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Part 1

Set Theory





CHAPTER 1

The Axiomatic system of Zermelo-Fraenkel

1. ZFC

In the following, we will formulate the axiomatic system of Zermelo-Fraenkel. For this we work in the language
of set theory, which has only one non-logical symbol, the binary relation, membership! The language of set theory
is denoted L∈. The Axioms:

• Axiom 1 (Extensionality)
∀z(z ∈ x↔ z ∈ y)→ x = y

• Axiom 2 (Foundation)

∃y(y ∈ x)→∃y(y ∈ x∧¬∃z(z ∈ x∧ z ∈ y))

• Axiom 3 (Comprehension Scheme) For each formula ϕ without y free:

∃y∀x(x ∈ y↔ x ∈ v∧ϕ(x))

• Axiom 4 (Pairing)
∃z(x ∈ z∧ y ∈ z)

• Axiom 5 (Union)
∃A∀Y∀x(x ∈ Y ∧Y ∈F → x ∈ A)

• Axiom 6 (Replacement Scheme) For each formula ϕ in which B is not a free variable

∀x ∈ A∃!yϕ(x,y)→∃B∀x ∈ A∃y ∈ Bϕ(x,y)

REMARK 1.1. To formulate the last three axioms, we need some defined notions, namely the notions of a
subset, emptyset, successor of a set, intersection and singleton:

• x⊆ y iff ∀z(z ∈ x→ z ∈ y)
• x = /0 iff ∀z(z /∈ x)
• y = S(x) iff ∀z(z ∈ y↔ z ∈ x∨ z = x)
• y = v∩w iff ∀x(x ∈ y↔ x ∈ v∧ x ∈ w)
• Sing(y) iff ∃y ∈ x∀z ∈ x(z = y).

Note that

• Thus S(x) = x∪{x} and Sing(y) = {y}.
• The ordered pair (x,y) is the set {{x},{x,y}}.

We continue with the axioms.

• Axiom 7 (Infinity)
∃x( /0 ∈ x∧∀y ∈ x(S(y) ∈ x))

3



4 1. THE AXIOMATIC SYSTEM OF ZERMELO-FRAENKEL

• Axiom 8 (Power Set)
∃y∀z(z⊆ x→ z ∈ y)

• Axiom 9 (Axiom of Choice)

/0 /∈ F ∧∀x ∈ F∀y ∈ F(x 6= y→ x∩ y = /0)→∃C∀x ∈ F(Sing(C∩ x))

We refer to the above system of Axioms as ZFC. Note that ZFC is an infinite set of Axioms, because Axioms
3 (Comprehension) and 6 (Replacement) are in fact axiom schemes (one axiom for each formula). Moreover ZFC
is not finitely axiomatizable.

2. Relations and Functions

DEFINITION 2.1. Binary relation A set R is said to be a binary relation iff R is a set of ordered pairs, i.e. for
each u ∈ R there are x,y such that u = (x,y) = {{x},{x,y}}.

REMARK 2.2. Recall the following notions associated to a binary relation R:

• R is a pre-order on A if R is reflexive and transitive on A.
• R partially orders A non-strictly if R is a pre-order on A and satisfies ¬∃x,y ∈ A(xRy∧ yRx∧ x 6= y).
• R is a total-order on A if R is irreflexive, transitive and satisfies trichotomy, i.e. for any a,b∈ A either aRb,

or bRa or a = b.

DEFINITION 2.3. A binary relation R is a function if

• for every x there is at most one y such that (x,y) ∈ R.

If there is y such that xRy then R(x) denotes that unique y.

DEFINITION 2.4. For any set A, idA = {(x,x) : x ∈ A} is the identity function of A.

PROOF. (Justification of existence) Note that we can justify the existence of idA as follows: idA = {(x,x) ∈
P(P(A)) : x ∈ A}. �

REMARK 2.5. • Note (x,x) = {{x},{x,x}}= {{x},{x}}= {{x}} and
• whenever x ∈ A and x ∈ B, then

(x,y) = {{x},{x,y}} ∈P(P(A∪B)).

DEFINITION 2.6. A×B = {(x,y) : x ∈ A∧ y ∈ B}

PROOF. (Justification of existence) The existence of A×B follows from the Axioms of Power Set and Com-
prehension, since

A×B = {(x,y) = {{x},{x,y}} ∈P(P(A∪B)) : x ∈ A∧ y ∈ B}.
�

REMARK 2.7. Justification, yet once again: A×B is a set Alternatively, one can use the Axioms of Replacement
and Union:

• By Replacement for each y ∈ B,

A×{y}= {(x,y) : x ∈ A}

is a set. Again by Replacement S = {A×{y} : y ∈ B} is a set.
• Now, by the Union Axiom

⋃
S is a set.

• Thus, we can define A×B =
⋃

S.
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DEFINITION 2.8. (Domain and Range) For every set R define

• dom(R) = {x : ∃y((x,y) ∈ R)},
• ran(R) = {y : ∃x((x,y) ∈ R)}.

PROOF. (Justification of existence: Using Union and Comprehension) If {{x},{x,y}} ∈ R, then

• {x},{x,y} belong to
⋃

R and so
• x,y ∈

⋃⋃
R.

Thus,

• dom(R) = {x ∈
⋃⋃

R : ∃y((x,y) ∈ R)}, and
• ran(R) = {y ∈

⋃⋃
R : ∃x((x,y) ∈ R)}.

�

Note that alternatively, one can use Replacement.

DEFINITION 2.9. (Restriction) R � A = {(x,y) ∈ R : x ∈ A}

PROOF. (Justification of existence) By the Axiom of Comprehension. �

REMARK 2.10. The notions of a function, injection, bijection, surjection, can be defined in a similar way.

LEMMA 2.11. Assume ∀x ∈ A∃!yϕ(x,y) and assume the Axiom of Replacement. Then there is a function f
such that dom( f ) = A and such that ∀x ∈ A, f (x) is the unique y such that ϕ(x,y).

DEFINITION 2.12. (A set of functions) Given sets A,B let

BA = AB = { f | f : A→ B}.

PROOF. (Justification of existence: Power set and Comprehension) If f is a function from A to B, then f ⊆
A×B. Therefore

AB⊆P(A×B).

�

DEFINITION 2.13. Let A be a set and let R be a relation on A. Then, we say that

(1) R totally orders A strictly if R is transitive, irreflexive, satisfies trichotomy on A.
(2) R well-orders A iff R totally orders A and R is well-founded on A, i.e. every B ⊆ A has an R-minimal

element.

LEMMA 2.14. If R is a well-order on a set A and X ⊆ A, then R is a well-order on X .

PROOF. Clearly R is a total order on X . Moreover, every subset of X has an R-minimal element. �





CHAPTER 2

Ordinal Arithmetic

1. Ordinals

DEFINITION 1.1. A set z is an ordinal if z is transitive, i.e. ∀x(x ∈ z→ x⊆ z) and the membership relation ∈ is
well-founded on z.

EXAMPLE 1.2.

• /0,
• { /0},
• { /0,{ /0}},
• { /0,{ /0},{ /0,{ /0}}}
• · · ·

REMARK 1.3. Every natural number is an ordinal.

NOTATION. ON denotes the collection of all ordinals. Greek letters are used to denote ordinals.

LEMMA 1.4. Suppose α is an ordinal, z⊆ α . Then z is also an ordinal.

PROOF. By transitivity of α , z⊆ α . Thus ∈ is well-founded on z. We need to check if z is transitive. Let x ∈ z
and y ∈ x. Then x ∈ α . But α is transitive and so x ⊆ α . Thus y ∈ α . Therefore x,y,z are elements of α . But ∈ is
transitive on α and so we have y ∈ x∧ x ∈ z→ y ∈ z. Thus y ∈ z. That is x⊆ z, i.e. z is transitive. �

LEMMA 1.5. Let α , β be ordinals. Then α ∩β is an ordinal.

PROOF. • Since α ∩β ⊆ α , the ∈ is well-founded on α ∩β .
• Is α ∩β transitive? Let x ∈ α ∩β and y ∈ x. Then x⊆ α ∩β and so y ∈ α ∩β . Thus x⊆ α ∩β , i.e. α ∩β

is a transitive set.
�

LEMMA 1.6. Let α,β be ordinals. Then α ⊆ β if and only if α ∈ β ∨α = β .

PROOF. (⇐) If α ∈ β , then by transitivity of β , we have α ⊆ β . Therefore α ∈ β ∨α = β implies that α ⊆ β .

(⇒) If α = β , then clearly we are done. So, suppose α 6= β . Thus X = β\α 6= /0 and so there is ξ = minβ\α .
Then

ξ ∈ β and ξ /∈ α.

We will show that ξ = α . First we will show that ξ ⊆ α:

• Let µ ∈ ξ . Then by transitivity of β , we have ξ ⊆ β and so µ ∈ β .
• If µ /∈ α , we get a contradiction to the minimality of ξ .

Thus µ ∈ α and so ξ ⊆ α .
Now, suppose ξ ⊆ α , but ξ 6= α! Then take any pick µ ∈ α\ξ . Then µ ∈ β (because α ⊆ β by hypothesis)

and ξ ∈ β , since ξ = minβ\α . Thus, by the trichotomy of ∈ on β we get µ = ξ ∨µ ∈ ξ ∨ξ ∈ µ .

7



8 2. ORDINAL ARITHMETIC

• However µ ∈ α , but ξ /∈ α . Thus µ 6= ξ .
• By the choice of µ , µ /∈ ξ .
• Thus ξ ∈ µ .

Since µ ∈ α and α is transitive, ξ ∈ α , which is a contradiction to the choice of ξ ! Thus ξ = α . � �

THEOREM 1.7. (The collection of all ordinals “behaves” like an ordinal)

(1) (Transitivity) For all α , β and γ ordinals, if α ∈ β ∧β ∈ γ then α ∈ γ .
(2) (Irreflexivity) for every ordinal α , ¬(α ∈ α).
(3) (Trichotomy) for all α,β ordinals: α ∈ β ∨β ∈ α ∨α = β .
(4) (Well-foundedness) If X 6= /0 is a set of ordinals, then X has an ∈-least element.

PROOF. (1) Since γ is a transitive set, β ⊆ γ and so α ∈ γ .

(2) Suppose α ∈ α . That is α is an element of α . But ∈ is irreflexive on α and so ¬(α ∈ α). This is a contradiction.
Therefore α 6∈ α .

(3) Let δ = α ∩β . Then δ ⊆ α , δ ⊆ β . But then by a previous Lemma we have:

δ ∈ α ∨δ = α and δ ∈ β ∨δ = β .

• If δ = α , then α ⊆ β and so α ∈ β ∨α = β .
• If δ = β , then β ⊆ α and so β ∈ α ∨β = α .
• Thus suppose δ 6= α , δ 6= β . Therefore δ ∈ α and δ ∈ β , i.e. δ ∈ α ∩β = δ , which is a contradiction to

(2).

(4) Let X 6= /0 and X be a set of ordinals. Let α ∈ X . If α = minX , then we are done. Otherwise

X0 = {ξ : ξ ∈ X ∧ξ ∈ α} 6= /0.

Then µ = minX0 exists, because X0 ⊆ α . Thus µ = minX ∩α . Note that µ = minX . Consider any δ ∈ X and
suppose δ ∈ µ . Then δ ∈ α (since µ ⊆ α), which is a contradiction to µ = minX ∩α . �

REMARK 1.8. The above theorem shows that the collection of all ordinals, “behaves” like an ordinal.

• But is the collection of all ordinals a set?
• In fact, is there a set containing all ordinals?

THEOREM 1.9. (Bourali-Forty Paradox) There is no set containing all ordinals.

PROOF. Suppose not and let X be a set containing all ordinals. Then let

Y = {y ∈ X : y is an ordinal}.

By the Axiom of Comprehension Y is a set. By the previous theorem ∈ is well-founded on Y and Y is a transitive
set. Thus, Y is an ordinal. But then Y ∈ Y , contradiction to (2) of the previous theorem. Thus, there is no such
X . � �

NOTATION. (1) With ON we denote the class of all ordinals.
(2) Let α,β be ordinals. Then α < β denotes α ∈ β and α ≤ β denotes α ∈ β ∨α = β .

LEMMA 1.10. Let α , β be ordinals. Then

α ∩β = min{α,β} and α ∪β = max{α,β}.

LEMMA 1.11. If A 6= /0 is a set of ordinals, then
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(1)
⋂

A = minA,
(2)

⋃
A ∈ON

(3) If ∀α ∈ A∃β ∈ A(α < β ), then
⋃

A is the smallest ordinal that exceeds all ordinals in A. Thus, we denote⋃
A also supA.

PROOF. (2) We need to show that
⋃

A is a transitive set and ∈ is well-founded on
⋃

A. Let α ∈
⋃

A. Thus there
is β ∈ A such that α ∈ β . But β is transitive and so α ⊆ β . Therefore α ⊆

⋃
A.

To show well-foundedness of ∈, let X ⊆
⋃

A. Thus ∀x ∈ X there is αx ∈ A such that x ∈ αx. Now {αx : x ∈ X}
is a set of ordinals and so by well-foundedness of the membership relation on ON, there is α0 = min{αx : x ∈ X}.
Then either α0 = minX or α0∩X 6= /0, in which case min(α0∩X) is as desired.

(3) Let δ =
⋃

A. Then δ = {α : ∃β ∈ A(α ∈ β )}. Since for every α ∈ A there is β ∈ A such that α < β , we get
that every α ∈ A is an element of δ . On the other hand, if α < δ , then α ∈ δ and so there is β ∈ A such that α ∈ β .
But, then β /∈ α and so α does not exceed all elements of A. �

LEMMA 1.12. Let α be an ordinal. Then

• S(α) = α ∪{α} is an ordinal,
• α < S(α) and
• for all ordinals γ ,

γ < S(α) iff γ ≤ α.

PROOF. The membership relation is well-founded on S(α) and clearly S(α) is a transitive set. The rest is
straightforward. �

DEFINITION 1.13. (Successor and Limit Ordinals) An ordinal β is

(1) a successor iff there is an ordinal α such that β = S(α) = α ∪{α},
(2) a limit ordinal iff β 6= 0 and β is not a successor ordinal,
(3) a finite ordinal or a natural number if and only if ∀α ≤ β (α = 0∨α is a successor).

REMARK 1.14. If n is a natural number, then S(n) is a natural number and every element of n is a natural
number.

THEOREM 1.15. Principle of ordinary induction If /0 ∈ X and for all y ∈ X(S(y) ∈ X), then every natural
number is in X.

PROOF. Suppose not and let n ∈ N\X . Consider Y = S(n)\X . Then n ∈ Y and so Y 6= /0. Let k = minY . Thus
k≤ n. Therefore k = /0 or k is a successor. However /0 /∈Y , because /0 ∈ X and so k = S(i) for some i. By minimality
of k, we must have i ∈ X . But then also k = S(i) ∈ X , which is a contradiction. �

REMARK 1.16. • Recall the Axiom of Infinity: ∃x( /0 ∈ X ∧∀y ∈ x(S(y) ∈ x)).
• Thus if X is a set which contains all natural numbers, then {n ∈ X : n is a natural number} is a set.

LEMMA 1.17. Let X be a set of ordinals, which is an initial segment of ON. That is ∀β ∈ X∀α < β (α ∈ X)).
Then X is an ordinal itself.

PROOF. Note that ∈ is a well-order on X . Since X is an initial segment of the ordinals, X is also a transitive
set. Thus X is an ordinal. �

REMARK 1.18. So in particular, every transitive set of ordinals is an ordinal.

DEFINITION 1.19. Let ω denote the set of all natural numbers.



10 2. ORDINAL ARITHMETIC

REMARK 1.20. Note that ω is an initial segment of ON and so ω is an ordinal. Moreover ω is not a successor
ordinal and ω is not finite. Thus, ω is the first limit ordinal.

DEFINITION 1.21. Assume the Axiom of Infinity and for each n ∈ N let

Bn = nB = {F | F : n→ B}.

Then let

B<ω = <ω B :=
⋃
{Bn : n ∈ ω}.

PROOF. (Justification of existence) Use the Power Set Axiom or the Axiom of Replacement. �

REMARK 1.22. Let L = (C ,F ,R) be a first order language and let B be the set of all logical and non-logical
symbols of L . Then the set of formulas of L is a subset of B<ω .

LEMMA 1.23. Let α , β be ordinals and suppose that f : (α,∈)→ (β ,∈) is an order preserving bijection (i.e.
an isomorphism). Then α = β and f = id.

PROOF. Let ξ ∈ α . Then f (ξ ) ∈ β . Furthermore:

f (ξ ) := {ν ∈ β : ν ∈ f (ξ )}= { f (µ) : µ ∈ α ∧µ < ξ}.

That is f (ξ ) = { f (µ) : µ < ξ}. Suppose X0 = {ξ ∈ α : f (ξ ) 6= ξ} 6= /0. Then X0 has a minimal element µ . Thus
for all ξ < µ , f (ξ ) = ξ and so

f (µ) = { f (ξ ) : ξ < µ}= {ξ : ξ < µ}= µ,

which is a contradiction. Therefore X0 = /0 and so f is the identity. �

THEOREM 1.24. Let A be a set and let R be a well-order on A. Then there is a unique ordinal α such that
(A,R)∼= (α,∈).

REMARK 1.25. Uniqueness follows from the previous statement.

PROOF. (Existence) For a ∈ A let a ↓:= {x ∈ A : xRa} and let

G = {a ∈ A : ∃ξa ∈ON((a ↓,R)∼= (ξa,∈))}.

Since A is a set, by the Axiom of Comprehension G is also a set. Since ∀a ∈G ∃ξa as above, by Replacement there
is a set X ⊆ON and a function f : G→ X such that for all a∈G, f (a) = ξa. Then ∈ is a well-order on range( f )⊆ X .
Moreover range( f ) is a transitive and so it is an ordinal, say α . Then f : (G,R)∼= (α,∈). Note that:

• if G = A, then we are done.
• if G⊆ A and G 6= A, let e = minR(A\G). Then e ↓= G and f : (e ↓,R)∼= (α,∈). That is ξe = α . But, this

implies that e ∈ G, which is a contradiction. Thus G = A.

�

DEFINITION 1.26. (Order Type) Let R be a well-order on A. Then type(A,R) is the unique ordinal α such that
(A,R)∼= (α,∈). We denote this ordinal by type(A,R).
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2. Ordinal Arithmetic

DEFINITION 2.1. Let α , β be ordinals. Then

(1) The ordinal multiplication of α and β , denoted α ·β , is the ordinal

type(β ×α,<lex).

(2) The ordinal addition of α and β , denoted α +β , is the ordinal

type({0}×α ∪{1}×β ,<lex).

LEMMA 2.2. If R well-orders A and X ⊆ A, then R well-orders X and

type(X ,R)≤ type(A,R).

PROOF. We can assume that (A,R) = (α,∈). Thus, in particular, X and A are sets of ordinals. Let δ =

type(X ,R) and let f : (X ,R)∼= (δ ,∈). Suppose X0 = {ξ ∈ X : f (ξ )> ξ} 6= /0 and let µ = minX0. Then f (µ)> µ

and ∀ξ ∈ X ∩µ( f (ξ )≤ ξ ). Since f is an isomorphism

f (µ) = { f (ξ ) : ξ < µ} ≤ µ,

which is a contradiction. Therefore for all ξ ∈ X , f (ξ )≤ ξ . Then

δ = { f (ξ ) : ξ ∈ X} ⊆ α and so δ ⊆ α.

�

EXAMPLE 2.3. • ω +ω

0,1, · · · ,n,n+1, · · · ,ω = ω +0,ω +1,ω +2, · · · ,ω +n, · · ·

• ω ·2 = type({0,1}×ω,<lex)

(0,0),(0,1), · · · ,(0,n), · · · ,(1,0),(1,1), · · · ,(1,n), · · ·

Thus ω +ω = ω ·2 (because the order type is unique!).
• However 1+ω = ω , while ω < ω +1. Thus 1+ω 6= ω +1.
• Also 2 ·ω = type(ω×{0,1},<lex) = ω , while ω ·2 = ω +ω > ω .
• More precisely, what is 2 ·ω?

(0,0),(0,1),(1,0),(1,1),(2,0),(2,1), · · · ,(n,0),(n,1), · · ·

• In particular 2 ·ω 6= ω ·2.
• Both, ordinal multiplication and ordinal addition are associative, but not commutative.

THEOREM 2.4. (Transfinite Induction on ON) Let ψ(α) be a formula. If there is an ordinal α such that ψ(α),
then there is a least ordinal ξ such that ψ(ξ ).

PROOF. Fix α such that ψ(α). If α is least, then we are done. Otherwise, X = {ξ ∈ α : ψ(α)} 6= /0 and so
ξ = minX is as desired. �

REMARK 2.5. (Ordinal Exponentiation) Note that induction is a method for giving proofs, while recursion is a
method for giving definitions. Recursively, one can define ordinal exponentiation as follows:

α
0 = 1, α

S(β ) = α
β ·α, α

γ = sup
β<γ

α
β for γ limit.

THEOREM 2.6. (Primitive Recursion on ON) Suppose for all s there is a unique y such that ϕ(s,y) and define
G(s) to be this unique y. Then there is a formula ψ for which the following two properties are provable:
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(1) ∀x∃!yψ(x,y). Thus, ψ defines a function F, where F(x) is such that ψ(x,F(x)).
(2) ∀ξ ∈ON(F(ξ ) = G(F(ξ ))).

PROOF. δ -approximations to F: Let δ ∈ON and let App(δ ,h) abbreviate

h is a function,dom(h) = δ ,∀ξ ∈ δh(ξ ) = G(h � ξ ).

Uniqueness: We will show that

δ ≤ δ
′∧App(δ ,h)∧App(δ ′,h′)→ h = h′ � δ .

In particular, the case δ = δ ′ gives the uniqueness of h.

Fix δ ,δ ′,h,h′ as above. Suppose h 6= h′ � δ . Then

X = {ξ < δ : h(ξ ) 6= h′(ξ )} 6= /0

and so there is µ = minX . Then for all ξ < µ h(ξ ) = h′(ξ ). That is h � µ = h′ � µ . But then h(ξ ) = G(h � ξ ) =

G(h′ � ξ ) = h′(ξ ), which is a contradiction. Therefore X = /0 and h = h′ � δ .

Existence: By transfinite induction on ON show that ∀δ∃hApp(δ ,h). Suppose not and let δ ∈ON be least such that
¬∃hApp(δ ,h). Thus in particular ∀ξ < δ∃hξ such that App(ξ ,hξ ).

Case 1: If δ = β +1 let f = hβ ∪{〈β ,G(hβ )〉}. Then App(δ , f ) which contradicts our hypothesis.

Case 2: δ = /0 - impossible, since App(0, /0).

Case 3: δ is a limit ordinal. Let f =
⋃
{hξ : ξ < δ}. Then uniqueness implies that f is a function and further-

more App(δ , f ), which is a contradiction to the choice of δ .
Thus ∀δ ∈ON∃!hApp(δ ,h). Let ψ(x,y) be the following formula:

(x /∈ON∧ y = 0)∨ (x ∈ON∧∃δ > x∃h(App(δ ,h)∧h(x) = y)).

The uniqueness and existence of h imply that ∀x∃!yψ(x,y) and so ψ(x,y) defines a function F . Now, let ξ ∈ ON.
Then pick any δ > ξ and h such that App(δ ,h). Then

F(ξ ) = h(ξ ) = G(h � ξ ) = G(F � ξ )

as desired. �

REMARK 2.7. One can define ordinal addition and exponentiation by transfinite recursion on the ordinals as
follows:

Ordinal addition Let α ∈ON. Recursively over β ∈ON define α +β as follows:

(1) α +0 = α ,
(2) α +β = S(α +β ) if β = S(γ).
(3) α +β =

⋃
γ∈β (α + γ) if β is a limit > 0.

Ordinal multiplication Let α ∈ON. By recursion over β ∈ON define the ordinal α ·β as follows:

(1) α ·0 = 0,
(2) α ·β = (α · γ)+α , if β = S(γ),
(3) α ·β =

⋃
γ∈β (α · γ), if β is a limit > 0.

EXERCISE 1. The latter two definitions are equivalent to the definitions of ordinal addition and ordinal multi-
plication respectively, which we gave earlier in the lecture.



CHAPTER 3

Cardinal Arithmetic

1. Comparing infinities

DEFINITION 1.1. Let X ,Y be sets.

(1) X � Y iff there is an injective function f : X → Y ;
(2) X ≈ Y iff there is a bijection f : X → Y .

REMARK 1.2. Note that

• � is transitive and reflexive, and that
• ≈ is an equivalence relations.

So, we can think of different infinite sizes as equivalence classes, consisting of sets any two of which are in bijective
correspondence.

LEMMA 1.3. If B⊆ A and there is an injective f : A→ B then A≈ B.

PROOF. Using the fact that f (A)⊆ B⊆ A obtain:

A⊇ B⊇ f (A)⊇ f (B)⊇ f 2(A)⊇ f 2(B)⊇ f 3(A)⊇ ...

Let f 0 = id and for each n ∈ N let

Hn = f n(A)\ f n(B), Kn = f n(B)\ f n+1(A).

We will show that for each n, the functions

f � Hn : Hn→ Hn+1 and f � Kn : Kn→ Kn+1

are bijections.

CLAIM 1.4. f � Hn : Hn→ Hn+1 is a bijection, where Hn = f n(A)\ f n(B).

PROOF. Let g = f � Hn. Clearly since f is injective, then also g is injective. We need to show that g is onto.

• Let x ∈ Hn+1. Thus x ∈ f n+1(A)\ f n+1(B). So clearly, there is y ∈ f n(A) such that x = f (y).
• We need to show that y /∈ f n(B). However, if y ∈ f n(B) then f (y) = x ∈ f n+1(B) which is a contradiction.

Thus, x = f (y) for some y ∈ Hn = f n(A)\ f n(B), i.e. g is a bijection. �

Consider the set P =
⋂

n∈ω f n(A) =
⋂

n∈ω f n(B). Then

A = P∪H0∪H1∪H2∪·· ·∪K0∪K1∪·· ·

B = P∪H1∪H2∪H3∪·· ·∪K0∪K1∪·· ·
are partitions of A, B. Then the function k : A→ B defined by

• k � Hn = f � Hn for each n,
• k � P = id and

13
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• k � Kn = id for each n,

is a bijection from A to B. �

THEOREM 1.5. (Schröder-Bernstein) A≈ B iff A� B and B� A.

PROOF. (⇒) If f : A→ B is a bijection, then f witnesses A� B and f−1 witnesses B� A.

(⇐) Suppose f : A→ B and h : B→ A are injective. Let B̂ = h(B). Then B̂⊆ A and h : B→ B̂ is a bijection. Thus,
by definition B≈ B̂. On the other hand B̂⊆ A and so h◦ f : A→ B̂ witnesses A� B̂. Thus, by the previous Lemma
A≈ B̂. Since B≈ B̂ we obtain A≈ B. �

DEFINITION 1.6. X ≺ Y iff X � Y and it is not the case that Y � X .

REMARK 1.7. By the theorem of Schröder-Bernstein, X ≺ Y means that X can be mapped injectively into Y ,
but there is no bijection between X and Y .

LEMMA 1.8. (Cantor’s Diagonal Element) If F is a function, dom( f ) = A and D = {x ∈ A : x /∈ f (x)} then
D /∈ ran( f ).

PROOF. Suppose D ∈ ran( f ). Then there is x ∈ A such that D= f (x). There are two possibilities:
If x ∈ f (x), then x ∈ D (since f (x) = D) and so x the defining characteristic of D, i.e. x is an element of A such

that x /∈ f (x). This is a contradiction.
If x /∈ f (x), then since x ∈ A we have that x satisfies the defining characteristic of D and so we must have that

x ∈ D, i.e. x ∈ f (x). Again we reach a contradiction.
Therefore D /∈ ran( f ). �

THEOREM 1.9. A≺P(A).

PROOF. Clearly A�P(A) witnessed by the mapping x 7→ {x} for each x ∈ A. We claim that P(A) 6� A. Well,
suppose to the contrary that P(A)� A. Then by Schröder-Bernstein P(A)≈ A and so there is a bijection

f : A→P(A).

Then since D= {x ∈ A : x /∈ f (x)} ∈P(A) and f is onto we must have

D= {x ∈ A : x /∈ f (x)} ∈ ran( f )

contradicting Cantor’s Diagonal Element Lemma. �

COROLLARY 1.10. N≺P(N).

REMARK 1.11. Characteristic Functions Let A be a set and let B ⊆ A. Then we refer to χB : A→ 2 = {0,1}
defined by

χB(a) =

{
1 if a ∈ B

0 otherwise
as the characteristic function of B.

The mapping B 7→ χB where B ∈P(A) is a bijection between A2 and P(A). Thus
A2≈P(A).

In particular N2 = 2N ≈P(N).

Note that

(1) If A≺ B and C ≺ D, then AC � BD.
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(2) If 2�C, then A≺P(A)� AC, simply because P(A)≈ A2≺ AC.

LEMMA 1.12. (1) C(BA)≈ C×BA
(2) (B∪C)A≈ BA×CA, where B and C are disjoint.

PROOF. (1) Consider the mapping Φ : C(BA)→ C×BA defined by

Φ( f )(c,b) = ( f (c))(b).

(2) Consider the mapping Ψ : B∪CA→ BA×CA given by

Ψ( f ) = ( f � B, f �C).

�

DEFINITION 1.13. (Finite, countable and uncountable sizes)

(1) A set A is said to be countable, if A� ω .
(2) A set A is said to be finite if A� n for some n ∈ ω .
(3) Infinite means not finite. Uncountable means not countable.
(4) A countably infinite set is a countable set which is infinite.

2. Cardinal Numbers

FACT 1.

(1) If B⊆ α then type(B,∈)≤ α .
(2) If B� α , then B≈ δ for some δ ≤ α .
(3) If α ≤ β ≤ γ and α ≈ γ then α ≈ β ≈ γ .

PROOF. (2) If B� α , then B≈ δ for some δ ≤ α (identify B with a subset of α and apply part (1)).
(3) Since α ⊆ β and β � α imply that α ≈ β . �

Thus, the ordinals come in blocks of the same size. Informally, the first ordinal in a block is called a cardinal.

DEFINITION 2.1. A cardinal is an ordinal α such that ξ ≺ α for all ξ ∈ α .

REMARK 2.2. Thus, an ordinal α fails to be a cardinal iff there is ξ < α such that ξ ≈ α . We denote by CD
the collection of all cardinals.

THEOREM 2.3. (1) If α ≥ ω is a cardinal, then α is a limit ordinal.
(2) Every natural number is a cardinal.
(3) If A is a set of cardinals, then supA is a cardinal.
(4) ω is a cardinal.

PROOF. (1) Let α ≥ ω be an infinite cardinal. Suppose α is a successor ordinal. Thus α = δ +1 = δ ∪{δ}.
Then f : δ ∪{δ}→ δ defined by f (δ ) = 0, f (n) = n+1 for all n ∈ ω and f (ξ ) = ξ for all ξ such that ω ≤ ξ < δ

is a bijection. Thus δ ∈ α , but δ 6≺ α , which is a contradiction to α being a cardinal.

(2) Proceed by induction. Now, 0 is trivially a cardinal. Suppose n is a cardinal and suppose S(n) = n+1 is not a
cardinal. Then ∃ξ (ξ < S(n)) such that ξ ≈ S(n). Thus there is a bijection f : ξ → S(n) = n∪{n}. Clearly ξ 6= 0
and so ξ = S(m) for some m < n. But, then

f : m∪{m}→ n∪{n}
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is a bijection. Thus ξ = S(m) for some m < n and f : m∪{m} → n∪{n} is a bijection. We have the following
options:

If f (m) = n, then f � m : m→ n is a bijection, contradiction to the assumption that n is a cardinal.
Otherwise f (m) = j ∈ n. Now n ∈ ran( f ) and so there is i ∈ m such that f (i) = n. Consider the mapping

g : m→ n

defined by g(i) = j and g � m\{i} = f . Then g is a bijection, again a contradiction to the assumption that n is a
cardinal.

(3) Suppose, by way of contradiction that supA =
⋃

A is not a cardinal. Thus there is ξ < supA such that ξ ≈ supA.
Recall that supA is the least ordinal, which is greater or equal each element of A. Thus there is α ∈ A such that
ξ < α . Then by one of the earlier Lemmas

ξ ≈ α,

which is a contradiction to α being a cardinal.

(4) Note that
ω = sup

n∈N
n =

⋃
n∈N

n

and so the claim follows from items (2) and (3) above. �

DEFINITION 2.4.

(1) We say that a set A is well-orderable, if there is a relation R on A such that (A,R) is a well-order.
(2) If A is well-orderable, then the cardinality of A, denoted |A|, is the least ordinal α such that A≈ α .

REMARK 2.5.

• Note that the cardinality of a set is always a cardinal number.
• Under the Axiom of Choice every set can be well-ordered and so under the AC every set is characterised

by its cardinality.

LEMMA 2.6.

(1) If A is a set, which can be well-ordered and f : A→ B is an onto mapping, then B can be well-ordered and
|B| ≤ |A|.

(2) Let κ be a cardinal and B 6= /0. Then B� κ if and only if there is an onto mapping f : κ → B.

COROLLARY 2.7. (A) set B 6= /0 is countable if and only if there is an onto function f : ω → B.

THEOREM 2.8. (Hartogs, 1915) Let A be a set. Then there is a cardinal κ such that κ 6� A.

PROOF. Fix A and let W = {(X ,R) : X ⊆ A∧R well-orders X}. Then if α is an ordinal, we have that

α � A iff ∃(X ,R) ∈W s.t. α = type(X ,R).

By the Axiom of Replacement Z = {type(X ,R) + 1 : (X ,R) ∈ W} is a set. But then β = supZ is an ordinal.
Moreover, for each α � A, we have that β > α . Thus, β 6� A. Take κ = |β |. Then κ ≈ β and κ 6� A. �

DEFINITION 2.9. Let A be a set. Then ℵ(A) denotes the least cardinal κ such that κ 6� A. For ordinals α define
α+ = ℵ(α).

