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Abstract

This bachelor thesis provides a short overview of some major results in
model theory concerning the spectrum function I(T, κ), where T is a first-
order theory and κ is a cardinal. In short, I(T, κ) tells us how many models
of cardinality κ T has up to isomorphism. After summarising some basic
definitions and results of elementary predicate logic, we turn our attention
to types, both from a model theoretic, a topological and an algebraic
perspective. The notions of ω-saturated, atomic and ω-categorical models
are discussed in detail and needed in order to prove Robert L. Vaught’s
Never Two Theorem which states that I(T,ℵ0) 6= 2, when T is a complete
theory with infinite models of a countable first-order language.
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1 Basic Facts and Motivation

Throughout this thesis we use the letters “ω” and “ℵ0” interchangeably as names
for the set of natural numbers. We assume that the reader is familiar with ZFC
and basic cardinal arithmetic. Let us first summarize some essential notions and
results from elementary model theory which can also be found in [1], [2] and [3]:

• For a given model structure M := 〈M, . . . 〉 of the language L and A ⊆M
the language L(A) has the same constant, function and relation sym-
bols as L and for each a ∈ A an additional new constant symbol ca.
Clearly, for every L(A)-n-formula φ(y1, . . . , yn) there exist a m ∈ N, a set
of variables{z1, . . . , zm} and a L-(n+m)-formula ψ(y1, . . . , yn, z1, . . . , zm)
such that

φ(y1, . . . , yn) = ψ(y1, . . . , yn, ca1 , . . . , cam)

(the variable zi is substituted by the new constant symbol cai) for some
a1, . . . , am in A. This can be checked via induction on the complexity
of terms and formulas. The structure MA has the same universe as M
with the same interpretations of non logical symbols of L. Any additional
constant symbol ca (a ∈ A) is interpreted with a (i.e. cMA

a = a).For
A = M the theory of MA (notation: Th(MA)), that is the set of all
sentences true in MA, is also denoted as Diag(M).

• Replacement Lemma: Let M := 〈M, . . . 〉 be a structure for the lan-
guage L, β a term assignment on M, φ(y1, . . . , yn) a formula and τ1, . . . , τn
terms such that the variable yi can be substituted by τi in φ for 1 ≤ i ≤ n.
Then

M |= φ(y1/τ1, . . . , yn/τn)(β) iff M |= φ(β),

where for every variable x

β(x) :=

{
β(x), x /∈ {y1, . . . , yn}
β(τi), x = yi, 1 ≤ i ≤ n

• Elementary Submodel: Let N := 〈N, . . . 〉 be a structure, M ⊆ N be
closed under interpretations of function symbols and constant symbols (i.e:
cN ∈ M for each constant symbol c ∈ L). The structure M := 〈M, . . . 〉,
where RM := RN � Mn for n ∈ N+ and a n-ary relation symbol R of L
is called a submodel of N. It is called elementary submodel of N if for all
formulas φ(x1, . . . , xm) and all (a1, . . . , am) ∈Mm we have:

M |= φ(a1, . . . , am) iff N |= φ(a1, . . . , am),
or equivalently,

Diag(M) ⊆ Diag(N)

An important result we will use several times is the
Tarski-Vaught criterion: Let N := 〈N, . . . 〉 be a structure and M ⊆ N .
Then M is closed under interpretations of function and constant symbols
and the structure M := 〈M, . . . 〉 is an elementary submodel of N if and
only if for all formulas φ(y, x1, . . . , xn) and all (a1, . . . , an) ∈Mn:
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If N |= ∃yφ(y, a1, . . . , an), then N |= φ(m, a1, . . . , an), for some m ∈M .

This can be proven via induction on the complexity of formulas.

• Let λ be an ordinal and L a language. A sequence (Mα)α<λ of L-structures
is called an elementary chain if Mα ≺ Mβ , whenever α < β < λ. The
limit of the chain denoted as limα→λ(Mα) =: N and defined as follows:

1. It’s universe is N :=
⋃
α<λMα, where Mα is the universe of Mα, for

α < λ.

2. cN := cM0 , for a constant symbol c.

3. If n ∈ N+, (a1, . . . , an) ∈ Nn and f is a n-ary function symbol of L,
then

fN(a1, . . . , an) := fMα(a1, . . . , an),

where α < λ minimal such that (a1, . . . , an) ∈Mn
α .

4. If n ∈ N+, (a1, . . . , an) ∈ Nn and R is a n-ary relation symbol, then

RN(a1, . . . , an) :⇔ RMα(a1, . . . , an),

where α < λ minimal such that (a1, . . . , an) ∈Mn
α .

It is not difficult to show that Mα ≺ N for all α < λ.

• The downward Löwenheim-Skolem theorem states: If L is a language
of cardinality κ, Σ a set of L-formulas and N := 〈N, . . . 〉 a structure such
that κ ≤ |N | and N |= Σ(β) for a certain term assignment β, then for any
A ⊆ N there exists an elementary submodel M := 〈M, . . . 〉 ≺ N with the
following properties:

1. A ⊆M
2. |M | ≤ max{κ, |A|}
3. M |= Σ(β′), for a certain term assignment β′.

• For a set of formulas Σ and a formula φ we write Σ |= φ if for every
structure M := 〈M, . . . 〉 and every term assignment β we have:

If M |= Σ(β), then M |= φ(β).

We write Σ ` φ if Σ proves φ, i.e. there is a sequence of formulas such
that each formula is either a logical axiom, an element of Σ or follows from
two prior formulas via modus ponens. Furthermore the last formula of the
sequence is φ. Gödel’s completenes theorem says that any consistent
set of formulas of a predicate logic language has a model. This implies
that the notions ”|=” and ”`” are equivalent.

• The Lemma on Constants: Let L be a first order language, Γ a L-
theory and φ(x1, . . . , xn) a L-formula. If C is a set of constant symbols
not occurring in L, then for all c1, . . . , cn in C

Γ `L φ(x1, . . . , xn) iff Γ `L2
φ(c1, . . . , cn),
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where L2 is the language generated by the symbols of L ∪ C.

• Homomorphism: Let M := 〈M, . . . 〉 and N := 〈N, . . . 〉 be (model)
structures for a language L. A map h : M −→ N is called homomorphism
if the following holds:

1. h(cM) = cN, for a constant symbol c.

2. h(fM(a1, . . . , an)) = fN(h(a1), . . . , h(an)), for n ∈ N>0, a1, . . . , an
in M and a n-ary function symbol f.

3. If n ∈ N>0, R is a n-ary relation symbol, a1, . . . , an are in M and
RM(a1, . . . , an), then RN(h(a1), . . . , h(an)).

If h is injective and in (3) we have:

RM(a1, . . . , an)⇔ RN(h(a1), . . . , h(an)),

then h is called an embedding. A bijective homomorphism is called iso-
morphism.

Fact: Let M, N be L-structures and h : M −→ N surjective. Then
h is an isomorphism between M and N iff for all n ∈ N, all formulas
φ(x1, . . . , xn) and all (a1, . . . , an) ∈Mn the following holds:

M |= φ(a1, . . . , an) iff N |= φ(h(a1), . . . , h(an))

1.1 Introduction

Given a language L of cardinality λ, a L-theory Γ and a cardinal number κ ∈
ON , a natural question for a model theorist is, how many models of power κ
does Γ have. That is, if we consider the class of all models of Γ with cardinality
κ and define isomorphic models as equivalent, how many equivalence classes are
there?

Remark. Under the conditions mentioned above, there are at most 2max{κ,λ}

many equivalence classes.

Proof. Suppose (Mα)α<µ is a sequence of pairwise nonisomorphic models of Γ
each of which has cardinality κ. We can assume without loss of generality, that
all models have the same universe, otherwise for each α < µ use a bijection from
Mα to M0 and then interpret constant, function and relation symbols on M0

accordingly. There are at most κλ many possibilities to interpret the constant
symbols of L, at most (κκ·ω)λ ≤ 2κ·λ many possibilities for the relation and
function symbols. Hence there are at most κλ · 2κ·λ · 2κ·λ = 2κ·λ many models
of Γ with power κ.

This observation justifies the definition of the spectrum funtion of a theory.
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Definition. Let κ ∈ ON be a cardinal, T a first-order theory and L the lan-
guage generated by all symbols occurring in T . On the class of L-models of T
with power κ define two models equivalent if and only if they are isomorphic.
Then I(T, κ) is defined as the cardinality of a set of pairwise nonisomorphic
representatives of all equivalence classes. For fixed T the resulting function on
the class of cardinal numbers is called the spectrum function of T .

Example 1.1. Let us start with an easy example: Let our language be gen-
erated by a single binary relation symbol <̇.The L-theory DLO (Dense Linear
Order) is given by the following axioms.

1. (A.1) ∀x1¬(x1<̇x1).

2. (A.2) ∀x1∀x2∀x3(x1<̇x2<̇x3 → x1<̇x3).

3. (A.3) ∀x1∀x2[(x1<̇x2) ∨ (x1=̇x2) ∨ (x2<̇x1)].

4. (A.4) ∀x1∃x2(x1<̇x2).

5. (A.5) ∀x1∃x2(x2<̇x1).

6. (A.6) ∀x1∀x2[(x1<̇x2)→ ∃x3(x1<̇x3<̇x2)].

Because of axioms 1, 2 and 4, every model of DLO is infinite. An obvious model
is Q := 〈Q, <〉. Using a so called “Back and Forth”-argument, we will now show,
that every countable model of DLO is isomorphic to Q, i.e I(DLO,ℵ0) = 1.

Let M := 〈M,<′〉 be an arbitrary countable model of DLO, Q = {qi |
i ∈ N} and M = {mj | j ∈ N}. We inductively define a sequence of finite
order preserving partial functions hk (k ∈ N>0) such that hi ⊆ hj , for i < j.
h : Q 7→ M , defined as

⋃∞
k=1 hk will be an isomorphism. For k = 1 let i1 := 1,

j1 := 1 and h1(qi1) := mj1 .
k → k + 1: Suppose k is odd,

Qk := {qi1 , . . . , qik} ⊆ Q and Mk := {mj1 , . . . ,mjk} ⊆M

are sets of cardinality k and hk : Qk 7→Mk is an order preserving bijection. Let
jk+1 ∈ N be minimal such that mjk+1

/∈Mk, define

T< := {x ∈MK | x <′ mjk+1
} and T> := {x ∈Mk | mjk+1

<′ x}.

If T< and T> are nonempty, then there exists max(T<) =: u and min(T>) =: o,
since both sets are finite. Q |= (A.6), hence there is a minimal ik+1 ∈ N such
that h−1

k (u) < qik+1
< h−1

k (o). Then define hk+1 := hk ∪ {(qik+1
,mjk+1

)}.
Clearly hk+1 is also order preserving.

If either T< or T> is empty, then qik+1
exists, because Q |= [(A.4) ∧ (A.5)].

If k is even, do the same, but start with qik+1
∈ Q \Qk with minimal index and

find mik+1
analogically, using the fact that M |= DLO.

