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Introduction

General overview
Matrix lteration

» con(s < b) (Baumgartner, Dordal, 1984)
» con(b =Ry < s =a=Ny) (Shelah, 1985)
» con(b =k < a=~x") (Brendle, 1998)

» con(b=r <s=~rT) (F., Steprans, 2008)
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Introduction
General overview

Matrix lteration

Theorem (Brendle, F., 2011)

Let k < X\ be arbitrary regular uncountable cardinals. Then there is
a ccc generic extension in whichb=a=x <s = A\.

Theorem (Brenlde, F., 2011)

Let i be a measurable cardinal, k < X regular such that u < k.
Then there is a ccc generic extension in whichb =k <s=a = \.

Vera Fischer MAD families, splitting families and large continuum



Adding a mad family

Increasing s
Iterating Suslin Posets

For v an ordinal, IP, is the poset of all finite partial functions
p: 7 X w — 2 such that dom(p) = F, x n, where F, € [y]<%,
np € w. The order is given by g < p if p C g and

g7 (1) N FP x {i}| <1 forall i € ng\np .

Let G be a P,-generic filter and for § € y let

Ay ={i:3p € G(p(a,i) =1)}. Then
» {Ay € ~}isanad. family (maximal for v > w1),
» if p € P, then for all « € Fp(p IF Ao | np=p | {a} xnp),
> forall a, 8 € Fp(p Ik Ay N Ag C np).
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Let v < d, G a P,-generic filter. In V[G], let P, 5) consist of all

(p, H) such that p € Ps with F, € [6\7]<“ and H € [y]<¥. The

order is given by (q,K) < (p, H) if ¢ <p, p, H C K and for all
€ Fp, B e H, i€ng\nyifieAg, then g(c,i) =0.

» Thatisforalla € Fp, 8 € H, pl- Aaﬂz\g C np.
» Ps is forcing equivalent to P, * P, 5).
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Adding a mad family

Increasing s
Iterating Suslin Posets

Property
Let M C N, B={Ba}acy C [w]* "M, A€ NN [w]. Then
(*?3/{;(\’) holds if for every h: w x [y]<¥ > w, he Mand me w

there are n > m, F € [y]<¥ such that [n, h(n, F))\ U,cr Ba € A

Lemma A
If Gyt1 is Pyi1-generic, Gy = Gy41 NPy, Ay = {Aq}acy, where

Ao ={i:3p € G(p(a, ) = 1)}. Then (x4 V1)) holds.

Vera Fischer MAD families, splitting families and large continuum



Adding a mad family
Increa

Iterating Suslin Posets

Lemma B

Let (*g:q’v) hold, where B = {B,}a<~, let Z(B) be the ideal
generated by B and the finite sets and let B € M N [w]“,

B ¢ Z(B). Then |AN B| = Xq.
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Adding a mad family
Increasing s

Iterating Suslin Posets

Lemma C
Let MC N, B={By}acy S MNw]Y, Ac NN [w]” such that
(*g’iv). Let U/ be an ultrafilter in M. Then there is an ultrafilter

Y DU in N such that

1. every maximal antichain of M;; which belongs to M is a

maximal antichain of My, in N,

(*g,[AG]’N[G]) holds where G is My -generic over N (and thus,

by (1), My,-generic over M).
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Adding a mad family
Increasing s

Iterating Suslin Posets

Lemma D
Let M C N, P € M a poset such that P C M, G a P-generic filter
over M/ N. Let B={By}acy €S MN[w]¥, A€ NN [w]¥ such that

(xpa') holds. Then (xpy s "My holds.

Lemma E
Let (Prn, Q¢ pn:n€w), £ €{0,1} be finite support iterations such
that Pg , is a complete suborder of P , for all n. Let V; , = = VPen,

Let B={A,}yca € Voo N[w]*, A€ VigN[w]”. If (x VOmVIn)

holds for all n € w, then (x5 ") holds.
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Adding a mad family

b=a=r<s=2X\
A) Increasing s

Iterating Suslin Posets

Lemma
Let P, Q be partial orders, such that I’ is completely embedded

into Q. Let A be a P-name for a forcing notion, B a Q-name for a
forcing notion such that I-q AC ]B%,'and every maximal antichain of
A in VP is a maximal antichain of B in VQ. Then P x A<o Q = B.
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The forcing construction

Let f: {n < A:n=1mod2} — K be an onto mapping, such that
for all @ < K, f~1(a) is cofinal in X. Recursively define a system of

finite support iterations
((Pac : @ < 7, ¢ <A, (Qag i a <R, C<A))

as follows. For all a, ¢ let Vi, ¢ = VPac,
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The forcing construction

(1)
()

If ¢ =0, then for all & < K, P, is Hechler's poset for adding
an a.d. family A, = {Ag}s<a,

If (=n+1(=1mod?2, thenlFp,  Qu,=M,; , where

Un is a Po,;-name for an ultrafilter and for all a < 8 < &,
“_IPB,n UQJ] g uﬂ777'

If (=n+1(=0mod?2, then if o« < (1), Qupisa
IP., ,-name for the trivial forcing notion; if a > f(n) then Qg
is a P, ,-name for DVitm.n.