DEFINITION 2.10. By transfinite recursion on ON, define the cardinal numbers ℵξ as follows:

(1) ℵ0 = ω0 = ω

(2) ℵξ+1 = ωξ+1 = (ℵξ )
+
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(3) ℵη = ωη = sup{ℵξ : ξ < η} whenever η is a limit ordinal.

REMARK 2.11. (The class of all cardinals) The collection of all cardinals is a proper class.

ℵ0 = |N|< ℵ1 < ℵ2 < ... < ℵn... < ℵω < ℵω+1 < ...

DISCUSSION 2.12. The cardinality of the real line How large is R? What is |R|? Note that |R| = |P(N)|
and |P(N) = 2ℵ0 where 2ℵ0 is cardinal exponentiation (to be defined shortly) and is the cardinality of the set of
functions from N to 2.

THEOREM 2.13. Suppose α ≥ ω is an ordinal. Then |α×α|= |α|. Thus in particular, if κ ≥ ω is a cardinal,
then |κ×κ|= κ .

REMARK 2.14. Observe that it is sufficient to prove the claim for cardinal numbers. Indeed. Suppose α is an
infinite ordinal and we have proved that ||α|× |α||= |α|. Now α ≈ |α|, which induces a bijection witnessing

|α|× |α| ≈ α×α,

and so ||α|× |α||= |α|.

PROOF. Define a relation C on ON×ON as follows: (ξ1,ξ2)C (η1,η2) iff

• either max{ξ1,ξ2}< max{η1,η2},
• or max{ξ1,ξ2}= max{η1,η2} and (ξ1,ξ2)<lex (η1,η2).

Note that C is a well-order. It is sufficient to show that

CLAIM 2.15. For each infinite cardinal κ , type(κ×κ,C) = κ .

PROOF. Proceed by transfinite induction on κ . Let κ be the least infinite cardinal such that type(κ×κ,C) 6= κ .
Now, let δ = type(κ×κ,C) and let F : (δ ,<)→ (κ×κ,C) be an order preserving bijection.

Suppose δ > κ . Then F(κ) is defined and so ∃(ξ1,ξ2)∈ κ×κ such that F(κ)= (ξ1,ξ2). Let α =max{ξ1,ξ2}+
1. Then since κ is a limit ordinal, α < κ . Moreover since F is order preserving, F ′′κ ⊆ α × α . Therefore
κ � α×α ≺ κ , which is clearly a contradiction.

Now, suppose δ < κ . Then κ � κ×κ ≈ δ , which is a contradiction, since κ is a cardinal.
Thus κ = δ , which is a contradiction to the choice of κ .
Therefore there is no such κ , i.e. for each infinite cardinal κ , |κ × κ| = κ . This proves the claim and the

theorem. �

�

3. Cardinal Arithmetic

DEFINITION 3.1. (Cardinal addition, multiplication and exponentiation) Let κ and λ be cardinals. Then:

(1) κ +λ is defined to be the cardinality of the set {0}×κ ∪{1}×λ .
(2) κ×λ is defiend to be the cardinality of the set κ×λ .
(3) κλ is the cardinality of the set κ λ := { f | f : κ → λ}.

LEMMA 3.2. (Monotonicity) Let κ,κ ′,λ ,λ ′ be cardinals such that κ ≤ κ ′, λ ≤ λ ′. Then:

(1) κ +λ ≤ κ ′+λ ′,
(2) κ ·λ ≤ κ ′ ·λ ′,
(3) κλ ≤ (κ ′)λ ′ .
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PROOF. (1) Note that {0}×κ ∪{1}×λ ⊆ {0}×κ ′∪{1}×λ ′. Thus

id : κ +λ � κ
′+λ

′

and so κ +λ ≤ κ ′+λ ′.

(2) Similarly κ×λ ⊆ κ ′×λ ′ and so id : κ ·λ � κ ′ ·λ ′. Therefore κ ·λ ≤ κ ′ ·λ ′.

(3) Consider the mapping ϕ : λ κ → (λ ′)(κ ′) defined by

• ϕ( f ) � λ = f and
• ϕ( f )(ξ ) = 0 for all λ ≤ ξ < λ ′.

When κ = κ ′ = 0, note that
00 = |00|= |{ /0}|= 1

and for λ > 0,
0λ = |λ 0|= | /0|= 0.

�

LEMMA 3.3. Let κ , λ , θ be cardinals. The following properties refer to cardinal arithmetic:

(1) κ +λ = λ +κ ,
(2) κ ·λ = λ ·κ ,
(3) (κ +λ ) ·θ = κ ·θ +λ ·θ ,
(4) κ(λ ·θ) = (κλ )θ ,
(5) κ(λ+θ) = κλ ·κθ .

PROOF. To see (1) note that A∪B = B∪A. To see (2) note that A×B = B×A. To see (3) observe that
(A∪B)×C = A×C∪B×C. To see (4) note that C(BA)≈C×B A. To see (5) observe that (B∪C)A≈ BA×CA provided
that B,C are disjoint. �

EXAMPLE 3.4.

(1) ω , ω ·ω , ω +ω are three different ordinals, all of the same cardinality.
(2) ωω as ordinal exponentiation is equal to supn∈ω ωn, which is a countable set.
(3) However, ωω as cardinal exponentiation is uncountable: |ω ω| = |P(ω)| = ℵ

ℵ0
0 = 2ℵ0 (to be proven

shortly).

LEMMA 3.5. Let κ , λ be cardinals and suppose at least one of them is infinite.

• Then the cardinal sum of κ and λ is equal to max{κ,λ}.
• If none of them is 0, then the cardinal product of κ and λ is equal to max(κ,λ ).

PROOF. Let κ ≤ λ . Thus λ is infinite. But then

λ � κ +λ � λ ×λ .

However we proved that λ ×λ ≈ λ . Therefore λ � κ +λ and κ +λ � λ . Therefore κ +λ = max{κ,λ}= λ .
To see the second claim assume that κ ≤ λ . Thus λ is infinite. Then

λ � κ×λ � λ ×λ ≈ λ

and so κ×λ ≈ λ . �

LEMMA 3.6. If 2≤ κ ≤ 2λ and λ is infinite, then κλ = 2λ . All exponentiation here is cardinal exponentiation.

PROOF. 2λ � κλ � (2λ )λ � 2λ×λ = 2λ ·λ = 2λ . � �
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COROLLARY 3.7. 2ω = ωω .

REMARK 3.8. (CH and GCH)

(1) For every ordinal α , 2ℵα ≥ℵα+1.
(2) The Continuum Hypothesis(abbreviated CH) is the statement that

2ℵ0 = ℵ1.

(3) The Generalized Continuum Hypothesis (abbreviated GCH) is the statement

2ℵα = ℵα+1

for all α ∈ON.

REMARK 3.9. Thus CH is the statement that the cardinality of the real line is the first uncountable cardinal, i.e.
|R|= ℵ1. If CH holds, then there are no infinite sizes between |N| and |R|.





CHAPTER 4

Cofinality and Lemma of König

1. Cofinality

DEFINITION 1.1. (Cofinality)

(1) If γ is a limit ordinal, then the cofinality of γ is defined as follows:

cf(γ) = min{type(X) : X ⊆ γ ∧ sup(X) = γ}.

(2) We say that γ is a regular ordinal, if cf(γ) = γ .

REMARK 1.2. Note that cf(γ)≤ γ .

EXAMPLE 1.3.

ℵ0 < ℵ1 < ... < ℵn < ... < ℵω < ...

LEMMA 1.4. Let γ be a limit ordinal. Then:

(1) If A⊆ γ and sup(A) = γ , then cf(γ) = cf(type(A)).
(2) cf(cf(γ)) = cf(γ). Thus cf(γ) is a regular ordinal.
(3) ω ≤ cf(γ)≤ |γ| ≤ γ .
(4) If γ is a regular ordinal, then γ is a cardinal.

PROOF. (1) Let α = type(A). Since γ is limit and A is unbounded in γ , α must be limit as well. Let f : (α,∈
)→ (A,∈) be an isomorphism.

cf(γ)≤ cf(α): If Y ⊆ α is unbounded in α , then f ′′(Y ) is unbounded in γ and type( f ′′(Y )) = type(Y ). Now,
take Y ⊆ α such that type(Y ) = cf(α). Then Y ⊆ γ is unbounded in γ , type(Y ) = cf(α). Thus cf(γ)≤ cf(α).

cf(α)≤ cf(γ): Let X ⊆ γ be unbounded and let type(X) = cf(γ) and consider the mapping h : X → A(⊆ γ)

given by:

h(ζ ) = min{η : η ∈ A∧η ≥ ζ}.

Then h is non-decreasing. Consider the set

X ′ = {η ∈ X : ∀ξ ∈ X ∩η(h(ξ )< h(η))}.

Therefore h � X ′ : X ′→ A is order preserving and so injective. Thus h(X ′) is unbounded in A. However the set A
was chosen to be of order type α . Therefore

cf(α)≤ type(X ′)≤ type(X) = cf(γ).

(2) Let A ⊆ γ be an unbounded subset of γ of order type cf(γ). Then by part (1) of this Lemma, cf(γ) =
cf(type(A)) = cf(cf(γ)).

21
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(3) By definition ω ≤ cf(γ) and |γ| ≤ γ . So, we need to show that cf(γ)≤ |γ|. For this purpose, let κ := |γ| and fix
an onto function f : κ → γ . Recursively, define the following function g : κ →ON:

g(η) := max{ f (η),sup{g(ξ )+1 : ξ < η}}.

What can we say about g?

(1) dom(g) = dom( f ) = κ ,
(2) g(η)≥ f (η) for all η ∈ κ ,
(3) if ξ < η then g(ξ )< g(η), because g(η)≥ g(ξ )+1 > g(ξ ),
(4) If η = ζ +1, then

g(ζ +1) = max{ f (ζ +1),sup{g(ξ ) : ξ ≤ ζ}}= max{ f (ζ +1),g(ζ )+1}.

In particular we have that g : κ ∼= ran(g) and so type(ran(g)) = κ .
If ran(g)⊆ γ , then since g(η) ≥ f (η) and ran( f ) = γ , we have ran(g) is unbounded in γ . Therefore cf(γ) ≤

κ = |γ|. Done!
If ran(g) 6⊆ γ , we can find η ∈ κ least such that g(η)≥ γ .
Suppose η = ξ +1. Then

g(η) = g(ξ +1) = max{g(ξ )+1, f (η)}.

However g(η) ≥ γ and f (η) < γ . Thus g(η) = g(ξ )+ 1. By minimality of η , g(ξ ) < γ and so g(ξ )+ 1 ≤ γ .
Therefore g(η) = g(ξ )+1≤ γ ≤ g(η). But then γ = g(ξ )+1 is a successor, which is a contradiction!

Therefore η is a limit ordinal and g′′η is unbounded in γ . Moreover g � η : η ≈ g′′η . In particular type(g′′η)≤
η .

Then cf(γ)≤ type(g′′η)≤ η < κ = |γ|. Done!

(4) This is a direct corollary to (3). Indeed, suppose γ is regular. Then γ = cf(γ). But, by item (3)

cf(γ)≤ |γ| ≤ γ.

Thus γ ≤ |γ| ≤ γ and so γ = |γ| is a cardinal. �

DEFINITION 1.5. (Regular and Singular Cardinals) Let γ be an infinite cardinal.

(1) If γ = cf(γ), we say that γ is regular.
(2) If cf(γ)< γ , we say that γ is singular.

REMARK 1.6. By the previous Lemma, part (1), we have that cf(α +β ) = cf(β ). Indeed, the set

A = {α +ξ : ξ < β}

is unbounded in α +β . Thus, for every limit ordinal γ < ω1,

cf(γ) = ω.

For every limit ordinal γ such that γ < ω2,

either cf(γ) = ω or cf(γ) = ω1.

LEMMA 1.7. Let γ be a limit ordinal.

(1) Suppose γ = ℵα , where α = 0 or α = β +1 is a successor ordinal. Then γ is regular.
(2) If γ = ℵα for a limit ordinal α , then cf(γ) = cf(α).
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PROOF. (1) If α = 0, then ℵα = ℵ0 = ω and ω ≤ cf(ω) ≤ |ω| ≤ ω is regular. Thus, suppose γ = ℵβ+1.
Consider any A⊆ℵβ+1 such that

type(A)< ℵβ+1.

It is sufficient to show that A is not unbounded in ℵβ+1, since then ℵβ+1 ≤ cf(γ). But cf(γ)≤ |γ|= ℵβ+1 and so
cf(ℵβ+1) = ℵβ+1.

To show that A is not unbounded in γ , consider supA=
⋃

A. Note that |A| ≤ℵβ , because |A| ≤ type(A)<ℵβ+1.

• Moreover, every element of A is of cardinality at most ℵβ . Therefore we can view A as a collection of
≤ℵβ -many sets, each of cardinality at most ℵβ .

• Then, by the Axiom of Choice we obtain that |supA|= |
⋃

A| ≤ℵβ (see Lemma A).

Thus supA < ℵβ+1 (otherwise contradiction to the notion of a cardinal!) Thus A can not be unbounded in ℵβ+1.

(2) Let A = {ℵξ : ξ < α}. Then A⊆ℵα and supA = ℵα . By a previous Lemma

cf(ℵα) = cf(type(A)).

However cf(type(A)) = cf(α). Thus cf(ℵα) = cf(α). �

EXAMPLE 1.8.

• cf(ℵn) = ℵn for each n ∈ ω , and
• cf(ℵω) = ω .

2. König’s Lemma

LEMMA 2.1. (AC) Let A,B be sets such that A 6= /0. Then there is an injective function g : B→ A if and only if
there is an onto function f : A→ B.

PROOF. (⇐) Suppose there is an onto mapping f : A→ B. Then { f−1(b)}b∈B is a non-empty family of non-
empty sets and so for each b ∈ B we can chose ab ∈ f−1(b) such that f (ab) = b. Since f−1(b1)∩ f−1(b2) = /0
whenever b1 6= b2, we must have ab1 6= ab2 . Therefore the mapping g : B→ A defined by g(b) = ab is injective.

(⇒) Let g : B→ A be an injective mapping. For each a ∈ ran(g), we have a = g(b) for some b ∈ B (note that b
is unique by the injectivity of g). For such a’s define f (a) = b, i.e. define f : A→ B so that f � ran(g) = g−1. It
remains to define f � (A\ ran(g)). To do this, fix an arbitrary b∗ ∈ B and for each a ∈ A\ ran(g) define f (a) = b∗.
Thus f = g−1∪ ((A\ ran(g))×{b∗}) is an onto mapping from A to B. � �

LEMMA 2.2. (AC) Let κ be an infinite cardinal. If F is a family of sets with |F | ≤ κ and |X | ≤ κ for each
X ∈F , then |

⋃
F | ≤ κ .

PROOF. Assume F 6= /0 and /0 /∈F . Then there is an onto function f : κ →F . Similarly, for each B ∈F fix
an onto function

gB : κ → f (α).

This defines an onto mapping h : κ×κ →
⋃

F given by

h(α,β ) = g f (α)(β ).

Since |κ×κ|= κ , we obtain an onto mapping from κ onto
⋃

F . �

THEOREM 2.3. (AC) Let θ be a cardinal.

(1) Suppose θ is regular and F is a family of sets, such that |F | < θ and moreover |S| < θ for all S ∈F .
Then |

⋃
F |< θ .
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(2) Suppose cf(θ) = λ < θ . Then there is a family F of subsets of θ with |F |= λ and |
⋃

F |= θ such that
|S|< θ for all S ∈F .

PROOF. (1) Let X = {|S| : S ∈F}. Then X ⊆ θ , |X | < θ and so type(X) < θ . Since θ is regular, type(X) <

cf(θ) and so X is not unbounded in θ . Thus sup(X) < θ . Consider κ := max{sup(X), |F |}. Then κ < θ . If κ is
infinite, then by Lemma A |

⋃
F | ≤ κ . If κ is finite, then

⋃
F is finite. In either of those two cases |

⋃
F |< θ .

(2) Just take F to be a subset of θ such that type(F ) = λ and sup(F ) =
⋃

F = θ . �

THEOREM 2.4. (König) Let κ ≥ 2 and λ be infinite. Then cf(κλ )> λ .

PROOF. Let θ = κλ . Note that θ is infinite and θ λ = κλ ·λ = κλ = θ . Thus, we can enumerate λ θ is order
type θ , i.e. λ θ = { fα : α ∈ θ}. There are two options. Either cf(κλ )≤ λ or cf(κλ )> λ .

If cf(κλ )≤ λ < 2λ ≤ κλ , then by Lemma B we have θ =
⋃

ξ<λ Sξ , where each |Sξ |< θ . Let g : λ → θ be the
function g(ξ ) = min(θ\{ fα(ξ ) : α ∈ Sξ}). Then g ∈ λ θ and so there is α ∈ θ such that g = fα . Take ξ < λ such
that α ∈ Sξ . Then g(ξ ) 6= fα(ξ ), contradiction.

Therefore cf(κλ )> λ . �

EXAMPLE 2.5.

(1) cf(2ℵ0)> ℵ0 = ω and so 2ℵ0 can not be ℵω .
(2) Consistently (using the method of forcing) 2ℵ0 is any cardinal of uncountable cofinality, e.g. ℵ2020,

ℵω+1, ℵω1 , etc.

THEOREM 2.6. Assume GCH. Let κ , λ be cardinals such that max{κ,λ} ≥ ω .

(1) Suppose 2≤ κ ≤ λ+. Then κλ = λ+.
(2) Suppose 1≤ λ ≤ κ . Then κλ = κ provided that λ < cf(κ) and κλ = κ+ provided that λ ≥ cf(κ).

PROOF. (1) Since we have GCH, 2λ = λ+. Then 2≤ κ ≤ 2λ . But then

2λ ≤ κ
λ ≤ (2λ )λ = 2λ ·λ = 2λ

and so κλ = 2λ . Thus by GCH we obtain κλ = λ+.

(2) Since 1 ≤ λ ≤ κ we have that κ ≤ κλ ≤ κκ = 2κ = κ+ (the latter equality by GCH). Therefore either κλ =

κ or κλ = κ+. By König’s Lemma cf(κλ )> λ . Thus:

• If cf(κ)≤ λ , then κλ 6= κ . Therefore κλ = κ+. Done!
• If λ < cf(κ), then every f : λ → κ is bounded. Thus for all f ∈ λ κ there is α f < κ such that f ∈ λ α f

and so λ κ =
⋃

α<κ
λ α . Now λ α ⊆P(λ ×α) and for α < κ , |λ ×α|< κ . Therefore |λ α| ≤ κ by GCH.

Then by Lemma 2.2 we have also |λ κ| ≤ κ and so κλ = κ . Done!

�

DEFINITION 2.7. (The beth function) By recursion on the ordinals define iζ as follows:

(1) i0 = ℵ0 = ω ,
(2) iζ+1 = 2iζ ,
(3) iη = sup{iζ : ζ < η} for η limit ordinal.

REMARK 2.8. CH is equivalent to the statement that i1 = ℵ1 and GCH is equivalent to the statement that
iξ = ℵξ for all ξ ∈ON.

DEFINITION 2.9.

• A cardinal κ is said to be weakly inaccessible if κ > ω , κ is regular and κ > λ+ for all λ < κ .
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• A cardinal κ is strongly inaccessible if κ > ω is regular and κ > 2λ for all λ < κ .

REMARK 2.10. If κ is strong inaccessible, then κ is weakly inaccessible. The existence of a strong inaccessible
cardinal is not provable in ZFC.
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CHAPTER 5

Structures and Embeddings

1. Structures, Substructures, Expansions

DEFINITION 1.1. (L -structure) Let L be a language. An L -structure is a pair A= (A,(ZA))Z∈L where:

(1) A is a non-empty set, referred to as the domain or universe of A,
(2) ZA ∈ A whenever Z is a constant symbol,
(3) ZA : An→ A whenever Z is an n-ary function symbol,
(4) ZA ⊆ An if Z is an n-ary relation symbol.

By the cardinality of a structure A, we understand the cardinality of its universe.

DEFINITION 1.2. (Homomorphic Structures) Let A and B be L -structures.

(1) A map h : A→ B is called a homomorphism if:
• for all c ∈ CL

h(cA) = cB,

• for all a1, · · · ,an ∈ A and all f ∈FC

h( fA(a1, · · · ,an)) = fB(h(a1), · · · ,h(an)),

• for all a1, · · · ,an ∈ A and all R ∈RL

if RA(a1, · · · ,an) then RB(h(a1), · · · ,h(an)).

DEFINITION 1.3. (Embedding) An injective homomorphism is called an embedding.

DEFINITION 1.4. (Isomorphic Structures) Let A and B be L -structures.

(1) If h : A→B is an injective homomorphism and

RA(a1, · · · ,an) iff RB(h(a1), · · · ,h(an)),

then h is called an (isomorphic) embedding.
(2) An isomorphism is a surjective embedding.
(3) Two structures are said to be isomorphic if there is an isomorphism between them. We use the notation

A∼=B.

DEFINITION 1.5. (Automorphism) An automorphism of a structure A is an isomorphism of A with itself. The
set of automorphisms of a structure A is denoted Aut(A).

EXAMPLE 1.6. Show that Aut(A) is a group under the operation of composition.

DEFINITION 1.7. (Substructure)

29
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(1) Let A,B be structures. We say that A is a substructure of B, denoted

A⊆B,

if the universe A of A is a subset of the universe B of B and the identity mapping is an embedding.
(2) If A is a substructure of B, we also say that B is an extension of A.

EXAMPLE 1.8. Let L = (C ,F ,R) be a language and let B be a L -structure.

(1) Suppose A 6= /0 and A ⊆ B, where B is the universe of B. Show that A is the universe of a uniquely
determined substructure A of B if and only if the set A is closed under all functions fB, where f ∈FL .
That is, for each n-ary f we must have

fB � An : An→ A.

(2) If FL = CL = /0, then any non-empty subset C of B is the universe of a substructure C of B.

REMARK 1.9. Let B be a L -structure. Let {Ai}i∈I be an enumeration of all substructures of B. Note that:

(1) {cB : c ∈ CL } ⊆
⋂

i∈I Ai (indeed cB = cAi ∈ Ai for each i),
(2)

⋂
i∈I Ai is closed under fB for all f ∈FL (justify!).

Thus, if CL 6= /0 then ⋂
i∈I

Ai 6= /0

is the universe of a substructure of B. Moreover, this is the universe of the smallest substructure of B (Why?
Explain!), denoted 〈 /0〉B. If CL = /0, then we set 〈 /0〉B = /0.

EXAMPLE 1.10. (Generated Substructures) Let B be a structure and let S 6= /0 be a subset of the universe of B.
Let St(S) = {A⊆B : S⊆ A}. Show that:

(1)
⋂
{A : A ∈ St(S)} is the domain of a structure M such that S is contained in its universe;

(2) M is the smallest substructure of B containing S in its universe.1

DEFINITION 1.11. We refer to M as the structure generated by S and denote it 〈S〉B. If S is finite, then we say
that M= 〈S〉B is finitely generated.

LEMMA 1.12. Let A be a structure generated by the set S. Then, every homomorphism h :A→B is determined
by its values on the set S.

PROOF. Suppose h,h′ : A→B are homomorphisms from A to B such that for each s ∈ S we have that h(s) =
h(s′). Show that h = h′. �

LEMMA 1.13. Let A∼= A′ be isomorphic structures witnessed by an isomorphism h. Whenever B is an exten-
sion of A (i.e. A ⊆B), then there is an extension B′ of A and an isomorphism g : B ∼= B′ which extends h, i.e.
g � A = h.

PROOF. Extend the bijection h : A→ A′ to a bijection g : B→ B′ and use g to define an L -structure on B′. �

DEFINITION 1.14. (Directed System of Structures, Chains) Let 〈I,≤〉 be a directed partial order. This means
that for all i, j ∈ I there exists k ∈ I such that i≤ k and j ≤ k.

(1) A family {Ai}i∈I of L -structures is said to be directed if whenever i≤ j, then Ai ⊆ A j.
(2) If the set I is linearly ordered, we say that the family {Ai}i∈I is a chain.

1What is the partial order on the collection of all substructures of B that we are referring to here?
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LEMMA 1.15. Let {Ai}i∈I be a directed family of L -structures. Then A =
⋃

i∈I Ai is the universe of a uniquely
determined L -structure, denoted

⋃
i∈I Ai, which is an extension of each Ai.

PROOF. Let A =
⋃

i∈I Ai. We will define a structure A with universe A as desired. Let R be an n-ary relation
symbol and a1, · · · ,an elements of A. Find k∈ I such that {ai}n

i=1⊆Ak and define RA(a1, · · · ,an) iff RAk(a1, · · · ,ak).
Note that to claim the existence of k we have to use fact that {Ai}i∈I is directed. Constant and function symbols are
treated similarly. �

DEFINITION 1.16. (Reduct, Expansion) Let K ⊆ L be a sublanguage, i.e. CK ⊆ CL , RK ⊆RL and FK ⊆
FL .

(1) To every L -structure, we associate a K -structure, called the reduct to K , by forgetting the interpretation
symbols from L \K .

(2) The reduct is usually denoted A � K = (A,(ZA)Z∈K ).
(3) Conversely, A is said to be an expansion of A �K .

EXAMPLE 1.17.

(1) Let R be an n-ary relation on A. Introduce a new relation symbol R̃ and denote by (A,R) the expansion B

of A to an L ∪{R̃}-structure in which R̃ is interpreted by R, i.e. R̃B = R.
(2) For given elements a1, · · · ,an of A introduce new constants a1,a2, · · · ,an and consider the L ∪{a1, · · · ,an}-

structure
B= (A,{ai}n

i=1)

where aBi = ai, and B has the same universe as A.

EXAMPLE 1.18.

(1) Let B ⊆ A, where A is the universe of the structure A. Then, for every element b of the set B we can
introduce a new constant symbol b. Thus, we expand the language L to a new language L (B) =L ∪{b :
b ∈ B} and the structure A to a L (B)-structure

AB = (A,b)b∈B.

(2) The group of automorphisms of AB consists of exactly those automorphisms f of A which are the identity
on B, i.e. for all b ∈ B( f (b) = b).

(3) In general, whenever we expand a language L by a set of new constant symbols C, we denote the new
language with L (C).

Recall the notion of a term:

DEFINITION 1.19. (Term)

(1) Every variable vi and every constant c is an L -term.
(2) If f is an n-ary function symbol and t1, · · · , tn are L -terms, then f t1 · · · tn is also an L -term.
(3) The number of occurrences of a function symbols in a term is called its complexity.

DEFINITION 1.20. (Term evaluation) Let A be a L -structure.

(1) A mapping which assigns to every variable vi a value bi ∈ A, where i ∈N, is said to be an assignment. We
denote such assignments with~b.

(2) For an L -term t and an assignment~b, we define the interpretation tA[~b] by
• vAi [~b] = bi,
• cA[~b] = cA,
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• f t1 · · · tAn [~b] = fA(tA1 [~b], · · · , tAn [~b]).

EXAMPLE 1.21. (Term evaluation) Suppose AA is a structure associated to an expanded language L (A), where
A is the universe of a L -structure A. If t(x1, · · · ,xn) is an L -term, then t(a1, · · · ,an) is a term in the expanded
language L (A) and

t(a1, · · · ,an)
AA = tA[a1, · · · ,an].

PROOF. Induction on the complexity of t. �

REMARK 1.22. Let A be a L -structure and suppose S ⊆ A, where A is the universe of A. Then the structure
〈S〉A generated by S is closed under the evaluation of terms. In fact:

(1) 〈S〉A = {tA[a1, · · · ,an] : t(x1, · · · ,xn) is an L -term,a1, · · · ,an ∈ A}.
(2) 〈 /0〉A = {tA : t is a term with no variables}.

Recall the definition:

DEFINITION 1.23. (L -formulas)

(1) t1=̇t2 where t1, t2 are L -terms;
(2) Rt1 · · · tn where R is an n-ary relation symbol from L and t1, · · · , tn are L -terms;
(3) ¬ψ where ψ is an L -formula;
(4) (ψ1∧ψ2) where ψ1 and ψ2 are L -formulas;
(5) (∃xψ) where ψ is an L -formula, x is a variable.

The formulas corresponding to items (1)− (2) above are called atomic formulas. The number of occurrences of
¬,∃,∧ in a formula is referred to as the complexity of that formula.

DEFINITION 1.24. Let A be an L -structure. For an L -formula ψ and all assignments~b define the relation
A � ϕ[~b] recursively over the complexity of ϕ:

(1) A � t1=̇t2[~b] iff tA1 [~b] = tA2 [~b],
(2) Rt1 · · · tn[~b] iff RA(tA1 [~b], · · · , tAn [~b]),
(3) A � ¬ψ[~b] iff A 6� ψ[~b].
(4) A � (ψ1∧ψ2)[~b] iff A � ψ1[~b] and A � ψ2[~b],
(5) ∃xψ[~b] iff ∃a ∈ A such that A � ψ[~b a

x ], where~b a
x is the assignment which maps each vi (except x) to bi

and x to a2

If A � ϕ[~b] holds, then we say that ϕ holds in the structure A for the assignment~b. Alternatively, we say that~b
satisfies ϕ in A.

DEFINITION 1.25. (Free variables) Let ϕ be a formula and x a variable. We say that the variable x occurs free
in ϕ if it occurs in a place in the formula ϕ which is not on the scope of a quantifier. If x occurs in ϕ and is not free,
then we say that x isbound in ϕ . A recursive definition of the concept on the complexity of terms is here:

(1) x is free in t1=̇t2 iff x occurs in t1 and in t2,
(2) x is free in Rt1 · · · tn iff x occurs in one of ti,
(3) x is free in ¬ψ iff x is free in ψ ,
(4) x is free in (ψ1∧ψ2) iff x is free in ψ1 or x is free in ψ2,
(5) x is free in ∃yψ iff x 6= y and x is free in ψ .

DEFINITION 1.26. (Definable subsets) Let A be a L -structure.

2Remember that x is one of the variables in the list {vi}i∈N.
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(1) A L -formula ϕ defines an n-ary relation

ϕ(A) = {~a : A � ϕ[~a]}

on the set A, referred to as the realisation set of ϕ (in A).
(2) Let B⊆ A and let ϕ be a L (B)-formula. Then the set ϕ(AB) is said to be a B-definable subset of A. Thus,

a definable subset of A is simply a set definable over the empty set.
(3) Two formulas are said to be equivalent if in every structure they define the same set.

LEMMA 1.27. (Substitution Lemma) A � ϕ(t1, · · · , tn)[~b] if and only if A � ϕ[tA1 [~b], · · · , tAn [~b].

PROOF. Induction on the complexity of ϕ . �

REMARK 1.28. Note that AA � ϕ(a1, · · · ,an) if and only if A � ϕ[a1, · · · ,an].

Recall the definitions:

DEFINITION. We refer to formulas without free variables as sentences. Atomic formulas and their negations
are called basic formulas. Formulas without quantifiers are Boolean combinations of basic fromulas, i.e. built from
basic formulas by successively applying ¬,∧. Recall that > denotes a formula which is always true, ⊥ a formula
which is always false.

DEFINITION 1.29. (Basic formulas, Negation normal form)

(1) Atomic formulas and their negations are called basic.
(2) A formula is in a negation normal form if it is build from basic formulas using ∧,∨,∃,∀.

REMARK 1.30. Every formula can be transformed into an equivalent formula which is in a negation normal
form (i.e. it is logically equivalent to a formula in negation normal form).

LEMMA 1.31. Let h : A→B be an embedding (we write h : A≺B).

(1) Let ϕ(x1, ...,xn) be an existential formula. Let a1, ...,an be elements of A. If A � ϕ[a1, ...,an] then B �
ϕ[h(a1), ...,h(an)].

(2) Let ψ be universal. If B � ψ[h(a1), ...,h(an)] then A � ψ[a1, ...,an].

PROOF. By induction on the complexity of the formulas. Suppose ϕ(x̄) is ∃yψ(x̄,y). If

A � ϕ[ā]

then ∃a ∈ A such that A � ψ[ā,a]. However, by inductive hypothesis

B � ψ[h(ā),h(a)]

and so B � ϕ[h(ā)]. �

DEFINITION 1.32. (Atomic diagram) Let A be an L -structure. The atomic diagram of A is the set of all basic
L (A)-sentences such that AA � ϕ .

REMARK 1.33. Given a structure A we denote by Diag(A) the atomic diagram of A.

LEMMA 1.34. Let A, B be L -structures.

(1) Let h : A→B be an embedding. Then (B,h(a))a∈A � Diag(A).
(2) Let h : A→ B and (B,h(a))a∈A � Diag(A). Then h : A→B is an embedding.
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PROOF. (1): Let ϕ ∈ Diag(A). Then A � ϕ[a1, ...an]. By the previous Lemma B � ϕ[h(a1), ...,h(sn)]. Thus
(B,h(a))a∈A � Diag(A).

(2): First we will show that h is injective. Consider the formula ϕ1(x1,x2) : ¬(x1=̇x2). Then for each a1 6= a2 from
A, ϕ(a1,a2) ∈ Diag(A). Thus (B,h(a))a∈A � ϕ(a1,a2). More precisely, aB1 6= aB2 , i.e. h(a1) 6= h(a2). Therefore h
is injective.

Now, we will show that h respects the interpretation of constants. Let c ∈ CL and let a = cA ∈ A. The formula
ϕ(x1) : x1=̇c is atomic and ϕ(a) ∈ Diag(A). Then (B,h(a))a∈A � ϕ(a) and so cB = aB, i.e. cB = h(a) = h(cA).
Thus h respects the interpretation of all constants.

Next we show that h respects interpretation of function symbols. Let f ∈FL . Consider the formula ϕ(x0, ...xn) :
x0=̇ f (x1, ...,xn). For each (a0, ...,an) such that fA(a1, ...,an) = a0, ϕ(a0, ...,an) ∈ Diag(A). Thus (B,h(a))a∈A �
ϕ(a0, ...,an) and so aB0 = fB(aB1 , ...,aBn ). That is h(a0) = fB(h(a1), ...,h(an)). Now, since a0 = fA(a1, ...,an) we
also get h(a0) = h( fA(a1, ...,an)). Thus h( fA(a1, ...,an)) = fB(h(a1), ...,h(an)) and so h respects f .