It follows that the theory is complete: If σ is a sentence and M := 〈M, . . . 〉 |=
DLO∪{σ}, then of course |M | ≥ ℵ0 and because of the theorem of Löwnheim-
Skolem there is a countable elementary submodel M′ ≺ M. By the argument
above M′ ' Q, hence Q |= σ. This means: If a sentence is true in one model of
DLO, then it is true in all models of DLO, i.e DLO |= σ (or DLO ` σ).
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Example 1.2. (Theory of vector spaces over a finite field) Let p ∈ N be a prime
number, n ∈ N>0, q := pn and Fq the field with cardinality q. The language
L := 〈0̇, +̇, (ṙ)r∈Fq 〉 has a constant symbol 0̇, a binary function symbol +̇ and
for each r ∈ Fq a 1-ary function symbol ṙ. Consider the theory Γ given by the
following axioms:
Axioms for an abelian group with respect to +̇, i.e:

1. ∀x1∀x2∀x3((x1+̇x2)+̇x3 = x1+̇(x2+̇x3))

2. ∀x1(x1+̇0̇ = x1)

3. ∀x1∃x2(x1+̇x2 = 0̇)

4. ∀x1∀x2(x1+̇x2 = x2+̇x1)

For each r ∈ Fq: ∀x1∀x2(ṙ(x1+̇x2) = ṙx1+̇ṙx2)
For all r1, r2, r3 ∈ Fq such that r1 · r2 = r3 (in Fq): ∀x1(ṙ1(ṙ2x1) = ṙ3x1)
For the 1-element 1 ∈ Fq: ∀x1(1̇x1 = x1)
For all (r1, r2, r3) ∈ F3

q such that r1 + r2 = r3 (in Fq): ∀x1(ṙ1x1+̇ṙ2x1 = ṙ3x1)

An obvious model is the field Fq itself, i.e 0̇ is interpreted by the 0-element,
+̇ by the addition in Fq and for r1, r2 ∈ Fq ṙ1r2 := r1 · r2 (multiplication in Fq).
If κ is an infinite cardinal and M := 〈M, . . . 〉, N := 〈N, . . . 〉 are models of Γ
such that |M | = |N | = κ, then each basis BM ⊆ M of the Fq-vector space
(M,+M) has cardinality κ, since the field is finite. The same holds for (N,+N)
and an arbitrary basis BN ⊆ N . Any bijection between BM and BN induces
an isomorphism of vector spaces which is also a model isomorphism between M
and N. This means I(Γ, κ) = 1 for every infinite cardinal κ. A theory which
has exactly one model of cardinality κ up to isomorphism, for a given cardinal
κ is called κ-categorical. So Γ is κ-categorical for all κ ≥ ω.

An obvious infinite model of Γ is {f : N 7→ Fq | |supp(f)| < ω} with
pointwise addition and scalar multiplication. It follows that Γ is not complete.

If instead of Fq we take the infinite field Q and modify Γ accordingly, then
this theory is no longer ℵ0-categorical, since (Q,+) and (Q2,+) are countable
models of Γ, but not isomorphic. However, Γ is still κ-categorical for all κ ≥ ℵ1.

2 Types

In this section we stic to [4] if not stated otherwise.

Definition. Let L be a first order language. A (L-)type is a consistent set of
formulas. For a given n ∈ N and a set of variables {y1, . . . , yn} a n-type is a
consistent set of formulas all of which have their free variables among y1, . . . , yn.

• If M = 〈M, . . . 〉 is a structure and a1, . . . , an are in M then
typeM(a1, . . . , an) := {φ(x1, . . . , xn) |φ is a formula with free variables
among x1, . . . , xn and M |= φ(a1, . . . , an)}.

• A n-type t(y) for the variable vector y = (y1, . . . , yn) (i.e. all free variables
of its formulas are among y1, . . . , yn) is called complete if for each n-
formula φ(y) we have: φ ∈ t or ¬φ ∈ t.
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• For a given structure M = 〈M, . . . 〉 and a set A ⊆M a (M-) type over A
is a set of formulas in the language L(A) consistent with Th(MA).

It is clear that for every structure M, n ∈ N and a1, . . . , an in M
typeM(a1, . . . , an) is a complete n-type.

Consider for example the structure N := 〈N, 0, <, S,+, · , E〉 and the follow-
ing set t(x1) := {x1 > 0, x1 > S0, x1 > SS0, . . . }. Then t(x1) is a 1-type over
any A ⊆ N since every finite subset of it is realized in NA, but the entire type is
omitted in N. Any complete 1-type over A extending t(x1) would among others
contain the formulas:

ca = ca for a ∈ A, (SS0) · (SSS0) = SSSSSS0, (x1 > 0) ∧ (x1 > SS0).

Gödel’s completeness theorem implies that for a structure M = 〈M, . . . 〉 and an
arbitrary vector of variables y = (y1, . . . , yn) any n-type t(y) over ∅ is realised in
some model of Th(M)∪t(y) under a certain term assignment. We can show even
more:

Lemma 2.1. Let M = 〈M, . . . 〉 be a structure, y = (y1, . . . , yn) a variable
vector and t(y) a n-type over ∅. Then there is an elementary extension of M
which realises t(y).

Proof. Let c1, . . . , cn be new constants not occurring in L(M) and define
c = (c1, . . . , cn). Consider the theory Σ := Diag(M) ∪ t(c). We claim it is
consistent, for otherwise there are L-formulas φ(y) and θ(y) such that for some
a1, . . . , an in M, φ(ca1 , . . . , can) ∈ Diag(M), θ(c) ∈ t(c) and

φ(ca1 , . . . , can) ` ¬θ(c).

Hence with the lemma on constants we can conclude

φ(ca1 , . . . , can) ` ¬(∃y1, . . . ,∃ynθ(y)),

but t(y) is a n-type over ∅ (for the structure M) and therefore

Th(M) ` ∃y1, . . . ,∃ynθ(y).

Since Th(M) ⊆ Diag(M) this would mean that Diag(M) is inconsistent, a
contradiction.

M can be embedded elementarily into any model of Σ restricted to L and any
such model realises t(y), hence there is an elementary extension of M realising
t(y).

Sometimes model theorists are interested in finding a model that omits (i.e.
does not realise) a given type. This is not always possible: For example, if Γ is
a complete theory, φ(x1, . . . , xn) a n-formula consistent with Γ, t(x1, . . . , xn) a
n-type and Γ ` (φ→ ψ) for all ψ ∈ t, then since Γ ` ∃x1 . . . ∃xnφ(x1, . . . , xn) t
is realised in every model of Γ.

Definition. • If φ is a formula of the language L, then V ar(φ) is defined
as the set of all variables occurring in φ and V arfree(φ) is the set of all
free variables of φ.
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• Let Γ be a theory, y := (y1, . . . , yn) a vector of variables and Σ(y) a set
of n-formulas in y. Σ is called isolated over Γ if there is a n-formula φ(y)
consistent with Γ such that Γ ` (φ→ ψ) for all ψ ∈ Σ.

Theorem 2.2. (Omitting Types Theorem)Let L be a countable language,
n ∈ N, Γ a consistent L-theory and Σ(x1, . . . , xn) a set of n-formulas which is
not isolated over Γ. Then Γ has model which omits Σ.

Proof. We will first add countably many new constants C := {ck | k ∈ N},
thereby getting a new language L2, then extend our theory Γ to a complete and
consistent Henkin-theory Γ (in L2), that is: if ψ(y) is a 1-formula such that
Γ ` ∃yψ(y), then Γ ` ψ(c) for some c ∈ C. Furthermore, using the fact that
Σ is not isolated over Γ, for each n-tuple c := (c1, . . . , cn) ∈ Cn Γ ` ¬ψ(c) for
some ψ ∈ Σ. For any model M := 〈M, . . . 〉 of Γ we will have

M′ := 〈{cMk | k ∈ N}, . . . 〉 ≺M

and M′ omits Σ.
Let (cm)m∈N be an enumeration of all n-tuples of C, (θm)m∈N an enumeration

of all sentences (closed formulas) of L2 and Γ−1 := Γ. Suppose k ≥ 0 and we
have already consistently constructed Γk−1 ⊇ Γ using only finitely many new
constants of C and Γk−1 \ Γ is empty or a L2-sentence σk−1.

Case k = 3m, for some m ∈ N: If Γk−1 ∪ {θm} is consistent, then σk :=
σk−1 ∧ θm and Γk := Γ∪{σk}, otherwise σk := σk−1 ∧¬θm and Γk := Γ∪{σk}.
For k = 0 σ0 is either θ0 or ¬θ0.

Case k = 3m+ 1, for some m ∈ N: If σk−1 = σk−2 ∧ δ (or σk−1 = δ for
k = 1) and δ = ∃yψ(y), then σk := σk−1 ∧ ψ(c), where c is the first constant
of C not occurring in Γk−1 and Γk := Γ ∪ {σk}. Otherwise σk := σk−1 and
Γk := Γ ∪ {σk}.

Case k = 3m+ 2, for some m ∈ N: If cm = (ci1 , . . . , cin) and Γk−1 = Γ ∪
{σk−1} then define A := {c ∈ C | c occurs in σk−1 but not in cm}. From σk−1

we build a L-formula δ′ by first replacing each variable c ∈ A with a new variable
yc /∈ V ar(σk−1) ∪ {x1, . . . , xn} and then replacing cil in cm (1 ≤ l ≤ n) with
xj , where 1 ≤ j ≤ n minimal such that cij = cil . We can assume without loss
of generality that the latter step is possible, because otherwise we just rename
bounded variables which gives us a tautologically equivalent formula.

Now consider the formula

δ(x1, . . . , xn) := ∃ycs1 . . . ∃ycsr δ
′ ∧ (

∧
1≤j,l≤n
cij

=cil

xj = xl).

Sicne Γk−1 is consistent, it follows that Γ ∪ {δ} is consistent. Σ is not isolated
over Γ, therefore Γ ∪ {δ ∧ ¬ψ} is consistent for some ψ ∈ Σ. Then define
σk := σk−1 ∧ ¬ψ(ci1 , . . . , cin) and Γk := Γ ∪ {σk}. It is easy to see that Γk is
consistent and hence

Γ :=
⋃
k∈N

Γk

is consistent, complete and Henkin.
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Corollary 2.3. Let Γ be a consistent theory of the countable language L and for
each k ∈ N Σk(x1, . . . , xnk) be a set of nk-formulas not isolated over Γ. Then
there exists a model of Γ omitting Σk for all k ∈ N.

Proof. Let C := {ci | i ∈ N} be a set of new variables, L2 be the language
generated by L and C and (dm := 〈θm, km, cm〉)m∈N an enumeration of all
triples such that θm is a L2 sentence, km ∈ N and cm ∈ Cnkm where Σkm is a
set of nkm formulas.

Similarly to the previous proof we construct a sequence of L2-sentences
(σm)m∈N such that the following hold:

1. Γ ∪ {σm} is consistent.

