\alpha,\eta}}$ and let $\mathbb{P}_{\alpha,\zeta} = \mathbb{P}_{\alpha,\eta} * \dot{\mathbb{Q}}_{\alpha,\eta}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

If $\zeta \equiv 0 \mod 2$, then

▶ for all $\alpha \leq f(\eta)$ let $\dot{\mathbb{Q}}_{\alpha,\eta}$ be a $\mathbb{P}_{\alpha,\eta}$ -name for the trivial poset

• for $\alpha > f(\eta)$ let $\dot{\mathbb{Q}}_{\alpha,\eta}$ be a $\mathbb{P}_{\alpha,\eta}$ -name for $\mathbb{D}^{V_{f(\eta),\eta}}$.

Let $\mathbb{P}_{\alpha,\zeta} = \mathbb{P}_{\alpha,\eta} * \dot{\mathbb{Q}}_{\alpha,\eta}$. Note that for all $\alpha, \beta \leq \kappa$, $\mathbb{P}_{\alpha,\zeta}$ is a complete suborder of $\mathbb{P}_{\beta,\zeta}$ and $(\star^{V_{\alpha,\zeta},V_{\alpha+1,\zeta}}_{\mathcal{A}_{\alpha},\mathcal{A}_{\alpha}})$ holds for all α .

イロト イポト イヨト イヨト

If ζ is a limit and for all $\eta < \zeta$, $\mathbb{P}_{\alpha,\eta}$, $\dot{\mathbb{Q}}_{\alpha,\eta}$ have been defined, let $\mathbb{P}_{\alpha,\zeta}$ be the finite support iteration of $\langle \mathbb{P}_{\alpha,\eta}, \dot{\mathbb{Q}}_{\alpha,\eta} : \eta < \zeta \rangle$. Then $\mathbb{P}_{\alpha,\zeta} < \circ \mathbb{P}_{\beta,\zeta}$ and by Lemma E $(\star^{V_{\alpha,\zeta},V_{\alpha+1,\zeta}}_{\mathcal{A}_{\alpha},\mathcal{A}_{\alpha}})$ holds.

イロト イポト イヨト イヨト

Lemma

For $\zeta \leq \lambda$:

- 1. for every $p \in \mathbb{P}_{\kappa,\zeta}$ there is $\alpha < \kappa$ such that p belongs to $\mathbb{P}_{\alpha,\zeta}$,
- 2. for every $\mathbb{P}_{\kappa,\zeta}$ -name for a real \dot{f} there is $\alpha < \kappa$ such that \dot{f} is a $\mathbb{P}_{\alpha,\zeta}$ -name.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\begin{array}{l} \mbox{Introduction}\\ \mbox{Con}(\mathfrak{b}=\mathfrak{a}=\kappa<\mathfrak{s}=\lambda)\\ \mbox{The forcing construction}\\ \mbox{Open Questions} \end{array}$

Lemma $V_{\kappa,\lambda} \vDash \mathfrak{b} = \mathfrak{a} = \kappa < \mathfrak{s} = \lambda.$

<ロ> (四) (四) (注) (注) (三)

 $\{A_{\alpha}\}_{\alpha\in\kappa}$ remains mad in $V_{\kappa,\lambda}$. Otherwise $\exists B \in V_{\kappa,\lambda} \cap [\omega]^{\omega}$ such that $\forall \alpha < \kappa (|B \cap A_{\alpha}| < \omega)$. However there is $\alpha < \kappa$ such that $B \in V_{\alpha,\lambda} \cap [\omega]^{\omega}$ and $B \notin \mathcal{I}(\mathcal{A}_{\alpha})$. On the other hand $(\star_{\mathcal{A}_{\alpha},\mathcal{A}_{\alpha+1}}^{V_{\alpha,\lambda},V_{\alpha+1,\lambda}})$ and so $|B \cap A_{\alpha+1}| = \omega$ (Lemma B) which is a contradiction. Therefore $\mathfrak{a} \leq \kappa$.

伺 ト イヨト イヨト

Let $\mathcal{B} \subseteq V_{\kappa,\lambda} \cap {}^{\omega}\omega$ be of size $< \kappa$. Then there are $\alpha < \kappa$, $\zeta < \lambda$ such that $\mathcal{B} \subseteq V_{\alpha,\zeta}$. Since $\{\gamma : f(\gamma) = \alpha\}$ is cofinal in λ , there is $\zeta' > \zeta$ such that $f(\zeta') = \alpha$. Then $\mathbb{P}_{\alpha+1,\zeta'+1}$ adds a real dominating $V_{\alpha,\zeta'} \cap {}^{\omega}\omega$ (and so $V_{\alpha,\zeta} \cap {}^{\omega}\omega$ since $V_{\alpha,\zeta} \subseteq V_{\alpha,\zeta'}$). Thus \mathcal{B} is not unbounded. Therefore $V_{\kappa,\lambda} \Vdash \mathfrak{b} \ge \kappa$.

However $\mathfrak{b} \leq \mathfrak{a}$ and so $V_{\kappa,\lambda} \Vdash \mathfrak{b} = \mathfrak{a} = \kappa$.

To see that $V_{\kappa,\lambda} \vDash \mathfrak{s} = \lambda$, note that if $S \subseteq V_{\kappa,\lambda} \cap [\omega]^{\omega}$ is a family of cardinality $< \lambda$, then there is $\zeta < \lambda$ such that $\zeta = \eta + 1$, $\zeta \equiv 1 \mod 2$ and $S \subseteq V_{\kappa,\eta}$. Then $\mathcal{M}_{\mathcal{U}_{\kappa,\eta}}$ adds a real not split by Sand so S is not splitting.

(4月) イヨト イヨト

Theorem (Brendle, F., 2011)

Let $\kappa < \lambda$ be arbitrary regular uncountable cardinals. Then there is a ccc generic extension in which $\mathfrak{b} = \mathfrak{a} = \kappa < \mathfrak{s} = \lambda$.

イロト イポト イヨト イヨト

- ► Is it relatively consistent that b < a < s?</p>
- ► Is it relatively consistent that b < s < a?</p>
- It is relatively consistent that b = κ < s = a = λ without the assumption of a measurable?</p>

• How about
$$\mathfrak{b} = \mathfrak{s} = \aleph_1 < \mathfrak{a} = \aleph_2$$
?

イロト イポト イヨト イヨト

 $\begin{array}{l} \mbox{Introduction}\\ \mbox{Con}(\mathfrak{b}=\mathfrak{a}=\kappa<\mathfrak{s}=\lambda)\\ \mbox{The forcing construction}\\ \mbox{Open Questions} \end{array}$

Thank you!

・ロ・・(四・・)を注・・(注・・)注