Finally, we show that h respects the interpretation of relation symbols. The fact that if (a1, ...,an) ∈ RA then
(h(a1), ...,h(an)) ∈ RB is shown similarly. Indeed, given R ∈LR for each tuple (a1, ...,an) ∈ RA one can use the
formula R(a1, ...,an). �

2. Theories

DEFINITION 2.1. Definition: Theory A theory is a set of L -sentences.

DEFINITION 2.2. (Consistency)

(1) A theory T is consistent, if it has a model.
(2) A set of L -formulas Φ is consistent if there is an L -structure and an assignment~b such that

A � ϕ[~b]

for all ϕ ∈Φ.
(3) A set of formulas Φ is consistent with a theory T if T ∪Φ is consistent.

LEMMA 2.3. Let T be an L -theory, L ′ an expansion of L . Then T is consistent as an L -theory iff T is
consistent as an L ′-theory.

PROOF. Every L -structure is expandable to an L ′-structure. � �

DEFINITION 2.4. (Valid formulas)

(1) If a sentence ϕ holds in all models of T , then we say that ϕ follows from T and write T ` ϕ .
(2) If /0 ` ϕ , we say ϕ is valid.

REMARK 2.5. Because of completeness of first order logic the above definitions coincides with the notion of
validity given in the first lecture.

LEMMA 2.6.

(1) If T ` ϕ and T ` (ϕ → ψ) then T ` ψ .
(2) If T `ϕ(c1, ...,cn) and the constants c1, ...,cn occur neither in T , nor in ϕ(x1, ...,xn) then T `∀x1...xnϕ(x1, ...,xn).

PROOF. To see (1) consider any A � T . Then A � ϕ and A � ¬ϕ ∨ψ . Clearly A �ψ . Thus T `ψ . To see item
(2) consider L ′ = L \{c1, ...,cn}. Let A be a L ′-structure such that A � T . Then for each a1, ...,an in A we have

(A,a1, ...,an) � ϕ(c1, · · · ,cn).
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Thus A � ∀x1...xnϕ(x1, ...,xn). Then T ` ∀x1...xnϕ(x1, ...,xn). �

DEFINITION 2.7. Let T,S be theories.

(1) We say that T � S iff every model of T is also a model of S.
(2) T ≡ S iff they have the same models. The theories are said to be elementarily equivalent.

DEFINITION 2.8. (Completeness) A consistent L -theory T is said to be complete iff for every L -sentence ϕ

either T ` ϕ or T ` ¬ϕ .

EXAMPLE 2.9. Let A be a L -structure. Then

Th(A) = {ϕ : A � ϕ,ϕ is a L -sentence}

is a complete theory.

LEMMA 2.10. Let T be a consistent L -theory. Then T is complete iff T is maximal consistent, i.e. T is
elementarily equivalent to every consistent L -theory T ′ such that T ⊆ T ′.

PROOF. (⇐): Suppose T is maximal consistent, but not complete. Then there is a L -sentence ϕ such that
neither T ` ϕ , nor T ` ¬ϕ . Thus:

• there is A such that A � T , bit A 6� ϕ , and
• there is B such that B � T but B 6� ¬ϕ .

Then in particular A �¬ϕ , B � ϕ . Now T ∪{¬ϕ} is a consistent extension of T (with model A), but T ∪{¬ϕ} 6≡ T .
Indeed, B � T , but B 6� T ∪{¬ϕ}. Thus, T is not maximal consistent, which is a contradiction.

(⇒): Suppose T is complete, but not maximal consistent. Then there is a L -sentence ϕ such that T ∪ {ϕ} is
consistent, but T ∪{ϕ} 6≡ T .

• Thus there is A � T such that A 6� ϕ , i.e. A � ¬ϕ .
• Moreover, since T ∪{ϕ} is consistent, it has a model B.
• But, then T 6` ϕ (because of A) and T 6` ¬ϕ (because of B).

Therefore T is not complete, which is a contradiction. �

DEFINITION 2.11. (Elementary equivalence) Two L -structures A, B are said to be elementarily equivalent iff
they satisfy the same sentences, i.e. Th(A) = Th(B). We write A≡B.

EXERCISE 2.

(1) If A∼=B then A≡B.
(2) Give an example of A,B such that A≡B, but A 6∼=B.

LEMMA 2.12. The following are equivalent:

(1) T is complete.
(2) All models of T are elementarily equivalent.
(3) There is a structure A such that T ≡ Th(A).

PROOF. (1)⇒ (3): Let A � T . Take ϕ ∈ Th(A). Then A � ϕ . Since T is complete T ` ϕ . Then Th(A) and T
have the same models.

(3)⇒ (1): Straightforward.

(3)⇒ (2): Let B � T . Then B � Th(A) and so B≡ A.

(2)⇒ (1): Let A � T . If ϕ ∈ Th(A) then T � ϕ (otherwise there is B such that B � T and B � ¬ϕ , which is a
contradiction to (2)). �
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DEFINITION 2.13. (Elementary Class) Let T be a L -theory. The class of all L -structures A such that A � T
is called an elementary class.

3. Elementary Extensions

DEFINITION 3.1. (Elementary embedding) Let A and B be two L -structures. A map h : A→ B is said to be
elementary if for every formula ϕ(x1, · · · ,xn) and all a1, · · · ,an in A we have:

A � ϕ[a1, · · · ,an]↔B � ϕ[h(a1), · · · ,h(an)].

REMARK 3.2. Since the function h from the above definition preserves quantifier free formulas, h is an em-
bedding. We use the notation h : A�B.

LEMMA 3.3. Let A and B be L -structres.

(1) If h : A�B then (B,h(a))a∈A � Th(AA).
(2) If h : A→ B where B is the universe of a structure B such that (B,h(a))a∈A � Th(AA) then h : A�B.

REMARK 3.4. The proof is almost identical to an earlier proof.

DEFINITION 3.5.

(1) Th(AA) is called the elementary diagram of A.
(2) Let A⊆B. Then A is said to be an elementary substructure of B if id : A�B is an elementary embed-

ding. We say also that B is an elementary extension of A.

REMARK 3.6. Recall that id : A�B is just saying that for every formula ϕ(x1, · · · ,xn) and all a1, · · · ,an in A
we have:

A � ϕ[a1, · · · ,an]↔B � ϕ[a1, · · · ,an].

THEOREM 3.7. (Tarski’s Test) Let B be an L -structure and let A⊆ B. Then A is the universe of a structure A

such that A�B if and only if every L (A)-formula ϕ(x) which is satisfiable in B, is also satisfiable by an element
of A.

PROOF. (⇒): Suppose A�B. Then if B � ∃xϕ(x) we must have A � ∃xϕ(x).

(⇐): We have to show that there is a structure A with universe the set A such that A �B. First of all consider
the L (A)-formula x=̇x. Now B � x=̇x and so for some b ∈ B, B � (x=̇x)(b). By hypothesis, x=̇x is satisfiable
by an element of A and so A 6= /0. To show that A is the universe of a substructure of B, it is sufficient to show
that A is closed wrt the interpretation of constant and function symbols. Fix f ∈LL , n-ary, where n≥ 0. Let ϕ(x)
be the formula f (a1, · · · ,an)=̇x for fixed a1, · · · ,an in A. Since it is satisfiable in B there must be a ∈ A such that
fB(a1, · · · ,an) = a. Thus fB � An : An→ A. Thus A is the universe of a substructure A of B.

Next, we will show that A is an elementary substructure of B. Thus, we need to show that for every L (A)-
sentence ψ , we have A �ψ↔B �ψ . If ψ is atomic, or of the form ¬ϕ , (ψ1∧ψ2) this is straightforward. Suppose
ψ = ∃xϕ(x). Clearly if A � ψ then B � ψ . Suppose B � ∃xϕ(x). Then by hypothesis on the theorem there is a ∈ A
such that B � ϕ(a). Now by induction hypothesis A � ϕ(a) and so A � ∃xϕ(x). �

COROLLARY 3.8. Let B be a L -structure, S⊆ B. Then there is A� B such that S is contained in the universe
A and |A| ≤max{|S|, |L |,ℵ0}.

PROOF. Construct an increasing chain of sets {Si}i∈N where S0 = S as follows. Suppose Si is defined. Let

Fi : {ϕ(x) | ϕ is L (Si)-formula s.t. B � ϕ(x)}→ B,
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where
F(ϕ(x)) = aϕ and B � ϕ(aϕ).

Take Si+1 = Si∪ ran(F). Then A =
⋃

i∈ω Si is the universe of an elementary substructure. Note also that the number
of L -formulas does not exceed max{|L |,ℵ0}. �

THEOREM 3.9. (Löwenheim-Skolem Downwards) Let B be a L -structure, S a subset of B and κ an infinite
cardinal. Suppose

max{|S|, |L |} ≤ κ ≤ |B|.
Then B has an elementary substructure of cardinality κ containing S.

PROOF. Take S′ ⊆ B, such that S⊆ S′ and |S′|= κ . Apply the previous Corollary. �

DEFINITION 3.10. A directed family {Ai}i∈I is elementary if Ai ≺ A j for all i≤ j.

LEMMA 3.11. (Tarski’s Chain Lemma) Let {Ai}i∈I be an elementary directed family. Then A=
⋃

i∈I Ai is an
elementary extension of all Ai’s.

PROOF. Let A=
⋃

i∈I Ai. We will prove by induction on ϕ(x̄) that for all i ∈ I and all tuples ā in Ai,

Ai � ϕ(ā)↔ A � ϕ(ā).

Fix i. If ϕ is atomic, or ϕ is negation or conjunction of formulas for which the claim has been proved, the argument
is straightforward.

Thus, suppose ϕ(x̄) = ∃yψ(x̄,y). Fix ā in Ai. Note that

A � ϕ(ā) iff ∃b ∈ A s.t. A � ψ(ā,b).

Then ∃ j ≥ i such that b ∈ A j. By Inductive Hypothesis

A � ψ(ā,b)↔ A j � ψ(ā,b).

However Ai ≺ A j and so there is b′ ∈ Ai such that Ai � ψ(ā,b′). Thus Ai � ∃yψ(ā,y). �





CHAPTER 6

Theorem of Compactness

1. Theorem of Compactness

THEOREM 1.1. (Compactness) If T is finitely satisfiable, i.e. every finite subset of T is consistent, then T is
satisfiable.

DEFINITION 1.2. (Henkin theory) Let L be a language, C a set of new constants. A L (C)-theory T ′ is called
a Henkin theory if for every L (C)-formula ϕ(x) there is c ∈ C such that

∃xϕ(x)→ ϕ(c) ∈ T ′.

REMARK 1.3. The elements of C are called Henkin constants.

Until the end of the section, we will be occupied with the proof of the Theorem of Compacntess. For the
purposes of the proof we will work with the following notion.

DEFINITION. A L -theory T is said to be finitely complete, if it is finitely satisfiable and if every L -sentence
ϕ satisfies

ϕ ∈ T or ¬ϕ ∈ T.

We will make use of the following Lemma.

LEMMA 1.4. Every finitely satisfiable L -theory T can be extended to a finitely complete Henkin theory T ∗.

PROOF. Inductively we will define an increasing sequence /0 =C0 ⊆C1 ⊆ ·· · of new constants by assigning to
every L (Ci)-formula ϕ(x) a constant cϕ(x) and defining

Ci+1 = {cϕ(x) : ϕ(x) is an L (Ci)-formula}.

Take C =
⋃

i∈NCi,
T H = {∃xϕ(x)→ ϕ(cϕ(x)) : ϕ(x) is an L (C)-formula}.

Suppose A is a L -structure and A � ∃xϕ(x). Then let cA
ϕ(x) = a where A � ϕ(a). Thus A can be extended to a

L (C)-structure A′ such that A′ � T H .
Note that, the above shows that every L -structure can be extended to a L (C)-structure satisfying T H . There-

fore T ∪T H is a finitely satisfiable Henkin theory in L (C). Extend T ∪T H to a maximal finitely satisfiable L (C)-
theory T ∗.

CLAIM. T ∗ is finitely complete.

PROOF. Suppose not. Thus, there is a L (C)-sentence ϕ such that neither ϕ , nor ¬ϕ is in T ∗. Then neither
T ∗ ∪{ϕ}, nor T ∗ ∪{¬ϕ} is finitely satisfiable, by maximality of T ∗. Thus in particular there are ∆1,∆2 ∈ [T ∗]<ω

such that neither ∆1∪{ϕ} nor ∆2∪{¬ϕ} is satisfiable. Therefore ∆ = ∆1∪∆2 is a finite subset of T ∗ and ∆∪{ϕ}
as well as ∆∪{¬ϕ} is not satisfiable. Thus ∆ is not satisfiable, which is a contradiction. �
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LEMMA. Suppose T ∗ is a finitely complete Henkin theory. Then T ∗ has a model, the universe of which consists
of constants. This model is unique up to isomorphism.

REMARK. Note that every sentence which follows from a finite subset of T ∗ belongs to T ∗. Indeed. Let ϕ be
a L -formula. Then either ϕ ∈ T ∗ or ¬ ∈ T ∗, because T ∗ is finitely complete. Suppose ∆ ∈ [T ∗]<ω and ∆ ` ϕ for
some ϕ . If ¬ϕ ∈ T ∗ then ∆∪{¬ϕ} is not satisfiable, contradicting T ∗ being finitely complete. Thus ϕ ∈ T ∗.

Now, define for c,d ∈ C: c ∼= d ↔ c=̇d ∈ T ∗. Then ∼= is an equivalence relation. Define ac := [c]∼=. Take
A = {ac : c ∈C} and define a L -structure A with universe A as follows. For each relation symbol R and each n-ary
function symbol f , where n≥ 0, let

RA(ac1 , · · · ,acn)↔ R(c1, · · · ,cn) ∈ T ∗

fA(ac1 , · · · ,acn) = ac0 ↔ f (c1, · · · ,cn)=̇c0 ∈ T ∗.

EXERCISE. Check that the above is well defined.

First we will show that the definition of RA for R ∈RL does not depend on the representatives of the equiva-
lence classes. Thus, suppose ∧n

i=1ci ∼= di and R ∈RL . We need to show that

R(c1, · · · ,cn) ∈ T ∗ iff R(d1, · · · ,dn) ∈ T ∗.

Suppose R(c1, · · · ,cn) ∈ T ∗. By hypothesis also {ci=̇di}n
i=1 ⊆ T ∗. However

∧n
i=1(ci=̇di)→ (R(c1, · · · ,cn)↔ R(d1, · · · ,dn))

is a valid formula and so T ∗ ` R(d1, · · · ,dn). Thus, by our Remark R(d1, · · · ,dn) ∈ T ∗

EXERCISE. Which is the finite set of formulas referred to in the last item above?

Next, we will deal with the interpretation of function symbols. Thus, fix f ∈ FL . We need to show that
fA(ac1 , · · · ,acn) (provided it is defined) does not depend on the representatives, argue as above. To show that fA is
a function, take any {aci}n

i=1 ⊆ A. We want to show that fA(ac1 , · · · ,acn) is defined. Pick representatives ci ∈ aci .
Since f ∈LF ,

∃x( f (c1, · · · ,cn)=̇x)

is a valid formula and so ∃x( f (c1, · · · ,cn)=̇x) ∈ T ∗. However T ∗ is Henkin and so there is c0 ∈C such that

∃x f (c1, · · · ,cn)=̇x→ f (c1, · · · ,cn)=̇c0 ∈ T ∗.

Therefore f (c1, · · ·cn)=̇c0 ∈ T ∗ and so fA(ac1 , · · · ,acn) is defined.

Expand A to the L (C)-structure A∗ = (A,ac)c∈C.

EXERCISE. Show by induction on the complexity of ϕ that for every L (C)-sentence ϕ

A∗ � ϕ ↔ ϕ ∈ T ∗.

�

COROLLARY 1.5. T ` ϕ iff there is a finite ∆⊆ T such that ∆ ` ϕ .

PROOF. By the Compactness theorem, ϕ follows from T iff T ∪ {¬ϕ} is inconsistent iff T ∪ {¬ϕ} is not
finitely satisfiable iff there is a finite ∆⊆ T such that ∆∪{¬ϕ} is not satisfiable iff ∆ ` ϕ . �

COROLLARY 1.6. A set of formulas Σ(x1, · · · ,xn) is consistent with T iff every finite subset of Σ is consistent
with T .

PROOF. Let c1, · · · ,cn be new constants. Then Σ is consistent with T if and only if T ∪Σ(c1, · · · ,cn) is consis-
tent if and only if every finite subset is consistent. �
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2. Theorem of Löwenheim-Skolem Upwards

THEOREM 2.1. (Löwenheim-Skolem Upwards) Let B be a L -structure, S a subset of the universeof B and let
κ be an infinite cardinal. Suppose B is infinite and max{|B|, |L |} ≤ κ . Then B has an elementary extension of
cardinality κ .

PROOF. Let C be a set of new constant symbols of cardinality κ . Since the universe of B is an infinite set,
the theory Th(BB)∪{¬c=̇d : c,d ∈C,c 6= q} is finitely satisfiable and so by the theorem of Compactness it has a
model A. Thus in particular A � Th(BB) and so B � A. Moreover, for each c 6= d in C, we have cA 6= dA and
so the universe of A is of cardinality at least κ . It remains to observe that by the Downwards Löwenheim-Skolem
Theorem A has an elementary submodel containing B, which is of cardinality κ . �

COROLLARY 2.2. Let T be a L -theory. Suppose T has an infinite model. Then T has a model of every
cardinality κ ≥max{|C |,ℵ0}.

DEFINITION 2.3. (Categoricity) Let κ be an infinite cardinal. A theory T is called κ-categorical if all models
of T of cardinality κ are isomorphic.

3. The Separation Theorem

THEOREM 3.1. (The Separation Theorem) Let T1 and T2 be two theories and let H be a set of sentences which
is closed under ∧,∨ contains >, ⊥. The following are equivalent:

(1) There is ϕ ∈H such that T1 ` ϕ and T2 ` ¬ϕ .
(2) For each pair of models A1 and A2 such that A1 � T1 and A2 � T2 there is a formula ϕ ∈H such that

A1 � ϕ and A2 � ¬ϕ.

REMARK 3.2. We say that ϕ separates A1 and A2.

PROOF. The implication (1)⇒ (2) is straightforward. We need to show (2)⇒ (1). We can assume that the
theories are consistent as otherwise the statement if vacuously true. For each model A of T1 define

HA = {ϕ ∈H : A � ϕ}.

By the hypothesis of (2) for each A � T1, HA 6= /0.

CLAIM 3.3. Let A � T1. Then T2∪HA is not consistent.

PROOF. Assume B � T2∪HA. Now, by (2) there is ϕ ∈H such that A � ϕ and B � ¬ϕ . Then ϕ ∈HA and
so B � ϕ ∧¬ϕ , contradiction. �

CLAIM 3.4. Let A � T1. Then there is ϕA ∈H such that A � ϕA and T2 ` ¬ϕ .

PROOF. Since T2∪HA is not consistent, there is a finite {ϕ j}n
j=1 ⊆HA such that T2∪{ϕ j}n

j=1 is inconsistent.
Thus T2∪{∧n

j=1ϕ j} is also inconsistent. Let ϕA = ∧n
j=1ϕ j. Then T2∪{ϕA} is inconsistent and so T2 ` ¬ϕA. Since

H is closed under conjunctions , ϕA ∈H . �

CLAIM 3.5. T1∪{¬ϕA : A � T1} is inconsistent.

PROOF. If A∗ � T1 then A∗ � ϕA∗ and so A∗ 6� ¬ϕA∗ �
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By the Theorem of Compactness there are finitely many models A1, · · · ,An of T1 such that T1 ∪{¬ϕAi}n
i=1 is

inconsistent. Thus T1∪{∧n
i=1¬ϕAi} is inconsistent and so

T1 ` ¬∧n
i=1¬ϕAi .

That is T1 ` ∨n
i=1ϕAi . We claim that ϕ = ∨n

i=1ϕAi ∈H separates T1 and T2.
Well, ϕ ∈H , because H is closed under ∨. Thus, it remains to show that T2 ` ¬ϕ . By the choice of ϕAi for

each i, T2 ` ¬ϕAi and so T2 ` ∧n
i=1¬ϕAi , which is equivalent to T2 � ¬ϕ . �



CHAPTER 7

Preservation Theorems

1. ∆-elementary mappings

DEFINITION 1.1. Let L be a language, A,B structures, ∆ a set of L -formulas.

(1) Let f : A→ B. We write f : A→∆ B if f preserves the formulas in ∆. That is, if for each ϕ ∈ ∆ and each
a1, · · · ,an ∈ A,

if A � ϕ(a1, · · · ,an) then B � ϕ( f (a1), · · · , f (an)).

(2) A⇒∆ B denotes the fact that Th(A)∩∆⊆ Th(B)∩∆.

QUESTION 1.2. In the above definition, item (1): If B � ϕ( f (a1), · · · , f (an)) is it necessarily the case that
A � ϕ(a1, · · · ,an)?

REMARK 1.3. Well, if A 6� ϕ(a1, · · · ,an) then A � ¬ϕ(a1, · · · ,an) and so B � ¬ϕ( f (a1), · · · , f (an)), contra-
diction. Thus f : A→∆ B means that ϕ ∈ ∆ and each a1, · · · ,an ∈ A,

A � ϕ(a1, · · · ,an) iff B � ϕ( f (a1), · · · , f (an)).

DISCUSSION 1.4. Can you formulate item (1) from the above Definition in a different way? How about the
following:

Let L be a language, A, B structures and ∆ a set of L -formulas. Let

∆(A) = {δ (ā) : δ (x̄) ∈ ∆ and ā is a tuple in A}.

Let f : A→ B. Then, say f : A→∆ B if

Th(AA)∩∆(A)⊆ Th((B, f (a))a∈A).

The latter two theories are theories in the expanded language L (A).

REMARK 1.5. (A special case) Now, if ∆ is the set of all L -formulas, then f : A→∆ B states that

Th(AA)⊆ Th((B, f (a))a∈A).

That is, (B, f (a))a∈A � Th(AA) and so by our earlier characterisation, we get that f is an elementary embedding of
A into B, i.e.

f : A�B.

THEOREM 1.6. Let T be a theory, A a structure, ∆ a set of L -formulas which is closed under existential
quantification, conjunction and substitution of variables. The following are equivalent:

(1) (Th(A)∩∆)∪T is consistent.
(2) there is a model B � T and there is a map f : A→∆ B.
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PROOF. ((2)⇒ (1)): Let B � T and f : A→∆ B. Consider any ϕ ∈ Th(A)∩∆. Since f : A→∆ B we must
have B � ϕ . Thus B � (Th(A)∩∆)∪T .

((1)⇒ (2)): Let Th∆(AA) = {∆(ā) : δ (x̄) ∈ ∆,AA � δ (ā)}. Note that

• If B � Th∆(AA) and f (a) = aB for each a ∈ A, then f : A→∆ B.
• Also if f : A→∆ B, then (B, f (a))a∈A � Th∆(AA).

Thus, there is a one-to-one correspondence between the models B of Th∆(AA) and the maps f : A→∆ B.

((1)⇒ (2)): It is sufficient to find a model of T ∪Th∆(AA). By Compactness, it is sufficient to find a model of
T ∪D for each D ∈ [Th∆(AA)]

<ω . Fix such a finite set D and let δ (ā) be the conjunction of all elements in D. Then
A � ∃x̄δ (x̄). By hypothesis of (1), there is a model M of T ∪{∃xδ (x̄)} and so for some finite~b in M, M � δ (~b),
i.e (M, b̄) � δ (ā). Thus (M,~b) � T ∪D and so by the theorem of Compactness, T ∪Th∆(AA) has model B. Then
B � T and if f (a) = aB then f : A→∆ B. �

QUESTION 1.7. Where in the above proof did we use the fact that ∆ is closed with respect to substitution of
variables? How about existential quantification and conjunction?

COROLLARY 1.8. Let A, B be L -structures, T = Th(B) and ∆ a set of formulas, which is closed under
existential quantification, conjunction and substitution of variables. Then the following are equivalent:

(1) Th(A)∩∆ is consistent with T = Th(B).
(2) There is a model B′ � T and f : A→∆ B′.

REMARK 1.9. Note that B′ � T is equivalent to B′ ≡ B. Thus, item (1) is equivalent to the existence of
B′ ≡B such that f : A→∆ B′ for some f .

COROLLARY 1.10. Let A,B be L -structures and ∆ a set of L -formulas which is closed under existential
quantification, conjunction and substitution of variables. The following are equivalent:

(1) A⇒∆ B

(2) ∃ f : A→∆ B′ where B′ ≡B.

PROOF. ((1)⇒ (2)): By hypothesis Th(A)∩∆ ⊆ Th(B)∩∆. Thus Th(B)∪ (Th(A)∩∆) is consistent (well,
this set is in fact just Th(B)) and so by the Preservation Theorem applied to T = Th(B), there is a model B′ � T
and f : A→∆ B′. Since B′ � T we get B′ ≡B.

((2)⇒ (1)): By the hypothesis (2) if ϕ ∈Th(A)∩∆, then ϕ ∈Th(B′) =Th(B). Thus Th(A)∩∆⊆Th(B)∩∆. �

REMARK 1.11. If A1 ⊆A2 and A1, A2 can not be separated by a universal sentence, then in particular for every
formula ∃xϕ(x) we have:

if A2 � ∃xϕ(x) then A1 � ∃xϕ(x).

Note that this is not sufficient to conclude that A1 ≺ A2. Can you see why? For this to be the case, we need the
above property for all L (A1) formulas, not only the L -ones.

THEOREM 1.12. (Universal Separation) Let T1, T2 be theories. The following are equivalent:

(1) There is a universal sentence separating T1 from T2.
(2) No model of T2 is a substructure of a model of T1.

PROOF. ((1)⇒ (2)) Let ϕ be an universal sentence such that

T1 ` ϕ and T2 ` ¬ϕ.
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Suppose A1 � T1 and A2 � T2 such that A2 ⊆ A1. Since ϕ is universal, A2 � ϕ (by downwards absoluteness of
universal formulas) and so

A2 � ϕ ∧¬ϕ,

which is a contradiction.

((2)⇒ (1)) We will show ¬(1)⇒¬(2). Thus, suppose there is no universal sentence which separates T1 from T2.
Then by the Separation Theorem, there are models A1 � T1 and A2 � T2 which can not be separated by an universal
sentence. Then in particular,

if A2 � ∃x̄ϕ(x̄) then A1 � ∃x̄ϕ(x̄)

(we write A2⇒∃ A1). By Corollary B there is A′1 ≡ A1 and f : A2→∃ A′1. But, then for some A′2 we have that

A′2 ≡ A′1 and A2 ⊆ A′2.

Thus a model of T1 is a substructure of a model of T2, which is what we wanted to prove. �

QUESTION 1.13. The use of the subscript ∃ in the above proof (for example in A2⇒∃ A1) is just an abbreviation
for which set ∆∃ of L -formulas?

DEFINITION 1.14. Let T be a L -theory. The formulas ϕ(x̄) and ψ(x̄) are said to be equivalent under T if
T ` ∀x̄(ϕ(x̄)↔ ψ(x̄)).

COROLLARY 1.15. Let T be a theory and ϕ(x̄) a formula. The following are equivalent:

(1) There is an universal ψ(x̄) such that T ` ∀x̄(ϕ(x̄)↔ ψ(x̄)).
(2) If A⊆B are models of T and ā = (a1, · · · ,an) is an n-tuple in A, then:

if B � ϕ(ā) then A � ϕ(ā).

PROOF. ((2)⇒ (1)): Extend L by adding new constants {ci}n
i=1 and let c̄ = (c1, · · · ,cn). Let T1 = T ∪{ϕ(c̄)},

T2 = T ∪{¬ϕ(c̄)}. Now, if A � T1 and B⊆ A, then B 6� T2. By the Universal Separation Theorem the theories T1

and T2 can be separated by a universal L (C )-sentence ψ(c̄).
Thus T ` ϕ(c̄)→ ψ(c̄) and so T ` ∀x̄(ϕ(x̄)→ ψ(x̄)). Similarly, T ` ¬ψ(c̄)→¬ϕ(c̄) and so T � ∀x̄(¬ϕ(x̄)→

¬ψ(x̄)). Thus ϕ(x̄) is modulo T equivalent to the universal formula ψ(x̄), i.e.

T ` ∀x̄(ϕ(x̄)↔ ψ(x̄)).

((1)⇒ (2)): Straightforward. �

COROLLARY 1.16. A theory T is equivalent to an universal theory (i.e. a theory consisting of universal sen-
tences) if and only if all substructures of models of T are again models of T .

PROOF. (⇒): If T is equivalent to an universal theory, then by downwards absoluteness of universal formulas,
every substructure of a model of T is again a model of T .

(⇐): Suppose T is a theory with the property that all substructures of a model of T are again models of T . Fix
ϕ ∈ T . Consider the theories T1 = T and T2 = {¬ϕ}. If B � T1 and A ⊆B, then by hypothesis A � T1. Thus in
particular, A 6� T2. Thus, no model of T2 is a substructure of a model of T1. Therefore there is an universal sentence
ψ which separates T1 and T2, i.e. T1 ` ψ and ¬ϕ ` ¬ψ . Note that

¬ϕ ` ¬ψ if and only if ψ ` ϕ.

Thus for every formula ϕ ∈ T there is an universal formula ψϕ such that

T ` ψϕ and ψϕ ` ϕ.
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Thus every sentence of T follows from

T∀ = {ψ : T ` ψ,ψ is universal},

and so T∀ ≡ T . �

2. Inductive Theories

DEFINITION 2.1. (∀∃-formulas) A formula is said to be a ∀∃-formula if it is of the form ∀x̄ψ(x̄) where ψ(x̄) is
existential.

LEMMA 2.2. Suppose ϕ is a ∀∃-sentence, {Ai}i∈I a directed family of models for ϕ and B =
⋃

i∈I Ai. Then
B |= ϕ .

PROOF. We can write ϕ in the form ∀x̄ψ(x̄), where ψ(x̄) is existential. Now, pick any tuple b̄ of elements in
B. Then we can find i ∈ I such that b̄ is a tuple of elements in Ai. Since Ai |= ∀x̄ψ(x̄), we have

Ai |= ψ(b̄).

But ψ(b̄) is existential and since existential formulas are upwards absolute, we must have

B |= ψ(b̄).

Thus B |= ∀x̄ψ(x̄), i.e. B |= ϕ . �

DEFINITION 2.3. (Inductive theories) A theory T is called inductive, if the union of any directed family of
models of T is again a model of T .

THEOREM 2.4. Let T1 and T2 be two theories. The following are equivalent:

(1) There is a ∀∃-sentence which separates T1 from T2.
(2) No model of T2 is the union of a chain (or of a directed family) of models of T1.

PROOF. ((1)⇒(2)): Suppose ϕ is a ∀∃-sentence, T1 ` ϕ and T2 ` ¬ϕ . Let {Ai}i∈I be a directed family of
models of T1, B=

⋃
i∈I Ai. Since ∀∃-formulas are inductive, B |= ϕ and so B 6|= T2.

((2)⇒(1)) Suppose ¬(1). Then T1 and T2 have models A |= T1 and B0 |= T2 which cannot be separated by a ∀∃-
sentence. Thus in particular, B0 ⇒∀ A. By Corollary B there is A0 ≡ A and f : B0 →∀ A0. We can assume that
B0⊆A0 and that f is the identity mapping. Let B be the universe of B0. Then B0

B⇒∀ A0
B and so A0

B⇒∃B0
B. Apply

Corollary B to obtain a model B1
B ≡B0

B and f : A0
B→∃B1

B. Without loss of generality A0
B ⊆B1

B and so B0
B ⊆B1

B.
Note that since B1

B ≡B0
B, in particular B1

B |= Th(B0
B). Thus, B0 ≺B1 and so B0 ⊆ A0 ⊆B1 and B0 ≺B1.

Consider A and B1 and suppose they can be separated by a ∀∃-formula ψ . Say, ψ = ∀x̄ρ(x̄) where ρ is
existential. Thus A |= ψ and B1 |= ¬ψ , i.e. B1 |= ∃x̄¬ρ(x̄). However, B0 ≺B1, which implies that for some tuple
b̄ in the universe B of B0, B1 |= ¬ρ(b̄). By downwards absoluteness of universal formulas: B0 |= ¬ρ(b̄). Thus,
B0 |= ∃x̄¬ρ(x̄), i.e. B0 |= ¬ψ . That is A and B0 can be separated by a ∀∃-formula, which is a contradiction to
their choice. Thus, A and B1 can not be separated by a ∀∃-formula. Now, apply the same argument to A and B1 to
obtain an extension A1 of B1 such that A1 ≡ A and an extension B2 of A1 such that B1 ≺B2.

Proceeding inductively we can obtain an infinite chain

B0 ⊆ A0 ⊆B1 ⊆ A1 ⊆B2 ⊆ ·· · ,

where for each i ∈ N
Bi ≺Bi+1 and A≡ Ai.
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Let B =
⋃

i∈NA
i. But then also B =

⋃
i∈NB

i and so B is an elementary extension of B0, which implies that
B |= T2. Since each Ai |= T1, we obtain a model of T2 which is the union of a chain of models of T1, i.e. we
established ¬(2). �

COROLLARY 2.5. Let T be a theory. For each sentence ϕ the following are equivalent:

(1) ϕ is equivalent modulo T to an ∀∃-sentence.
(2) If {Ai}i∈N is a chain of models of a theory T and B=

⋃
i∈NAi is also a model of T , then B |= ϕ if Ai |= ϕ

for each i ∈ N.

PROOF. ((1)⇒(2)) Let B =
⋃

i∈NAi and suppose Ai |= T ∪{ϕ} for each i ∈ N. Moreover, suppose B |= T .
By hypothesis there is a ∀∃-sentence ψ which is equivalent modulo T to ϕ . Then in particular for each i, Ai |= ψ

and since ∀∃-sentences are inductive, we obtain B |= ψ .