2. σj ` σi, for i < j

In each step m ∈ N we do three substeps: Given the sentence σm−1, we first
check whether σm−1 ∧ θm is consistent. If so, then δ0 := σm−1 ∧ θm, otherwise
δ0 := σm−1 ∧ ¬θm. Then check whether θm (or ¬θm, if chosen in first substep)
is of the form ∃yψ(y). If so, then δ1 := δ0 ∧ ψ(c), where c ∈ C with minimal
index not occurring in δ0, otherwise δ1 := δ0. Then we define Am := {c ∈
C | c occurs in δ1 but not in cm}, replace every c ∈ Am with a new variable yc
which does not occur in δ1 and every constant cil (1 ≤ l ≤ nkm) of ck with the
variable xj where 1 ≤ j ≤ nkm minimal such that cij = cil , thereby getting a
L-formula δ′1. The nkm -formula

φm(x1, . . . , xnkm ) := ∃yd1 . . . ∃ydaδ′1 ∧ (
∧

1≤j,l≤nkm
cil

=cij

xj = xl)

is consistent with Γ and since Σm is not isolated over Γ it follows that

Γ ∪ {φm ∧ ¬ψ}

is consistent for some ψ ∈ Σm. Then it is easy to see that σm := δ1 ∧ ¬ψ(cm)
is also consistent with Γ.

The theory Γ := Γ ∪ {σm | m ∈ N} is complete, consistent and Henkin and
for every model M of Γ the structure

〈{cM | c is a constant of the language L}, . . . 〉 � L

is a model of Γ omitting Σk for all k ∈ N.

2.1 Topological Aspects

In the following section we fix an arbitrary language L, a L-structure M :=
〈M, . . . 〉 and a set A ⊆ M . For n ∈ N+, the variable vector x := (x1, . . . , xn)
and a n-formula φ(x) we often write simply φ.

Definition. Let M := 〈M, . . . 〉 be a structure andA ⊆M . For x := (x1, . . . , xn)
and n ∈ N we define SM

n (A) := {t(x) | t is a complete n-type over A}.

• If φ(x) is a n-formula, then [φ] := {t ∈ SM
n (A) | φ ∈ t}.

One can easily check that for n-formulas ψ(x) and φ(x) we have:
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[φ ∧ ψ] = [φ] ∩ [ψ] and [φ ∨ ψ] = [φ] ∪ [ψ]. (1)

This follows immediately from the fact that complete n-types are consistent and
deductively closed.

Furthermore [x1 = x1] = SM
n (A), which together with (1) implies that

{[φ(x)] | φ is a n- formula in x} is a basis for a topology (the Stone topology)
on SM

n (A).
If φ(x) is a(L(A))-n-formula, t(x) ∈ SM

n (A) and t /∈ [φ], then ¬φ ∈ t (or
t ∈ [¬φ]), since t is complete, and [¬φ] ∩ [φ] = ∅. Hence every basic open set is
also closed. We now present some basic results for SM

n (A).

Lemma 2.4. For any structure M := 〈M, . . . 〉, n ∈ N>0 and A ⊆M we have:

1. SM
n (A) is compact.

2. SM
n (A) is totally disconnected, that is: For all t1, t2 ∈ SM

n (A) with t1 6= t2
there exists a clopen X ⊆ SM

n (A) such that t1 ∈ X and t2 /∈ X.

Proof. 1. We show indirectly that every covering of SM
n (A) with basic open

sets has a finite subcovering: Suppose there is a cover C := {[φi]}i∈I of
SM
n (A) with no finite subcover. Then consider the set F := {¬φi}i∈I . F

is consistent with Th(MA): If k ∈ N>0 and ¬φi1 , . . . ,¬φik are in F , then
there exists a t ∈ SM

n (A), which is by definition consistent with Th(M(A)),
such that ¬φij ∈ t for 1 ≤ j ≤ k, since by our assumption

⋃n
j=1[φij ] 6=

SM
n (A). So every finite subset of F is consistent with Th(MA), therefore
F ⊆ t for some t ∈ SM

n (A). But then t /∈
⋃
{[φi] | i ∈ I}, contradicting

the assumption that C is a cover of SM
n (A).

2. If t1, t2 are in SM
n (A) and distinct, then since both types are complete

there is a n-formula φ such that φ ∈ t1 and ¬φ ∈ t2, which means t1 ∈ [φ]
and t2 /∈ [φ]. [φ] is clopen in SM

n (A) as we have pointed out before.

Corollary 2.5. For all T ⊆ SM
n (A):

T is clopen iff T = [φ] for some n-formula φ.

Proof. • (⇐) Already explained.

• (⇒) Since T is closed it is also compact. Furthermore T is open, hence

there is a k ∈ N+ and n-formulas φ1, . . . , φk such that T =
⋃k
i=1[φi] =

[
∨k
i=1 φi]

Definition. A complete type t ∈ SM
n (A) is called isolated if {t} is open in the

Stone topology on SM
n (A).

Proposition 2.6. Let t ∈ SM
n (A). The following are equivalent:

1. t is isolated.

2. {t} = [φ(x)] for some L(A)-n-formula φ(x).
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3. There exists a L(A)-n-formula φ(x) such that for all L(A)-n-formulas ψ(x)
we have:

ψ ∈ t iff φ `Th(MA) ψ.

Proof. • (1)⇒ (2): If {t} is open, then there is a L(A)-n-formula φ(x) such
that t ∈ [φ] ⊆ {t} ⊆ [φ].

• (2) ⇒ (3): Let {t} = [φ] for some n-formula φ and ψ ∈ t. We show
that Th(MA)) ∪ {φ} |= ψ, which is equivalent to φ `Th(MA) ψ: If N :=
〈N, . . . 〉 and N |= Th(MA) ∪ {φ} under an assignment x 7→ a ∈ Nn, then
typeN(a) ∈ [φ] = {t}, which implies N |= ψ(a). Now assume ψ is an
arbitrary n-formula and φ `Th(MA) ψ. Since {t} = [φ] (by assumption)
and t as a complete n-type is deductively closed and clearly φ ∈ t, it
follows ψ ∈ t.

• (3) ⇒ (2): Let φ be a n-formula such that (3) holds. Clearly φ ` φ, so
φ ∈ t and therefore {t} ⊆ [φ]. Now let t′ ∈ [φ]. We show that t ⊆ t′

which implies t = t′, since t and t′ are complete n-types: If ψ ∈ t, then
by assumption (3) we have φ ` ψ and hence and ψ ∈ t′, because t′ is
deductively closed. This means [φ] ⊆ {t}.

• (2) ⇒ (1): This is obvious, since [φ] is a basic open set in the Stone
topology.

Remark. Prpposition 2.6 implies that the definition of beeing isolated from
a topological perspective is equivalent to that of the previous subsection: A
complete n-type over A is isolated if and only if it is isolated over Th(MA).

2.2 Algebraic Aspects

This subsection is based on [5].

A Boolean algebra is a structure 〈A, 0, 1,+,−, ·〉, where 0 6= 1 are elements
of the set A, + and − are binary operations A × A 7→ A and − : A 7→ A such
that for all x, y, z ∈ A the following holds:

(assiociativity) (B1) (x+ y) + z = x+ (y + z), (B1′) (x · y) · z
= x · (y · z)

(commutativity) (B2) x+ y = y + x, (B2′) x · y = y · x
(absorption) (B3) x+ (x · y) = x, (B3′) x · (x+ y) = x
(distributivity) (B4) x · (y + z) = (x · y) + (x · z), (B4′) x+ (y · z)

= (x+ y) · (x+ z)
(complementation) (B5) x+ (−x) = 1, (B5′) x · (−x) = 0

On every Boolean algebra B := 〈A, . . . 〉 there is a partial order defined by

a ≤ b :⇔ a · b = a

Definition. • Let B := 〈A, . . . 〉 be a Boolean algebra. A filter on B is a set
F ⊆ A with the following properties:
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1. 1 ∈ F and 0 /∈ F .

2. If a, b ∈ F , then a · b ∈ F .

3. If a ∈ F , b ∈ A and a ≤ b, then b ∈ F .

• A filter F on a Boolean albgebra 〈A, . . . 〉 is called an ultrafilter if for all
a ∈ A either a ∈ F or −a ∈ F .

• A filter F is called principal if there is an element a ∈ A such that

F = {b ∈ A | a ≤ b}.

• Given a Boolean algebra 〈A, . . . 〉 a set T ⊆ A is called a filter basis if for
every non empty finite index set J and {ai | i ∈ J} ⊆ T∏

i∈J
ai 6= 0.

Remark. 1. If T is a filter basis and T ′ is defined as the set of all finite
products of elements of T , then {b ∈ A | c ≤ b, for some c ∈ T ′} is a filter.

2. It is easy to show that a filter is ultra if and only if it is a maximal filter
with respect to the inclusion relation ⊆.

Let L be a language of first order logic , Γ a consistent L-theory, n ∈ N and
Σ the set of all L-formulas. For φ, ψ ∈ Σ define

φ ∼ ψ :⇔ Γ ` (φ↔ ψ).

This gives us an equivalence relation. Now, let A := Σ/ ∼, the quotient space.
For every formula ψ, [ψ] denotes the equvivalence class of ψ with respect to ∼.
Define B := 〈A, 0, 1,+,−, ·〉, where

1. 0 := [∃x1(x1 6= x1)] and 1 := [∀x1(x1 = x1)].

2. − : A 7→ A, −[ψ] := [¬ψ].

3. + : A×A 7→ A, [φ] + [ψ] := [φ ∨ ψ].

4. · : A×A, [φ] · [ψ] := [φ ∧ ψ].

We can easily check that B is a Boolean algebra. If for n ∈ N we define Σn
as the set of all n-formulas with free variables in x1, . . . , xn and consider the
operations +,−, · on Σn/ ∼, then we get a Boolean algebra B(Γ,n) isomorphic
to a subalgebra of B. B(Γ,0) is called the Lindenbaum-Tarski algebra of Γ.

Since for any L-formulas φ, ψ we have

` [(φ ∧ ψ)↔ (φ)]↔ [φ→ ψ],

[φ] ≤ [ψ] in B if and only if φ `Γ ψ. If t is an arbitrary type consistent with Γ,
then Ft := {[φ] | φ ∈ t} ⊆ A is a filter basis. If t is deductively closed, then Ft
is a filter on B. The map t 7→ Ft is a bijection from the set of all deductively
closed types consistent with Γ to the set of all filters on B, whereby complete
types correspond with ultra filters.
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3 ℵ0-Categorical Theories, Vaught’s Never Two
Theorem and beyond

The results of this section can be found in [2].

3.1 ω-Saturated Models

In short, a type for a given theory Γ is a set of formulas describing a property
consistent with Γ. As we have seen for the standard model of the natural
numbers 〈N, 0, S,+, ·, <〉 a type is not necessarily realised in all models of Γ.
We will now study models which have witnesses for “many” types.

Definition. Let L be a language and M := 〈M, . . . 〉 a L-structure. M is called
ω-saturated if for every finite A ⊆M every 1-type over A is realised in MA.