If ¢ is a limit, then for all & < K, P, ¢ is the finite support
iteration of (Py ), Qa1 1 < ().
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The forcing construction

Furthermore the construction will satisfy the following two
properties:
(a) V¢ < AWa < < K, Py is a complete suborder of Pg ¢,

(b) V¢ < Wa < k (x Aa’i\aa“g) holds.
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The forcing construction

Proceed by recursion on (. For ( =0, a < k let P90 = P,. Then
clearly properties (a) and (b) above hold. Let ( =7+ 1 be a
successor ordinal and suppose Va < k, P, ; has been defined.
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The forcing construction

If { =1 mod 2 define Qam by induction on a < k as follows.

> Ifa=0, let Z/.{o’77 be a [P ;-name for an ultrafilter, @o,n a
Po,n—name for ML{O and let PQC = Pom * QOJI'

>N

» Ifa=F+1and aﬁn has been defined, by the ind. hyp. and
Lemma C there is a P, ,-name L{a . for an ultrafilter such
that IFp, ngn - Z/Ian, every maximal antichain of M, ) in

ﬁ vaﬂ+1 ).

As
holds. Let Pg: = Pg, * MZJBJ,' In particular P57C<o Poc.

Vi, is a maximal antichain of Muam and (x4
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The forcing construction

> If o is limit and for all § < « Z/'{@77 has been defined (and so
Qsy = MU-B ) consider the following two cases.
iy

» If cf(a) = w, find a P, -name Z/'lcm, for an ultrafilter such that
forall 3 <a, IFp, , Us ., € Uy, and every maximal antichain
of My, ~ from Vj , is a maximal antichain of My, , (in V4 ;)
and the relevant x-property is preserved.

> If cf(a) > w, then let U, ,, be a P, ,-name for U,8<au/3n Let

Qa . be a Pg ;-name for M, - and let Py ¢ =Py * Qa’n
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The forcing construction

If { =0 mod 2, then
» for all @ < (1) let Qg be a Py, ,-name for the trivial poset
> for a > f(n) let Qg be a Py ,-name for DVitm.n,
Let Po¢ = Poy * Qan Note that for all o, 3 < K, Py ¢ is a
complete suborder of Pg ¢ and (*A‘* C/’\Va“’g) holds for all a.
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The forcing construction

If ¢ is a limit and for all n < (, Py, Qam ha.ve been defined, let
Po.c be the finite support iteration of (Pq y;, Qa1 m < (). Then

Pe <o Pg ¢ and by Lemma E (*x(;’i’\(\:a“’c) holds.
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The forcing construction

Lemma
For ¢ < A:

1. for every p € P, ¢ there is o < k such that p belongs to P, ¢,

2. for every P, .-name for a real f there is a < & such that f is
a Py ¢c-name.
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The forcing construction

Lemma
VinFb=a=r<s=\
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The forcing construction

{Aa}ack remains mad in V,; . Otherwise 3B € V,; y N [w]¥ such
that Va < k(|B N Aa| < w). However there is o < & such that

B € Vo N [w]” and B ¢ T(Aq). On the other hand (x% ")
and so |B N Ag41| = w (Lemma B) which is a contradiction.
Therefore a < &.
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The forcing construction

Let B C V,;, » N“w be of size < k. Then there are a < K, ( < A
such that B C V,, ¢. Since {7 : f(y) = a} is cofinal in A, there is
¢’ > ¢ such that f(¢’) = o. Then Py11 741 adds a real
dominating V,, » N“w (and so V, ¢ N“w since V¢ C Vo).
Thus B is not unbounded. Therefore V.  IFb > k.

However b < aandso Vi IFb=a=x.
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The forcing construction

To see that V,, y Fs = A, note that if S C V. y N [w]® is a family
of cardinality < A, then there is ( < A such that { =7+ 1,
(=1mod2and S C V,,. Then My,  adds a real not split by S
and so S is not splitting.
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The forcing construction

Theorem (Brendle, F., 2011)

Let k < X\ be arbitrary regular uncountable cardinals. Then there is
a ccc generic extension in whichb=a=Kk <s = \.
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Open Questions

v

Is it relatively consistent that b < a < 57

v

Is it relatively consistent that b < s < a?

v

It is relatively consistent that b = Kk < s = a = A without the
assumption of a measurable?

How about b =5 = N; < a =Ny?

v
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Open Questions

Thank you!

Vera Fischer MA itti es and large continuum