((2)⇒(1)) Consider the theories T1 = T ∪{ϕ} and T2 = {¬ϕ}. By hypothesis (2) no model of T2 is the union of a
chain of models of T1. By the ∀∃-separation Theorem, the theories T1 and T2 can be separated by a ∀∃-sentence ψ .
Thus T1 ` ψ and T2 ` ¬ψ . That is

T ∪{ϕ} ` ψ and {¬ϕ} ` ¬ψ,

which implies T ` ϕ → ψ and ` ¬ϕ →¬ψ . That is T ` ϕ ↔ ψ . �

COROLLARY 2.6. A theory T is inductive if and only if T ≡ T∀∃ where

T∀∃ = {ψ : ψ is a ∀∃-sentence such that T ` ψ}.

PROOF. (⇐) Suppose T ≡ T∀∃ and let {Ai}i∈N be an increasing chain of models of T . Then {Ai}i∈N is also
an increasing chain of models of T∀∃. However ∀∃-sentences are preserved by increasing chains of models and so
B=

⋃
i∈NAi |= T∀∃. Since T∀∃ ≡ T we obtain B |= T .

(⇒) Suppose T is inductive and let ϕ ∈ T . Let B be the increasing union of the chain {Ai}i∈N. Then B |= ϕ and so
B 6|= ¬ϕ . Thus, no increasing chain of models of T is a model of {¬ϕ}. Therefore by the ∀∃-Separation Theorem,
the theories T and {¬ϕ} are separated by a ∀∃-sentence ψ . Thus

T ` ψ and {¬ϕ} ` ¬ψ.

Therefore T ` ϕ ↔ ψ . Since ϕ was arbitrary in T we get T ≡ T∀∃. �

DISCUSSION 2.7. Consider the language L consisting of a single binary relation symbol <. Let A0 be the
L -structure with universe A0 = {0,1, · · ·} and the natural interpretation of <. Moreover for each n ∈ N let An be
the L -structure with universe An := {−n, · · · ,−1,0,1,2, · · ·} again with the natural interpretation of <. Note that
{Ai}i∈N forms an increasing chain of L -structures and let B=

⋃
i∈NAi.

(1) Show that Th(A0) = Th(Ai) for each i ∈ N.
(2) Find a ∀∃-sentence ψ such that B |= ψ , but A0 6|= ψ .
(3) Is Th(A0) inductive?

3. Quantifier Elimination

DEFINITION 3.1. A theory T has quantifier elimination if every L -formula ϕ(x1, · · · ,xn) in T is equivalent
modulo T to a quantifier free formula ρ(x1, · · · ,xn).

EXAMPLE 3.2. If T has quantifier elimination, then every sentence is equivalent to a quantifier free sentence.
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EXAMPLE 3.3. Let L be a language and T an L -theory. Expand the language L by adjoining new relation
symbols Rϕ for each L -formula ϕ . In the expanded language the theory

T ∪{∀x1 · · ·xn(Rϕ(x1, · · · ,xn)↔ ϕ(x1, · · · ,xn)) : ϕ is an L − formula}

has quantifier elimination.

Recall that atomic formulas and their negations are called basic formulas, as well as the following fact.

FACT 2.

(1) Every quantifier free formula is equivalent to a formula in the form ∧i<m ∨ j<mi πi, j and to a formula in
the form ∨i<m ∧ j < miπi, j, where in both formulas each πi, j is basic. The former is referred to as a
conjunctive normal form, the latter as a disjunctive normal form.

(2) Every formula is equivalent to a formula in prenex normal form, i.e. to a formula in the form Q1x1 · · ·Qnxnϕ ,
where Qi ∈ {∃,∀} for each i and ϕ is a quantifier free formula.

DEFINITION 3.4.

(1) A simple existential formula is a formula in the form ∃yϕ , where ϕ is a quantifier-free formula.
(2) A primitive existential formulas is a formula in the form ∃yϕ , where ϕ is a conjunction of basic formulas.

LEMMA 3.5. A theory T has quantifier elimination if and only if every primitive existential formula is equiva-
lent modulo T to a quantifier free formula.

PROOF. (⇐): Let ϕ be simple existential. That is ϕ = ∃yρ for some quantifier free formula ρ . Write ρ in
disjunctive normal form. Then ϕ = ∃y∨i<n ρi where each ρi =∧ j<miπi j, πi j basic. Then ϕ is equivalent to ∨i<n∃yρi.
Thus ϕ is equivalent to a disjunction of primitive existential formulas. Therefore every simple existential formula
is equivalent modulo T to a quantifier free formula.

(⇐): Now, consider an arbitrary formula ϕ . Then ϕ can be written in prenex normal form Q1x1 · · ·Qnxnρ where
each Qi is a quantifier (i.e. ∃ or ∀) and ρ is quantifier free.

Suppose Qn = ∃. Then ∃xnρ is a simple existential formula and so there is a quantifier free formula ρ0 equivalent
modulo T to ∃xnρ . Continue by considering the formula Q1x1 · · ·Qn−1xn−1ρ0.

If Qn = ∀ then ∀xnρ is equivalent to ¬¬∀xnρ . Note that ¬∀xnρ is equivalent to ∃xn¬ρ . Moreover ∃xn¬ρ is simple
existential and thus it is equivalent modulo T to a quantifier free formula ρ1. Then ¬ρ1 is still quantifier free and
equivalent to ∀xnρ . Proceed with Q1x1 · · ·Qn−1xn−1¬ρ1.

(⇒): Straightforward. �

THEOREM 3.6. Let T be a theory. Then the following are equivalent:

(1) T has quantifier elimination.
(2) Whenever M1, M2 are models of T with a common L -substructure A, then

M1
A ≡M2

A.

(3) Whenever M1, M2 are models of T with common substructure A, then for all primitive existential formu-
las ϕ(x1, · · · ,xn) and parameters a1, · · · ,an from A:

M1 � ϕ(a1, · · · ,an)⇒M2 � ϕ(a1, · · · ,an).
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PROOF. (1)⇒ (2)): Fix M1, M2 with a common substructure A. Consider the expanded language L (A) and
a L (A)-sentence ϕ(ā) such that M1 � ϕ(ā). Since T has quantifier elimination there is a quantifier free formula
ρ(x̄) which is equivalent modulo T to ϕ(x̄). Then M1 � ρ(ā) and so A � ρ(ā), which implies that M2 � ρ(ā) and
finally M2 � ϕ(ā).

((2)⇒ (3)) Straightforward.

((3)⇒ (1)) It is sufficient to show that every primitive existential formula is equivalent modulo T to a quantifier
free formula. Fix a primitive existential formula ϕ(x̄). Consider the expanded language L (C), where C = {ci}n

i=1 is
a set of new constants. Let c̄ = (c1, · · · ,cn). It is sufficient to show that T1 = T ∪{ϕ(c̄)} and T2 = T ∪{¬ϕ(c̄)} can
be separated by a quantifier free sentence ρ(c̄). Consider two L (c̄)-structures, (M1, ā1) and (M2, ā2) satisfying T1

and T2 respectively. Here ā1 = (a1
1, · · · ,a1

n) and ā2 = (a2
1, · · · ,a2

n) are designated n-tuples in M1 and M2 respectively.
Suppose (M1, ā1) and (M2, ā2) can not be separated by a quantifier free sentence in L (C).

EXERCISE. Show that the generated substructure A1 = 〈{a1
i }n

i=1〉M
1

is isomorphic to the generated substruc-
ture A2 = 〈{a2

i }n
i=1〉M

2
.

Thus, without loss of generality (M1, ā1) and (M2, ā2) have a common substructure A. Then by the hypothesis
of (3) we obtain:

M1 � ϕ(a1, · · · ,an)⇒M2 � ϕ(a1, · · · ,an),

which is a contradiction. Then, T1 and T2 can be separated via a quantifier free sentence and so ϕ(x̄) is equivalent
to a quantifier free sentence. �

4. Model Completeness

DEFINITION 4.1. A theory T is said to be model complete if for all models M1 and M2 of T , if M1 ⊆
M2 then M1 ≺M2.

COROLLARY 4.2.

(1) If T has quantifier elimination, then T is model complete.
(2) A theory T is model complete if and only if for every model M of T , the theory T ∪Diag(M) is complete.

REMARK 4.3. Recall that

Diag(M) = {ϕ : ϕ is a basic L (M)-sentence such that MM � ϕ}.

COROLLARY 4.4. (Robinson Test) Let T be a theory. The following are equivalent:

(1) T is model complete.
(2) Whenever M1 ⊆M2 are models of T and ϕ is an L (M1)-existential sentence and M2 � ϕ , then M1 � ϕ .
(3) Each formula is modulo T equivalent to a universal formula.

PROOF. Item (1) implies item (2) by definition of model completeness; (1) is equivalent to (3) is a restatement
of an earlier Corollary. To see that (2) implies (3) note that by (2) and same Corollary, every existential formula is
equivalent modulo T to a universal formula.

Take an arbitrary formula ϕ and write it in prenex normal form Q1x1 · · ·Qnxnρ where ρ is quantifier free and
each Qi is a quantifier, ∃ or ∀. Proceed inductively. Here are the interesting cases:

If Qn = ∃ then Qnxnρ is existential and by the above observation Qnxnρ is equivalent modulo T to a universal
formula ψ . Consider Qn−1xn−1ψ and suppose Qn−1 = ∃. Let χ = ∃xn−1ψ . Then χ is equivalent to ¬∀xn−1¬ψ .
However ¬ψ is equivalent to an existential formula ϕ1 and ϕ1 is equivalent modulo T to a universal formula ψ1
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(by the above observation). Thus χ is equivalent modulo T to the formula ¬∀xn−1ψ1. However the negation of a
universal formula is equivalent to an existential formula and so in particular, ¬∀xn−1ψ1 is equivalent to an existential
formula ϕ2. Again by the above observation ϕ2 is equivalent modulo T to a universal formula ψ2. Thus, χ is modulo
T equivalent to the universal formula ψ2. Following the same argument, in finitely many steps one can show that ϕ

(the formula we started with) is equivalent modulo T to a universal formula. �

EXERCISE 3. Let T be a model complete theory and let M be a model of T which embeds into every model of
T . Show that T is complete.

REMARK 4.5. Note that there are theories which are model complete, but do not have quantifier elimination.
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CHAPTER 8

ω-saturatedness

1. The Omitting Type Theorem

DEFINITION 1.1. Let T be an L -theory and let Σ(x) be a set of L -formulas.

(1) A model of T which does not realize Σ(x) is said to omit Σ(x).
(2) A formula ϕ(x) is said to isolate Σ(x) in T if T ∪{ϕ(x)} is consistent and for each σ(x) ∈ Σ(x) we have

T ` ∀x(ϕ(x)→ σ(x)).

THEOREM 1.2. (Omitting type) Suppose T is a countable consistent theory and Σ(x) is a set of formulas which
is not isolated in T . Then T has a model which omits Σ(x).

REMARK 1.3. If T is complete and ϕ(x) isolates Σ(x) in T , then Σ(x) is realised in every model of T . Moreover
every element which realizes ϕ(x) will realize Σ(x).

PROOF. Let C = {ci}i<ω be a countable set of new constants. Let {ψi(x)}i<ω enumerate all L (C )-formulas.
Inductively construct an increasing chain {Ti}i∈N of consistent extensions of T as follows. Let T0 = T . Assume T2i

has been defined. Pick c ∈ C such that c does not occur in T2i∪{ψi(x)} and take T2i+1 = T2i∪{∃xψi(x)→ ψi(c)}.
Since T2i is consistent, then so is T2i+1. Without loss of generality, T2i+1 = T ∪{δ (ci, c̄)}, where c̄ is a finite tuple of
new constants and ci does not occur in c̄. Now, consider the formula ∃ȳδ (x, ȳ). Then by hypothesis ∃ȳδ (x, ȳ) does
not isolate Σ(x) and so there is σ(x) ∈ Σ(x) such that

T 6` ∀x(∃ȳδ (x, ȳ)→ σ(x)).

Thus, T ∪ {∃ȳδ (x, ȳ)∧¬σ(x)} is consistent and so T2i+1 ∪ {¬σ(ci)} is also consistent. Take T2i+2 = T2i+1 ∪
{¬σ(ci)}. Finally, let T ′ =

⋃
Ti. Then:

(1) T ′ is Henkin. Indeed, for every L (C )-formula ψ(x) there is a constant c ∈ C such that the formula
∃xψ(x)→ ψ(c) is in T ′.

(2) for every constant c ∈ C there is a formula σ(x) ∈ Σ(x) such that ¬σ(c) ∈ T ′.

Then T ′ is consistent with a model say (A,ac)c∈C . Since T ′ is Henkin, by the Tarski-Vaught criterion there is an
elementary submodel A′ ≺ A with universe {ac}c∈C . Then for every c ∈ C , A′ � ¬σ(c) which gives us a model of
T which does not realize Σ(x). �

COROLLARY 1.4. For each i let Σ(x1, · · · ,xni) be a set of formulas with free variables in {xi}ni
i=1. Suppose T is

a countable consistent theory and none of the sets Σ(x1, · · · ,xni) is isolated in T . Then T has a model omitting all of
these partial types.

PROOF. Generalize the proof of the Omitting type theorem. �

2. The Space of Types

DEFINITION 2.1. Let T be a theory.

53
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(1) An n-type is a maximal set of formulas p(x1, · · · ,xn) which is consistent with T .
(2) Sn(T ) denotes the set of all n-types.
(3) S1(T ) is often denoted S(T ).
(4) S0(T ) is the set of all maximal consistent extensions of T (note that if p ∈ S0(T ) then p consists of closed

formulas, i.e. sentences).

The following is a revision, however it might be helpful.

DEFINITION 2.2. Let A be an L -structure, B⊆ A, a ∈ A, Σ(x) a set of L (B) formulas with at most x as a free
variable.

• Then a ∈ A is said to realize Σ(x), if AB � σ(a) for all σ ∈ Σ(x).
• We write AB � Σ(a) or simply A � Σ(a).

Note that by the Compactness Theorem, the set Σ(x) is finitely satisfiable in A if and only if there is an elemen-
tary extension of A which realizes Σ(x).

DEFINITION 2.3. Let A be a L -structure, B⊆ A.

(1) A set p(x) of L (B)-formulas is said to be a type over B if p(x) is maximal finitely satisfiable in A. The
set B is called the domain of p.

(2) S(B) = SA(B) denotes the set of types over B.

REMARK 2.4. Let A be an L -structure and let a ∈ A. Then the set

tp(a/B) = tpA(a/B) = {ϕ(x) : A � ϕ(a),ϕ is a L (B)-formula}.

Note that a ∈ A realizes the type p ∈ S(B) if and only if p = tp(a/B).

EXERCISE 4. Show that if A≺ A′, B⊆ A, a ∈ A then:

(1) SA(B) = SA
′
(B)

(2) tpA
′
(a/B) = tpA(a/B)

DEFINITION 2.5. Let A be a L -structure, B⊆ A.

(1) Maximal finitely satisfiable sets of L (B) formulas in the variables x1, · · · ,xn are called n-types and
Sn(B) = SAn (B) denotes the set of n-types over B.

(2) Given an n-tuple ā from A, denote

tpA(ā/B) = {ϕ(x̄) : A � ϕ(ā),ϕ(ā) is L (B)-formula}.

Note that tpA(ā/B) ∈ SAn (B).
(3) Let C be an arbitrary set. Then

tp(C/B) = {ϕ(xc1 , · · · ,xcn) : A � ϕ(c1, · · · ,cn),ϕ is an L (B)− fromula}.

Recall that every structure A has an elementary extension in which all types over A are realised. This concludes
the revision.

REMARK 2.6. Let A be a L -structure and B⊆ A. Then SAn (B) = Sn(Th(AB)). Thus if T is a complete theory
and A � T then SA( /0) = S(T ).

DEFINITION 2.7. Let ϕ(x̄) be an L -formula. Then [ϕ] is the set of all types containing ϕ .

LEMMA 2.8.
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(1) [ϕ] = [ψ] if and only if T � ∀x̄(ϕ(x̄)↔ ψ(x̄)).
(2) [ϕ]∩ [ψ] = [ϕ ∧ψ], [ϕ]∪ [ψ] = [ϕ ∨ψ], Sn(T )\[ϕ] = [¬ϕ], Sn(T ) = [>], /0 = [⊥].

PROOF. Straightforward. �

COROLLARY 2.9. The set B = {[ϕ] : ϕ(x1, · · · ,xn) is a L -formula} is the base for a topology O on Sn(T ).

PROOF. Why? Because B is closed under finite intersections and Sn(T ) =
⋃

B. �

LEMMA 2.10. (Sn(T ),O) is a topological space with the properties:

(1) Sn(T ) has a basis consisting of clopen sets.
(2) Sn(T ) is Hausdorff.
(3) Sn(T ) is compact.

PROOF. Note that O contains Sn(T ) = [>] and /0 = [⊥].
(1) The set Sn(T )\[ϕ] = [¬ϕ] and so each set of the form [ϕ] is clopen.
(2) Let p,q∈ Sn(T ) distinct. Then there is ϕ such that ϕ ∈ p and ϕ /∈ q. Thus p∈ [ϕ] and since q∪T is maximal

consistent set ¬ϕ ∈ q, i.e. q ∈ [¬ϕ]. Thus [ϕ] and [¬ϕ] are disjoint open sets containing p and q respectively.
(3) Consider an arbitrary family {[ϕi] : i ∈ I} with the finite intersection property. Thus, for each J ∈ [I]<ω the

set {∧ j∈Jϕ j}∪T is consistent and so for all J ∈ [I]<ω the set {ϕ j} j∈J ∪T is consistent. Therefore by compactness
{ϕ j} j∈I ∪T is consistent and so we can extend it to a maximal consistent set, i.e. a type p such that p ∈ [ϕ j] for
each j ∈ I. Thus

⋂
j∈I [ϕ j] 6= /0, which completes the proof. �

LEMMA 2.11. Let U be a clopen subset of (Sn(T ),O). Then U = [ϕ] for some formula ϕ .

PROOF. Note that U =
⋃
{[ϕ] : [ϕ] ⊆U}. Since U is also a closed set, its complement W = Sn(T )\U is open

and so it is covered by all basic open sets contained in it. That is W =
⋃
{[ψ] : [ψ]⊆ Sn(T )\U}. Since (Sn(T ),O)

is a compact topological space we can find a finite sub-cover. Thus,

Sn(T ) =
n⋃

i=1

[ϕi]∪
k⋃

j=1

[ψ j] = [∨n
i=1ϕi]∪ [∧k

j=1ψ j].

Thus, U = [∨n
i=1ϕi]. �

DEFINITION 2.12. Let A, B be L -structures and let A0 ⊆ A. A mapping f : A0→ B is said to be elementary
if for every L -formula ϕ(x1, · · · ,xn) and every n-tuple ā from A0:

A � ϕ(ā)⇒B � ϕ( f (ā)).

REMARK 2.13. The special case of A0 = A gives the notion of an elementary embedding of A into B. The
case A0 = /0 is eqiuvalent to saying that A≡B.

LEMMA 2.14. Let A and B be L -structures and let A0 ⊆ A, B0 ⊆ B. Let f : A0→ B0 be elementary. Then the
mapping S( f ) : Sn(B0)→ Sn(A0) defined by

S( f )(q) = {ϕ(x̄, ā) : ā in A0,ϕ(x̄, f (ā)) ∈ q}

is continuous and surjective.

PROOF. (Surjectivity) Let p ∈ Sn(A0). Since f is elementary {ϕ(x̄, f (ā)) : ϕ(x̄, ā) ∈ p} is finitely satisfiable
and so it can be extended to a type q ∈ Sn(B0). But then S( f )(q) = p.

(Continuity) It is sufficient to show that the preimage of a basic open set is open. However (S( f ))−1(ϕ[x̄, ā)]) =
[ϕ(x̄, f (ā))]. �
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REMARK 2.15.
(1) Suppose f : A0→ B0 is an elementary bijection. Then the mapping Sn(A0)→ Sn(B0) defined by p 7→ f (p)

is a homeomorphism.
(2) The special case A=B and A0 ⊆ B0 gives rise to the notion of a restriction of a type: for each q ∈ Sn(B0),

define the restriction of q to A0, denoted q � A0, as S(id)(q).

LEMMA 2.16. Let p ∈ Sn(T ). Then ϕ isolates p if and only if [ϕ] = {p}.

PROOF. (⇒) Suppose ϕ isolates p. That is for every ψ(x̄) ∈ p, we have T ` ∀x̄(ϕ(x̄)→ ψ(x̄)). Take any
q ∈ Sn(T ) such that ψ ∈ q. But then p ⊆ q and by maximality of p we get p = q. Thus [ϕ] = {p} is an isolated
point in (Sn(T ),O).

(⇐) Suppose [ϕ] = {p} for some p ∈ Sn(T ). Consider any ψ(x̄) ∈ p and suppose T 6` ∀x̄(ϕ(x̄)→ ψ(x̄)). Thus
T ∪{ϕ(x̄),¬ψ(x̄)} is consistent and so we can extend the latter to a type q such that q ∈ [ϕ] and q 6= p, which is a
contradiction to [ϕ] = {p}. �

DEFINITION 2.17. A formula ϕ(x) is complete if {ψ(x̄) : ∀x̄(ϕ(x̄)→ ψ(x̄))} is a type.

Thus, a formula isolates a type if and only if it is complete.

QUESTION 2.18. If p ∈ Sn(T ) is not an isolated point (in topological sense), is there a model of T which omits
p? What if p is isolated?

3. Saturated models

DISCUSSION 3.1. A consistent set of formulas in the free variables x1, · · · ,xn is often referred to as a partial
type. If T is a theory and Σ(x̄) is a partial type consistent with T , then Σ(x̄) can be extended to a maximal (under
inclusion) set of formulas Σ∗(x̄) which is consistent with T . Thus Σ∗(x̄) ∈ Sn(T ). Note that if ∆ is a maximal
consistent set of n-formulas, then ∆ is complete in a natural sense: for each n-formula ϕ , either ϕ ∈ ∆ or ¬ϕ ∈ ∆.

LEMMA 3.2. Let Γ be a theory and t a partial n-type.

(1) Let C = {ci}n
i=1 be a set of new constant symbols. Then t ∪Γ is consistent if and only if t(c1, · · · ,cn)∪Γ

is consistent.
(2) t ∪ Γ is consistent (i.e. is a partial type) if and only if for all m and all ϕ1, · · · ,ϕm in t the set Γ∪
{∃x̄(∧m

j=1ϕ j)} is consistent.
(3) If Γ is complete, then t ∪Γ is consistent if and only if for all m and all ϕ1, · · · ,ϕm in t, Γ ` ∃x̄(∧m

j=1ϕ j).
(4) If t is complete, then t is consistent with Γ if and only if Γ⊆ t.

PROOF. (1) t ∪ Γ is inconsistent if and only if there is a finite Φ0 = {ϕ1, · · · ,ϕk} ⊆ t and a finite Γ0 =

{γ1, · · · ,γk} ⊆ Γ such that Φ0 ∪Γ0 is inconsistent. Now, Φ0 ∪Γ0 is inconsistent if and only if {ϕ̄, γ̄} is incon-
sistent (where ϕ̄ = ∧k

j=1ϕ j, γ̄ = ∧k
j=1γ j) if and only if γ̄ ` ¬ϕ̄ if and only if γ̄ ` ¬ϕ̄(c1, · · · ,cm) if and only if

{γ̄,ϕ(c1, · · · ,cn)} is inconsistent.
(2) t ∪Γ is consistent if and only if for every finite subset t0 of Γ the set t0 ∪Γ is consistent. Now, note that

Γ∪{ϕ1, · · · ,ϕm} is inconsistent if and only if Γ∪{∧m
j=1ϕ j} is inconsistent if and only if Γ ` ¬∧m

j=1 ϕ j if and only
if Γ ` ∀x̄¬∧m

j=1 ϕ j if and only if Γ ` ¬∃x̄∧m
j=1 ϕ j if and only if Γ∪{∃x̄∧m

j=1 ϕ j} is inconsistent.
(3) For any Γ we have Γ∪{∃x̄∧m

j=1 ϕ j} is consistent if and only if Γ 6` ¬∃x̄∧m
j=1 ϕ j. For Γ complete this is

equivalent to Γ ` ∃x̄∧m
j=1 ϕ j.

(4) If Γ ⊆ t, then clearly Γ∪ t = t is consistent. Conversely, since t is complete, for all ϕ ∈ Γ either ϕ ∈ t or
¬ϕ ∈ t. However ¬ϕ ∈ t⇒ t ∪Γ is inconsistent. Thus ϕ ∈ t and so Γ⊆ t. �
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DEFINITION 3.3. A model M is ω-saturated if and only if for every finite A ⊆M and every t ∈ SM1 (A), MA

realizes t.

LEMMA 3.4. Let M be a saturated model, A⊆M finite, t ∈ SMn (A). Then MA realizes t.

REMARK 3.5. Note the definition gives the above property only for n = 1.

PROOF. We proceed by induction on n simultaneously for all A ∈ [M]<ω . If n = 1 the statement is true by
definition of saturatedness. Suppose n = k+1 and the claim holds for all k-types and all finite A⊆M.

Now, let t ∈ SMk+1(A). Consider t ′ = {∃xk+1ϕ : t ` ϕ}. Note that ` ϕ →∃xk+1ϕ is a logic axiom and so for all
ϕ ∈ t, t ` ∃xk+1ϕ . Thus t ′ is contained in the deductive closure of t. Therefore t ′ ∈ SMk (A). By Inductive Hypothesis
there is a finite set B = {mi}k

i=1 ⊆M which realizes t ′ in MA. Now, consider

t ′′ = {ϕ(m1, · · · ,mk,xk+1) : t ` ϕ}.

Then t ′′ ∈ SM1 (A ∪ B) and so by inductive hypothesis there is mk+1 ∈ M such that MA∪B � t ′′(mk+1). Then
m1, · · · ,mk+1 realise t in MA. �

LEMMA 3.6. Let L ′ = L (C ) where C is a finite set of new constants. Then an L ′-structure M is saturated
for L ′ if and only if M �L is saturated for L .

THEOREM 3.7. (Saturated models are universal) Let N be a saturated model, Th(N) = Γ. If M is countable
and M � Γ then there is an elementary embedding of M into N.

PROOF. Let M = {mk}k∈N. Consider tpM(m1). Clearly tpM(m1)∪Γ is consistent and since N is saturated
there is n1 ∈ N such that N � (tpM(m1))(n1). Thus tpM(m1)⊆ tpN(n1). However, these are complete types and so
they must be equal. Suppose we have chosen {n j}k

j=1 such that

t = tpM(m1, · · · ,mk) = tpN(n1, · · ·nk).

Let L ′ = L ∪{c j}k
j=1, where the c j’s are new constant symbols. Let M′, N′ be expansions of M, N defined as

follows: for each j, let cM
′

j = m j and cN
′

j = n j. Then

M′ � t(c1, · · · ,ck) and N′ � t(c1, · · · ,ck).

Since t(c̄) is a complete theory, we must have Th(M′) = Th(N′).
Now, consider tpM(mk+1). Since Th(M′)∪ tpM

′
(mk+1) is consistent, we must have Th(N′)∪ tpM

′
(mk+1) is

consistent. However N′ is saturated (by Lemma 3.6) and so there is nk+1 such that

N′ � (tpM
′
(mk+1))(nk+1)

which implies that tpM
′
(mk+1) ⊆ tpN

′
(nk+1) and again since these are complete types, we must have equality.

However, this implies
tpM(m1, · · · ,mk+1) = tpN(n1, · · · ,nk+1).

Thus, inductively we can construct a sequence {nk}k∈ω such that for all k,

tpM(m1, · · · ,mk) = tpN(n1, · · · ,nk).

Now, define a mapping g : {mk}k∈ω →{nk}k∈ω by g(mk) = nk. We can define a structure N∗ on N∗ = {nk}k∈ω such
that g : M∼=N∗. Then for an arbitrary k-formula ϕ , a tuple n̄ = (n1, · · · ,nk) and m̄ = (m1, · · · ,mk) we have

N∗ � ϕ(n̄) iff M � ϕ(m̄) iff ϕ ∈ tpM(m̄) iff ϕ ∈ tpN(n̄) iff N � ϕ(n̄).

Thus, N∗ ∼=M and N∗ ≺N. That is M elementary embeds in N. �
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THEOREM 3.8. Any two countable saturated models of a complete theory Γ are isomorphic.

PROOF. Let A and B be two countable saturated models of a complete theory Γ. Thus in particular Th(A) =
Th(B) = Γ. Fix enumerations A = {an}n∈ω and B = {bn}n∈ω of their universes. Inductively, we will construct
sequences {Ai}i∈ω and {Bi}i∈ω of finite subsets of A and B respectively, and elementary bijections fi : Ai→ Bi such
that A =

⋃
i∈ω Ai, B =

⋃
i∈ω Bi and f =

⋃
fi will be the desired isomorphism.

Since A≡B, the empty map f0 = /0 is elementary. Thus, let A0 = B0 = /0. Now, suppose fi : Ai→ Bi has been
defined. We have two cases to consider: if i is even and if i is odd.

If i= 2n for some n (in particular if i= 0, i.e. n= 0), we extend fi to Ai+1 = Ai∪{an}. Since fi is an elementary
mapping and p = tp(an/Ai) ∈ SA1 (Ai), the image fi(p) ∈ SB1 (Bi). However, B is saturated and by definition fi(p)
is realized in BBi by an element b′. Now, extend fi to a mapping fi+1 : Ai+1 → Bi+1 where Bi+1 = Bi ∪{b′} and
fi+1(an) = b′. We need to show that fi is elementary. Well, consider an arbitrary tuple of parameters ā in Ai and a
L -formula ϕ such that A � ϕ(an, ā). Then ϕ ∈ p and so by our choice of b′, B � ϕ(b′, fi(ā)) and so fi+1 is indeed
elementary.

If i = 2n+1 for some n, consider the set Bi+1 = Bi∪{bn} and let q = tp(bn/Bi) ∈ SB1 (Bi). Then since fi is an
elementary bijection p = f−1

i (q) ∈ SA1 (Ai) and so since A is saturated, p is realized in A by an element a′. Then
define Ai+1 = Ai∪{a′} and extend fi to fi+1 = fi∪{(a′,bn)}. Consider an arbitrary L -formula ϕ , a tuple ā in Ai

and suppose A � ϕ(a′, ā). Then ϕ ∈ tpA(a′/Ai) = f−1
i (q). By our choice of a′, we get B � ϕ(bn, fi(ā)). Thus, fi+1

is elementary. �

REMARK 3.9. Note that if M≺N and A⊆M, then MA ≺NA.

THEOREM 3.10. (Characterization of theories with Saturated Models) Let T be a countable complete theory.
Then the following are equivalent:

(1) T has a countable saturated model.
(2) For all n, there are at most countably many n-types t extending T . Stated shortly, |Sn(T )| ≤ ℵ0 for all

n ∈ N.
(3) For every model M of T and every A⊆M finite, there are at most countably many types over A extending

Th(MA). Shortly, we can formulate this as follows: |SMn (A)| ≤ℵ0 for all n ∈ N and all finite A⊆M.

PROOF. ((1)⇒ (2)) Let M � T be a countable saturated model. Then T = Th(M) and if t ∈ Sn(T ) then M

realizes t. However if t1 6= t2 are in Sn(T ), then t1 and t2 are complete and so can not be realized by the same tuple.
Thus the mapping i : Sn(T )→ Mn defined by i(t) = m̄ if and only if m̄ realizes t in M is injective. Since Mn is
countable, |Sn(T )| ≤ℵ0.

((2)⇒ (3)) Let M � T , A = {a1, · · · ,ak} ⊆M. If θ is an n-formula in L (A) then there is an (n+ k)-formula
θ̄ in L such that:

M � (θ(x1, · · · ,xn)↔ θ̄(x1, · · · ,xn,a1, · · · ,ak)).

If t ∈ SMn (A), then t̄ = {θ̄ : θ ∈ t} ∈ SMn+k( /0) = Sn+k(T ). If t1 6= t2 then t̄1 6= t̄2. However Sn+k(T ) is at most countable
(by our hypothesis (2)) and so SMn (A) is also countable.

((3)⇒ (1)) Note that if M is a countable model of T and A⊆M is finite, t ∈ SM1 (A), then there is a countable
model M′ realizing t such that M≺M′. Indeed, let c be a new constant and let T ′ = Th(MM)∪ t(c). Take M′ � T ′.
Then M≺M′ and M′ realizes t. This leads us to the following construction:

CLAIM. Let M be a countable model of T , {An}n∈ω a sequence of finite subsets of M and {tn}n∈ω a sequence
of types where tn ∈ SM1 (An) for each n. Then there is a model M∗ such that M≺M∗ and M∗ realizes all types tn.
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PROOF. Let M1 be an elementary extension of M such that which realizes t1. Then MA1 ≺M1
A1

and so we
can find an elementary extension M2 of M1 realizing t2. Proceed inductively, to construct an elementary chain
{Mn}n∈ω such that Mn realizes tn. Then M∗ =

⋃
n∈ω Mn is desired. �

CLAIM. If M is a countable model of T , then there is a countable saturated model N of T such that M≺N.

PROOF. Let {(tn,An)}n∈ω enumerate all pairs (t,A) where A ∈ [M]<ω , t ∈ SM1 (A). Then there is a model
M1 such that M ≺M1 and M1 realizes all tn’s. Proceed inductively. Let {(t1

n ,A
1
n)}n∈ω enumerate all pairs (t,A)

where A ∈ [M1]<ω and t ∈ SM
1

1 (A). Then, we can find a model M2 of T such that M1 ≺M2 and M2 realises all
t1
n ’s. Obtain an elementary chain {Mn}n∈N such that Mn+1 realizes types in SM

n

1 (A) for all finite A ⊆ Mn. Then
N=

⋃
n∈ω Mn is a countable saturated model of T . �

�

COROLLARY 3.11. If a countable complete theory T has only countably many countable models, then T has a
saturated model.

PROOF. Every maximal consistent set of n-formulas which is consistent with T is realized in a countable
model of T . On the other hand, each countable model can realize only countably many types. Thus, there are only
countably many types consistent with T . �





CHAPTER 9

ℵ0-categorical theories

1. Atomic Models

Recall that, an n-formula ϕ is said to be n-complete over a theory T if and only if T ∪{ϕ} is consistent and
for all n-formulas ψ either T ∪{ϕ} ` ψ or T ∪{ϕ} ` ¬ψ . An n-type t ∈ Sn(T ) is atomic over T if it contains an
n-complete over T formula. Thus, as we saw earlier, atomic types are isolated points in Sn(T ).