Remark. This definition is equivalent to the notion that for every finite A ⊆M
and every n ∈ N+ every n-type over A is realised in MA.

Proof. Suppose a L-structure is ω-saturated according to our definition and
A ⊆M finite. We show via induction on n, that every n-type over A is realised
in MA: Case n = 1 follows from the definition.

n → n + 1: Let t(x1, . . . , xn, xn+1) be a n + 1-type over A. Without loss
of generality t is deductively closed with respect to n + 1-formulas, otherwise
we do the following argument for the deductive closure of t (for n+ 1-formulas)
which is also a n+ 1-type. Consider the set of n-formulas

t′ := {∃xn+1ψ(x1, . . . , xn+1) | ψ(x1, . . . , xn+1) ∈ t}

which is consistent with Th(MA), because t is. So t′ is a n-type over A. Using
the induction hypothesis, there are a1, . . . , an in M such that

MA |= θ(a1, . . . , an)

for all θ(x1, . . . , xn) ∈ t′, hence MB |= θ(ca1 , . . . , can), whereB := A∪{a1, . . . , an}.
Using the compactness theorem and the fact that t is deductively closed with
respect to n+ 1-formulas, it is easy to see, that

{ψ(ca1 , . . . , can , xn+1) | ψ(x1, . . . , xn+1) ∈ t}

is a set of 1-formulas in the language L(B) consistent with Th(MB) and is
therefore realised in MB by an element an+1 ∈M . Then clearly we have

MA |= ψ(a1, . . . , an+1)

for all ψ ∈ t. The other direction follows immediately.

Example 3.1. Q := 〈Q, <〉 is an ω-saturated model of DLO.

Proof. Let A = {q1, . . . , qn} be a finite subset of Q and t(y) be a 1-type over
A. Then there is a countable model M := 〈M, . . . 〉 and a m ∈ M such that
M |= Th(QA) ∪ t(m). Let B := {cMa | a ∈ A}. Since M |= Th(QA), there is an
order preserving bijection h′0 : A 7→ B and since both QA and M are models of
DLO, it follows that there is a q ∈ Q such that h′0 can be extended to an order
preserving bijection h′ : A ∪ {q} 7→ B ∪ {m} which in turn can be extended to
an isomorphism h : QA 7→ M using the same “Back and Forth” argument we
have seen in example 1.1. So t(y) is realised in QA.
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Example 3.2. (Theory of infinite vector spaces over a finite field) Let Fq be a
finite field and L the language described in example 1.2. Consider the theory Γ,
which consists of the axioms given in example 1.2 together with the following
sentences:

For each n ∈ N+ add

∀x1 . . . ∀xn∃xn+1(x1 6= xn+1 ∧ · · · ∧ xn 6= xn+1)

This theory is ω-categorical, as any countable model of it is a vector space with
dimension ℵ0. Using the theorem of Löwenheim-Skolem, we can see that it is
also complete: Any sentence consistent with Γ is realised in a countable model
of which there is only one up to isomorphism.

Let V be the model of Γ defined by V := {f : N 7→ Fq | |supp(f)| < ω}
together with pointwise addition and scalar multiplication. If k ∈ N+, A =
{a1, . . . , ak} ⊆ V finite, t(x1) is a type over A and M := 〈M, . . . 〉 is a countable
model of Th(VA) in which t(x1) is realised, say by an element m ∈ M , then
define M ′1 := Span({cMa | a ∈ A}) (a subspace of M) and choose any subspace
M ′2 of M such that M = M ′1 ⊕M ′2. Since M ′1 is finite dimensional we have
dim(M ′2) = ℵ0. Similarily, we can define V ′1 := Span(A) and choose a subspace
V ′2 ⊆ V of dimension ℵ0 such that V = V ′1 ⊕ V ′2 . The map ai 7→ cMai induces an
isomorphism of vector spaces h1 : V ′1 7→ M ′1, because VA and M are models of
Th(VA). Any bijection from a basis of V ′2 to a basis of M ′2 yields an isomorphism
h2 : V ′2 7→ M ′2. The map h1 ⊕ h2 then defines an isomorphism VA 7→ M and
therefore t(x1) is realised in VA.

Example 3.3. Let N := 〈N, 0, S,+, ·, <〉 be the standard model of the natural
numbers, where S denotes the successor operation x 7→ x + 1. Then N is not
ω-saturated, since the set t(x1) defined as

{x1 > Sn0 | n ∈ N+}

is a 1-type over ∅ which is not realised in N . Any model of Th(N ) realising
t(x1) is a so called nonstandard model of the theory of the natural numbers.

Proposition 3.4. Let L1, L2 be languages such that L1 ⊆ L2 and L2 differs
form L1 by a finite set of constant symbols. Let M := 〈M, . . . 〉 be a L2-structure.
Then

M is ω-saturated iff M � L1 is ω-saturated.

Proof. • (⇒): Let A ⊆M be finite and t(x1) a deductutively closed 1-type
over A for the structure M � L1. If we define

D := {c ∈ L2 \ L1 | c is a constant symbol}

and B := A \ {cM | c ∈ D}, then B is finite and we can see t(x1) as
a set of formulas in the language L2(B). It is consistent with Th(MB),
otherwise there is a n ∈ N>0, c1, . . . , cn in D\L1(A) and a L1(A)-formula
θ(x1, . . . , xn) such that

θ(c1, . . . , cn) ∈ Th(MB) and ∃x1ψ(x1) ` ¬θ(c1, . . . , cn),
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for some ψ ∈ t(x1), then by the lemma on constants

∃x1ψ(x1) ` ¬(∃x1 . . . ∃xnθ(x1, . . . , xn))

which means that t(x1) is inconsistent with Th((M � L1)A), a contradic-
tion. Any element of M realising t(x1) in MB also realises it in (M � L1)A.

• (⇐): If A ⊆ M is finite and t(x1) is consistent with Th(MA), then we
can define A := A ∪ {cM | c ∈ D}, which is finite, because D is. We
can see t(x1) as a set of formulas in the language L1(A) consistent with
Th((M � L1)A). Any element of M realising t(x1) in (M � L1)A also
realises it in MA.

Lemma 3.5. Let Γ be a complete theory of the language L, N := 〈M, . . . 〉 an
ω-saturated model and M := 〈M, . . . 〉 an arbitrary countable model of Γ. Then
there exists an elementary embedding M ↪→ N.

Proof. Let M = {mk | k ∈ N>0}. We inductively construct a countable elemen-
tary submodel of N.

k = 1: typeM(m1) is a 1-type over ∅ for the structure N and is therefore
realised by some n1 ∈ N .

k → k + 1: Suppose we have m1, . . . ,mk in M and n1, . . . , nk in N such that

typeM(m1, . . . ,mk) = typeN(n1, . . . , nk).

If we add new constant symbols c1, . . . , ck to our language L and define

cMi := mi and
cNi := ni, for 1 ≤ i ≤ k,

then Th(MA) = Th(NA′), where A := {m1, . . . ,mk} and A′ := {n1, . . . , nk}.
Using this fact and the compatness theorem, it follows that

t(xk+1) := {ψ(c1, . . . , ck, xk+1) |MA |= ψ(c1, . . . , ck,mk+1)}

is consistent with Th(NA′), and since N is ω-saturated there is a nk+1 ∈ N
realising t(xk+1) in NA′ . Then clearly we also have

typeM(m1, . . . ,mk+1) = typeN(n1, . . . , nk+1)

The map h : M 7→ N , mk 7→ nk has the following properties.

1. h is injective: If mi 6= mj , then M |= ¬(xi = xj)(mi,mj), hence

N |= ¬(xi = xj)(ni, nj)

2. h respects constant symbols: M |= (xi = c)(mi)⇒ N |= (xi = c)(ni), for
a constant symbol c ∈ L.

3. h respects relation and function symbols: for example, If κ ∈ N>0 and
R ∈ L a k-ary relation symbol, then

RM(mj1 , . . . ,mjk)⇔M |= (Rxj1 . . . xjk)(mj1 , . . . ,mjk)⇔ . . .
· · · ⇔ N |= (Rxj1 . . . xjk)(nj1 , . . . , njk)⇔ RN(nj1 , . . . , njk).

16



The case for function symbols is similar.

It remains to show that 〈{nk | k ∈ N+}, . . . 〉 is an elementary submodel of N:
If ψ(x1, . . . , xk, y) is a L-formula and N |= ∃yψ(n1, . . . , nk, y), then because of
the definition of h, we have M |= ψ(m1, . . . ,mk,mi), for some i ∈ N+. It easily
follows N |= ψ(n1, . . . , nk, ni), hence {nk | k ∈ N+} satisfies the Tarski-Vaught
criterion.

Corollary 3.6. Any two countable ω-saturated models of a complete theory are
isomorphic.

Proof. Let A := 〈A, . . . 〉, B := 〈B, . . . 〉 be ω-saturated models of Γ, {ak | k ∈
N>0} an enumeration of A and {bk | k ∈ N>0} an enumeration of B. We use
the construction of the proof of Lemma 3.5 in a “Back and Forth” argument:
start with i1 := 1, then there is a j1 ∈ N>0 minimal such that

typeA(ai1) = typeB(bj1)

If we already have a partial function ais 7→ bjs for 1 ≤ s ≤ k such that

typeA(ai1 , . . . , aik) = typeB(bj1 , . . . , bjk),

then we proceed as follows:
k is odd: Let jk+1 := min(N>0 \ {j1, . . . , jk)}. Like before, using the fact

that A is ω-saturated there is a ik+1 ∈ N>0 minimal such that

typeA(ai1 , . . . , aik+1
) = typeB(bj1 , . . . , bjk+1

)

k is even: Reverse the roles jk+1 and ik+1 and use the fact that B is ω-saturated.
The resulting function h : A 7→ B, aik 7→ bjk is an isomorphism between A and
B which can be checked similarly to the previous proof.

Now we are comming to the characterisation of complete theories of a count-
able language which have a countable ω-saturated model. We will use the fol-
lowing

Fact. Let N := 〈N, . . . 〉 be a structure for the language L, M := 〈M, . . . 〉 be a
submodel of N and A ⊆M . Then M ≺ N iff MA ≺ NA.

Proof. • (⇒): Let ψ(y1, . . . , yn) be a L(A)-formula, a1, . . . , am in M and
θ(y1, . . . , yn, z1, . . . , zm) be a L-formula such that

ψ(y1, . . . , yn) = θ(y1, . . . , yn, ca1 , . . . , cam)

If b1, . . . , bn are in M , then by using the replacement lemma we get

MA |= ψ(b1, . . . , bn)⇔M |= θ(b1, . . . , bn, a1, . . . , am)⇔ . . .
· · · ⇔ N |= θ(b1, . . . , bn, a1, . . . , am)⇔ NA |= ψ(b1, . . . , bn).

• (⇐): This is clear, since for a L-formula ψ(x1, . . . , xn) and b1, . . . , bn in
M we have

M |= ψ(b1, . . . , bn)⇔MA |= ψ(b1, . . . , bn)
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Theorem 3.7. Let Γ be a complete theory of a countable language L. The
following are equivalent:

1. Γ has a countable ω-saturated model.