LEMMA 1.1. Let t be a partial n-type such that t ⊇ T for some theory T . If t contains an n-complete over T
formula ϕ , then t is complete (i.e. t ∈ Sn(T )).

PROOF. Let ψ be an arbitrary n-formula. Then T ∪{ϕ} ` ψ , or T ∪{ϕ} ` ¬ψ . Since T ∪{ϕ} ⊆ t, we obtain
that t ` ψ , or t ` ¬ψ . �

DEFINITION 1.2. Let M be a model of a theory T . Then,

(1) M is atomic if and only if for every k ∈ ω and every k-tuple ā = (a1, · · ·ak) in M, tpM(ā) is atomic.
(2) M is prime if and only if for every N � T , M elementary embeds in N.

THEOREM 1.3. Let T be a complete theory (in a countable language). If M � T and M is countable and
atomic, then M is prime.

PROOF. Fix an arbitrary model N of T . We will show that M elementary embeds into N. Let M = {mk}k∈N.
For each k let ϕk ∈ tpM(m1, · · · ,mk) be a k-complete over T formula. Inductively define a sequence {nk}k∈N ⊆ N
such that for each k, ϕk ∈ tpN(n1, · · · ,nk) as follows: Consider ϕ1, m1. Then M � ϕ1(m1) and so M1 � ∃x1ϕ1(x1).
Therefore T ∪{∃x1ϕ1} is consistent and so T 6` ¬∃x1ϕ1. Since T is complete, we must have T ` ∃x1ϕ1. Now,
N � T and so there is n1 ∈ N such that N � ϕ1(n1). Thus, ϕ1 ∈ tpN(n1). Suppose we have defined n1, · · · ,nk. Note
that

M � ϕk(m1, · · · ,mk)∧∃xk+1ϕk+1(m1, · · · ,mk,xk+1)

and so T 6� ∀x1 · · ·xk(ϕk(x1, · · · ,xk)→¬ϕ/x1, · · · ,xk+1). However ϕk is a k-complete formula over T and so

T ` ∀x1 · · ·xk(ϕk(x1, · · · ,xk)→∃xk+1ϕk+1(x1, · · · ,xk+1)).

Thus

N � ∀x1 · · ·xk(ϕ(x1, · · · ,xk)→∃xk+1ϕ(x1, · · · ,xk+1))

and so there is nk+1 such that N � ϕk+1(n1, · · · ,nk+1).
Let N∗ = {nk}k∈ω and let g : M→ N∗ be defined by g(mk) = nk. Then g extends to an isomorphism and so M

elementary embeds into N. �

COROLLARY 1.4. Any two countable atomic models of a complete theory T are isomorphic.

PROOF. A back-and-forth argument. �

61
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2. Characterisation of complete theories with atomic models

We will make use of the following theorem, which for now will consider without a proof.

THEOREM 2.1. A complete theory T has an atomic model if and only if for every n, every n-formula consistent
with T is contained in some atomic type.

THEOREM 2.2. If T has a saturated countable model, then T has an atomic model.

PROOF. We will make use of the following notion: Let ψ be an n-formula and ϕ an n-formula which is com-
plete over T such that T `ϕ→ψ . Then ϕ is called the completion of ψ . An n-formula is said to be “incompletable”
if it has no completion. Note that a formula ψ is incompletable if and only if for every atomic t ∈ Sn(T ), ψ /∈ t.

Now, suppose T has no atomic model. Then there is an n-formula ψ which is not contained in any atomic
type over T and {ψ}∪T is consistent. Thus, {ψ}∪T is consistent, but ψ is incompletable. In particular, ψ is not
complete itself , since otherwise it would be its own completion. Therefore there is ψ0 such that T ∪{ψ} 6` ψ0 and
T ∪{ψ} 6` ¬ψ0. Let ψ1 :=¬ψ0. Then {ψ,ψ0}, {ψ,¬ψ0}= {ψ,ψ1} are partial n-types consistent with T which are
mutually inconsistent. Then ψ ∧ψ0 is also incomplete and so there is an n-formula ψ00 such that T ∪{ψ ∧ψ0} 6`
ψ00, T ∪ {ψ ∧ψ0} 6` ¬ψ00. Let ψ01 := ¬ψ00. Similarly, there is a formula ψ10 such that T ∪ {ψ ∧ψ1} 6` ψ10,
T ∪{ψ ∧ψ1} 6` ¬ψ10. Let ψ11 = ¬ψ10. Proceed by induction.

If A⊆N, then identify A with its characteristic function χA : N→{0,1}, where χA(n) = 1 if and only if n ∈ A.
For each A ⊆ N let tA = {ψχA�n}n∈N. Since each finite subset of tA is consistent with T , by compactness tA ∪ T
is consistent. Therefore there are uncountably many n-types consistent with T and so T can not have a saturated
model, which is a contradiction. �

COROLLARY 2.3. Let T be a complete theory, M � T , M countable. Then M is both saturated and atomic if
and only if for every countable model N of T , M∼=N.

3. ℵ0-categorical theories

DEFINITION 3.1. A theory T is said to be ℵ0 categorical if up to isomorphism it has a unique countable model.

REMARK 3.2. Thus by the above Corollary, a countable complete theory T is ℵ0-categorical if and only if it
has a model M which is both atomic and saturated.

THEOREM 3.3. Let T be a complete theory. Then the following are equivalent:

(1) T is ℵ0-categorical.
(2) All countable models are atomic.
(3) All types over T are atomic.
(4) |Sn(T )|< ℵ0 for each n ∈ ω

(5) for each n there is a finite list of n-formulas such that every n-formula is modulo T equivalent to a formula
from the list.

PROOF. Clearly items (1), (2) and (3) are equivalent.
((4)⇒ (5)) Fix n and let {ti}k

i=1 = Sn(T ). For each n-formula ϕ , let

Aϕ := {t ∈ Sn(T ) : ϕ ∈ t}.

CLAIM 3.4. If Aϕ ⊆ Aψ then T ` ϕ → ψ .

PROOF. If T 6` ϕ→ ψ then T ∪{ϕ,¬ψ} is consistent and so it can be extended to some t ∈ Sn(T ). Thus, there
is i ∈ {1, · · · ,k} such that T ∪{ϕ,¬ψ} ⊆ ti. Then ti ∈ Aϕ , ti 6∈ Aψ . Thus Aϕ 6⊆ Aψ . �
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Therefore if Aϕ = Aψ then T ` ϕ ↔ ψ . Now, consider the map

χ : {ϕ |ϕ is an n-formula}→P({ti}k
i=1),

where χ(ϕ) = Aϕ . By the above Claim, if χ(ϕ1) = χ(ϕ2) then T ` ϕ1↔ ϕ2. However |P({t1, · · · , tk})|= 2k and
so there are no more than 2k many formulas such that every formulas is equivalent to one of them.

((5)⇒ (3)) Let t ∈ Sn(T ) and let {ϕ1, · · · ,ϕk} be a list of formulas given by (5). For each i≤ k define

ψi :=

{
ϕi, if ϕi ∈ t

¬ϕi, if ϕi /∈ t

Let ψ∗ = ψ1∧ ·· ·∧ψk. Then ψ∗ ∈ t. We will show that ψ∗ is n-complete over T . Consider an arbitrary n-formula
ϕ . Since t is a complete n-type, either ϕ ∈ t or ¬ϕ ∈ t. Assume without loss of generality that ϕ ∈ t. Then by (5)
there is a j ∈ {1, · · · ,k} such that T ` ϕ j ↔ ϕ and so ϕ j ∈ t. Therefore ψ j = ϕ j and since ψ∗→ ψ j is a tautology,
we obtain T ∪{ψ∗} ` ϕ j. Thus T ∪{ψ∗} ` ϕ j, T ∪{ψ∗} ` ϕ j → ϕ , which gives T ∪{ψ∗} ` ϕ . The case ¬ϕ ∈ t
is dealt with analogously.

((3)⇒ (4)) Assume for all n ∈ N, all t ∈ Sn(T ) are atomic. Fix n. Assume towards a contradiction that
|Sn(T )| ≥ ℵ0 (i.e.assume that Sn(T ) is infinite). Fix an enumeration {ti}∞

i=1 of Sn(T ). Now, for each i let ϕi ∈ ti
be an n-complete formula. Thus i 6= j, T ` ϕi → ¬ϕ j and so ¬ϕ j ∈ ti. Consider t∗ = {¬ϕi}∞

i=1. For each k,
{¬ϕi}k

i=1 ⊆ tk+1 and so by compactness t∗ is consistent. Thus it can be extended to t̄∗ ∈ Sn(T ). However t̄∗ 6= ti for
each i, which is a contradiction. �

4. Vaught’s Never Two Theorem

THEOREM 4.1. (Vaught) A countable complete theory can not have exactly two non-isomorphic countable
models.

PROOF. Suppose T is a countable complete theory with exactly two countable non-isomorphic models. Thus
T has an ω-saturated model N. However, every theory with a saturated model has also an atomic model M. Since T
has two non-isomorphic models, T is not ℵ0-categorical. Then in particular N is not atomic and M is not saturated.
Since N is not atomic, there are n ∈N and a1, · · ·an in N (the universe of N) such that tpN(a1, · · · ,an) is not atomic.
Consider the language L̄ = L ∪{a1, · · · ,an} and let N̄ be an expansion of N to L̄ . Then N̄ is saturated and so
T̄ = Th(N̄) has an atomic model M̄.

CLAIM. T̄ is not ℵ0-categorical.

PROOF. Since T is not ℵ0-categorical, there infinitely many L -formulas {ϕi}i∈ω such that for all i 6= j, T 6`
ϕi↔ ϕ j. But then T̄ 6` ϕi↔ ϕ j. �

Therefore M̄ is not saturated and so M̄ �L is also not saturated. Note that M̄ �L � T . Thus M̄ �L 6∼=N. It
remains to show that M̄ �L is not atomic and so M̄ �L 6∼=M, which will be a contradiction.

Since atomic models are prime, there is an elementary embedding f : M̄→ N̄ such that f (aM̄j ) = aN̄j = a j. Let
ϕ be an n-formula in L . Then:

M̄ �L � ϕ(aM̄1 , · · · ,aM̄n ) iff N � ϕ(a1, · · · ,an).

Thus,
tpM̄�L (aM̄1 , · · · ,aM̄n ) = tpN(a1, · · · ,an)

which is not atomic over T . Thus M̄ �L is not atomic. �
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CHAPTER 10

Indiscernibles

1. The Theorem of Ramsey

We will start with a little detour into combinatorial set theory. Recall the following notation and terminology:

(1) Given a set A and a natural number n, [A]n denotes the family of all subsets B of A such that |B|= n.
(2) Similarly, [A]ω = {B : B⊆ A, |B|= ℵ0}
(3) A partition of a set X is a family C of pairwise disjoint non-empty subsets of X which cover the set, i.e.

such that X =
⋃

C .

THEOREM 1.1. (Ramsey) Let A be an infinite set and let k ∈ ω . For every natural number n ≥ 1 and every
partition C = {Ci}k

i=1 of [A]n, there are B ∈ [A]ω and i ∈ {1, · · · ,k} such that [B]n ⊆Ci.

PROOF. By induction on n. For n = 1, this is the pigeonhole principle. Assume the theorem is true for n. We
have to prove it for n+1. Thus, let f : [A]n+1→{1, · · · ,k} be arbitrary. Now pick an arbitrary a0 ∈ A and consider
the mapping

fa0 : [A\{a0}]n→{1, · · · ,k}
defined by fa0(x) = f (x∪{a0}). Let A1 = A\{a0}. By induction hypothesis there are a set B1 ∈ [A1]

ω and an integer
i0 ∈ {1, · · · ,k} such that f ′′a0

[B1]
n = i0. Now pick a1 ∈ B1 and consider the mapping

fa1 : [B1\{a1}]n→{1, · · · ,k}

such that fa1(x) = f (x∪ {a1}). Let A2 = B1\{a1}. By the inductive hypothesis there is a set B2 ∈ [A1]
ω and

i1 ∈ {1, · · · ,k} such that f ′′a1
[B2]

n = i1. Proceed inductively to obtain a decreasing sequence of sets

A = B0 ⊇ B1 ⊇ B2 ⊇ ·· · ,

elements al ∈ Bl\Bl+1 and colors il ∈ {1, · · · ,k} such that for each l ∈ ω

f ′′al
[Bl+1]

n = il .

Now consider the set {il}l∈ω . By the pigeonhole principle there is an infinite set I ⊆ω and an integer i∗ ∈ {1, · · · ,k}
such that for each l ∈ I, il = i∗. Then B= {al}l∈I is as desired. Indeed, consider any B∗ ∈ [B]n+1. Then we can list B∗

as B∗ = {al j}n
j=0 and we can assume that l0 < l1 < · · ·< ln. Then B∗\{al0} ⊆ Bl0 and so f (B∗) = fal0

(B∗\{al0}) =
i∗. �

QUESTION 1.2. What is the connection between the function f in the proof and the partitions of [A]n+1? How
exactly did we use the pigeonhole principle to claim the existence of i∗ in the paragraph above?

2. Indiscernibles

DEFINITION 2.1. Let (I,<) be a linear order, A an L -structure. A family (ai)i∈I of elements of A is called a
sequence of order indiscernibles if for all L -formulas ϕ and all i1 < · · ·< in, j1 < · · ·< jn from I

A � ϕ(ai1 , · · · ,ain) if and only if A � ϕ(a j1 , · · · ,a jn).
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REMARK 2.2.

(1) Note that if there are i 6= j in I such that ai = a j, then all the ai’s above coincide. Thus, we usually assume
that the elements (ai)i∈I are all distinct. Which formula ϕ can we use to prove this claim?

(2) In the above defintion we can require not only that the ai’s are elements of A, but even more - that they
are k-tuples of elements of A for some fixed k ≥ 1.

DEFINITION 2.3. Let M be an L -structure, (I,<) an infinite linear order and I = (ai)i∈I a sequence of
elements of M. Let A⊆M. The Ehrenfeucht-Mostowski type of I over A is the set EM(I /A) = {ϕ(x1, · · · ,xn) :
ϕ(x1, · · · ,xn) is an L (A)-formula such that M � ϕ(ai1 , · · · ,ain) for all i1 < · · ·< in, where n ∈ ω}.

LEMMA 2.4. (Standard Lemma) Let I = (I,<) and J = (J,<) be two infinite linear orders, A = (ai)i∈I a
sequence of elements of a structure M. Then there is a structure N such that M ≡ N and N has a sequence of
indiscernibles (b j) j∈J which realizes EM(I ).

PROOF. Consider the Ehrenfeucht-Mostowski type EM(I ) of I . That is consider the set EM(I ) = {ϕ(x̄) :
ϕ(x̄) is a n-L -formula, M � ϕ(ai1 , · · · ,ain) for all i1 < · · ·< in,n∈ω}. Let C = {c j} j∈J be a set of new constants
supplied with the linear order c j1 < c j2 if and only if j1 < j2. Consider the theories:

• T ′ = {ϕ(c̄) : ϕ(x̄) ∈ EM(I )}, where c̄ is an increasing tuple of new constants;
• T ′′ = {ϕ(c̄)↔ ϕ(d̄) : ϕ is a L -formula, c̄, d̄ are increasing tuples of new constants of the same length}.

Now, let T = Th(M) and let T ∗ = T ∪T ′∪T ′′. If this theory is consistent and M∗ � T ∗, then N=M∗ �L , where
L is the original language, will be as desired. Indeed, N � T and so N≡M. Since M∗ � T ′, the sequence (b j) j∈J

where b j = cM
∗

j realizes EM(I ) in N and since M∗ � T ′′, the sequence (b j) j∈J is a sequence of indiscernibles in
N. Thus, it is sufficient to show that T ∗ is consistent.

By Compactness, it is sufficient to show that whenever C0 is a finite set of new constants and ∆ is a finite set of
L -formulas, the theory TC0,∆ = T ∪∆′∪∆′′ is consistent, where

• ∆′ = {ϕ(c̄) ∈ T ′ : c̄ increasing tuple in C0},
• ∆′′ = {ϕ(c̄)↔ ϕ(d̄) : ϕ(x̄) ∈ ∆, c̄, d̄ increasing tuples of the same length in C0}.

Thus, ∆′ is just a finite fragment of T ′ and ∆′′ is a finite fragment of T ′′.
Consider the set A = {ai}i∈I with the linear order inherited from (I,<). Define an equivalence relation ∼∆ on

[A]n as follows. Let ā∼∆ b̄ if and only if

M � ϕ(ā)↔ ϕ(b̄) for all ϕ(x̄) ∈ ∆ and all tuples ā, b̄ in A taken in increasing order.

Enumerate the power set P(∆) as {Di}2|∆|−1

i=0 and define f : [A]n→ 2|∆| as follows:

f (ā) = i if and only if
(
∀ϕ ∈ Di(M � ϕ(ā)) and ∀ϕ ∈ ∆\Di(M 6� ϕ(ā))

)
.

Note that f is well-defined. Why? Well, take an arbitrary tuple ā. If it does not realize in M any formulas from ∆,
then take an index i such that Di = /0. If ā realizes a formula from the set ∆, take D = {ϕ ∈ ∆ : M � ϕ(ā)} and find
an index i such that D = Di. Then clearly, for every ψ ∈ ∆\D, M 6� ψ(ā). Thus, f is indeed well-defined.

By the Theorem of Ramsey, there is B ∈ [A]ω such that f � [B]n is the constant i for some i ∈ 2|∆|. By definition
of the function f , we obtain that ā∼∆ b̄ for each ā, b̄ in [B]n. To complete the proof, suppose C0 = {cl}k

l=1 for some
k. Take any B0 ∈ [B]k, enumerate it as {bl}k

l=1 and for each l define bl = cMl . Then

M′ = (M,bc)c∈C0 � TC0,∆

where bc = bl for c = cl is as desired. �
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QUESTION 2.5. Is it clear that sets of the form TC0,∆ cover indeed all finite subsets of T ∗ in the proof above?
Why?

EXERCISE 5. Prove that indeed M′ = (M,bc)c∈C0 � TC0,∆.
Hint: Use the fact that M′ �L =M and that ā∼∆ b̄ for each ā, b̄ in [B]n.

COROLLARY 2.6. Let T be a theory with an infinite model. Then for every infinite linear order I, the theory T
has a model with a sequence (bi)i∈I of (distinct) indiscernibles.

PROOF. By the upwards Löwenheim-Skolem theorem, find a model M � T such that |M| ≥ |I| and fix (ai)i∈I a
sequence of distinct elements of M. By the Standard Lemma there is a model M′ such that M′ ∼=M with a sequence
(bi)i∈I of (distinct) indiscernibles. Thus M′ is as desired. �

Recall that a well-order is a linear order with the property that every non-empty subset has a least element.

LEMMA 2.7. Assume L is countable. If the L -structure M is generated by a well-ordered sequence (ai)i∈I

of indiscernibles, then M realises only countably many types over every countable subset of M.

PROOF. Let A = {ai}i∈I . Since M is generated by A, we have that

M = {tM(ā) : t is an L -term, ā is a finite tuple in A}.

Fix any countable subset S of M. Since, every element of M is of the form tM(ā) for some L -term and a tuple ā
from A, in particular every element from S is in this form. Moreover, since S is countable, we can find a countable
A0 ⊆ A such that only elements from A0 occur in ”describing” S. Thus A0 = {ai : i ∈ I0} for some countable subset
I0 of I.

We have to find out, how many types over S does M realise. Recall

tp(ā/S) = {ϕ(x̄) : M � ϕ(ā), where ϕ is a L (S)-formula}.

Thus, having in mind the description of S, we obtain that

tp(ā/S) = {ϕ(x̄) : M � ϕ(ā), where ϕ is a L (A0)-formula}.

Thus,

tp(ā/S) = tp(ā/A0).

Note that the type tp(ā/A0) depends only on the quantifier free type tpq f (ī/I0) in the structure (I,<) where
ī = (i0, · · · , in) is such that ā = (ai0 , · · · ,ain).

1 Moreover tpq f (ī/I0) depends only on tpq f (ī) and on the quantifier
free types tpq f (i/I0) of the elements i of ī in the structure (I,<). For the former, there are finitely many possibilities,
while for the latter - countably many. Indeed, there are exactly three options for the latter type:

(1) either for each i0 ∈ I0(i0 < i), or
(2) there is i0 ∈ I0 such that i0 = i, or
(3) there is i0 ∈ I0 such that i < i0 and for each j ∈ I0 such that j < i0 we have j < i. Do we use well-

foundedness of the linear order I = (I,<)? How do we know that if we are not in case (1) or in case (2)
above, exactly case (3) occurs? Well, suppose neither (1), nor (2) above holds. Then there is i∗ ∈ I0 such
that i < i∗. Thus, the set I∗ = { j ∈ I0 : i < j} is non-empty. Now, since we have a well-order we can take
i0 = min I∗. Then i0 has exactly the properties from (3).

1Note that ī is not necessarily <-increasing.
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There is only one type in the first case, while the latter two are determined by i0. Since I0 is countable, this gives
rise to only countably many possibilities.

Now, to count all types over S which M realises, it is sufficient to count the number of types of the form tp(b̄/S)
for b̄ a tuple in M. This number is determined by:

(1) the number of L -terms t(x̄) such that b̄ = t(ā) for some finite tuple ā in A, and
(2) the number of types of the form tp(ī/I0) in the structure (I,<).

The first item above gives rise to countably many possibilities, as the language L is countable. By our observations
above, the second item also gives rise to only countably many possibilities. Thus, there are only countably many
types over S that M realizes. �

REMARK 2.8. Why is it sufficient to consider the types of the form tp(b̄/S) in the proof of Theorem 10? If
t ∈ SMn (S) and M realizes t, then t = tpM(b̄/S) for some tuple b̄ in M.



CHAPTER 11

ω-stable theories

1. Skolem Theories

THEOREM 1.1. Let L be a first order language. Then there is an expansion LSkolem of L and a theory in
this expansion, denoted Skolem(L ), which has quantifier elimination, is universal and such that:

(1) every L -structure can be extended to a model of Skolem(L ),
(2) |LSkolem| ≤max(|L |,ℵ0).

PROOF. We will define an increasing sequence of languages {Li}i∈ω such that L0 = L as follows. Suppose
Li is defined. For every quantifier free (n+ 1)-ary formula ϕ(x̄,y) in the language Li take a new n-ary function
symbol fϕ .

REMARK 1.2. The intended interpretation of fϕ is to be the Skolem function associated to ϕ . That is, for every
Li structure M if M � ∃yϕ(x̄,y) and M � ϕ(ā,b), then fMϕ (ā) = b.

Define Li+1 =Li∪{ fϕ : ϕ is a quantifier free Li-formula} and let LSkolem =
⋃

i∈ω Li. Finally, take Skolem(L )

to be the set

{∀x̄(∃yϕ(x̄,y)→ ϕ(x̄, fϕ(x̄))) | ϕ(x̄,y) is a q.f. LSkolem-formula}.

�

COROLLARY 1.3. Let T be a countable theory, N � T where |N| ≥ ℵ0. Let κ be an infinite cardinal. Then
there is a model M � T such that |M| = κ and for every S ⊆M, |S| ≤ℵ0, M realises only countably many types
over S.

PROOF. Expand the language to LSkolem and take T ∗ = T ∪Skolem(L ). Now, T ∗ is a countable theory and
if N∗ is the natural expansion of N to LSkolem, then N∗ � T ∗. Thus T ∗ has an infinite model. Note that T ∗ is
equivalent to a universal theory, since for every ϕ ∈ T ∗ there is a q.f. ϕ∗ ∈ Skolem(L ) such that ϕ and ϕ∗ are
equivalent modulo Skolem(L ). Thus, T ∗ is equivalent to the universal theory

{ϕ∗ : ϕ ∈ T}∪Skolem(L ).

Now, take a well-order I of cardinality κ . By a previous theorem, there is a model N∗ � T ∗ with indiscernibles
(ai)i∈I . Take M∗ to be the substructure of N∗ generated by the set of indiscernibles i.e. take M∗ = 〈{ai}i∈I〉〉. Since
universal sentences are downwards absolute, we get M∗ � T ∗. On the other hand, T ∗ has quantifier elimination and
so M∗ ≺N∗, which implies that (ai)i∈I is a sequence of indiscernibles for M∗. Thus over every countable subset
of its universe, M∗ realizes only countable many types. Clealry, the same holds for M=M∗ �L . �

DISCUSSION 1.4.

(1) Once, again: In which language is the theory T ∗ from the theorem above?
(2) Why is the cardinality of M∗ exactly κ? How about the cardinality of M?
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2. ω-stable theories

Until the end of the section, unless explicitly otherwise stated, T is a complete theory with an infinite model.
First of all recall the following definition:

DEFINITION 2.1. Let κ be an infinite cardinal. A complete theory T of cardinality at most κ is said to be
κ-categorical if it has up to isomorphism a unique model of cardinality κ .

DEFINITION 2.2. A theory T is said to be κ-stable if for every model M of T , every A⊆M such that |A| ≤ κ

and every n ∈ ω , |Sn(A)| ≤ κ .

FACT 3.

(1) Note that if T is κ-stable, then up to logical equivalence |T | ≤ κ .
(2) T is κ-stable if and only if T is κ-stable for 1-types, i.e. if and only if |S(A)| ≤ κ whenever |A| ≤ κ .

THEOREM 2.3. A countable theory T which is κ-categorical for some κ > ℵ0 is ω-stable. Note that since T
is κ-cateogrial, then T is in particular complete.

PROOF. Proceed by contradiction. Suppose N � T , A ⊆ N, |A| ≤ ℵ0 and |S(A)| > ℵ0. Thus, we can find a
sequence (bi)i∈I of ℵ1 distinct elements of N realising ℵ1-many distinct types in S(A). By Löwenheim-Skolem
there is M0 such that

A∪{bi}i∈I ⊆M0,M0 ≺N and |M0|= ℵ1.

Now, find M1 such that M0 ≺M1 and |M1|= κ . Thus, in particular M1 realises ℵ1-many types over the countable
set A.

On the other hand, by Corollary 1.3, we can find a model M2 � T such that |M2| = |M1|, M2 realised only
countably many types over A. Thus M1 6∼=M2, which means that T is not κ-categorical. �

Recall that <ω 2 denotes the set
⋃

n∈ω
n2.

DEFINITION 2.4. For each s∈ <ω 2 let ϕs be a formula. We say that {ϕs}s∈<ω 2 forms a binary tree of consistent
with T formulas if

(1) T � ∀x̄(ϕs0(x̄)∨ϕs1(x̄)→ ϕs(x̄))
(2) T � ∀x̄(¬ϕs0(x̄)∧ϕs1(x̄)).

FACT 4.

(1) If a theory T has an ω-saturated model, then it has an atomic model (otherwise, we saw that there is a
binary tree of consistent with T formulas).

(2) Suppose T is a countable theory. Then,
• for all n ∈ ω , |Sn(T )| ≤ℵ0 if and only if T has no binary tree of consistent formulas.
• for all n ∈ ω , |Sn(T )| ≤ℵ0 if and only if T has a countable ω-saturated model.

DEFINITION 2.5. A countable theory T is totally transcendental if it has no model M with a binary tree of
consistent L(M)-formulas.

THEOREM 2.6.

(1) If T is ω-stable, then T is totally transcendental.
(2) If T is totally transcendental, then T is κ-stable for all κ ≥ |T |.
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PROOF. Recall that we always assume that our theories are complete!
(1) Suppose T is not totally transcendental. Then there is M � T with a binary tree {ϕs}s∈<ω 2 of consistent

with L (M)-formulas. But, then if A is the set of parameters occurring in {ϕs}s∈<ω 2, we get |S(A)|> ℵ0, which is
a contradiction to stability.

(2) This is a counting argument. Suppose T is not κ-stable. Then there is M � T such that A⊆M, |A| ≤ κ and
|Sn(A)|> κ . Let us say that a L (A)-formula ϕ is big, if [ϕ] = {b ∈ Sn(A) : ϕ ∈ b} is a set of cardinality > κ . If ϕ

is not big, then we say that ϕ is thin. Clearly, the true formula > is big and [>] = Sn(A). If ϕ is thin, then |[ϕ]| ≤ κ .
Now, |L (A)| ≤ κ and so the set

Thin(L (A)) :=
⋃
{[ϕ] : ϕ is a thin L (A)-n-formula}

is of cardinality at most κ . However |Sn(A)|> κ and so we can take

p ∈ Sn(A)\Thin(L (A)).

Take any ϕ ∈ p. Then ϕ is big. Pick q ∈ Sn(A)\Thin(L (A)) such that q 6= p and ϕ ∈ p∩q. Then there is ψ such
that ψ ∈ p, ¬ψ ∈ q and so

ϕ ↔ ϕ ∧ (ψ ∨¬ψ)↔ (ϕ ∧ψ)∨ (ϕ ∧¬ψ).

Thus, we can generate a binary tree consisting of big formulas which is consistent with T , contradicting that T is
transcendental. �

REMARK 2.7. T is totally transcendental if and only if there is no binary tree of consistent formulas in one
variable.

We will work with the following natural generalization of the notion of ω-saturatedness.

DEFINITION 2.8.

(1) Let κ ≥ ℵ0. An L -structure M is κ-saturated if in M for all A ⊆M, |A| < κ , all types in S1(A) are
realised.

(2) An infinite structure M is saturated, if it is |M|-saturated.

REMARK 2.9. Recall the argument showing that if all 1-types are realized, then also all n-types are realised.

LEMMA 2.10. Elementarily equivalent saturated structures of the same cardinality are isomorphic.

PROOF. Let A≡B, |A|= |B|= κ . Choose an enumeration A = {aα}α<κ , B = {bα}α<κ . The construction of
the isomorphism between A and B reproduces the back-and-forth argument we have seen earlier, with the difference
that we have to account for all limit ordinals below κ . That is, at every successor stage of the construction we either
take the next element if the fixed enumeration of A, or the next element of B, while at limit stages, we just take the
union of mappings constructed up to that stage. �

LEMMA 2.11. If T is κ-stable, then for all regular λ ≤ κ there is a model of cardinality κ which is λ -saturated.

PROOF. If T is κ-stable then up to logical equivalence |T | ≤ κ . Let M0 � T , |M0| = κ . Since T is κ-stable,
|S1(M0)| ≤ κ . For any p ∈ S1(M0) fix a new constant cp. Then by compactness

Th(MM)∪
⋃

p∈Sn(M)

p(cp)

is consistent, which implies that there is an elementary extension M1 which realises all types in S(M0). By the
Löwenheim-Skolem theorem, we can assume that M1 has cardinality κ . Recursively, define a continuous elemen-
tary chain of models

M0 ≺M1 ≺ ·· · ≺Mα ≺ ·· ·(α < λ ),
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of models of T with cardinality κ such that all p ∈ S(Mα) are realized in Mα+1. Recall, that continuous, just means
that for limit α , Mα =

⋃
β<α Mβ . Let M be the union of this chain. Then M is λ -saturated. Indeed. Suppose

|A|< λ and for each a ∈ A find α(a)< λ such that a ∈Mα(a). Since λ is regular and |A|< λ , we obtain that

µ := sup{α(a) : a ∈ A}

is strictly below λ and so A⊆Mµ . Thus, all types over A are realised in Mµ+1 (by construction of the elementary
chain). �

THEOREM 2.12. A countable theory T is κ-categorical if and only if all its models of cardinality κ are satu-
rated.

PROOF. (⇐) Well, by Lemma 2.10 any two saturated models of cardinality κ are isomorphic. Thus, T is
κ-categorical.

(⇒) Assume T is κ-categorical. If κ = ℵ0, then T has an ω-saturated model and since all countable models
of T are isomorphic, any countable model of T is ω-saturated. If κ > ℵ0, then by Theorem 2.3 the theory T is
ω-stable, which by Theorem 2.6.(1) implies that T is totally transcendental and so by Theorem 2.6.(2) the theory T
is κ-stable. Therefore by Lemma 2.11, if M � T and |M| = κ , then M is µ+-saturated for all µ < κ . That is, the
model M is saturated. �



CHAPTER 12

Prime models and prime extensions

1. Prime Models

Unless explicitly stated otherwise, T is a countable complete theory with infinite models. Recall the following
definitions:

DEFINITION 1.1. Let T be a countable theory with an infinite model (T not necessarily complete). A model
M of T is said to be prime if M elementarily embeds into every model of T .

DEFINITION 1.2. A structure M is said to be atomic if all n-tuples ā in A are atomic, i.e. if tpM(ā) is an
isolated point in SMn ( /0).

EXAMPLE 1.3. Consider a language L which has a unary predicate symbol Ps for every s ∈ <ω 2. Consider
the theory T which is the deductive closure of the following axioms:

• ∀xP/0(x)
• ∃xPs(x)
• ∀x((Ps0(x)∨Ps1(x))↔ Ps(x))
• ∀x¬(Ps0(x)∨Ps1(x))

where s ∈ <ω 2. Then T is a complete theory which has quantifier elimination. The theory T has no complete
formulas and no prime models.

One more definition, which we should recall:

DEFINITION 1.4. Given L -structures A, B and A0 ⊆ A, a mapping f : A0→ B is said to be elementary if for
every formula ϕ(x1, · · · ,xn) and every n-tuple ā in A

if A � ϕ(ā) then B � ϕ( f (ā)).

We have the following characterisation of the prime models of a given theory:

THEOREM 1.5. A model of a theory T is prime if and only if it is countable and atomic.

PROOF. (⇒) Suppose M is prime. Since T is a countable complete theory (in a countable language) T has a
countable model N. But M being prime can be embedded into N and so M is countable. By the Omitting Types
theorem non-isolated types can be omitted in suitable models of T . This in particular implies that M can realize
only isolated types! Recall that a type is isolated if and only if it contains a complete formula. Then in particular
tpM(ā) is atomic for each tuple ā in M, i.e. M is atomic.