2. For each n ∈ N there are at most ℵ0 many complete n-types extending Γ.

3. For every countable model M := 〈M, . . . 〉 of Γ, for every finite set A ⊆M
and for each n ∈ N there are at most ℵ0 many complete n-types extending
Th(MA).

Proof. • (1⇒ 2): Let A := 〈A, . . . 〉 be a countable ω-saturated model of Γ.
|A| ≤ ℵ0, hence |An| ≤ ℵ0 for all n ∈ N. Each n-tuple (a1, . . . , an) ∈ An
realises exactly one complete n-type over ∅, namely typeA(a1, . . . , an).
Since A is ω-saturated and Γ is complete, each complete n-type extending
Γ is realised in A.

• (2 ⇒ 3): Let M := 〈M, . . . 〉 be a countable model of Γ and A ⊆ M
finite. If A = ∅, then for all n ∈ N there are at most ℵ0 many complete
n-types extending Γ by assumption, because Γ is complete and therefore a
complete n-type contains Th(M) if and only if it contains Γ. Let k ∈ N+

and A := {a1, . . . , ak} ⊆ M of cardinality k. First note that there is
only one complete 0-type over MA, namely Th(MA). If n ∈ N+ and
t(x1, . . . , xn) is a complete n-type over A, then define

t := {θ(x1, . . . , xn+k) ∈ L | θ(x1, . . . , xn, ca1 , . . . , cak) ∈ t}

So t is the set of all L-(n + k)-formulas which become elements of t, if
the variable xn+i is substituted by the new constant cai for 1 ≤ i ≤ k.
Since for every n-formula ψ(x1, . . . , xn) of the language L(A) there is a
(n+ k)-formula θ(x1, . . . , xn+k) of the language L such that

` ψ(x1, . . . , xn)↔ θ(x1, . . . , xn, ca1 , . . . , cak),

it follows t = {ψ ∈ L(A) |` ψ ↔ θ(x1, . . . , xn, ca1 , . . . , cak), for some θ ∈ t}.
This argument shows that there is a bijective map from the set of all com-
plete (n+k)-types t over ∅ to the set of all complete n-types t over A. By
assumption there are at most ℵ0 many complete (n+ k)-types over ∅.

• (3 ⇒ 1): Start with an arbitrary countable model M := 〈M, . . . 〉 of Γ.
First fix a finite subset A ⊆ M . For n ∈ N+ and a complete 1-type t(x1)
over A we know from Lemma 2.1 and the theorem of Löwenheim-Skolem,
that there is a countable elementary extension of MA in which t(x1) is
realised. Now let (tm)m∈N+

be an enumeration of all complete 1-types
over A. Define an elementary chain (An)n∈N of models of Th(MA) in the
following manner: A0 := MA.

Given An choose An+1 as a countable elementary extension of An in which
tn+1 is realised. A := limn→∞(An) is a countable elementary extension
of MA in which tm is realised for all m ∈ N+. Clearly M ≺ A � L.

Now let (Am)m∈N+
be an enumeration of all finite subsets of M . Define

B0 := M.
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Given Bn as a countable elementary extension of M, using the argument
above choose Bn+1 as a countable elementary extension of Bn in which
all 1-types over An+1 are realised. B := limn→∞(Bn) is a countable
elementary extension of M such that for all finite A ⊆ M every 1-type
over A is realised in BA.

Using the second argument, we see that there is an elementary chain of
countable models (Cn)n∈N such that

1. C0 = M

2. Cn ≺ Cn+1 and for each finite A ⊆ Cn, where Cn is the universe of
Cn, every 1-type over A is realised in Cn+1.

C := limn→∞(Cn) is a countable elementary extension of Cn for all n ∈ N
and therefore ω-saturated.

3.2 Atomic Models

We have seen that an ω-saturated model of a complete theory Γ is “big” in the
sense, that any countable model of Γ can be elementarily embedded into it.
We now turn our attention to models which are small in that sense.

Definition. Let Σ be a theory for the language L, n ∈ N and y := (y1, . . . , yn)
a vector of variables. A n-formula φ(y) is called n-complete over Σ if for an
arbitrary n-formula ψ(y) exactly one of the following conditions holds:

Σ ∪ {φ} ` ψ or Σ ∪ {φ} ` ¬ψ.

Form now on we will write φ `Σ ψ instead of Σ ∪ {φ} ` ψ.

Example 3.8. If τ1, . . . , τn are closed terms in the language L, n ∈ N and Γ is
a complete and consistent L-theory, then

φ(x1, . . . , xn) := (x1 = τ1) ∧ · · · ∧ (xn = τn)

is a n-complete formula over Γ. This is true, because for every n-formula
ψ(x1, . . . , xn) we have:

Γ ` ψ(τ1, . . . , τn) or Γ ` ¬ψ(τ1, . . . , τn),

but noth both, since Γ is complete and consistent. Furthermore we have:

∅ ` ∀x1 . . . ∀xn[φ→ (ψ(τ1, . . . , τn)↔ ψ(x1, . . . , xn))].

Example 3.9. If Γ is defined as the theory of infinite vector spaces over a finite
field Fq (see example 1.2) and x := (x1, . . . , xk) for k ∈ N>0, then the k-formula

φ(x) :=
∧

(r1,...,rk)∈Fkq
(r1,...,rk)6=(0,...,0)

(ṙ1x1 + · · ·+ ṙnxk 6= 0̇)

19



says that the vectors x1, . . . , xn are linearly independent. We show now that it
is k-complete over Γ by proving Γ∪{φ} |= ψ for every k-formula ψ(x) consistent
with Γ ∪ {φ}.

Let M := 〈M, . . . 〉 and N := 〈N, . . . 〉 be models of Γ, (m1, . . . ,mk) ∈ Mk,
(n1, . . . , nk) ∈ Nk and ψ(x1, . . . , xk) an arbitrary k-formula such that

M |= (φ ∧ ψ)(m1, . . . ,mk) and N |= φ(n1, . . . , nk).

Because of the theorem of Löwenheim-Skolem there are countable elementary
submodels M′ := 〈M ′, . . . 〉 ≺M and N′ := 〈N ′, . . . 〉 ≺ N such that (m1, . . . ,mk) ∈
M ′k and (n1, . . . , nk) ∈ N ′k. The vectors m1, . . . ,mk and n1, . . . , nk are linearly
independent in M′ and N′ respectively. As we have seen before there is an iso-
morphism between M′ and N′ mapping mi to ni for 1 ≤ i ≤ k. Therefore

N′ |= ψ(n1, . . . , nk) and hence N |= ψ(n1, . . . , nk).

Example 3.10. Let Γ := DLO. By a similar argument using countable ele-
mentary submodels and the “Back and Forth” technique introduced in example
1.1 we can see that for k ∈ N>1 the formula

x1 < · · · < xk

is k-complete over Γ.

Definition. Let Γ be a complete theory in the language L. A L-structure
M := 〈M, . . . 〉 with M |= Γ is called atomic if for all n ∈ N+ and a1, . . . , an in
M , typeM(a1, . . . , an) contains a n-complete formula over Γ.

Clearly, this is equivalent to typeM(a1, . . . , an) being isolated in SM
n (A) for

A := ∅ with respect to the Stone topology.

Example 3.11. Let M := 〈M, . . . 〉 be a model for a complete theory Γ. If for
all m ∈M there exists a closed term τm such that τMm = m, then M is atomic.
For m1, . . . ,mk in M and mi = τMmi (1 ≤ i ≤ k) the k-formula

φ(x1, . . . , xk) :=

k∧
i=1

(xi = τmi)

is k-complete over Γ as we have seen in example 3.8 and it is an element
of typeM(m1, . . . ,mk). Therefore the standard model of the natural numbers
〈N, . . . 〉 is atomic.

Example 3.12. Conisder Q := 〈Q, <〉 |= DLO and q1, . . . , qn in Q. The restric-
tion of < to {q1, . . . , qn} can be expressed by a n-complete formula similarly to
example 3.10. This n-formula is an element of typeQ(q1, . . . , qn), so this model
is atomic.

Lemma 3.13. Let Γ be a complete theory of a countable language L, M :=
〈M, . . . 〉 be a countable atomic model of Γ and N := 〈N, . . . 〉 be an arbitrary
model of Γ. There exists an elementary embedding h : M ↪→ N.

Proof. Let {mi | i ∈ N+} be an enumeration of M . We will now inductively
construct h as an isomorphism between M and an elementary submodel N′ of
N.
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k = 1: Since M is atomic, typeM(m1) contains a 1-complete formula φ1(x1).
N |= Γ and Γ is complete, so there exists a n1 ∈ N such that N |= φ1(n1).

k → k + 1: Suppose we have m1, . . . ,mk in M and n1, . . . , nk in N and a
k-complete formula φk(x1, . . . , xk) such that

M |= φk(m1, . . . ,mk) and N |= φk(n1, . . . , nk).

typeM(m1, . . . ,mk+1) contains a (k + 1)-complete formula φk+1(x1, . . . , xk+1).
φk `Γ ∃xk+1φk+1, because φk ∈ typeM(m1, . . . ,mk+1) and so there exists a
nk+1 ∈ N such that N |= φk+1(n1, . . . , nk+1).

We check the Tarski-Vaught criterion for {nk | k ∈ N+} ⊆ N : Let k, l ∈ N+,
k < l and ψ(xl, x1, . . . , xk) a formula such that N |= ∃xlψ(xl, n1, . . . , nk).
Since for the k-complete formula φk from our inductive construction we have
N |= φk(n1, . . . , nk) it follows φk(x1, . . . , xk) `Γ ∃xlψ(xl, x1, . . . , xk) and there-
fore M |= ∃xlψ(xl,m1, . . . ,mk). If M |= ψ(mj ,m1, . . . ,mk) for some j ∈ N+,
then it follows easily that N |= ψ(nj , n1, . . . , nk).

By a similar argument we can see that the map mk 7→ nk is injective and re-
spects constant , function and relation symbols, which means it is an elementary
embedding.

Corollary 3.14. If A := 〈A, . . . 〉 and B := 〈B, . . . 〉 are countable atomic
models of a complete theory Γ, then A ' B.

Proof. We use the inductive construction in the proof of Lemma 3.13 combined
with a “Back and Forth” argument.

Let {ak | k ∈ N+} and {bk | k ∈ N+} be enumerations of A and B respec-
tively. Let φ1(x1) ∈ typeA(a1) be a 1-complete formula. There exists a j1 ∈ N
such that B |= φ1(bj1), because Γ is complete. This is the first step.

Suppose we already have ai1 , . . . , aik in A, bj1 , . . . , bjk in B and a k-complete
formula φk(x1, . . . , xk) sucht that A |= φk(ai1 , . . . , aik) and B |= φk(bj1 , . . . , bjk).If
k is odd, then let ik+1 be minimal in N distinct from i1, . . . , ik and

φk+1(x1, . . . , xk+1) ∈ typeA(ai1 , . . . , aik+1
)

a (k + 1)-complete formula. Then as before φk `Γ ∃xk+1φk+1 and so there is a
jk+1 ∈ N such that B |= φk+1(bj1 , . . . , bjk+1

).
If k is even, reverse the roles of ai1 , . . . , aik and bj1 , . . . , bjk . Like in the pre-

vious proof the map aik 7→ bjk is an elementary embedding. It is also surjective,
since in each step we choose the element with the smallest index which has not
occurred yet.

Definition. Let Γ be a theory of the language L and n ∈ N. A n-formula
ψ(x1, . . . , xn) is called completable over Γ if there exists a formula φ(x1, . . . , xn)
which is n-complete over Γ and φ `Γ ψ. In that case φ is also called a completion
of ψ over Γ.

We now come to a characterisation of countable complete theories which
have an atomic model.

Lemma 3.15. Let L be a countable language, Γ a consistent and complete
L-theory. Then the following are equivalent:

1. Γ has an atomic model.
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2. For every n ∈ N: Every n-formula ψ(x1, . . . , xn) consistent with Γ has a
completion over Γ.

Proof. • (1⇒ 2): Let M := 〈M, . . . 〉 be an atomic model of Γ and ψ(x1, . . . , xn)
a n-formula consistent with Γ. Since Γ is complete we have

Γ ` ∃x1, . . . ,∃xnψ(x1, . . . , xn)

and therefore ψ ∈ typeM(a1, . . . , an) for some a1, . . . , an in M . M is
atomic, therefore typeM(a1, . . . , an) contains a n-complete n-formula φ.
This means Γ is consistent with ψ ∧ φ, hence φ `Γ ψ.

• (2⇒ 1): We shall see two proofs of this direction.

Proof 1: We use the omitting types theorem: Let n ∈ N and define

Σn(x1, . . . , xn) := {¬φ(x1, . . . , xn) | φ is n-complete over Γ}.

For all n ∈ N, Σn is not isolated over Γ, because otherwise there was a
n ∈ N and a formula ψ(x1, . . . , xn) consistent with Γ such that

Γ ` (ψ → ¬φ),

for all φ(x1, . . . , xn) n-complete over Γ. But then according to our as-
sumption there is a n-complete φ such that φ `Γ ψ, hence ¬φ ∈ Σn and
φ `Γ ¬φ, a contradicion, because n-complete formulas are consistent with
Γ.
Since our language is countable, the ”Omitting Types Theorem” guaran-
tees the existence of a model M of Γ which omits all Σn. This means M
is atomic.

Proof 2: First, we show that there is an enumeration (ψn)n∈N+ of all
formulas with the following properties:

1. ψn is a n-formula.

2. If k ∈ N+ and θ is a k-formula in which the variable xk is free, then
there is a n ∈ N>k such that ψn = θ(xk/xn).

Start with an arbitrary enumeration of all formulas (ψ
(1)
n )n∈N+

, then de-

fine ψ
(2)
n := ψ

(1)
k , where k ∈ N minimal such that V arfree(ψ

(1)
k ) ⊆

{x1, . . . , xn}.
Let (pm)m∈N+ be an enumeration of all odd prime numbers. For n ∈ N>0

define ψn as follows:

Case 1: If n = (pm)d for some d ∈ N+, j ≤ m maximal such that xj is

free in ψ
(2)
m and can be substituted by xn, then ψn := ψ

(2)
m (xj/xn).

Case 2: If n = 2m, for some m > 0, then ψn := ψ
(2)
m .

Case 3: If neither case 1 nor case 2 applies to n, then ψn := ψ
(2)
n .

It is easy to see that (ψn)n∈N>0
has the desired properties. Now we

can inductively construct a countable atomic model: First, let N :=
〈N, . . . 〉 be an arbitrary model of Γ and observe that the formula θ1(x1) :=
(∃x1ψ1(x1)) → ψ1(x1) is consistent with Γ. Hence there is a complete
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1-formula φ1(x1) such that φ1 `Γ θ1. Since Γ is complete, we have
N |= φ1(a1), for some a1 ∈ N .

Suppose we have already found a1, . . . , ak in N and a k-complete formula
φk(x1, . . . , xk) such that N |= φk(a1, . . . , ak). The k + 1-formula

θk+1 := φk ∧ [(∃xk+1ψk+1(x1, . . . , xk+1))→ ψk+1(x1, . . . , xk+1)]

is consistent with Γ, otherwise φk `Γ ∃xk+1ψk+1(x1, . . . , xk+1) and
φk `Γ ¬ψk+1(x1, . . . , xk+1). Since the variable xk+1 is not free in Γ∪{φk},
this would imply φk `Γ ¬∃xk+1ψk+1(x1, . . . , xk+1), a contradiction. Let
φk+1(x1, . . . , xk+1) be k + 1-complete over Γ such that φk+1 `Γ θk+1. It
follows φk `Γ ∃xk+1φk+1(x1, . . . , xk+1). Hence there exists a ak+1 ∈ N
such that N |= φk+1(a1, . . . , ak+1).

Now define M := {ak | k ∈ N+} and check that M := 〈M, . . . 〉 is an
elementary submodel of N: Let s ∈ N+, {a1, . . . , as} ⊆M , and

N |= ∃xs+1θ(a1, . . . , as, xs+1),

for some s + 1-formula θ in which xs+1 is free. There exists a m ∈ N>s
such that θ = ψ

(2)
m . Thanks to the specific construction of (ψn)n∈N+

(property(2)), we have ψn = θ(x1, . . . , xs, xs+1/xn) and

φn `Γ φn−1 ∧ ((∃xnψn)→ ψn)

N |= φn(a1, . . . , an) ∧ ∃xnψn(a1, . . . , an), hence N |= θ(a1, . . . , as, an),
which verifies the Tarski-Vaught criterion for M . M is atomic, since for
every tuple (ai1 , . . . , ain) and k > max{i1, . . . , in} M |= φk(a1, . . . , ak).

Lemma 3.16. Let Γ be a complete theory of a countable language L. If Γ has
a countable ω-saturated model, then Γ has a countable atomic model.

Proof. Since Γ has a countable ω-saturated model, we know that for each n ∈ N
there are at most ℵ0 many complete n-types extending Γ.

Assume indirectly that Γ has no countable atomic model. Then, because of
Lemma 3.8, there is a n ∈ N and a n-formula φ0(x1, . . . , xn) consistent with Γ,
which cannot be completed. In particular, φ0 is not n-complete, hence there is
a ψ0(x), where x = (x1, . . . , xn), such that both

φ(0,1) := φ0 ∧ ψ0 and φ(0,0) := φ0 ∧ ¬ψ0

is consistent with Γ. We can use the same argument for φ(0,1) and φ(0,0): There
are four pairwise inconsistent formulas φ(0,1,1), . . . , φ(0,0,0) such that each of
them is consistent with Γ and:

φ(0,1,j) ` φ(0,1), for j ∈ {0, 1}, as well as
φ(0,0,j) ` φ(0,0), for j ∈ {0, 1}.

This means that there is a binary tree T with root φ0, whose nodes are the
formulas φ(0,a1,...,an), where n ∈ N+ and ai ∈ {0, 1} for 1 ≤ i ≤ n. Each
formula implies its predecessors and each path from φ0 defines a set of formulas
consistent with Γ. Because of the compactness theorem, each branch of T is a
n-type consistent with Γ and can therefore be extended to a complete n-type
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which contains Γ. Furthermore, two distinct branches cannot be extended to
the same complete n-type, as the union of them is inconsistent. Since T has
2ℵ0 many branches, our assumption that Γ has no atomic model has led us to
a contradiction.

Remark. If a complete theory Γ has a countable atomic model, then it does
not necessarily have a countable ω-saturated model: N := 〈N, 0, S,+, ·, E,<〉 is
a countable atomic model of Th(N ), but there are continuum many complete
types extending this theory, as we will see later, so by theorem 3.7 it cannot
have a countable ω-saturated model.

We have already seen two examples of complete ℵ0-categorical theories,
namely DLO and the theory of infinite vector spaces over a finite field. Now we
have the necessary tools to characterise them.

Recall the bijective correspondence between complete n-types extending a
theory Γ and ultra filters on the Boolean algebra B(Γ,n) described in section 2.2.

Theorem 3.17. Let Γ be a complete theory with infinite models of a countable
language L. Then the following are equivalent:

1. Γ is ℵ0-categorical.

2. Γ has a countable model which is both atomic and ω-saturated.

3. For every n ∈ N there are only finitely many ultrafilters on B(Γ,n).

4. B(Γ,n) is finite for every n ∈ N.

5. Every complete n-type extending Γ is isolated for every n ∈ N.

Proof. • (1 ⇒ 2): Let M := 〈M, . . . 〉 be a countable model of Γ. Since L
is countable and Γ is ℵ0-categorical and complete, every complete n-type
extending Γ is realised in M for every n ∈ N. Furthermore, |M |n = ℵ0 for
all n ∈ N+, hence there are at most ℵ0 many such types. With the help of
theorem 3.7 it follows that M is ω-saturated. Using Lemma 3.16 we see
that M is also atomic.

• (2 ⇒ 3): Let M be a countable atomic and ω-saturated model of Γ.
Again, because of theorem 3.7 there are at most ℵ0 many complete types
in x1, . . . , xn extending Γ. We now show indirectly that there are only
finitely many such types:

Let (tm)m∈N be a bijective enumeration of all complete n-types in x1, . . . , xn
extending Γ. Each of these types is realised in the ω-saturated model
M which is also atomic, hence for all m ∈ N there exists a n-formula
φm(x1, . . . , xn) ∈ tm which is n-complete over Γ. If we choose one such
φm for each tm, we can consider the infinite set

S := {¬φm | m ∈ N}.

We claim that S is consistent with Γ: Let k ∈ N, then φk+1 `Γ ¬φi
for all i ≤ k, otherwise tk+1 = tj for some j ≤ k, but we assumed our
enumeration to be bijective. Since φk+1 is consistent with Γ, it follows that
{¬φ1, . . . ,¬φk} is consistent with Γ. Using the compactness theorem, we
conclude S is consistent with Γ and therefore contained in tm for some
m ∈ N. This would imply φm `Γ ¬φm, a contradiction.
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• (3 ⇒ 4): Let n ∈ N and define Tn as the set of all complete n-types in
x1, . . . , xn extending Γ. Now for a n-formula ψ let Aψ := {t ∈ Tn | ψ ∈ t}.
Since Tn is finite, there are only finitely many sets of the form Aψ. The
key observation is that for arbitrary n-formulas φ, ψ with free variables in
{x1, . . . , xn} the following holds

Aφ ⊆ Aψ ⇔ φ `Γ ψ.

Proof of the observation (⇒): LetM := 〈M, . . . 〉 be a model of Γ and
a1, . . . , an ∈M such that M |= φ(a1, . . . , an). Then we have

φ ∈ typeM(a1, . . . , an) ∈ Aφ ⊆ Aψ,

hence M |= ψ(a1, . . . , an).