(⇐) Now, suppose M0 is a countable atomic model of T . Consider an arbitrary model M of T . Since T is
complete, M ≡M0 and so the empty mapping f0 from M0 to M is elementary. It is sufficient to show that any
elementary mapping f : A→M on a given finite set A can be extended on a given a (in M0\A).

Thus, suppose f ,A,a are given. Let p(x) = tpM0(a/A) and let f (p) be the image of p under f . Fix a finite tuple
ā enumerating A and using the fact that M0 is atomic fix a L -formula ϕ(x, x̄) isolating tpM0(aā). Then ϕ(x, ā)
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isolates p and since f is elementary (by hypothesis), ϕ(x, f (ā)) isolates f (p). If b realizes ϕ(x, f (ā)) in M then b
realizes also f (p) and so f ∪{(a,b)} is the desired extension of f . �

As an immediate corollary we obtain:

COROLLARY 1.6. Any two prime models of a theory T are isomorphic.

In addition, the proof of the above theorem shows that ω-saturated models are ω-homogenous in the following
sense:

DEFINITION 1.7. Let M be a L -structure. Then, M is said to be ω-homogenous if for every elementary map
f0 : A→M where A is a finite subset of M and every a ∈M there is b ∈M such that f = f0∪{〈a,b〉} is elementary.

COROLLARY 1.8. Prime models are ω-homogenous.

DISCUSSION 1.9. Recall the space of types Sn(T ). A point x in a topological space (X ,O) is an isolated
point if the set {x} is open. Thus, a type p is said to be isolated if {p} is an isolated point, which we proved is
equivalent to [ϕ] = {p} for some L -formula ϕ . Then ϕ isolates p and ϕ is complete. Now, suppose the isolated
types are dense in Sn(T ). Then every open set [ψ] contains an isolated type, i.e. every formula ψ consistent with
T , belongs to some isolated type. Recalling the definition of a complete formula, we obtain that the set of isolated
types is dense in Sn(T ) if and only if for every consistent with T formula ψ there is a complete formula ϕ such that
T � ∀x̄(ϕ(x̄)→ ψ(x̄)).

2. Prime Extensions

DEFINITION 2.1. Let M be a model of T , A⊆M.

(1) The structure M is prime over A (also M is said to be a prime extension of A), if every elementary map
f : A→ N (where N is the universe of a structure N) extends to an elementary map f ′ from M to N.

(2) A set B⊆M is constructible over A if B = {bα}α<λ where for each α < λ , if Bα = {bβ}β<α then bα is
atomic over A∪Bα , i.e. tpM(bα/A∪Bα) is isolated.

LEMMA 2.2. Let M be an L -structure such that M is constructible over A, where A ⊆M. Then M is prime
over A.

PROOF. We need to show that every elementary map f : A→ N, where N is the universe of a structure N

extends to an elementary embedding from M to N.
Fix an enumeration {mα}α<λ of the universe M of M so that if for each α < λ we have Mα = {mβ}β<α , then

mα is atomic over A∪Mα . That is, the type pα = tpM(mα/A∪Mα) is an isolalted point in S(A∪Mα).
Now, let f : A→ N be a given elementary mapping. Recursively, we will define elementary mappings fα :

A∪Mα →N so that fλ =
⋃

α<λ fα : M→N will be elementary. Suppose

fα : A∪Mα →N

has been defined. Note that fα induces a homeomorphism

S( fα) : S(A∪Mα)→ S( f [A∪Mα ]),

since S( fα) is a bijective continuous mapping between Hausdorff, compact spaces (this is a good exercise in general
topology; can you give a proof?). Then S( fα)(pα) is isolated in S( fα [A∪Mα ]) and so realised by some bα ∈ N.
Then take fα+1 = fα ∪{(mα ,bα)} and note that

fα+1 : A∪Mα+1→N.

�
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LEMMA 2.3. Suppose T is a totally transcendental theory, M � T and A ⊆M. Then the isolated types in
SMn (A) are dense.

PROOF. Suppose not. Thus there is a basic open [ϕ]⊆ SMn (A) which does not contain an isolated type. Then in
particular ϕ is not complete and so we can find mutually inconsistent formulas ϕ0, ϕ1 such that ϕ∧ϕ0 and ϕ∧ϕ1 are
consistent with T , but none of them is complete. This will give rise to a binary tree of consistent L (M)-formulas,
which is a contradiction to T being totally transcendental. �

THEOREM 2.4. Suppose T is totally transcendental, M � T , A ⊆M. Then A has a prime, constructible over
A extension.

PROOF. By Lemma 2.2, it suffices to find M0 ≺M such that M0 is constructible over A. We will use the axiom
of choice. Consider the collection P of all families {aα}α<µ ⊆M such that for all α < µ , tpM(aα/A∪{aβ}β<α) is
atomic. Then P is a non-empty partial order (under inclusion) with the property that the union of an increasing chain
in the partial order, is an element of P (i.e. P is inductive). Thus, by Zorn’s Lemma we can find a maximal element.
That is a maximal under inclusion family {aα}α<λ ⊆M such that for all α < λ , the type tpM(aα/A∪{aβ}β<α)

is atomic. We claim that if M0 = A∪{aα}α<λ , then M0 is the universe of an elementary substructure M0 of M.
Clearly, M0 ⊆M and M0 is constructible over A.

Suppose M� ∃xϕ(x) for some L (M0)-formula ϕ(x). Consider [ϕ(x)]. By Lemma 2.3 there is an isolated point
p ∈ SM1 (M0) such that p ∈ [ϕ(x)], i.e. ϕ(x) ∈ p. But, every isolated type is realised in M and so we can find b ∈M
realising it. Thus M � ϕ(b). But then b is atomic over M0, i.e. tp(b/A∪{aα}α<λ ) is isolated. If b /∈ A∪{aα}α<λ ,
we get a contradiction to the maximality of {aα}α<λ . Therefore b ∈M0 and so M0 is the universe of an elementary
substructure M0 of M. �

LEMMA 2.5. Let ā and b̄ be finite tuples of elements of a structure M. Then tp(āb̄) is atomic if and only if
tp(ā/b̄) and tp(b̄) are atomic.

PROOF. (⇒) Suppose tp(āb̄) is atomic. Thus, there is a formula ϕ(x̄, ȳ) which isolates tp(āb̄). Then clearly
ϕ(x̄, b̄) isolates tp(ā/b̄) and we will show that ∃x̄ϕ(x̄, ȳ) isolates tp(b̄) = p(ȳ).

Note that ∃x̄ϕ(x̄, ȳ) ∈ tp(b̄) and if σ(y) ∈ tp(b̄) then

M � ∀x̄, ȳ(ϕ(x̄, ȳ)→ σ(ȳ)).

Therefore M � ∀ȳ(∃x̄ϕ(x̄, ȳ)→ σ(ȳ)).
(⇐) Now, suppose tp(ā/b̄) and tp(b̄) are isolated by ρ(x̄, b̄) and σ(ȳ) respectively. We will show that ρ(x̄, ȳ)∧

σ(ȳ) isolates tp(āb̄). On one hand ρ(x̄, ȳ)∧σ(ȳ) ∈ tp(āb̄). On the other hand if ϕ(x̄, ȳ) ∈ tp(āb̄) then ϕ(x̄, b̄) ∈
tp(ā/b̄) and so

M � ∀x̄(ρ(x̄, b̄)→ ϕ(x̄, b̄)).

Then ∀x̄(ρ(x̄, b̄)→ ϕ(x̄, b̄)) ∈ tp(b̄) and so

M � ∀ȳ(σ(ȳ→∀x̄(ρ(x̄, ȳ)→ ϕ(x̄, ȳ)).

Therefore M � ∀x̄, ȳ(ρ(x̄, ȳ)∧σ(ȳ)→ ϕ(x̄, ȳ)). �

LEMMA 2.6. Constructible extensions are atomic.

PROOF. Suppose M is a constructible extension of A. Thus, the universe of M is of the form {aα}α<λ where
each bα is atomic over A∪Mα for Mα = {aβ}β<α . Let b̄ be a tuple from M\A. We will show that tpM(ā) is atomic.
Write ā = aα b̄ where b̄ is a tuple in Mα . By definition of constructibility tp(aα/(Mα ∪A)) is atomi and so we can
fix L (Mα) complete formula ϕ(x, c̄) isolating the type. Then aα is also atomic over A∪{b̄c̄}. By induction b̄c̄ is
atomic over A. Applying Lemma 2.5 to MA, aα b̄c̄ is atomic over A and so ā = aα b̄ is atomic over A. �
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COROLLARY 2.7. Prime extensions of totally transcendental theories are atomic.

PROOF. Fix T totally transcendental. Let M � T , A⊆M. Then there is M0 such that M0 is constructible over
A (by Theorem 1.6) and so by Lemma 2.6, M0 is atomic. Now, let M1 be prime over A and let f : A→M0 be
elementary. Then f extends to an elementary mapping f̄ : M1→M0 and since M1 has an isomorphic copy in an
atomic model, the model M1 must be itself atomic. �



CHAPTER 13

Morley Downwards

1. Theorem of Lachland

THEOREM 1.1. (Lachland) Let T be a countable, complete theory, which is totally transcendental, M � T ,
|M|> ℵ0. Then for every κ ≥ |M| there is a model N∗ such that:

(1) M≺N∗, N∗ � T , |N∗|= κ ,
(2) If Σ(x) is a countable set of formulas omitted in M, then Σ(x) is omitted in N∗.

PROOF. We will say that a formula ϕ(x) is large, if

ϕ(M) = {a ∈M : M � ϕ(a)}

is uncountable. Since, T is totally transcendental, T does not have a binary tree of consistent big L (M)-formulas.
However, there are big formulas as |M| > ℵ0 and every tautology is big. Thus, there is a formula ϕ0(x) which is
big and for each ψ(x) either ϕ0(x)∧ψ(x) of ϕ0(x)∧¬ψ(x) is not big. Take

p(x) = {ψ(x) : ϕ0(x)∧ψ(x) is big}

and note that p(x) ∈ S(M), which consists of big formulas (for a detailed proof on the existence of p(x) see Subsec-
tion 3).

CLAIM. p(x) is not realized in M.

PROOF. Otherwise, pick a ∈M such that M � p(a). Since p(x) is maximal, x .
= a ∈ p(x), but x .

= a is not big.
Contradiction. �

CLAIM 1.2. If Π(x) ∈ [p(x)]≤ω , then Π(x) is realised in M.

PROOF. Fix Π(x). Each ψ(x)∈Π(x) is big and ϕ0(x)∧¬ψ(x) is not big. Thus in particular there is a countable
set ∆ψ ⊆M such that ∆ψ = (ϕ0∧¬ψ)(M). That is

• for all m ∈ ∆ψ , M � ϕ0(m)∧¬ψ(m) and
• for all m ∈M\∆ψ , M 6� ϕ0(m)∧¬ψ(m).

Now, Π(x) is countable and so
∆ = ϕ0(M)\

⋃
{∆ψ : ψ ∈Π(x)}

is uncountable and so in particular non-empty! Clearly for any m0 ∈ ∆, M �Π(m0). �

Thus in particular p(x) is finitely satisfiable in M and so M has an elementary extension N in which p(x) is
realised. Fix a ∈N such that N � p(a). Then clearly a ∈N\M and so M is a proper elementary submodel of N.
By Theorem 13 from the last lecture we can assume that N is constructible over M∪{a} and so by Lemma 15 of
the same lecture, the model N is atomic over M∪{a}.

CLAIM. If Σ(x) is a countable set of L (M)-formulas, which is realised in N, then Σ(x) is realised in M.

79
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PROOF. Fix Σ(x). Since N is atomic, there is b ∈ N which realises Σ(x), i.e.

Σ(x)⊆ tp(b/M).

Consider the type q(y) = tp(b/M ∪ {a}). Since N is atomic over M ∪ {a}, there is a complete L (M)-formula
χ(x,y) such that χ(a,y) isolates q(y). Observe that if N � σ(b), where σ(y) is an L (M)-formula (in particular if
σ(y) ∈ Σ(x)) then

N � ∀y(χ(a,y)→ σ(y)).

Thus a realises σ∗(x) = ∀y(χ(x,y)→ σ(y)). Therefore σ∗(x) ∈ p(x). Analogously, N � ∃yχ(a,y) (just because
N � χ(a,b)). Therefore ∃yχ(x,y) ∈ p(x). Now,

Σ
∗(x) = {σ∗(x) : σ ∈ Σ}∪{∃yχ(x,y)} ∈ [p(x)]≤ω .

By Claim 1.2, Σ∗(x) is realized in M. Thus, there is a′ ∈M such that M � Σ∗(a′). Then in particular, M � ∃yχ(a′,y)
and we can pick a witness b′ ∈M such that M � χ(a′,b′). Now, M � σ∗(a′), i.e.

M � ∀y(χ(a′,y)→ σ(y)).

Thus, we must have M � χ(a′,b′)→ σ(b′) and so M � σ(b′). Therefore M � Σ(b′). �

REMARK. Can we assume that |N| = |M| above? If this is not the case, since the language is countable, we
can take N′ �N such that M∪{a} ⊆ N′ and |N′|= |M|.

Using the same analysis, we can construct an increasing continuous chain of proper elementary extensions
{Nα}α<κ . Then N∗ =

⋃
α<κ Nα is as desired. �

QUESTION 1.3. Why is |N∗| ≥ κ in the proof above?

2. Morely Downwards

COROLLARY 2.1. (Morley downwards) A countable complete theory T , which is κ-categorical for some un-
countable cardinal κ is ℵ1-categorical.

REMARK. Recall that a countable complete theory T is κ-categorical if and only if all its models of cardinality
κ are saturated.

PROOF. (Morley Downwards) Let T be κ-categorical. Assume T is not ℵ1-categorical. Then T has a model
M, |M| = ℵ1 such that M is not saturated. But then there is a type p = Σ(x) over some A ⊆M, |A| ≤ ℵ0 such
that p is not realised in M (i.e. p is omitted in M). However, κ-categorical theories are ω-stable and ω-stable
theories are totally transcendental. Therefore T is totally transcendental. By the theorem of Lachland, M has an
elementary extension N of cardinality κ , which realizes the same countable types as M and so N omits p. Thus N
is not saturated and so T is not κ-categorical. Contradiction! �

3. A type of big formulas

DISCUSSION 3.1. In the proof of the Theorem of Lachland the existence of a type consisting of big formulas,
plays a crucial role! But, why is there such a type? Here is a detailed proof.

Suppose M is an uncountable model of a transcendental theory T in a countable language. We say that a
formula χ(x) is big if

χ(M) = {m ∈M : M � χ(m)}
is an uncountable set. The formula x=̇x is satisfied by every m ∈M and so it is big. Thus, there are big formulas.
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CLAIM 3.2. Suppose ϕ(x) is a big formula. Then for any formula ψ(x) either ϕ ∧ψ or ϕ ∧¬ψ is big.

PROOF. Take any ψ(x). Then the sets

Mψ(x) = {m ∈M : M � ψ(x)} and M¬ψ(x) = {m ∈M : M � ¬ψ(x)}.

form a partition of M, i.e. they are disjoint and

M = Mψ ∪M¬ψ .

Moreover
ϕ(M) = Mϕ∧ψ ∪Mϕ∧¬ψ .

Since ϕ(M) is uncountable at least one of the sets Mϕ∧ψ and Mϕ∧¬ψ is uncountable, i.e. at least one of the formulas
ϕ ∧ψ or ϕ ∧¬ψ is big. �

Let ϕ0 be an arbitrary big formula. Suppose we can find a formula ψ0 such that both ϕ0∧ψ0 and ϕ0∧¬ψ0 are
big. Call the first ϕ00 and the second ϕ01. Repeating the argument for the big formulas ϕ00 and ϕ01 we are starting
to generate a binary three of big formulas (each branch through which is a set consistent with T , because M � T ).
Proceed inductively. Suppose for each s ∈ <ω 2 we can find a formula ψs such that both ϕs ∧ψs and ϕs ∧¬ψs are
big. Then take ϕs0 = ϕs ∧ψs and ϕs1 = ϕs ∧¬ψs. Thus, we can complete the process and construct a binary tree
X = {ϕs(x)}s∈<ω 2 of big formulas.

EXERCISE 6. Let f ∈ ω 2. Then {ϕ f �n : n ∈ ω} is consistent with T .

Therefore, either we can complete the process and construct a binary free X = {ϕs(x)}s∈<ω 2 of big formulas
such that for each f ∈ ω 2 the set {ϕ f �n : n ∈ω} is consistent with T , or we will find a formula for which the process
can not be continued.

Well, if we succeed with the construction of X , then we reach a contradiction to the fact that T is transcenden-
tal. So, there is a big formula ϕ∗(x) with the property that for each other formula ψ(x) either ϕ ∧ψ or ϕ ∧¬ψ is
not big. Then, we define

p(x) = {ψ(x) : ϕ
∗(x)∧ψ(x) is big}.

CLAIM 3.3. p(x) consists of big formulas.

PROOF. For each ψ ∈ p(x) we have that (ϕ∗∧ψ)(M) is uncountable. However

(ϕ∗∧ψ)(M)⊆ ψ(M)

and so ψ(M) is also uncountable. That is ψ(x) is big. �

Thus, we found a type p(x) consisting of big formulas.





Part 5

The Categoricity Theorem





CHAPTER 14

Homogeniety

1. Homogenous Models

Recall the definition:

DEFINITION. Let L be a countable language. An L -structure is said to be ω-homogenous if for every finite
A⊆M, every a ∈M and every elementary map f0 : A≺M there is b ∈M such that f0∪{(a,b)} is elementary.

REMARK 1.1. In the above definition, note that f0∪{(a,b)} is elementary if and only if b realises f (tp(a/A)).

LEMMA 1.2. Let T be a countable complete theory with infinite models.

(1) Let M � T , |M|= ℵ0. Then there is N such that M≺N, |N|= ℵ0 and N is ω-homogenous.
(2) Suppose for all n, Mn is ω-homogenous, Mn ≺Mn+1. Then limnMn =

⋃
n∈ω Mn is ω-homogenous.

PROOF. (1) Let M be a countable model of T . For this proof we will say that a triple (A, f ,a) is relevant for
M if A is a finite subset of M, f : A≺M is elementary and a ∈M. Note that if M is countable, then

∆(M) = {(A, f ,a) : (A, f ,a) is relevant for M}

is a countable set. Now, consider M0 and let {(An, fn,an)}n∈ω be an enumeration of ∆(M0). Let

∆0 = {qn(x) : qn(x) = fn(tp(an/An))}n∈ω .

Note that since fn is elementary, qn(x) is well-defined. Now, fix C = {cn}n∈ω a set of countably many new constants.
Since Th(M0M0 )

∪ q0(x) is finitely satisfiable, Th(M0M0
)∪ q0(c0) is consistent. Let M1

0 be its model. Then

M0 ≺M1
0 and M1

0 realises q0(x). Suppose we have defined {M j
0}k

j=1, M j
0 ≺M j+1

0 for each j < k and M0
0 =M0.

Now, repeat the argument. Since Th(Mk
0

Mk
0

)∪qk(x) is finitely satisfiable, there is a countable Mk+1
0 �Th(Mk

0
Mk

0

)∪

qk(ck+1). But, then
Mk

0 ≺Mk+1
0 and Mk+1

0 realises qk(x).

Thus, we can construct a countable elementary chain {Mk
0}k∈ω such that for each k, Mk+1

0 realises qk(x). Take
M1 = limk M

k
0. Then,

M0 ≺M1

and M1 realizes all types in ∆0. Again, since M1 is countable, there are only countably many relevant for M1 triples
and so

∆1 = {q(x) : q(x) = f (tp(a/A)),(A, f ,a) ∈ ∆(M1)}

is countable. Applying the same arguments as above, obtain an increasing elementary chain {Mk
1}k∈ω of countable

models such that M2 = limk M
k
1 realises all types in ∆1. Proceed inductively, to construct an elementary chain

{Mn}n∈ω of countable models such that for all n, Mn+1 realises the types in ∆n. Then N= limnMn is an elementary
extension of M which is ω-homogenous.

85
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(2) Suppose M = limn∈ω Mn, where for each n, the structure Mn is ω-homogenous. Let f : A ≺M, where A
is a finite subset of M and let a ∈M. Then there is n ∈ ω such that A∪{a} ⊆Mn. But Mn is homogenous and so
there is b ∈Mn such that f ′ = f ∪{〈a,b〉} is elementary, i.e.

f ′ : A∪{a} ≺Mn ≺M.

�

THEOREM 1.3. Let T be a countable complete theory in a countable language. Suppose M,N are countable
homogenous models of T and M,N realise the same types in Sn(T ) for n≥ 1. Then M∼=N.

QUESTION 1.4. Is it true that M and N realise the same types in S0(T ), where M, N are from the above
statement?

PROOF. We will build an isomorphism f :M→N by a back-and-forth argument. To this this, we will construct
an increasing sequence { fn}n∈ω of partial elementary maps with finite domains. Let f =

⋃
∞
i=0 fi, let {ai}∞

i=0 = M
and {bi}∞

i=0 = N. To insure that f is a total, onto function we guarantee that ai ∈ dom( f2i+1), bi ∈ image( f2i+2).
We start with f0 = /0. Because T is a complete theory, f0 is an elementary mapping. Assume by induction that

fs is elementary, let ā = dom( fs) and b̄ = image( fs). We differentiate two different cases into the inductive step:
If s+ 1 = 2i+ 1 Assume by induction hypothesis that {a j} j<i occur in ā. Let p = tpM(ā,ai). Since M and

N realise the same types, there are a tuple c̄ and an element d in N such that tpN(c̄,d) = p, tpN(c̄) = tpM(ā).
Moreover, since by hypothesis fs is elementary we have tpM(ā) = tpN(b̄). Thus tpN(c̄) = tpN(b̄). Because N is
homogenous, there is e ∈ N such that tpN(b̄,e) = tpN(c̄,d) = p. Thus, fs+1 = fs ∪{(ai,e)} is partial elementary
with ai in the domain.

If s+1 = 2i+2 As in the previous case, we can find c̄, d in M such that tpM(c̄,d) = tpN(b̄,bi). Because M is
homogenous, there is e ∈M such that tpM(c̄,d) = tpM(ā,e). Then fs+1 = fs∪{(e,bi)} is as desired. �

COROLLARY 1.5.

(1) The number of countable non-isomorphic homogenous models of a given theory T is at most 22ℵ0 .
(2) If T has a countable saturated model, then the number of countable non-isomorphic homogenous models

of T is at most 2ℵ0 .

PROOF. (1) Homogenous models of are determined by the set of types they realise. Note that the number of
possible sets of formulas in a countable language does not exceed 2ℵ0 . Therefore |Sn(T )| ≤ 2ℵ0 . Thus, the number
of possible sets of types which are realised is at most 22ℵ0 .

(2) If M is a countable saturated model of T , then |Sn(T )| ≤ℵ0 for all n ∈ ω . Therefore there are at most 2ℵ0

many possible sets of types (which can be realised.) �

2. Vaughtian Pairs

Recall that whenever L is a language, M is an L -structure and ϕ(x̄) is an n-formula,

ϕ(M) = {x̄ ∈Mn : M � ϕ(x̄)}.

DEFINITION 2.1. Let κ > λ ≥ ℵ0. A L -theory T has a (κ,λ )-model if there is a model M of T and a
L -formula ϕ(x̄) such that

|M|= κ and |ϕ(M)|= λ .



2. VAUGHTIAN PAIRS 87

EXERCISE 7. Suppose T is a theory in a countable language L with an infinite model. Let κ be an infinite
cardinal. Then T has a model M such that for every L -formula ϕ(x̄)

either |ϕ(M)|= κ or ϕ(M) is finite.

Hint: Formulas for which |ϕ(M)|< ℵ0 are called algebraic. We will study them more closely in the next lecture. To obtain the
claim for formulas with |ϕ(M)| ≥ℵ0 argue as in the upwards Löwenheim-Skolem theorem.

The goal for this lecture is to obtain the following theorem:

THEOREM 2.2. (Vaught) If T has a (κ,λ )-model where κ > λ ≥ℵ0, then T has a (ℵ1,ℵ0)-model.

In order to obtain the above, we will work with the notion of a (κ,λ )-model:

DEFINITION 2.3. A pair (N,M) is said to be a Vaughtian pair of modesl if

M≺N,M 6=N

and there is a LM-formula ϕ such that |ϕ(M)| ≥ℵ0 and ϕ(M) = ϕ(N).

LEMMA 2.4. If T has a (κ,λ )-model where κ > λ ≥ℵ0, then there is a Vaughtian pair (N,M) of models of
T .

REMARK. Thus the existence of (κ,λ )-models for a theory T is an obstacle to κ-categoricity.

PROOF. Let N be a (κ,λ )-model. Suppose that X = ϕ(N) has cardinality λ . By the Löwenheim-Skolem
theorem there is a model M ≺N such that X ⊆M and |M| = λ . Because X ⊆M, the pair (N,M) is a Vaughtian
pair. �

DISCUSSION 2.5. Suppose L is a language and M⊆N are L -structures. Introducing a special unary predi-
cate symbol U , we consider the pair (N,M) as a L ∗-structure, where L ∗ = L (U ) = L ∪{U }, by interpreting
U as M.

DEFINITION 2.6. For each formula ϕ = ϕ(x1, · · · ,xn) in L define a L (U )-formula ϕU , meant to be the
restriction of ϕ to U , inductively as follows:

(1) if ϕ is atomic, then ϕU is ∧n
j=1U (x j)∧ϕ;

(2) if ϕ is ¬ψ then ϕU is ¬ψU ;
(3) if ϕ is ψ ∧θ , then ϕU is ψU ∧θU ;
(4) if ϕ is ∃xψ then ϕU is ∃xU (x)∧ψU .

CLAIM 2.7. Let N be an L ∗-structure, M⊆N such that M= U N. Then for ā ∈Mk:

M � ϕ(ā) iff (N,M) � ϕ
U (ā).

LEMMA 2.8. Let (N,M) be a Vaughtian pair for T . Then there is a Vaughtian pair (N0,M0) for T where N0

is countable.

PROOF. Let ϕ(x) be a formula, witnessing that (N,M) is a Vaughtian pair for T . Consider the theory T ′vp
which is the union of the following theories:

(1) all formulas in T ,
(2) {∃x1 · · ·∃xk

(
∧i< j xi 6= x j ∧ (∧k

i=1ϕ(xi))
)
}k∈ω ,

(3) {∃x¬U (x)},
(4) {∀x(ϕ(x)→U (x))}.
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Note that if N � T ′vp, then U N is a proper subset of the universe of N, ϕ(N) ⊆ U N and ϕ(N) is infinite. Now,
consider the L ∗-theory

Tvp = T ′vp∪{∀x̄
((
∧k

i=1 U (xi)∧ψ(x̄)
)
→ ψ

U (x̄)
)

: ψ is a k-L -formula,k ∈ ω}.

Now (N,M) � Tvp and by the theorem of Löwenheim-Skolem, there is a countable N0 ≺N such that N0 � Tvp. But
then U N0 =M0 ≺N0 and (N0,M0) is a countable Vaughtian pair for T , witnessed by the same formula. �

LEMMA 2.9. Suppose M0 ≺N0 are countable models of T = Tvp. There are (N,M) countable, homeogenous
models such that

(N0,M0)≺ (N,M)

and N, M realise the same types in Sn(T ). Thus in particular M∼=N.

PROOF. We will start with proving the following Claim.

CLAIM 2.10. Let ā ∈M0, p ∈ Sn(ā) which is realised in N0. Then there is an elementary extension (N′,M′)

of (N0,M0) such that p is realised in M′.

PROOF. Consider the theory

Γ(x̄) = {ψU (x̄, ā) : ψ(x̄, ā) ∈ p}∪ThL ∗(N0N0).

If ψ1, · · · ,ψn are in p, then N0 � ∃x̄∧m
i=1 ψi(x̄, ā) and so by elementarity M0 � ∃x̄∧m

i=1 ψi(x̄, ā). Thus,

(N0,M0) � ∃x̄∧m
i=1 ψ

U
i (x̄, ā).

Therefore Γ(x̄) is finitely satisfiable and so we can find an elementary extension (N′,M′) realising Γ(x̄). Then in
particular, M′ realises p. �

CLAIM 2.11. If b̄ ∈N0 and p ∈ Sn(b̄), then there is (N0,M0)≺ (N′,M′) such that p is realised in N′.

PROOF. Let Γ(x̄) = p∪ThL ∗(N0N0
). Clearly Γ(x̄) is finitely satisfiable in N0. Thus Γ(x̄) is consistent and we

can get an elementary extension N′ realising Γ(x̄). Then (N′,M′) elementary extends (N0,M0) and N′ realises
p. �

Now, to prove the Lemma, we will build an elementary chain:

(N0,M0)≺ (N1,M1)≺ ·· ·

of countable models {(Ni,Mi)}i∈ω such that

(1) if p ∈ Sn(T ) is realised in N3i then p is realised in M3i+1. Then N= limi∈ω Ni and M= limi∈ω Mi realise the
same types.

(2) if ā, b̄, c are in M3i+1 and tpM3i+1(ā) = tpM3i+1(b̄) then there is d ∈M3i+2 such that

tpM3i+2(ā,c) = tpM3i+2(b̄,d).

Note that (2) implies that M= limi∈ω Mi is ω-homogenous.
(3) if ā, b̄, c are in N3i+2 and tpN3i+2(ā) = tpN3i+2(b̄), then there is d ∈ N3i+3 such that tpN3i+3(ā,c) =

tpN3i+3(b̄,d). Note that property (3) implies that N is ω-homogenous.

Thus (N,M) is a countable Vaughtian pair for T as desired. �

THEOREM 2.12. (Vaught) If T has a (κ,λ )-model, where κ > λ ≥ℵ0 then T has a (ℵ1,ℵ0)-model.
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PROOF. Fix T such that T has a (κ,λ )-model. Then there is a Vaughtian pair (N,M) for T such that N,M are
countable homogenous and realise the same types. Fix ϕ(x̄) witnessing that N, M are a Vaughtian pair for T , i.e.
|ϕ(M)|= ℵ0, ϕ(M) = ϕ(N) and so ϕ(N)∩N\M = /0.

Inductively, we will construct a continuous elementary chain {Nα}α∈ω1 such that for all α ∈ ω1, Nα
∼=N and

Nα+1\N will contain no elements satisfying ϕ . Let N0 = N. If α is a limit, take Nα =
⋃

β<α Nβ . Then Nα is
ω-homogenous (as the union of an increasing chain of ω-homogenous models) and Nα realises the same types as
N. Thus Nα

∼=N. If we are at successor stage α +1 and Nα is defined, proceed as follows: Nα
∼=N and N∼=M.

Thus M ∼=Nα and we can fix an isomorphism f : M→Nα . However M ≺N and so we can an extension Nα+1

of Nα and an isomorphism f̄ : N→Nα+1 extending f . Then Nα+1 is as desired.
Finally, take N = limα<ω1 Nα . Then N is a model of T of cardinality ℵ1, ϕ(N̄) = ϕ(M) is countable and so

N̄ is an (ℵ1,ℵ0)-model for T . �

COROLLARY 2.13. Suppose T is κ-categorical for some κ ≥ℵ1. Then T does not have a Vaughtian pair.

PROOF. If T has a Vaughtian pair, then T has an (ℵ1,ℵ0) model M witnessed by some formula ϕ . Thus in
particular, |ϕ(M)| = ℵ0. But M has an elementary extension M∗ such that |M∗| = ℵ1 and for every formula ψ ,
if |ψ(M)| ≥ℵ0, then |ψ(M∗)|= ℵ1 (recall Exercise 7). However M∗ ∼=M since T is ℵ1-categorical (by Morley
Downwards) and so ℵ0 = |ϕ(M)|= |ϕ(M∗)|= ℵ1, which is a contradiction! �

3. Minimal Extensions

DEFINITION 3.1. Let A ⊆ M, where M is the universe an a L -structure M. The structure M is said to be
minimal extension of A if there is no proper elementary submodel N of M such that A⊆ N.

REMARK 3.2. Equivalently, we can say that M is a minimal extension of A if whenever N �M and A ⊆N,
we have M=N.

LEMMA 3.3. Let M � T , A ⊆M. If A has a prime extension M and a minimal extension N, then they are
isomorphic over A, i.e. there is an isomorphism M∼=N fixing A elementwise.

PROOF. Note that A ⊆ M, A ⊆ N and the identity mapping id : A→ A is elementary. Since M is prime, the
identity extends to an elementary embedding f from M to N. Since N is minimal, the embedding f is surjective
and so M∼=N. �

COROLLARY 3.4. Let T be κ-categorical for some uncountable κ , let M � T and let A be an infinite definable
subset of M. Then M is the unique up to isomorphism prime extension of A.

PROOF. Let ϕ be a L -formula such that A = ϕ(M). If M is not minimal over A, then there is a proper
elementary submodel N of M such that A⊂ N. Then ϕ(M) = ϕ(N) and so (M,N) is a Vaughtian pair for T . Now,
by the Theorem of Vaught the theory T has an (ℵ1,ℵ0) model, which is a contradiction to T being ℵ1-categorical.
Thus M is minimal over A.

On the other hand, T is ω-stable and so totally transcendental. But then A has a prime extension N. By the
previous Lemma M∼=N over A. Thus M is the unique up to isomorphism prime extension of A. �





CHAPTER 15

Algebraic Formulas and Strongly Minimal Sets

1. Algebraic Formulas

DEFINITION 1.1. Let M be a structure, A⊆M.

(1) A L (A)-formula ϕ(x) is said to be algebraic if |ϕ(M)|< ℵ0.
(2) An element a ∈ M is algebraic over A if there is a L (A )-formula ϕ(x) which is algebraic such that

M � ϕ(a).
(3) An element of M is said to be algebraic if it is algebraic over the empty set.
(4) acl(A) = {a ∈M : a is algebraic over A}.
(5) A set A is said to be algebraically closed if A = acl(A).

LEMMA 1.2. Let ϕ(x) be an algebraic L (A)-formula. Let M≺N and A⊆M. Then:

(1) ϕ(M) = ϕ(N),
(2) M is algebraically closed.