(⇐): This follows immediately since complete types are deductively closed.

Hence Aφ = Aψ iff Γ ` (φ ↔ ψ). This means that there is a k ∈ N+ and
n-formulas φ1, . . . , φk such that for every n-formula ψ Aψ = Aφj , for some
j ≤ k.

• (4 ⇒ 5): Let n ∈ N, An := {[ψ1], . . . , [ψm]} be the set of all equivalence
classes of B(Γ,n) and U ⊆ An an ultrafilter. Since An is finite, so is U ,
hence U is principal, that is for some n-formula φ consistent with Γ (i.e.
[φ] 6= 0 in B(Γ,n)) we have

U = {[ψ] ∈ An | [φ] ≤ [ψ]}.

Using the correspondence between ultrafilters on B(Γ,n) and complete n-
types extending Γ, we see that for every n-formula ψ either [φ] ≤ [ψ],
which means φ `Γ ψ or [φ] ≤ −[ψ] = [¬ψ], which means φ `Γ ¬ψ. This
proves that the corresponding type which contains the n-complete formula
φ is isolated.

• (5 ⇒ 1): If M := 〈M, . . . 〉 is an arbitrary countable model of Γ, n ∈ N+

and a1, . . . , an are in M , then typeM(a1, . . . , an) is a complete n-type
extending Γ and therefore contains a n-complete formula over Γ. This
means that M is atomic. Using corollary 3.14, we see that all countable
models are isomorphic, hence Γ is ℵ0-categorical.

With this we can now prove “Vaught’s Never Two Theorem”:

Theorem 3.18. Let Γ be a complete theory with infinite models of a countable
language L. Then I(Γ,ℵ0) 6= 2.

Proof. Suppose there is such a theory and let A := 〈A, . . . 〉,B := 〈B, . . . 〉 be
two non isomorphic countable models of Γ.

Since Γ is not ω-categorical,theorem 3.17 implies that B(Γ,n) is infinite for
some n ∈ N+ which means that there is a sequence (ψm)m∈N of n-formulas such
that whenever i, j ∈ N and i 6= j we have

Γ 0 (ψi ↔ ψj).

25



This is equivalent to
Γ ` ¬[∀x1 . . . ∀xn(ψi ↔ ψj)],

for i 6= j in N, because Γ is complete.
Every complete n-type extending Γ is realised in A or B, hence there are

at most ℵ0 many such types. It follows from theorem 3.7, that one of the two
models, say B, is ω-saturated. Clearly B cannot be atomic, because then by
theorem 3.17 Γ would be ω-categorical. Therefore by Lemma 3.16 A is atomic.
Let m ∈ N+ and E := {b1, . . . , bm} ⊆ B such that typeB(b1, . . . , bm) does not
contain a m-complete formula over Γ. Because of Proposition 3.4 the L(E)-
structure BE is a ω-saturated model of Th(BE). BE is not atomic, because
otherwise using theorem 3.17 and the completeness of Th(BE) we can conclude
that Th(BE) is ω-categorical and therefore for some i 6= j in N

Th(BE) ` ∀x1 . . . ∀xn(ψi ↔ ψj).

This is a contradiction, since Γ ⊆ Th(BE).
Now let C be a countable atomic model of Th(BE) and define C := C � L.

Clearly, C |= Γ and C is not ω-saturated, because otherwise by Proposition 3.4
C is atomic and ω-saturated and Th(BE) is ℵ0-categorical.
C is not atomic either, because since C |= Th(BE) we have

typeC(c
C
b1 , . . . , c

C
bm) = typeB(b1, . . . , bm).

So we have found a countable model of Γ which is neither atomic nor ω-
saturated, therefore it is neither isomorphic to A nor to B which is a con-
tradiction to our assumption.

3.3 Theories with Several Models

In this section we will for each n ∈ N>2 give an example of a complete theory
with exactly n isomorphism classes of countable models. First we prove a useful
result:

Lemma 3.19. (The Many Automorphisms Lemma) Let L be an arbi-
trary first order language, C := 〈C, . . . 〉 a L-structure and A ⊆ C. Then A
is the universe of an elementary submodel of C if for every finitely generated
sublanguage L0 of L, for every finite set T ⊆ A and for every b ∈ C there is an
automorphism π : C � L0 7→ C � L0 with the following properties:

1. π(a) = a, for all a ∈ T .

2. π(b) ∈ A.

Proof. We check the Tarski-Vaught criterion for A: Let T ⊆ A be finite and
φ(y, z) be a L-formula, where z is a possibly empty vector of variables. If

C |= φ(b, a),

where b ∈ C and a is a vector of elements of T corresponding to z, then clearly
C � L0 |= φ(b, a), where L0 is the sublanguage of L generated by the symbols
occurring in φ. By assumption there is an automorphism π : C � L0 7→ C � L0

satisfying the two conditions and therefore C |= φ(π(b), a).
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Remark. Lemma 3.19 provides a sufficient condition for identifying a subset
as the universe of an elementary submodel, but this condition is not necessary:
Consider N := 〈N, 0, S,+, ·, <〉, the standard model of the theory of natural
numbers. As we have demonstrated before N is an atomic model of Th(N ).
Let C := 〈C, . . . 〉 be a nonstandard model of Th(N ), S := {(Sn0)C | n ∈ N}
and c ∈ C \ S a nonstandard number. Then S is the universe of an elementary
submodel of C, but for every automorphism π : C 7→ C we have

π((Sn0)C) = (Sn0)C ,

hence π(c) /∈ S.

Example 3.20. A Theory with 3 Models:
The idea of this example was first introduced by Andrzej Ehrenfeucht. Let
L := 〈(cj)j∈N+

, <′〉 be a first order language. The L-theory DLO+ is defined
as DLO∪{cj+1 < cj | j ∈ N+}, where DLO is the set of sentences described in
example 1.1. We can think of (cj)j∈N+ as a strictly decreasing sequence. In any
model of this theory we can distinguish three cases: 1. The sequence has no
lower bound. 2. It has an infimum. 3. It has a lower bound, but no infimum.
This observation leads us to the following candidates:

1. M1 := 〈Q+, <, (cj 7→ 1
j )j∈N+

〉

2. M2 := 〈Q, <, (cj 7→ 1
j )j∈N+

〉

3. M3 := 〈Q \ {0}, <, (cj 7→ 1
j )j∈N+〉

Claim 1: These three L-structures are pairwise nonisomorphic models ofDLO+.

Proof. It is easy to check that Mi |= DLO+, for 1 ≤ i ≤ 3.

• M1 � M2: If h : M2 7→ M1 is a homomorphism, then for all j ∈ N+

h(0) < 1
j , since M2 |= (x1 < cj)(0). This is a contradiction, because

h(0) > 0.

• M1 � M3: If h : M3 7→ M1 is a homomorphism and q ∈ Q<0, then
h(q) > 0 and therefore M1 |= (cj < x1)(h(q)) for some j ∈ N+ which is
incompatible with M3 |= ¬(cj < x1)(q) for all j ∈ N+.

• M2 �M3: If h :M2 7→ M3 is an isomorphism, then consider a := h(0):
If a > 0, we can derive a contradiction like in the two previous arguments.
If a < 0, then a < a

2 < 0, hence 0 < h−1(a2 ),but then

M2 |= (cj < x1)(h−1(a2 )) and M3 |= ¬(cj < x1)(a2 )

for some j ∈ N>0, a contradiction.

Claim 2: Every countable model of DLO+ is isomorphic to one of these
three models.
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Proof. Let M := 〈M, . . . 〉 be a countable model of DLO+, S := { 1
j | j ∈ N+},

T := {cMj | j ∈ N+} and h0 : S 7→ T defined by h0( 1
j ) := cMj . Clearly h0 is order

preserving and bijective. We will now inductively extend h0 to an isomorphism
between M and one of the given models depending on whether S has no lower
bound, it has an infimum or it has a lower bound but no infimum:

• (Case 1, T has no lower bound): Let {mk | k ∈ N+} and {qk | k ∈ N+} be
enumerations of Q+ \ S and M \ T respectively.

Suppose k ∈ N+ and hk−1 is a partial order preserving function from Q+

to M extending h0 such that dom(hk−1) \ S and ran(hk−1) \ T are finite.

If k is odd, then let q ∈ Q+ \ dom(hk−1) with minimal index. If 1 < q,
then since M |= DLO and {m ∈ ran(hk−1) | M |= (c1 < x1)(m)} is
finite, we can proceed similarly to the argument of example 1.1 and find a
m ∈ M \ ran(hk−1) with minimal index such that hk−1 ∪ {(q,m)} =: hk
is an order preserving function. Otherwise we have 1

j+1 < q < 1
j for some

j ∈ N+. Since {m ∈ ran(hk−1) | M |= (cj+1 < x1 < cj)(m)} is fintie,
using the fact that M |= DLO, we can extend hk−1 to an order preserving
function hk similarily.
If k is even we take m ∈ M \ ran(hk−1) with minimal index and using
the fact that M1 |= DLO, we find a q ∈ Q \ dom(hk−1) with minimal
index such that hk := hk−1 ∪ {(q,m)} is order preserving via a similar
case distinction. The function H :=

⋃∞
k=0 hk is an isomorphism between

M and M1.

• (Case 2, T has an infimum): First, the infimum is uniquely determined:
If u and u′ are infima of T , then without loss of generality u ≤ u′ in M,
but if u < u′, then by definition u is not an infimum.
Now let u := inf(T ) and define h′0 := h0 ∪ {(0, u)}. Similarly to the
first case, we start with enumerations {mk | k ∈ N+} and {qk | k ∈ N+}
of Q \ (S ∪ {0}) and M \ (T ∪ {u}). Then, as in case 1, using a “Back
and Forth” argument, we inductively define a sequence of partial order
preserving functions (h′k)k∈N+

such that

1. dom(h′k) ⊆ Q and ran(h′k) ⊆M , for all k ∈ N.

2. h′i ⊆ h′j , for i < j.

3. dom(h′k) \ S and ran(h′k) \ T are finite for all k ∈ N.

In each step k ∈ N ,if k is odd, we take the minimal element q ∈ Q
we haven’t chosen yet, then we compare it to 0. If 0 < q, then either

1
j+1 < q < 1

j for somej ∈ N+ or 1 < q.Since M |= DLO, we can proceed
as in example 1.1 and find a minimal m ∈ M which has not been chosen
so far such that M |= (cj+1 < x1 < cj)(m) or M |= (c1 < x1)(m)
respectively. Similarily if q < 0. Then h′k+1 := h′k ∪ {(q,m)} will be an
order preserving extension.

If k is even we reverse the roles of q and m (“Back and Forth”).

H :=

∞⋃
k=1

h′k

is the desired isomorphism.
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• (Case 3, T has a lower bound but no infimum): Similarily to the previous
cases we construct an isomorphism between M and M3.

Claim 3: M1 is an elementary submodel of both M2 and M3.