PROOF. (1) Let |ϕ(M)|= n. Then M � ∃x1 · · ·∃xn

(
(∧i< jxi 6= x j)∧ (∧n

i=1ϕ(xi))
)

and

M � ∀x1 · · ·xn+1

(
(∧n+1

i< j xi 6= x j)→ (∨n+1
i=1 ¬ϕ(xi))

)
.

Suppose there is a ∈N\M, N � ϕ(a). But then

N � ∃x1 · · ·∃xn∃xn+1

(
(∧n+1

i< j xi 6= x j)∧ (∧n+1
i< j ϕ(xi))

)
and since M≺N we obtain

M � ∃x1 · · ·∃xn∃xn+1

(
(∧n+1

i< j xi 6= x j)∧ (∧n+1
i< j ϕ(xi))

)
and so

M 6� ∀x1 · · ·∀xn+1

(
(∧n+1

i< j xi 6= x j)→ (∨n+1
i=1 ¬ϕ(xi))

)
,

which is a contradiction.
(2) To prove thatM= acl(M) note that

aclN(M) =
⋃
{ϕ(N) : ∃A ∈ [M]<ω s.t. ϕ is L (A)-algebraic}.

But, we just proved that for every L (A)-formula ϕ which is algebraic (over M), ϕ(M) = ϕ(N) and so ϕ(N)⊆M.
Thus M ⊆ aclN(M)⊆M. and so M is algebraically closed. �

REMARK 1.3. In particular, we proved that if ϕ(x) is a L (A)-formula, which is algebraic over A ⊆M, M a
L -structure, then for every N such that M≺N we have

|ϕ(N)|= |ϕ(M)|.

FACT 5. Let a ∈ acl(A). Let σ be an automorphism of M such that σ � A = id. Then there are a1, · · · ,an

finitely many elements in acl(A) such that σ(a) ∈ {a1, · · · ,an}.
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PROOF. Let ϕ(x) be algebraic such that a ∈ ϕ(M) and let σ ∈ Aut(M) such that σ � A = id. Since σ is an
automorphism

M � ϕ(a) iff M � ϕ(σ(a))

which is equivalent to σ(a) ∈ ϕ(M). Take {a1, · · · ,an} to be an enumeration of ϕ(M). �

PROOF. Let ϕ(x) be algebraic such that a ∈ ϕ(M). Then by definition M � ϕ(a) and since σ is an automor-
phism the latter holds if and only if M � ϕ(σ(a)) which is equivalent to σ(a) ∈ ϕ(M). Then take {a1, · · · ,an} to
be an enumeration of ϕ(M). �

FACT 6. acl(acl(A)) = acl(A).

PROOF. Take c ∈ acl(acl(A)). Then there is L (acl(A))-formula ϕ such that c ∈ ϕ(M), i.e. M � ϕ(c). Now,
ϕ is of the form ϕ(x,b1, · · · ,bn) for some parameters b j ∈ acl(A). Thus for each j ∈ {1, · · · ,n} there is an algebraic
formula ϕ j = ϕ j(y, ā j) for some finite ā j ⊆ A such that b j ∈ ϕ j(M) (all parameters shown). Suppose |ϕ(M)| = k
and consider the formula

χ(x) = ∃y1 · · ·∃yn
(
ϕ1(y1)∧·· ·∧ϕ(yn)∧∃≤kzϕ(z,y1, · · · ,yn)∧ϕ(x,y1, · · · ,yn)

)
.

Clearly, χ(x) has finitely many parameters from A and moreover χ(x) is algebraic over A. Since M � χ(c), we get
c ∈ acl(A). �

QUESTION 1.4. It should be clear, but why is χ(x) algebraic?

DEFINITION 1.5.

(1) A type p(x) ∈ S(A) is said to be algebraic if and only if p contains an algebraic formula.
(2) Let p(x) ∈ S(A) be algebraic. Then

deg(p) := min{|ϕ(M)| : ϕ is algebraic and ϕ(x) ∈ p(x)}.

REMARK. Let p(x) be algebraic. Then p(x) is isolated by any algebraic ϕ ∈ p(x) such that |ϕ(M)|= deg(p).
Thus if ϕ ∈ p(x) is algebraic of minimal degree, then

ϕ(M)⊆
⋂
{ψ(M) : ψ ∈ p(x)}.

LEMMA 1.6. A type p(x) is algebraic over A if and only if p(x) = tp(a/A) where a is algebraic over A.

PROOF. (⇒) Suppose p(x) is algebraic over A. Then there is ϕ(x)∈ p(x) and a L (A)-formula such that ϕ(M)

is finite, where A⊆M. Furthermore for all ψ(x) ∈ p(x)

T ` ∀x(ϕ(x)→ ψ(x))

where T = Th(M) and so if ϕ ∈ tp(a/A) then p(x)⊆ tp(a/A). Since these are complete types, we have equality.
(⇐) If p(x) = tp(a/A) where a is algebraic, then there is ϕ(x) ∈ tp(a/A) such that ϕ(x) is algebraic and

a ∈ ϕ(M). Thus, by definition tp(a/A) is algebraic. �

DEFINITION 1.7. If a ∈M is algebraic over A, then deg(a/A) is defined as deg(tp(a/A)).

LEMMA 1.8. Let p(x) ∈ S(A) be a non-algebraic type, A⊆ B. Then p has a non-algebraic extension q ∈ S(B).

PROOF. Let q0(x) = p(x)∪{¬ψ(x) : ψ(x) is an algebraic L (B)-formula}. We claim that q0(x) is a consistent
set of formulas. Otherwise, there is a finite Γ0 ⊆ q(x) such that T ∪Γ0 is inconsistent, where T = Th(M) for M a
model realising p(x). Thus, there is ϕ(x) ∈ p(x) and there are ψ1, · · · ,ψn algebraic such that

T ∪{ϕ(x),¬ψ1(x), · · · ,¬ψn(x)}
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is inconsistent and so T ∪{ϕ(x),∧n
i=1¬ψi(x)} is also inconsistent. However T ∪{ϕ(x)} is consistent and so

T ∪{ϕ(x)} ` ¬∧n
i=1¬ψi(x),

i.e. T ∪{ϕ(x)} ` ∨n
i=1ψi(x). Therefore T ` ∀x(ϕ(x)→∨n

i=1ψi(x)).
If M � T , then ϕ(M) ⊆

⋃n
i=1 ψi(M) and so ϕ(M) is finite. That is ϕ(x) is algebraic and so p(x) is alge-

braic, which is a contradiction. Take q(x) to be any maximal consistent set of L (B)-formulas extending q0(x). In
particular, q(x) does not contain algebraic formulas, as otherwise p(x) would be algebraic. �

LEMMA 1.9. p(x) ∈ S(A) is algebraic if and only if p(x) has only finitely many realisations in all elementary
extensions of M.

PROOF. (⇒) Clear, since an algebraic formula has only finitely many (in fact, exactly the same number of)
realisations in every elementary extension of M.

(⇐) Suppose p(x) ∈ S(A), where A⊆M, Th(M) is consistent with p(x) and for every elementary extension N

of M, p(x) has only finitely many realisations in N. Suppose by way of contradiction, that p(x) does not contain an
algebraic formula. Then for all n and all ϕ(x) ∈ p(x),

M � ∃x1 · · ·∃xn

(
(∧n

i6= jxi 6= x j)∧ (∧n
i=1ϕ(xi))

)
and so for each n the set

∆n = {(∧n
i6= jxi 6= x j)∧ (∧n

i=1ϕ(xi))}ϕ∈p(x)∪ p(x)

is a consistent set of n-formulas. Then inductively, we can construct an elementary chain {Nn}n∈ω and a set
of elements {an}∞

n=1 such that Nn ≺ Nn+1 and (a1, · · · ,an) is an n-tuple of in Nn realising ∆n(x1, · · · ,xn). Take
N∗ = limn∈ω Nn. Then N∗ is an elementary extension of M and N∗ has infinitely many realisations of p(x), which
is a contradiction. �

2. Strongly Minimal Sets

Unless otherwise specified T is a complete theory with infinite models.

DEFINITION 2.1. Let M be a model of T and let D⊆Mn be an infinite definable set (say, by the formula ϕ(x̄)).

(1) D is said to be minimal in M if for every definable Y ⊆ Dn either Y or D\Y is finite. Equivalently, if for
every L (M)-formula ψ(x̄), (ϕ ∧ψ)(M) is either finite or co-finite. We also say that the formuly ϕ(x̄) is
minimal in M.

(2) The set D and the formula ϕ(x̄) are said to be strongly minimal, if for every elementary extension N of
M, the formula ϕ(x̄) is minimal in N.

(3) A theory T is said to be strongly minimal if the universe of every model M of T is a strongly minimal set.
That is, every definable set in M is either finite, or co-finite. This is equivalent to saying that the formula
x=̇x is strongly minimal.

LEMMA 2.2. (Exchange Principle) Suppose D ⊆ M is strongly minimal, A ⊆ D and a,b ∈ D. If a ∈ acl(A∪
{b})\acl(A), then b ∈ acl(A∪{a}).

PROOF. Let a ∈ acl(A∪{b})\acl(A) and let ϕ(x,b) be a L (A∪{b})-algebraic formula where the parameter
b is explicitly shown such that M � ϕ(a,b). Then in particular for some n ∈ ω we must have

|{x ∈ D : M � ϕ(x,b)}|= n.

Let δ (x) be the formula defining D.
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Now consider w a parameter, and let ψ(w) be the formula stating that there are exactly n elements in D realising
ϕ(x,w). Thus in particular M � ψ(b). That is ψ(w) is the formula: ∃x1 · · ·∃xn

(
(∧n

i< jxi 6= x j)∧ (∧n
i=1δ (xi))∧

(∧n
i=1ϕ(xi,w))

)
∧¬∃x1 · · ·∃xn+1

(
(∧n+1

i6= j xi 6= x j)∧ (∧n+1
i=1 δ (xi))∧ (∧n+1

i=1 ϕ(xi,w))
)

.
How many elements w are in D such that M � ψ(w)? That is, for how many elements w ∈ D, do we have

|{x ∈ D : M � ϕ(x,w)}|= n?

Consider the formula (ψ∧δ )(w). If |(ψ∧δ )(M)|<ℵ0, then b is algebraic over A, which implies that a is algebraic
over A, contradiction. Therefore |(ψ ∧δ )(M)| ≥ℵ0. But D is strongly minimal, which implies that (¬ψ ∧δ )(M)

is finite and so ψ(w) defines a cofinite set in D.
If {y ∈ D : M � ϕ(a,y)∧ψ(y)} is finite, then

ϕ(a,y)∧ψ(y)∧δ (y)

is algebraic over A∪{a} and b satisfies it. Thus b ∈ acl(A∪{a}) and we have achieved our goal!
Suppose {y ∈D : M � ϕ(a,y)∧ψ(y)} is not finite. Then |D\{y ∈D : M � ϕ(a,y)∧ψ(y)}|= l for some l ∈ω .

Let χ(x) be a formula expressing this. Then, in particular M � χ(a). If (χ∧δ )(M) is finite, then a is algebraic over
A, which is a contradiction. By minimality of D, (χ ∧δ )(M) must be co-finite in D. Then in particular (χ ∧δ )(M)

is infinite and so there are {ai}n+1
i=1 distinct such that (χ ∧δ )(ai). For each i consider the co-finite set

Bi = {w ∈ D : M � ϕ(ai,w)∧ψ(w)}.

However the intersection of finitely many co-finite sets is non-empty and so there is

b̂ ∈
n+1⋂
i=1

Bi.

But then M � ϕ(ai, b̂) holds for each i. Thus,

|{x ∈ D : M � ϕ(x, b̂)}| ≥ n+1,

which is a contradiction to ψ(b̂). �



CHAPTER 16

Independent Sets

1. Independent Sets

DEFINITION 1.1. We say that a set A ⊆ D is independent, if a /∈ acl(A\{a}) for all a ∈ A. If C ⊆ D, we say
that A is independent over C if a /∈ acl(C∪A\{a}) for all a ∈ A.

LEMMA 1.2. Suppose M,N are models of T , ϕ(x) is strongly minimal with parameters from A, where either
A = /0 or A ⊆M0, M0 ≺M and M0 ≺N. If a1, · · · ,an are in ϕ(M) are independent over A and b1, · · · ,bn are in
ϕ(N) are independent over A, then

tpM(ā/A) = tpN(b̄/A).

PROOF. By induction on n.
Assume n = 1. suppose ψ ∈ tpM(a/A), i.e. M � ψ(a). Since ϕ is strongly minimal and a /∈ acl(A), we must

have (ϕ∧¬ψ)(M) is finite. But then, ϕ∧¬ψ is algebraic over A and so if N � (ϕ∧¬ψ)(b), then b∈ acl(A), which
is a contradiction. Thus N � (ϕ ∧ψ)(b) and so N � ψ(b), i.e. ψ ∈ tpN(b/A). To see that tpN(b/A) ⊆ tpM(a/A)
switch the roles of M and N.

Suppose the statement is true for n and fix

{a1, · · · ,an+1} ⊆ ϕ(M),{b1, · · · ,bn+1} ⊆ ϕ(N)

independent over A. Take ā = (a1, · · · ,an), b̄ = (b1, · · · ,bn). By induction hypothesis tpM(ā/A) = tpN(b̄/A). Take
ψ ∈ tpM(āaan+1/A). That is ψ(ȳ,y) ∈ L (A) and M � ψ(ā,an+1). Again, since an+1 /∈ acl(A∪ {a1, · · · ,an}),
ϕ(M)∩ψ(ā,M) is infinite, which implies that ϕ(M)\ψ(ā,M) = ϕ(x)∧¬ψ(ā,x)(M) is finite. Thus there is n
such that M � |{x : ϕ(x)∧¬ψ(ā,x)}|= n. Because

M0 ≺M,M0 ≺N

and tpM(ā/A) = tpN(b̄/A), we get
N � |{x : ϕ(x)∧¬ψ(b̄, x̄)}|= n.

Because bn+1 /∈ acl(A, b̄) and bn+1 ∈ ϕ(N) we must have N � ψ(b̄,bn+1). Therefore, ψ ∈ tpN(b̄abn+1/A) and so

tpM(āaan+1/A)⊆ tpN(b̄abn+1/A).

To get equality, switch the roles of M and N. �

COROLLARY 1.3. Let M,N be models of T , A ⊆ M0 where M0 is the universe of a model M0 such that
M0 ≺M and M0 ≺N. Let ϕ(x) be a strongly minimal formulas with parameters from A, where either A = /0 or
A⊆M0. Let B⊆ ϕ(M) and C ⊆ ϕ(N) be both infinite and independent over A.

Then B and C are infinite sets of indiscernibles of the same type over A, where for a sequence 〈mi : i ∈ I〉 of
order indiscernibles in M,

tp(I) = {ϕ(x1, · · · ,xn) : M � ϕ(mi1 , · · · ,min), i1 < · · ·< in in I,n ∈ ω}.
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DEFINITION 1.4. A subset A of Y , where Y ⊆D and D is a strognly minimal, is a basis for Y , if A is independent
and acl(A) = acl(Y ).

LEMMA 1.5. Let D⊆M be strongly minimal and let A,B⊆ D be independent with A⊆ acl(B).

(1) Let A0 ⊆ A, B0 ⊆ B and let A0 ∪B0 be a basis for acl(B), a ∈ A\A0. Then there is b ∈ B0 such that
A0∪{a}∪ (B0\{b}) is a basis for acl(B).

(2) |A| ≤ |B| and so if A,B are basis for Y ⊆ D, then |A|= |B|.

PROOF. (1) Note that a ∈ acl(B). Since A0∪B0 is a basis for acl(B), we can find C ⊆ B0 such that |C| is least
with a ∈ acl(A0 ∪C). Since A is independent and a /∈ A0, C 6= /0. Thus, take any b ∈ C and apply the Exchange
Principle. Since a ∈ acl(A0∪C)\acl(A0), b ∈ acl(A0∪{a}∪C\{b}) and thus b ∈ acl(A0∪{a}∪ (B0\{b})), which
implies

acl(A0∪{a}∪ (B0\{b})) = acl(B).

It remains to show that A0 ∪{a}∪ (B0\{b}) is independent, for which it is sufficient to show that a /∈ acl(A0 ∪
(B0\{b})). Suppose to the contrary, that a ∈ acl(A0 ∪ (B0\{b})). But then b ∈ acl(A0 ∪ (B0\{b})), which is a
contradiction to A0∪B0 being a basis and so, being independent.

(2) We consider two cases:
Case 1: B is finite. Thus B = {bi}n

i=1 for some n. Suppose |A| 6≤ |B|, i.e. A has at least n+1 distinct elements
{ai}n+1

i=1 . Start with A0 = /0, B0 = B. Since B is independent, B is a basis for acl(B). Thus, we can apply part (1) to
a1. That is, there is bi1 ∈ B such that {a1}∪ (B\{bi1}) is a basis for acl(B). Proceed inductively, to find {bi j}n

j=1
distinct such that

{ai}n
i=1∪ (B\{bi j}

n
j=1) = {ai}n

i=1

is a basis for acl(B). But, by hypothesis A⊆ acl(B) and so an+1 ∈ acl({ai}n
i=1), which is a contradiction to A being

independent.
Case 2: Suppose B is infinite. Then for any finite B0 ⊆ B, A∩ acl(B0) is finite and so

A = A∩ acl(B) = A∩
⋃

B0⊆B,B0 finite
acl(B0) =

⋃
B0⊆B,B0 finite

A∩ acl(B0).

Then, clearly |A| ≤ |B|. The remaind of (2) holds, just because the roles of A and B can be switched. �

2. Dimension

DEFINITION 2.1. Let D⊆M be strongly minimal. Then define dim(Y ) = |A| where A is a basis for Y .

By the previous theorem, the above definition is correct.

THEOREM 2.2. Let T be a strongly minimal theory. Let M,N be models of T . Then

M∼=N if and only if dim(M) = dim(N).

PROOF. Let B be a basis for ϕ(M), C a basis for ϕ(N). By hypothsis, |B| = |C| and so there is a bijection
f : B→ C. Since B,C realise the same types, the mapping f must be elementary. Now, consider the set of all
possible partial elementary extensions of f , i.e. the set

I = {g : B′→C′ : B⊆ B′ ⊆ ϕ(M),C ⊆C′ ⊆ ϕ(N), f ⊆ g elementary}.

By Zorn’s Lemma, there is a maximal element of I, call it g : B′→C′,
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Suppose b ∈ ϕ(M)\B′. The element b is algebraic over B′ and so the type tpM(b/B′) is isolated by some
formula ψ(x, d̄). The mapping g is partial elementary and so there is c ∈ ϕ(N) such that

N � ψ(c,g(d̄)).

Then
tpM(b/B′) = tpN(c/C′)

and g∪{(b,c)} is also elementary, contradiction to the hypothesis of g being maximal. Thus ϕ(M) = B′. If we
switch the roles of M and N, we get ϕ(N) =C′. �

COROLLARY 2.3. If T is countable and strongly minimal, then it is categorical in all uncountable cardinalities.

PROOF. Suppose M1,M2 are models of T , |M1| = |M2| = κ ≥ ℵ1 and let B1,B2 be basis for M1, M2

respectively.
Suppose that max(|T |, |Bi|) < acl(Bi). Then by the Löwenheim-Skolem theorem there is a proper elementary

submodel N of Mi such that
|N|= max(|T |, |Bi|) and Bi ⊆ N.

However, elementary substructures are algebraically closed and so acl(Bi) ⊆ N, which is a contradiction. Thus
|acl(Bi)| ≤max(|T |, |Bi|). Then

κ = |acl(Bi)| ≤max(|T |, |Bi|)≤ |Bi| ≤ κ

and so |Bi|= κ for i = 1,2.
Let f : B1→ B2 be a bijection. However type(B1) = type(B2) and so f is elementary. But then f extends to an

isomorphism M1 ∼=M2. �





CHAPTER 17

The categoricity theorem

1. Existence of Strongly Minimal Sets

LEMMA 1.1. Let T be an ω-stable theory.

(1) Suppose M is a model of T . Then there is a minimal formula in M.
(2) Moreover, if in addition to M � T , we have that M is ℵ0-saturated and ϕ(x̄, ā) is a minimal formula in

M, then ϕ(x̄, ā) is strongly minimal.

PROOF. (1) Suppose not. Inductively, we will construct a binary tree of consistent formulas as follows. Let ϕ /0

be x=̇x. Now, suppose we have defined ϕσ for some σ ∈ 2<ω(=
⋃

n∈ω
n2) such that ϕσ (M) is infinite. Since ϕσ is

not minimal, there is ψ(x) such that both

(ϕσ ∧ψ)(M) and (ϕσ ∧¬ψ)(M) are infinite.

Then define
ϕ

σa0 = ϕσ ∧ψ and ϕ
σa1 = ϕσ ∧¬ψ.

Proceeding inductively, we can construct a binary tree of consistent formulas. However, an ω-stable theory is totally
transcedental and so by definition, T has no model M with a binary tree of consistent L (M)-formulas. Thus, we
reached a contradiction!

(2) Suppose ϕ(x̄, ā) is minimal, but not strongly minimal. Thus, there is a proper elementary extension N of
M and a formula ψ(x̄, b̄) for some tuple b̄ of elements in N such that(

ψ(x̄, b̄)∧ϕ(x̄, ā)
)
(N) and

(
¬ψ(x̄, b̄)∧ϕ(x̄, ā)

)
(N)

are infinite subsets of ϕ(x̄, ā)(N). However M is ℵ0-saturated and so there is a tuple b̄′ in M such that

tpM(ā, b̄′) = tpN(ā, b̄).

Then ψ(x̄, b̄′) defines an infinite, co-infinite subset of ϕ(x̄, ā)(M), i.e. both(
ψ(x̄, b̄′)∧ϕ(x̄, ā)

)
(M) and

(
¬ψ(x̄, b̄′)∧ϕ(x̄, ā)

)
(M),

which is a contradiction. �

THEOREM. If T is a theory with no Vaughtian pairs, then any minimal formula is strongly minimal.

For the proof of the above theorem, we will need the following Lemma.

LEMMA 1.2. Let T be a L -theory with no Vaughtian pairs. Let M � T and let ϕ(x̄, ȳ) be a L (M)-formula,
where x̄ = (x1, · · · ,xk) and ȳ = (y1, · · · ,ym).

Then there is n ∈ N such that for all m-tuples ā in M,

if |ϕ(x̄, ā)(M)|> n then |ϕ(x̄, ā)(M)| ≥ℵ0.
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PROOF. Note that the implication from the statement of the theorem can be rewritten as: ∃n ∈ N such that for
every m-tuple ā in M

either |ϕ(x̄, ā)(M)| ≤ n or ϕ(x̄, ā)(M) is infinite.

Assume the claim of the theorem is not true. Thus, assume that for every n ∈ N there is an m-tuple ān such that

n < |ϕ(x̄, ān)(M)|< ℵ0.

Consider the expanded language L ∗ =L (U ) where U is a unary predicate symbol intended to denote an elemen-
tary submodel of a given structure. Let ȳ = (y1, · · · ,ym) be an m-tuple of variables and let Γ′(ȳ) be the following set
of L (U )-formulas:

(1) Formulas implying that U A is a proper L -elementary submodel of A1;
(2) ∧m

i=1U (yi);
(3) For each j ∈ N there are more than j many k-tuples x̄ such that ϕ(x̄, ȳ).

Here, in fact we have countably many formulas. One for each j. Note that any model realizing these
countably many formulas will have infinitely many k-tuples x̄ realizing ϕ(x̄, ȳ).

(4) ϕ(x̄, ȳ)→∧k
i=1U (xi). Thus, in particular, any k-tuple realizing ϕ(x̄, ȳ) is already in the interpretation of

U .

CLAIM 1.3. The set Γ′(ȳ) is finitely satisfiable.

PROOF. Let N be a proper elementary extension of M such that U N =M. Since

|ϕ(M, ān)|< ℵ0,

i.e. ϕ(x̄, ān) is algebraic over M and M≺N, we must have

ϕ(M, ān) = ϕ(N, ān).

If ∆⊆ Γ′(ȳ) is finite, then we can find ān realising ∆ in (N,M). �

Now, extend Γ′(ȳ) to a maximal consistent set of formulas, i.e. to a type Γ(ȳ) ∈ Sm(T ). Let N′ be a model of T
realizing Γ(ȳ). Thus in particular,

(1) M′ = U N is a proper elementary submodel of N′ and
(2) there is an m-tuple ā in M′ which realises Γ(ȳ) in N′.

Then ϕ(x̄, ā)(M′) is infinite and ϕ(x̄, ā)(M′) = ϕ(x̄, ā)(N′). Thus, (N′,M′) is a Vaughtian pair for T , which is a
contradiction. �

QUESTION 1.4. Why in the above proof:

(1) |ϕ(x̄, ā)(M′)| ≥ℵ0?
(2) ϕ(x̄, ā)(M′) = ϕ(x̄, ā)(N′)?

REMARK 1.5. Let M, n be as in the previous Lemma. Then for every elementary extension N of M and every
m-tuple b̄ in N if

|ϕ(N, b̄)|> n

then
|ϕ(N, b̄)| ≥ℵ0.

Otherwise, we can proceed as in the previous Lemma and obtain a Vaugthian pair for T .

THEOREM 1.6. If T has no Vaughtian pairs, then any minimal formula is strongly minimal.

1Here A is an arbitrary L (U )-structure.
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PROOF. Proceed by contradiction. Suppose ϕ(x̄) is minimal for M, M � T and ϕ(x̄) is not strongly minimal.
Thus, there is a proper elementary extension N of M and a formula ψ(x̄, ȳ) such that for some tuple b̄ in N both

ψ(x, b̄)(N)∩ϕ(N) and ¬ψ(x, b̄)(N)∩ϕ(N)

are infinite.
By Lemma 1.2 there is n ∈ N such that for every proper elementary extension N′ of M and every tuple ā in N′

the following holds:
|ψ(N′, ā)∩ϕ(N′)| ≥ℵ0 and |¬ψ(N′, ā)∩ϕ(N′)| ≥ℵ0

if and only if
|ψ(N′, ā)∩ϕ(N′)|> n and |¬ψ(N′, ā)∩ψ(N′)|> n.

By minimality of ϕ in M, we must have that ψ(M, ȳ)∩ϕ(M) or ¬ψ(M, ȳ)∩ϕ(M) is finite (and this is true
for each parameter ȳ). That is, by Lemma 1.2

M � ∀ȳ
(
|ψ(M, ȳ)∩ϕ(M)| ≤ n∨|¬ψ(M, ȳ)∩ϕ(M)| ≤ n

)
.

But then N satisfies the same sentence and so

N � ∀ȳ
(
|ψ(N, ȳ)∩ϕ(N)| ≤ n∨|¬ψ(N, ȳ)∩ϕ(N)| ≤ n

)
,

which is a contradiction to the choice of ψ , b̄ and N. �

COROLLARY 1.7. If T is ω-stable and has no Vaughtian pairs, then for any M � T , there is a strongly minimal
formula over M.

PROOF. By Lemma 1.1 and Theorem 1.6. �

2. The Categoricity Theorem

LEMMA 2.1. Suppose T has no Vaughtian pairs, M � T and X ⊆Mn is infinite and definable. Then no proper
elementary submodel of M contains X . Moreover, if in addition T is ω-stable, then M is prime over X .

PROOF. Let ϕ(x̄) define X . If N is a proper elementary submodel of M and X ⊆N then ϕ(N) = ϕ(M) = X .
Therefore (M,N) is a Vaugthian pair for T .

Suppose in addition that T is ω-stable. Then there is a prime extension N of X such that N≺M. By the same
argument as above ϕ(M) = ϕ(N) and since there are no Vaughtian pairs for T , we obtain that M=N and so M is
prime over X . �

THEOREM 2.2. (Baldwin-Lachlan) Let T be a complete theory in a countable language with infinite models
and let κ ≥ℵ1 be a cardinal. Then T is κ-categorical if and only if T is ω-stable and has no Vaughtian pairs.

PROOF. (⇒) If T is κ-categorical, then T is ω-stable and has no Vaughtian pairs.
(⇐) Now, suppose T is ω-stable and has no Vaughtian pairs. As we just showed, T has a prime model M0. By

Corollary 1.7 there is a strongly minimal formula ϕ(x) possibly with parameters in M0.
Consider any two models M,N of T such that |M|= |N|= κ . Since M0 is prime, we can assume that M0≺M,

M0 ≺N and so
dim(ϕ(M)) = dim(ϕ(N)) = κ,

which means that there is an elementary bijection

f : ϕ(M)→ ϕ(N).
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By Lemma 2.1, the model M is prime over ϕ(M). Thus the mapping f can be extended to an elementary map
f ′ from M to N. However by Lemma 2.1, N has no proper elementary submodels containing ϕ(N). Thus, f ′ is
surjective and f ′ is an isomorphism. �

COROLLARY 2.3. (Theorem of Morley) Let κ be an uncountable cardinal. Then

T is ℵ1-categorical if and only if T is κ-categorical.

PROOF. Note that the Baldwin-Lachlan characterisation of κ-categoricity for κ ≥ ℵ1 does not depend on
κ . �
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Additional Topics in Model Theory





CHAPTER 18

Morley Rank

1. M-Morley Rank

In the following T is a complete theory with infinite models.

DEFINITION 1.1. (M-Morley Rank) Suppose M is an L -structure, ϕ(x̄) is an L (M)-formula. First we define
MRM ≥ α for α ∈ON, recursively on the ordinals:

(1) MRM(ϕ)≥ 0 if and only if ϕ(M) is non-empty.
(2) If α is a limit ordinal, then MRM(ϕ)≥ α if and only if RMM(ϕ)≥ β for all β < α .
(3) MRM(ϕ)≥ α +1 if and only if there are L (M)-formulas {ϕi(x̄)}i∈ω such that {ϕi(M)}i∈ω is a family

of pairwise disjoint non-empty subsets of ϕ(M) such that MRM(ϕi)≥ α for each i.

Finally, define:

(1) MRM(ϕ) =−1 if ϕ(M) = /0,
(2) MRM(ϕ) = α if MRM(ϕ) 6≥ α +1 and MRM(ϕ)≥ α .
(3) MRM(ϕ) = ∞ if for all ordinals α , MRM(ϕ)≥ α .

LEMMA 1.2. Suppose that θ(x̄, ȳ) is a L -formula, M an ℵ0-saturated model, ā and b̄ are tuples in M and
tpM(ā) = tpM(b̄). Then

MRM(θ(x̄, ā)) = MRM(θ(x̄, b̄).

PROOF. By transfinite induction on α we show that if θ(x̄, ȳ) is any L -formula and tpM(ā) = tpM(b̄), then

MRM(θ(x̄, ā))≥ α iff MRM(θ(x̄, b̄))≥ α.

Base case: Because tpM(ā) = tpM(b̄), θ(M, ā) = /0 if and only if θ(M, b̄)) = /0. Thus MRM(θ(x̄, ā)) ≥ 0 if
and only if MRM(θ(x̄, b̄))≥ 0.

Successor case: Suppose the claim is true for α and suppose MRM(θ(x̄, ȳ))≥ α +1. Thus, by definition there
are L (M)-formulas {ψi}i∈ω such that {ψi(M)}i∈ω is an infinite sequence of pairwise disjoint subsets of θ(M, ā)
and RMM(ψi)≥ α for all i. Now, we write all parameters appearing in the formula ψi(x̄) explicitly. That is for all
i,

ψi(x̄) = χi(x̄, c̄i)

where c̄i is an mi-tuple in M. Using the fact that M is ℵ0-saturated and a back-and-forth argument, find a sequence
{d̄i}i∈ω such that

tpM(ā, c̄1, · · · , c̄m) = tpM(b̄, d̄1, · · · , d̄m)

for all m < ω . Then {χi(M, d̄i)}i∈ω is an infinite sequence of pairwise disjoint subsets of θ(M, b̄). Furthermore,
by inductive hypothesis, since MRM(χi(M, c̄i)) ≥ α for each i ∈ ω , we have MR(χi(M, d̄i)) ≥ α . But then by
definition MRM(θ(x̄, b̄))≥ α +1.

Switching the roles of ā, b̄ we get that if RMM(θ(x̄, b̄))≥ α +1, then MRM(θ(x̄, b̄))≥ α +1. Therefore

MRM(θ(x̄, ā))≥ α if and only if MRM(θ(x̄, b̄))≥ α
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for all α . Thus, we have:
MRM(θ(x̄, ā)) = MRM(θ(x̄, b̄)).

Limit case: Suppose α is a limit and the claim is true for all β < α . Then

MRM(θ(x̄, ā))≥ α if and only if MRM(θ(x̄, ā))≥ β

for all β < α . However, by the inductive hypothesis the latter is equivalent to

MRM(θ(x̄, b̄))≥ β

for all β < α . By definition this is equivalent to MRM(θ(x̄, b̄))≥ α . �

LEMMA 1.3. Let M and N be ℵ0-saturated models of T such that M≺N. Let ϕ be a L (M)-formula. Then

MRM(ϕ) = MRN(ϕ).

PROOF. By induction on α show that

MRM(ϕ)≥ α if and only if MRN(ϕ)≥ α.

Since M is elementary in N, we have that ϕ(N) = /0 if and only if ϕ(N) = /0. Thus

MRM(ϕ)≥ 0 if and only if MRN(ϕ)≥ 0.

Now, suppose α is a limit ordinal. Then MRM(ϕ) ≥ α if and only if MRM(ϕ) ≥ β for all β < α . However, by
inductive hypothesis, the latter holds if and only if MRN(ϕ)≥ β for all β < α , which by definition is equivalent to
MRN(ϕ)≥ α .

Next, we consider the successor case. That is, assume MRM(ϕ) ≥ α + 1. Thus, there is a family {ψi}i∈ω of
L (M)-formulas such that {ψi(M)}i∈ω are pairwise disjoint subsets of ϕ(M) and MRM(ψi) ≥ α . Since M ≺N

we obtain that {ψi(N)}i∈ω is a family of pairwise disjoint subsets of ϕ(N). Moreover for each i ∈ ω by inductive
hypothesis, MRN(ψi)≥ α . That is MRN(ϕ)≥ α +1.