Proof. We use Lemma 3.19 for the proof:

• M1 ≺ M2: Let A ⊆ Q+ be finite, b ∈ Q≤0 and L0 := 〈<, c1, . . . , cn〉,
the cases where L0 is generated from a smaller set are even easier. Define
a := 1

2 ·min{min(A), 1
n}, if A = ∅, then a := 1

2n and h : Q 7→ Q

h(q) :=


q + a− b, q ≤ b
a

2a−b · q + 2a · (a−b)
2a−b , b < q ≤ 2a

q, else

Clearly, h : M2 � L0 7→ M2 � L0 is bijective, order preserving and
respects the constant symbols c1, . . . , cn, hence it is an automorphism.
Furthermore h(b) > 0.

• M1 ≺ M3: Let A, L0 and a be as before and b ∈ Q<0. Since Q<b and
Q<a \ {0} are models of DLO, there is an order preserving bijection h0

between these two sets (see example 1.1). Using the same argument, there
is an order preserving bijection h1 : (Q\{0})∩(b, 2a) 7→ (Q\{0})∩(a, 2a).
Then h : Q \ {0} 7→ Q \ {0} defined by

h(q) :=


h0(q), q < b

a, q = b

h1(q), b < q < 2a

q, else

is an automorphism on M3 � L0 such that h(b) > 0.

It follows directly from claims 2 and 3 and the theorem of Löwenheim-
Skolem, that DLO+ is complete. Since M1,M2,M3 represent all countable
models of this theory, it follows with theorem 3.7 that one of them is atomic
and another one is ω-saturated. We have proven in claim 1, that neither M2

nor M3 can be embedded into M1, therefore using lemma 3.13 we conclude
that M1 is atomic.
Let A := {0} and t(x1) := {c0 < x1}∪{x1 < cj | j ∈ N+}. t(x1) is a 1-type over
A for the structure M2, since every finite subset of t(x1) is realised in (M2)A,
but clearly the whole type is not realised in (M2)A, as ( 1

j ) −→ 0 for j → ∞.
Hence M3 is ω-saturated.

We can use this example to show, that for every n ∈ N>2 there is a countable
language L and a complete L-theory with exactly n countable models up to
isomorphism, but first we prove the following

Fact. Let D ⊆ Q be dense, that is for all d1 < d2 in Q there is a e ∈ D such
that d1 < e < d2. Then there is a partition of D into countably many dense
subsets.
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Proof. Let (tn)n∈N be an enumeration of D×N×N and (dn)n∈N an enumeration
of D, which exist since |D| = ℵ0. We inductively define a function

H : D × N× N 7→ D.

n = 0: If t0 = (z,m0, k0), set H(t0) := z.
n→ n+ 1: Suppose we have already defined H(ti) for 1 ≤ i ≤ n. If tn+1 =

(z′,m, k), then H(tn+1) := dj , where j ∈ N minimal such that

1. dj 6= H(ti), for 1 ≤ i ≤ n.

2. |z′ − dj | < 1
2k

.

Since D is dense in Q we can always define H(tn+1), given H(t1), . . . ,H(tn).
For m ∈ N define Dm := H(D × {m} × N) . Then Dm is dense in Q for all
m ∈ N, Di ∩Dj = ∅, for i 6= j and D =

⋃∞
m=0Dm.

Now let n ∈ N>3 and the language L := 〈(cj)j∈N+
;P1, . . . , Pn−2;<〉, where

cj is a constant symbol for j ∈ N+, P1, . . . , Pn−2 are 1-ary relation symbols and
< is a 2-ary relation symbol. The L-theory DLO(n) is defined as

DLO+ ∪ {P1cj | j ∈ N+} ∪ {σ(n)} ∪ {τ(n)},

where

σ(n) := ∀x1[(P1x1 ∨ · · · ∨ Pn−2x1) ∧ (

n−2∧
j=1

[Pjx1 → (

n−2∧
i=1
i6=j

¬Pix1)])]

and

τ(n) := ∀x1∀x2[x1 < x2 → (

n−2∧
j=1

∃x3[Pjx3 ∧ (x1 < x3 < x2)])].

In essence DLO(n) describes a set with a dense linear order and a strictly de-
creasing sequence partitioned into n− 2 dense subsets. Similar to our study of
DLO+ we can distinguish n cases for any model M := 〈M, . . . 〉 of DLO(n).

• Case 1: The sequence (cMj )j∈N+ has no lower bound.

• Case 2: The sequence converges to an element of PM
1 .

• ...

• ...

• Case (n− 1): The sequence converges to an element of PM
n−2.

• Case n: The sequence has a lower bound, but does not converge.

We will now show how to construct n representative countable models of that
theory. First, notice that D := Q \ ({0} ∪ { 1

j | j ∈ N+}) is dense in Q. Hence

there is a partition of D into n − 2 many dense subsets D′1, . . . , D
′
n−2. Now

define D1 := D′1 ∪ { 1
j | j ∈ N+} and Dj := D′j , for 2 ≤ j ≤ n− 2. This gives us

a partition of Q\{0} into n−2 many dense subsets. Now consider the following
models all of which have a subset of Q as universe, the 2-ary relation symbol
”<” is interpreted as the canonical linear order and the constant symbol ck is
interpreted as 1

k for k ∈ N+ in all of them.
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• M1 := 〈M1, . . . 〉, where M1 := Q+, PM1
i := Di ∩Q+, for 1 ≤ i ≤ n− 2.

• For 2 ≤ j ≤ n− 1,Mj := 〈Mj , . . . 〉, where Mj := Q and for 1 ≤ i ≤ n− 2

P
Mj

i :=

{
Di ∪ {0}, i = j − 1

Di, else.

• Mn := 〈Mn, . . . 〉, where Mn := Q\{0} and PMn
i := Di, for 1 ≤ i ≤ n−2.

We can use basically the same arguments of our study of DLO+ (Claim 1) in
order to show that these n L-structures are pairwise nonisomorphic models of
DLO(n).

Modifying the proof of Claim 2, we see that if M is a model of DLO(n) and
1 ≤ j ≤ n such that case j holds in M, then M ∼=Mj . With respect to the back
and forth construction of the isomorphism, we have to make sure that the 1-ary
relation symbols are respected, which is possible, since they are interpreted as
dense subsets of the universe.

Similarily to claim 3 we can prove M1 ≺ Mj and that there is no homo-
morphism of models Mj 7→ M1 for 2 ≤ j ≤ n. It follows that the theory is
complete and M1 is atomic.

For 2 ≤ j ≤ n− 1,Mj is not ω-saturated: Define A := {0} and consider the
1-type t(x1) := {(c0 < x1) ∧ P1x1} ∪ {x1 < ck | k ∈ N+} over A which is not
realised in (Mj)A. Hence Mn is ω-saturated.

Example 3.21. A Theory with ℵ0 many Models
Let L := 〈(ck)k∈N〉, Γω := {ci 6= cj | i, j ∈ N, i 6= j} and B := {2n | n ∈ N}. For
j ∈ ω + 1 define

Aj :=


B, j = 0

B ∪ {2m− 1 | m ∈ N, 1 ≤ m ≤ j}, j ∈ N+

N, j = ω

and Mj := 〈Aj , . . . 〉, where c
Mj

k := 2k, for k ∈ N. Clearly, Mj |= Γω for all
j ∈ ω + 1. If M := 〈M, . . . 〉 is an arbitrary countable model of Γω, then for

j := |M \ {cMk | k ∈ N}|

we have j ∈ ω + 1 and M ∼= Mj . The isomorphism is straight forward: First,
define h0 : B 7→ {cMk | k ∈ N} by

h0(2n) := cMn

and let h1 : Aj \ B 7→ M \ {cMk | k ∈ N} be any bijection. Then H :Mj 7→M
is an isomorphism, where

H(x) :=

{
h0(x), x ∈ B
h1(x), x ∈ Aj \B

By applying Lemma 3.19(Many Automorphisms Lemma), it is easy to prove
that Mi ≺ Mj , for all i, j ∈ ω + 1 and i ≤ j, hence Γω is complete. Clearly,
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Mj 6↪→ Mi, for j > i, as any embedding g : Mj 7→ Mi is the identity when
restricted to B and there is no injetion from Aj \B into Ai \B.

This also means that the binary relation “≺”(is elementary submodel of)
induces a well order on the set of isomorphism classes of countable models of
Γω with the order type ω+ 1. Notice that this is also the case for ℵ0-categorical
theories and DLO+ with the order types 1 and 3, but not for the theories
DLO(n) where n > 3. It follows M0 is atomic and Mω is ω-satruated.

Example 3.22. A Theory with Continuum Many Models
Let N be the standard model of the theory of natural numbers and Γ := Th(N ).
Let (pn)n∈N be an enumeration of all prime numbers. For n ∈ N let φn(x1) :=
∃x2[(Sm0) ·x2 = x1], where m := pn. So in essence this 1-formula describes the
property of beeing divisible by the n-th prime number. Now for A ⊆ N consider
the following set of 1-formulas

TA := {φn | n ∈ A} ∪ {¬φn | n ∈ N \A}.

TA is consistent with Γ for every A ⊆ N, as every finite subset of it is realised
in N . Furthermore, if A 6= A′, then TA ∪ TA′ is inconsistent. Clearly

|{TA | A ⊆ N}| = 2ℵ0

and every TA is realised in a countable model of Γ. If κ is a cardinal and
(Mα)α<κ is a sequence of countable models of Γ, then for all α < κ

|{A ⊆ N | TA is realised in Mα}| ≤ ℵ0,

since every element of the universe of a model realises exactly one of these types.
Hence

|{A ⊆ N | ∃α < κ such that TA is realised in Mα}| ≤ κ · ℵ0 = max{κ,ℵ0}.

It follows, that if each TA is realised in some Mα, then κ ≥ 2ℵ0 . We conclude
that Γ has continuum many countable models up to isomorphism.

The continuum hypothesis (CH) states that 2ℵ0 = ℵ1, where ℵ1 is the least
cardinal greater ℵ0. Using the method of forcing, one can see that CH cannot
be decided within ZFC, that is by the Zermelo-Fraenkel axioms plus the axiom
of choice.

If we assume CH, then clearly there is no countable complete theory T such
that I(T,ℵ0) = κ, where κ is a cardinal and ℵ0 < κ < 2ℵ0 . Robert L. Vaught
proposed [6] that this is provable independently of CH.

Using methods of descriptive set theory, M. Morley proved [7], that for a
countable complete theory T

I(T,ℵ0) ∈ (ω + 1) ∪ {ℵ1} ∪ {2ℵ0}.

Definition. Let T be a complete theory of some first-order language L and κ
an infinite cardinal. T is called κ-stable if for every model M := 〈M, . . . 〉 of T
and every set A ⊆ M of cardinality κ the set of complete 1-types over A has
cardinality κ.

Vaught’s conjecture was proved for some special cases such as the theories
of trees [8] and varieties [9]. S. Shelah, L. Harrington and M. Makkai gave a
proof for ℵ0-stable theories [10], but as of now, in its general form, “Vaught’s
conjecture” is still an open problem.
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