Now, suppose MRN(ϕ) ≥ α + 1. Thus, there is a family {ψi}i∈ω of L (N)-formulas such that for each i,
MRN(ψi) ≥ α and {ψi(N)}i∈ω is a family of pairwise disjoint subsets of ϕ(M). Now, we have to account for all
parameters! Let ā be the set of parameters in M occurring in ϕ and for each i ∈ ω let b̄i be the parameters of ψi

from N. Thus, ψi = θi(x̄, b̄i), where θi is a L -formula. Since M is ℵ0-saturated, we can find tuples {c̄i}i∈ω in M
such that

tpN(ā, b̄1, · · · , b̄m) = tpM(ā, c̄1, · · · , c̄m) = tpN(ā, c̄1, · · · , c̄m)

for each m ∈ ω . By the previous Lemma,
MRN(θi(x̄, c̄i))≥ α

and so by the inductive hypothesis MRM(θi(x̄, c̄i))≥ α . Therefore MRM(ϕ)≥ α +1. �

COROLLARY 1.4. Let M be a L -structure, N0, N1 are ℵ0-saturated elementary extensions of M, ϕ a L (M)-
formula. Then

MRN0(ϕ) = MRN1(ϕ).

PROOF. Find N2 such that N1≺N2 and N0≺N2 (amalgamation). Let N3 be ℵ0-saturated such that N2≺N3.
By the previous Lemma

MRN0(ϕ) = MRN3(ϕ) = MRN1(ϕ).

�
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2. Morley Rank

Throughout T is a complete theory with infinite models.

DEFINITION 2.1. (Morley rank of a formula) Let M be a L -structure, ϕ - a L (M)-formula. The Morley rank
of ϕ , denoted MR(ϕ), is defined as MRN(ϕ) where N is any ℵ0-saturated elementary extension of M.

DEFINITION 2.2. (Morley rank of a definable set) Let M be a L -structure and let X ⊆Mn be defined by the
L (M)-formula ϕ(x̄). The Morley rank of X , denoted MR(X), is defined as the Morley rank of ϕ .

REMARK 2.3. In particular, if M is ℵ0-saturated and X ⊆Mn is definable, then

MR(X)≥ α +1

if and only if there is a family {Yi}i∈ω of pairwise disjoint definable subsets of X each of Morley rank at least α .

LEMMA 2.4. (Properties of Morley Rank) Let M be an L -structure, X , Y definable subsets of Mn.

(1) If X ⊆ Y , then MR(X)≤MR(Y ).
(2) MR(X ∪Y ) = max{MR(X),MR(Y )}.
(3) If X 6= /0, then MR(X) = 0 if and only if X is finite.

PROOF. (1) Note that if {ψi(N)}i∈ω are pairwise disjoint subsets of X and serve as a witness to MR(X) ≥
α +1, then they also witness MR(Y )≥ α +1.

(2) By induction on α . Notice that if {ψi(N)}i∈ω are pairwise disjoint, witnessing that

MR(X ∪Y )≥ α +1,

then they will give rise to a countable family of pairwise disjoint sets witnessing

MR(X)≥ α +1 or MR(Y )≥ α +1.

(3) (⇐) Suppose X is finite. Then clearly X does not contain infinitely many pairwise disjoint non-empty sets
and so MR(X) 6≥ 1. Thus MR(X) = 0.

(⇒) Let MR(X) = 0. Suppose by way of contradiction that X is infinite. Thus there is a sequence {an}n∈ω of
pairwise distinct elements of X . However each singleton is definable and so we get a family of ω-many pairwise
disjoint, definable subsets of X , namely {{an}}n∈ω . Thus MR(X)≥ 1. Contradiction! �

COROLLARY 2.5. A theory T is totally transcendental if and only if for all M � T and all L (M)-formulas ϕ ,
MR(ϕ)< ∞.

Hint: Show that a model M of T has no binary tree of consistent L (M)-formulas if and only if for every L (M)-
formula ϕ , MR(ϕ)< ∞.





CHAPTER 19

Large saturated structures

Throughout T is a complete theory with infinite models.

1. Large Saturated Models

DEFINITION 1.1.

(1) M � T is said to be κ-universal for T if for all N � T with |N|< κ , there is an elementary embedding of
N into M.

(2) A model M is said to be universal for T if it is |M|+-universal for T .

LEMMA 1.2. Let κ ≥ℵ0. If M is κ-saturated, then M is κ+-universal.

PROOF. Let N � T with |N| ≤ κ . Let {nα}α<κ = N and let Aα = {nβ}β<α . Build a sequence { fα}α∈κ of
partial elementary maps such that fα : Aα →M, fα ⊂ fα+1.

Base case: f0 = /0.
Limit case: fα =

⋃
β<α fβ .

Successor case: Let fα : Aα →M be a partial embedding and let

Γ(x) = {ϕ(x, fα(ā)) : M � ϕ(nα , ā)}.

Since fα is elementary, |Aα | < κ and M is κ-saturated, there is b ∈ M realising Γ(x). Then define fα+1 = fα ∪
{(nα ,b)}. Then fα+1 is partial elementary and extends fα . Now, define f =

⋃
α∈κ fα . Then f is an elementary

embedding from N into M. �

THEOREM 1.3. Let M be a model of T . Then T has a κ+-saturated model N such that

M≺N and |N| ≤ |M|κ .

PROOF. We start with proving the following claim.

CLAIM. For any M there is M′ such that:

(1) M≺M′,
(2) |M′| ≤ |M|κ and
(3) for every A⊆M with |A| ≤ κ , every p ∈ SM1 (A) is realised in M′.

PROOF. Note that if A⊆M, |A| ≤ κ , then |SM1 (A)| ≤ 2κ . Thus, we can list

SM1 (A) = {pα}α<|M|κ .

Build an elementary chain {Mα : α < |M|κ} such that:

(1) M0 =M,
(2) Mα =

⋃
β<α Mβ for α limit,

(3) Mα ≺Mα+1 with |Mα+1|= |Mα | and Mα+1 realises pα .
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Inductively, one can provide that |Mα | ≤ |M|κ for all α . Let

M′ =
⋃

α<|M|κ
Mα .

Then |M′| ≤ |M|κ and M′ is as desired. �

Now, build an elementary chain {Nα}α∈κ+ such that |Nα | ≤ |M|κ and

(1) N0 =M,
(2) Nα =

⋃
β<α Nβ , whenever α is a limit,

(3) At successor steps α +1 find a Nα+1 such that Nα ≺Nα+1, |Nα+1| ≤ |M|κ and if A⊆Nα with |A| ≤ κ ,
p ∈ SNα

n (A), then p is realised in Nα+1.

Finally, take N =
⋃

α<κ+ Nα . Since κ+ ≤ |M|κ , we have |N| ≤ |M|κ . Consider any set of parameters A ⊆ N
such that |A| ≤ κ and let p ∈ SNn (A). Using the regularity of κ+ find α < κ+ with A⊆Nα and note that the type p
is realised in Nα+1 ≺N.

Thus, N is κ+-saturated. �

COROLLARY 1.4. Suppose 2κ = κ+. Then T has a saturated model of cardinality 2κ = κ+. Moreover, if GCH
holds, then T has a saturated model of size κ+ for all κ .

REMARK 1.5. Suppose |Sn(T )|= 2ℵ0 . Then if M � T and M is ℵ0-saturated, then

|M| ≥ 2ℵ0 .

Therefore, if ℵ1 < 2ℵ0 , then T has no saturated model of cardinality ℵ1.

COROLLARY 1.6. Suppose κ ≥ℵ1 is regular and 2λ ≤ κ for λ < κ . Then T has a saturated model of size κ .
In particular, if κ ≥ℵ1 is strongly inaccessible, then T has a saturated model of cardinality κ .

PROOF. Let M � T , |M|= κ .
If κ = λ+ for λ < κ , then the result follows from the previous Corollary.
Thus, assume κ is a limit cardinal. Recursively build an elementary chain

{Mλ}λ<κ,λ cardinal

of models of cardinality κ as follows. Start with M0 =M and whenever λ is a limit cardinal take

Mλ =
⋃

µ<λ ,µ cardinal

Mµ .

At successor steps, given Mλ , find an elementary extension Mλ+ of Mλ such that

Mλ+ is λ
+-saturated and |Mλ+ | ≤ κ

λ = κ.

Finally let

N=
⋃

λ<κ,cardinal

Mλ .

Now, if A ⊆ N and |N| < κ , then there is λ < κ such that A ⊆Mλ . Thus, if p ∈ SNn (A) then p is realized in
Mλ+ ≺N. �

The above construction is captured by the following definition:
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DEFINITION 1.7. A structure M of cardinality κ ≥ ω is said to be special if

M=
⋃

λ<κ,λ cardinal

Mλ ,

where {Mλ}λ<κ,λ cardinal is an elementary chain of models such that for each λ , Mλ is λ+-saturated. We refer to
this elementary chain as a specialising chain.

REMARK 1.8. The structure M constructed in Corollary 1.6 is special. More generally, if M is a special and
its cardinality is regular, then M is saturated.

We have already seen that two elementarily equivalent saturated structures of the same cardinality are isomor-
phic. Below, we extend the result to elementarily equivalent special structures of the same cardinality.

THEOREM 1.9. Let M and N be elementarily equivalent, special structures of cardinality κ . Then

M∼=N.

PROOF. (Outline) Let {Mλ}λ<κ,λ cardinal and {Nλ}λ<κ,λ cardinal be specializing chains of M and N respectively.
The universes of M and N can be enumerated as {mα}α<κ and {nα}α<κ respectively, so that for each α , the
element mα belongs to the universe of M|α| and the element nα belongs to the universe of N|α| (see remark 1.10).
Construct an increasing family { f α}α∈κ of elementary maps such that

f α : Mα → Nα

where for all limit ordinals α < κ , for α = 0 and for all natural numbers i ∈ N,

mα+i ∈Mα+2i,nα+i ∈ Nα+2i+1,

|Mα | ≤ |α|, Mα ⊆M|α|, |Nα | ≤ |α|, Nα ⊆ N|α|. Then

f =
⋃

α<κ

f α : M∼=N.

�

REMARK 1.10. For the existence of the enumeration see Lemma A.3.7 of Tent and Ziegler’s “A course in
Model Theory”.

Recall the following definitions:

DEFINITION 1.11. Let M be a structure.

(1) M is said to be κ-homogenous, if for every subset A of M such that |A| < κ and every a ∈ M, every
elementary map A→M extends to an elementary map A∪{a}→M.

(2) M is said to be strongly κ-homogenous if for every subset A of M such that |A| < κ , every elementary
map A→M can be extended to an automorphism of M.

THEOREM 1.12. Let M be a special structure of cardinality κ . Then:

(1) M is κ+-universal.
(2) M is cf(κ)-homogeneous.

PROOF. (1) If κ is regular, then M is κ-saturated and we have already obtained the result in Lemma 1.2. In
the general case, proceed as in the proof of Theorem 1.9.
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(2) Fix A ⊆ M, there |A| < cf(κ). Let {Mλ} be a specializing chain for M. Then we can find λ ∗ such that
the universe of Mλ ∗ contains the set A. Now, the sequence {M∗

λ
}, where M∗

λ
= (Mλ ,a)a∈A for λ ≥ λ ∗ and

M∗
λ
= (Mλ ∗ ,a)a∈A for λ < λ ∗ is a specializing sequence for (M,a)a∈A.
Now, using the same idea, we can show that (M, f (a))a∈A is special. More precisely, find λ ∗∗ < κ such

that { f (a)}a∈A is contained in the universe of Mλ ∗∗ and define M∗∗
λ

to be (Mλ , f (a))a∈A whenever λ ≥ λ ∗∗ and
(Mλ ∗∗ , f (a))a∈A whenever λ < λ ∗∗. Thus {M∗∗

λ
} is a specializing sequence for (M, f (a))a∈A.

Thus (M,a)a∈A and (M, f (a))a∈A are special, elementarily equivalent structures of the same cardinality. The
proof of Theorem 1.9 can be modified to produce an automorphism of M extending f . Indeed, reproduce the proof
of Theorem 1.9 working with the specializing chains {(M∗

λ
,a)a∈A} and {(M∗∗

λ
, f (a))a∈A} and starting the con-

struction of the (intended) isomorphism with the given elementary mapping f . Note that without loss of generality
λ ∗ = λ ∗∗. �

QUESTION 1.13. Why can we assume λ ∗ = λ ∗∗ in the above proof? Are specializing chains unique?

2. Good large structures

THEOREM 2.1. Let κ be a regular cardinal. If T is κ-stable, then there is a saturated M � T with |M| = κ .
Indeed, if M0 � T with |M0|= κ , then there is a saturated elementary extension M of M0 with |M|= κ .

PROOF. Find an elementary chain {Mα}α∈κ , where |Mα |= κ for each α , such that Mα+1 realises every type
in SMα

1 (Mα). Then M=
⋃

α<κ Mα is saturated of cardinality κ . �

In particular, if T is ω-stable, then there are saturated models of size κ for all regular cardinals κ . In general, to
claim the existence of arbitrarily large saturated models of a theory T (not necessarily ω-stable) it is sufficient (by
Corollary 1.6) to assume that for every cardinal λ there is an inaccessible cardinal κ > λ . Alternatively, we work in
Bernays-Gödel with Global Choice (abbreviated GBC) to claim the existence of an appropriate (in the sense that it
has all desirable properties) and sufficiently large model of T (in fact this model is a proper class; see Corollary 2.4
and Discussion 2.5).

THEOREM 2.2. (GBC) There is a class-size model M of T such that all types over all subsets of the universe
of M are realised in M. The model M is unique up to isomorphism.

PROOF. Construct a continuous elementary chain {M}α∈ON (here ON denotes the class of all ordinals) of
models of T with the property that every type over Mα is realized in Mα+1. Then

M=
⋃

α∈ON
Mα .

�

DEFINITION 2.3. (GBC) The model M from Theorem 2.2 is called the monster model of T .

COROLLARY 2.4. (GBC) Let M be the monster model of T .

(1) The universe of M can be well-ordered.
(2) The model M is κ-saturated for all cardinals κ .
(3) If M � T , then M can be embedded in M.
(4) Let A and B be subsets of M and let f : A→ B be a bijection. Then f extends to an automorphism of M.

DISCUSSION 2.5. We can think of the monster model M as a sufficiently large (set) model of T which has all
desirable properties. In particular:

(1) M is saturated.
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(2) Any model of T that we are interested in or we are ever to consider is of cardinality strictly smaller than
the cardinality of M and moreover any such model is an elementary submodel of M.

(3) Every set of parameters which we are ever to consider is contained in the universe of M and so for any
model M of T ,

M � ϕ(ā) if and only if M � ϕ(ā).

Thus, it is justified to say that ϕ(ā) holds if and only if M � ϕ(ā).
(4) A set of formulas is consistent with T if and only if it is realised in M.
(5) We can speak about tp(ā/A), by which it is meant tpM(A). Similarly we speak about Sn(A), by which we

mean SMn (A).
(6) If A is a subset of the universe of M of cardinality strictly smaller than the cardinality of M and f : A→M

is a partial elementary mapping, then f extends to an automorphism of M. Note that without loss of
generality λ ∗ = λ ∗∗.

3. Morley Rank Once Again

DEFINITION 3.1. Let M be the Monster model and ϕ a formula with parameters in M.

(1) MR(ϕ)≥ 0 if ϕ is consistent,
(2) MR(ϕ)≥ α +1 if there is an infinite sequence {ψi}i∈ω of pairwise inconsistent formulas, each of which

implying ϕ and such that MR(ψi)≥ α for all i.
(3) If α is a limit ordinal, MR(ϕ)≥ α if MR(ϕ)≥ β for each β < α .

DISCUSSION 3.2. If we think of M as a (very large) set, the above is equivalent to:

(1) MR(ϕ)≥ 0 if ϕ(M) 6= /0,
(2) MR(ϕ) ≥ α + 1 if there is a sequence {ψi}i∈ω of L (M)-formulas, such that {ψi(M)}i∈ω are pairwise

disjoint subsets of ϕ(M) and MR(ψi)≥ α for each i.
(3) If α is a limit ordinal, MR(ϕ)≥ α if MR(ϕ)≥ β for each β < α .

With this we can define the Morley rank of a formula ϕ(x).

DEFINITION 3.3.

(1) If there is no α with MR(ϕ)≥ α , we say that MR(ϕ) =−∞.
(2) If MR(ϕ)≥ α for all α , then we say MR(ϕ) = ∞.
(3) Otherwise {α : MR(ϕ)≥ α} has a largest element and we define

MR(ϕ) = max{α : MR(ϕ)≥ α}.

4. Morley Degree

If X is definable and MR(X) = α , then X can not be partitioned into infinitely many pairwise disjoint definable
subsets of Morley rank α . In fact, there is a finite upper bound on the number of pairwise disjoint definable subsets
of X into which X can be partitioned.

THEOREM 4.1. Let ϕ be a L (M)-formula, MR(ϕ) = α , α ∈ON. Then there is a natural number d ∈ N such
that:

if {ψi}n
i=1 are L (M)-formulas, {ψi(M)}n

i=1 are pairwise disjoint non-empty subsets of ϕ(M) and MR(ψi) = α

for all i, then n≤ d.
The least such number d is called the Morley degree of ϕ and is denoted degM(ϕ).
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PROOF. Consider the full binary three 2<ω . We will construct a subtree S of 2<ω (i.e. a subset S ⊆ 2<ω with
the property that for all σ ∈ S if τ ⊆ σ then τ ∈ S) and for each σ ∈ S, choose a formula ϕσ as follows:

Take ϕ /0 = ϕ . Now suppose σ ∈ S and ϕσ is defined. Exactly one of the following two options holds: Either
there is a L (M)-formula ψ such that

MR(ϕσ ∧ψ) = MR(ϕσ ∧¬ψ) = α,

or for every L (M)-formula ψ we have

MR(ϕσ ∧ψ)< α, or MR(ϕσ ∧¬ψ)< α.

In the former case, define
ϕ

σa0 = ϕσ ∧ψ,ϕ
σa1 = ϕσ ∧¬ψ.

In the latter case, declare σ ∈ S to be a terminal node of S (that is there is no τ ∈ S such that σ ⊂ τ).
Now, suppose S is infinite. Since S is finitely branching by König’s Lemma there is a branch through the tree,

i.e. there is a function f : ω → 2 such that f � n ∈ S for all n ∈ ω . Let

ψn := ϕ f �n∧¬ϕ f �n+1.

Then MR(ψn) = α and ψn(M)∩ψn+1(M) = /0, since

ψn(M)⊆ ¬ϕn+1(M) and ψn+1(M)⊆ ϕ f �n+1(M).

Thus {ψn(M)}n∈ω is an infinite family of pairwise disjoint subsets of ϕ(M) each of rank α . Therefore MR(ϕ) ≥
α +1, which is a contradiction.

Therefore the tree is finite and we can consider the set of terminal nodes of T , i.e. the set

TN = {σ ∈ S : ∀τ ∈ 2<ω if σ ( τ then τ /∈ S}.

We know that |TN|< ω . Take d = |TN| and let {ψi}d
i=1 = {ϕσ : σ ∈ TN}. Then⋃

{ψi(M)}d
i=1 = ϕ(M).

Note that every level of the tree induces in a natural way a partition of ϕ(M) and

MR(ψi)≥ α

for all i. Furthermore, since these are terminal nodes in the tree for all i ∈ {1, · · · ,d} and every χ

either MR(ψi∧χ)< α or MR(ψi∧¬χ)< α.

Now, consider a family of pairwise disjoint definable subsets {θ j(M)}n
j=1 of ϕ(M) where MR(θ j) = α for

each j.

CLAIM 4.2. For all i ∈ {1, · · · ,d} there is at most one j ∈ {1, · · · ,n} such that

MR(ψi∧θ j) = α.

PROOF. Suppose not. Thus there is i ∈ {1, · · · ,d} and there are j1 6= j2 in {1, · · · ,n} such that

MR(ψi∧θ j1) = α and MR(ψi∧θ j2) = α.

Since θ j1(M)∩θ j2(M) = /0 and (ψi∧θ j1)(M), (ψi∧θ j2)(M) are contained in ψi(M) we get:

(ψi∧θ j1)(M)∪ (ψi∧¬θ j1)(M) = ψi(M)

and so
(ψi∧θ j2)(M)⊆ (ψi∧¬θ j1)(M)⊆ ψi(M).
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But then, by monotonicity of the Morley rank, we obtain:

MR(ψi∧¬θ j1) = α

and so MR(ψi∧θ j1) = MR(ψi∧¬θ j1) = α which is a contradiction to the choice of the terminal nodes of S. �

Suppose n > d and for each i ∈ {1, · · · ,d} choose ji ∈ {1, · · · ,n} such that

MR(ψi∧θ ji) = α

(if there is such). Then clearly
|{ ji}d

i=1| ≤ d

and so there is j∗ ∈ n\{ ji}d
i=1. But then θ j∗ has the property that MR(θ j∗ ∧ψi)<α for each i∈ {1, · · · ,n}. However

θ j∗(M)⊆ ϕ(M) =
⋃n

i=1 ψi(M) and so

θ j∗(M) =
n⋃

i=1

(θ j∗ ∧ψi)(M).

However MR(X ∪Y ) = max{MR(X),MR(Y )} and so

MR(θ j∗)< α,

which is a contradiction to the choice of θ j∗ . �

COROLLARY 4.3. A formula ϕ is strongly minimal if and only if

MR(ϕ) = degM(ϕ) = 1.

PROOF. (⇒) Suppose ϕ is strongly minimal. Then if (ϕ ∧ψ)(M) is infinite (and clearly definable), we must
have (ϕ ∧¬ψ)(M) is finite and so degM(ϕ) = 1.

By definition of strong minimality ϕ(M) is infinite. Thus MR(ϕ)≥ 1. We claim that MR(ϕ) 6≥ 2. Otherwise,
there is a family {ψi}i∈ω such that {ψi(M)}i∈ω ⊆ ϕ(M) and {ψi(M)}i∈ω are infinite, pairwise disjoint. But then

(
⋃
i≥2

ψi)(M)⊆ ¬ψ1(M)

and so in particular, both ψ1(M) = (ψ1∧ϕ)(M) and (¬ψ1∧ϕ)(M) are infinite, which is a contradiction to strong
minimality of ϕ . Thus MR(ϕ) = 1.

(⇐) Now, suppose MR(ϕ)= degM(ϕ)= 1. Since MR(ϕ)= 1, we know that ϕ(M) is infinite. Also degM(ϕ)=

1 and so if {ψi(M)}n
i=1 are infinite pairwise disjoint subset of ϕ(M) then n ≤ 1. That is, every infinite definable

subset of ϕ(M) is co-finite in ϕ(M). Thus, ϕ is strongly minimal. �





CHAPTER 20

The Paris-Harrington Principle

1. The Finite Ramsey Theorem

The last topic in the course is the Paris-Harrington Principle. We will make us of the finite Ramsey theorem.
Notation: For cardinals κ,η ,µ and λ we write κ → (η)

µ

λ
if whenever |X | ≥ κ and f : [X ]µ → λ , then there is

is Y ⊆ X such that |Y | ≥ η and Y is homogenous for f .

THEOREM 1.1. (Finite Ramsey Theorem) For all k,n,m < ω there is l < ω such that l→ (m)n
k-

A restatement of the theorem:

THEOREM. Given k,n,m < ω there is l < ω such that whenever X ⊆ ω , |X | ≥ l and f : [X ]n→ k then there is
Y ⊆ X such that |Y | ≥ m and Y is homogenous for f (that is f � [Y ]n is a constant).

PROOF. Suppose there is no such l. Then for each l ∈ ω the set Tl consisting of all

f : [{0, · · · , l−1}]n→ k

such that there is no X ⊆ {0, · · · , l− 1}, |X | ≥ m which is homogenous for f is non-empty. Each Tl is finite and
if f ∈ Tl+1 then there is a unique g ∈ Tl such that g ⊂ f . Thus, we can order T =

⋃
l∈ω Tl by inclusion and

consider it as a finitely branching tree. Then, by König’s Lemma there is an infinite branch through T , i.e. there
is a sequence { fn}n∈ω ⊆ T such that for each n, fn ⊂ fn+1. Then f : [N]n → k and by Ramsey’s Theorem there
is X ∈ [N]n such that X is homogenous for f . Let x1, · · · ,xm be the first m elements of X and let s > xm. Then
X0 = {x1, · · · ,xm} ⊆ {0, · · · ,s} and f � [X0]

n = fs � [X0]
n is a constant. Thus, X0 is a homogenous set for fs, which

is a contradiction. �

DISCUSSION 1.2. Note that the finite Ramsey theorem can be proven directly, without use of the infinite
Ramsey theorem. In fact, the finite Ramsey Theorem is a theorem of Peano Arithmetic (PA). What we are going to
see, is a slight modification of the theorem, which is true in the standard model of PA, but can not be derived from
PA. That is, we will construct a non-standard model of PA in which the theorem will fail. To construct the model,
we will use the notion of indiscernibles.

THEOREM 1.3. (Paris-Harrington Principle) Fo each n,k,m in N there is l ∈ N such that if f : [l]n→ k then
there is Y ⊆ l such that:

(1) f � [Y ]n is constant,
(2) |Y | ≥ m,
(3) |Y | ≥minY .

Note that in comparison with the Finite Ramsey Theorem only the last requirement is new (addition). The proof
is next time!

117
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2. The Paris-Harrington Principle

THEOREM 2.1. (Paris-Harrington Principle) For each n,k,m in N there is l ∈ N such that if f : [l]n→ k then
there is Y ⊆ l such that:

(1) f � [Y ]n is constant,
(2) |Y | ≥ m,
(3) |Y | ≥minY .

PROOF. Suppose there is no such l. Then for each l < ω , let Tl be the set of all functions

f : [{0, · · · , l−1}]n→ k

for which there is no Y ⊆ l with the property that f � [Y ]n is a constnat and |Y | ≥max{m,minY}. Again each Tl is
finite and if f ∈ Tl+1 then there is a unique g ∈ Tl such that g ⊂ f . Thus T =

⋃
Tl ordered by inclusion is a finite

branching tree. Since ht(T ) = ω , there must be an infinite branch through T , i.e. there is a sequence {ti}i∈ω such
that ti ( ti+1 and ti ∈ Ti for each i. Let t =

⋃
i∈ω ti. Thus, t : [N]n → k and by the Theorem of Ramsey there is

X ∈ [N]ω such that t � [X ]n is a constant. Let x1 = minX . Pick l ≥ x1,m and let x1, · · · ,xl be the first l elements of
X : Let s > xl . Then Y = {x1, · · · ,xl} is homogenous for fs and |Y | ≥ max{m,minY}, which is a contradiction to
the choice of fs. �

DEFINITION 2.2. Let X ⊆ ω .

(1) We say that f : [X ]n→ ω is regressive if f (A)< minA for all A ∈ [X ]n.
(2) We say that Y ⊆ X is min-homogenous for f , if for all A,B ∈ [Y ]n with

minA = minB

we have f (A) = f (B).

Now, consider the following combinatorial principle, which we denote (CP(?)):

(CP(?)) For all natural numbers c,m,n,k there is a natural number d such that if f1, · · · , fk are regressive functions
from [d]n→ d, then there is Y ⊆ [c,d] such that |Y | ≥ m and Y is min-homogenous for each fi.

REMARK 2.3. Note that:

(1) The Paris-Harrington Principle (abbreviated PHP) implies (CP(?)) and has a proof using finite combina-
torics which can be formulated in PA.

(2) We will construct a model of PA in which CP(?) fails. Thus PHP is not provable in PA.

DEFINITION 2.4. Let LN be the language of arithmetic. Let Γ be a finite set of formulas in LN and let M � PA.
A set I ⊆ M is said to be a sequence of diagonal indiscernibles for Γ if whenever ϕ(x1, · · · ,xm,y1, · · · ,yn) ∈ Γ,
{u0,u1, · · · ,un,v1, · · · ,vn} ⊆ I are such that

u0 < u1 < · · ·< un,v0 < v1 < · · ·< vn

and a1, · · · ,am are all strictly smaller than u0, then for ā = (a1, · · · ,am) we have:

M � ϕ(ā,u1, · · · ,un)↔ ϕ(ā,v1, · · · ,vn).

REMARK 2.5. CP(?) will allow us to find a set of diagonal indiscernibles in the standard model N of the set of
∆0-formulas.
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LEMMA 2.6. For any l,m,n such that l > m > 2n and formulas

{ϕi(x1, · · · ,xk,y1, · · · ,yn)}l
i=1

in LN there is a set I of diagonal indiscernibles (in the standard model) for {ϕi}l
i=1 with

|I| ≥ m.

PROOF. By the finite Ramsey theorem, there is w such that w→ (m+ n)2n+1
l+1 . By CP(?) there is s ∈ N such

that whenever f1, · · · , fk : [s]n → s are regressive, there is Y ⊆ s with |Y | ≥ w such that Y is min-homogenous for
each f j. Without loss of generality s > l, s > w.

Define regressive functions f j : [s]2n+1→ l for j = 1, · · · ,k and a partition

g : [s]2n+1→ l +1

as follows. Let X = {u0, · · · ,u2n} where u0 < u1 < · · ·< u2n < s.
If for all i≤ l and all a1, · · · ,ak < min{l,u0} we have

ϕi(ā,u1, · · · ,un)↔ ϕi(ā,un+1, · · · ,u2n)

then define f j(X) = 0 for each j = 1, · · · ,k and g(X) = 0.
Otherwise there are i≤ l and ā < min{l,u0} such that

ϕi(ā,u1, · · ·un) 6↔ ϕi(ā,un+1, · · · ,u2n).

Then define ( f1(X), · · · , fk(X)) = ā and g(X) = i.
With this the functions { f j}k

j=1 are defined.
Since { f j}k

j=1 are regressive, there is Y ⊆ s which is min-homogenous for all of them with |Y | ≥ w. By choice
of w, there are X ⊆ Y and i≤ l such that

|X | ≥ m+n and g(A) = i for all A ∈ [X ]2n+1.

Now, suppose i > 0. Since m > 2n, |X | ≥ m+ n we get |X | > 3n. Thus, there are {ui}3n
i=0 ⊆ X enumerated in

strictly increasing order. Since X is min-homogenous for each f j, we can find a j < u0 such that

a j = f j(u0, · · · ,u2n) = f j(u0,u1, · · · ,un,u2n+1, · · · ,u3n) = f j(u0,un+1, · · · ,u3n).

Note that, the latter two equalities in the above formula hold by definition of min-homogeneity.
Let ā = (a1, · · · ,ak). But then:

• Since g({ul}2n
l=0) = i > 0 we have:

ϕi(ā,u1, · · · ,un) 6↔ ϕi(ā,un+1, · · · ,u2n),

• Since g({ul}n
l=0∪{ul}3n

l=2n+1) = i > 0, we have

ϕi(ā,u1, · · · ,un) 6↔ ϕi(ā,u2n+1, · · · ,u3n),

• and since g({ul}n
l=0∪{ul}3n

l=2n+1) = i > 0 we have

ϕi(ā,un+1, · · · ,u2n) 6↔ ϕi(ā,u2n+1, · · · ,u3n).

However, this is impossible, because at least two of the formulas must have the same value. Thus i = 0. Let
w1 < · · ·< wn be the largest n many elements of X . Let I = X\{wi}n

i=1. Then |I| ≥ m.

CLAIM 2.7. I is the desired set of diagonal indiscernibles.
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PROOF. Suppose u0 < u1 < · · ·< un and v1 < · · ·< vn are sequences from I with u0 < v1 and ā < u0. Then for
any i≤ k

ϕi(ā,u1, · · · ,un)↔ ϕi(ā,w1, · · · ,wn)

and
ϕi(ā,u1, · · · ,un)↔ ϕi(ā,v1, · · · ,vn)

and so I is a set of diagonal indiscernibles. �

�

3. PA does not prove PHP

REMARK 3.1. (∆0-formulas) Recall that the class of ∆0-formulas is the smallest set of formulas in LN which
contains the quantifier free formulas and is closed under ∧,∨,¬ and bounded quantification.

We will make use of the following lemma:

LEMMA 3.2. Suppose M � PA and {ui}i∈ω,< is a sequence of diagonal indiscernibles for all ∆0-formulas. Let

N = {v ∈M : ∃i ∈ ω(v < ui)}.

Then N is closed under +, ·,S and if N is the substructure of M with underlying set N, then

N � PA.

THEOREM 3.3. CP(?) and PHP are not provable in PA.

PROOF. Let M be a non-standard model of PA, c ∈M non-standard. Suppose M � CP(?).
The finite Ramsey Theorem is provable in PA and so there is w ∈M such that

M � w→ (3c+1)2c+1
c .

Let d ∈M be least given by CP(?) such that whenever

f1, · · · , fc : [d]2c+1→ d

are regressive functions, then there is Y ⊆ (c,d) such that |Y | ≥ w and Y is min-homogenous for each fi.
Let TR∆0 be a unary predicate such that

M � TR∆0(pϕq)

if and only if
M � ϕ and ϕ is a ∆0-formula,

where pϕq is the Gödel code of ϕ . Then, we can find I ⊆ (c,d) such that |I| ≥ c and

M � I is a set of diagonal indiscernibles for all ∆0-formulas.

Let u0 < u1 < · · · be an initial segment of I, let

N = {v ∈M : ∃i(v < ui)}

and let N be a substructure of M with universe N. Then N � PA. Since I ⊆ (c,d) we get c ∈ I and d /∈ I.

CLAIM 3.4. w ∈ N.

PROOF. The finite version of Ramsey Theorem is provable in PA and so there is w′ ∈ N such that N � w′→
(3c+1)2c+1

c . Since all functions from [w′]2c+1→C and all subsets of w′ that are coded in M are also coded in N,
M � w′→ (3c+1)2c+1

c . However w was chosen to be minimal in M and so w≤ w′. Thus w ∈ N. �
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Similarly, one can show that if d′ ∈ N and in N for all regressive f1, · · · , fc : [d′]2c+1→ d′ there is Y ⊆ (c,d′)
which is min-homogenous for each fi and |Y | ≥ w, then the same holds in M. Thus, by choice of d, d ≤ d′. But
d /∈ N and so we have a contradiction. Therefore CP(?) fails in N and so CP(?) is not provable from PA. �




