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I cofin(S∞) is the set of cofinitary permutations in S∞, i.e.
permutations σ ∈ S∞ which have finitely many fixed points.

I A mapping ρ : A→ S∞ induces a cofinitary representation of
FA if the canonical extension of ρ to a homomorphism
ρ̂ : FA → S∞ is such that im(ρ̂) ⊆ {I} ∪ cofin(S∞).
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Evaluations
Let A be a set, s ⊆ A× ω × ω. For a ∈ A, let
sa = {(n,m) ∈ ω × ω : (a, n,m) ∈ s}. For a word w ∈WA, define
ew [s] ⊆ ω × ω recursively as follows:

I if w = a then (n,m) ∈ ew [s] iff (n,m) ∈ sa,

I if w = a−1 then (n,m) ∈ ew [s] iff (m, n) ∈ sa, and

I if w = aiu for some u ∈WA and i ∈ {1,−1} without
cancelation then

(n,m) ∈ ew [s] ⇐⇒ (∃k)eai [s](k,m) ∧ eu[s](n, k).
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I If sa is a partial injection for all a, then ew [s] is a partial
injection.

I We refer to ew [s] as the evaluation of w given s.

I By definition we let e∅[s, ρ] be the identity in S∞.
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Let A, X be disjoint and let ρ : X → S∞ be a function. For a word
w ∈WA∪X and s ⊆ A× ω × ω, define

(n,m) ∈ ew [s, ρ] iff (n,m) ∈ ew [s ∪ {(x , k, l) : ρ(x)(k) = l}].

If sa is a partial injection for a, then ew [s, ρ] is also a partial
injection, referred to as the evaluation of w given s and ρ.
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Forcing M.c.g.’s

Let A,X be disjoint non-empty sets and let ρ : X → S∞ induce a
cofinitary representation. Then QA,ρ is the poset of all (s,F )
where s ⊆ A× ω × ω is finite, sa is a finite injection for all a and
F ⊆ ŴA∪X is finite. Define (s,F ) ≤QA,ρ

(t,E ) iff

I s ⊇ t, F ⊇ E and,

I for all n ∈ ω and w ∈ E , if ew [s, ρ](n) = n then already
ew [t, ρ](n)↓ and ew [t, ρ](n) = n.

If X = ∅ then we write QA for QA,ρ. If A is clear from the context
we just write Q.
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I QA,ρ is Knaster.

I Let G be QA,ρ generic and let ρG : A ∪ X → S∞ be a
mapping extending ρ and such that for all a ∈ A

ρG (a) =
⋃
{sa : (∃F ∈ ŴA∪X ) (s,F ) ∈ G}.

Then ρG induces a cofinitary representation of A ∪ X
extending ρ.
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Lemma: No new fixed points

Let A and B be disjoint set and ρ : B → S∞ a function inducing a
cofinitary representation of FB . Then

I (“Domain extension”) For any (s,F ) ∈ QA,ρ, a ∈ A and
n ∈ ω such that n /∈ dom(sa) there are cofinitely many m ∈ ω
s.t. (s ∪ {(a, n,m)},F ) ≤ (s,F ).

I (“Range extension”) For any (s,F ) ∈ QA,ρ, a ∈ A and m ∈ ω
such that m /∈ ran(sa) there are cofinitely many n ∈ ω s.t.
(s ∪ {(a, n,m)},F ) ≤ (s,F ).
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Definition: a-good words

Let a ∈ A and j ≥ 1. A word w ∈WA∪X is called a-good of rank j
if it has the form

w = akj uja
kj−1uj−1 · · · ak1u1 (1)

where ui ∈WA\{a}∪X \ {∅} and ki ∈ Z \ {0}, for 1 ≤ i ≤ j .
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Lemma: Evaluations again

Let w ∈ ŴA∪B and (s,F ) QA,ρ
ew [ρG ](n) = m for some n,m ∈ ω.

Then ew [s, ρ](n)↓ and ew [s, ρ](n) = m.

Proof:
By induction on | oc(w) ∩ A|. If no letter from A occurs, the
statement is true by definition of ρG . So suppose the claim holds
for words with at most k letters from A and let w be such that
|oc(w)∩A| = k + 1. For a contradiction, assume ew [s, ρ](n)↑, but
(s,F ) QA,ρ

ew [ρG ](n) = m. The word w can be written
w = w1w0 without cancelation where w0 is a-good and a does not
occur in w1.
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We can find s1 ⊆ {a} × ω × ω finite such that (s ∪ s1,F ) ≤ (s,F )
and such that n1 = ew0 [s ∪ s1, ρ](n) 6= ew1 [s, ρ]−1(m) if it is
defined. Since

(s,F ) QA,ρ
ew [ρĠ ](n) = m

and (s ∪ s1,F )  ew0 [ρĠ ](n) = n1 we must have

(s ∪ s1,F )  ew1 [ρĠ ](n1) = m.

By inductive hypothesis ew1 [s ∪ s1, ρ](n1) = m. Since a /∈ oc(w1)
we have ew1 [s, ρ](n1) = m, contradicting the choice of n1.

Vera Fischer Template iterations and maximal cofinitary groups



Maximal Cofinitary Groups
Good, σ-Suslin posets

Template Iterations

Cofinitary representations
The partial order
Complete Embeddings

Proposition

Let G be QA,ρ-generic. Then ρG : A ∪ B → S∞ induces a
cofinitary representation ρ̂G : FA∪B → S∞ such that ρ̂G �FB = ρ̂.

Proof:
For each a ∈ A, n ∈ ω, let
Da,n = {(s,F ) ∈ QA,ρ : (∃m)(a, n,m) ∈ s} and

Ra,n = {(s,F ) ∈ QA,ρ : (∃m)(a,m, n) ∈ s}. For w ∈ ŴA∪B , let
Dw = {(s,F ) ∈ QA,ρ : w ∈ F}. Then Dw , Da,n and Ra,n are dense
and so ρG : A ∪ B → S∞ is a function as promised.

Vera Fischer Template iterations and maximal cofinitary groups



Maximal Cofinitary Groups
Good, σ-Suslin posets

Template Iterations

Cofinitary representations
The partial order
Complete Embeddings

It remains to see that ρG induces a cofinitary representation. Let
w ∈WA∪B . There are w ′ ∈ ŴA∪B , u ∈WA∪B such that
w = u−1w ′u. Since Dw ′ is dense ∃(s,F ) ∈ G such that w ′ ∈ F .
Suppose then ew ′ [ρG ](n) = n. Then there is some
(t,E ) ≤QA,ρ

(s,F ) in G forcing this. But then ew ′ [t, ρ](n) = n and
so by definition ew ′ [s, ρ](n) = n. Thus

fix(ew ′ [ρG ]) = fix(ew ′ [s, ρ]),

which is finite. Finally, fix(ew [ρG ]) = eu[ρG ]−1(fix(ew ′ [ρG ])), so
fix(ew [ρG ]) is finite.
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Notation:
For s ⊆ A× ω× ω and A0 ⊆ A, write s�A0 for s ∩A0 × ω× ω. For
a condition p = (s,F ) ∈ QA,ρ we will write p�A0 for (s�A0,F ), and

p |�A0 (“strong restriction”) for (s�A0,F ∩ ŴA0∪B).

Lemma: Strong embeddings

Let A0 ⊂ A, A1 = A\A0, p = (s,F ) ∈ QA,ρ. Then there is
t0 ⊆ (oc(s) ∩ A0)× ω × ω extending s�A0 such that

I (t0,F ∩ ŴA0∪B) ≤QA0,ρ
p |�A0 and

I whenever (t,E ) ≤QA0,ρ
(t0,F ∩ ŴA0∪B) then

(s ∪ t,F ) ≤QA,ρ
(s,F ), and so (s ∪ t,F ∪ E ) is a common

extension of (t,E ) and (s,F ).
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Proof:
Let {w1, . . . ,wn} = F \WA0∪B . Then wi = ui ,ki vi ,ki · · · ui ,1vi ,1ui ,0

where ui ,j ∈WA0∪B and vi ,j ∈WA1∪B are non-∅ except possibly
ui ,ki , ui ,0, each vi ,j starts and ends with a letter from A1. There is
t ⊆ A0 × ω × ω such that t0 ⊇ s�A0 and

I dom(eui,j [s ∪ t, ρ]) ⊇ ran(evi,j [s, ρ]),

I ran(eui,j [s ∪ t0, ρ] ⊇ dom(evi,j+1 [s, ρ]), and

I (s ∪ t0,F ) ≤QA,ρ
(s,F ).

Let (t,E ) ≤QA0,ρ
(t0,F ∩ ŴA0∪B). If ewi [s ∪ t, ρ](n)↓, then by

definition of t0 we have ewi [s ∪ t0, ρ](n)↓. Therefore if
ewi [s ∪ t, ρ](n) = n we have ewi [s ∪ t0, ρ](n) = n, and so since
(s ∪ t0,F ) ≤QA,ρ

(s,F ) it follows ewi [s, ρ](n) = n. Thus
(s ∪ t,F ) ≤QA,ρ

(s,F ) as required.
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Lemma: Strong Embedding

Let B,C ⊆ D, B ∩ C = A be given set and p ∈ QB,ρ. Then there
is a condition p0 ∈ QA,ρ such that whenever q0 ≤QC ,ρ

p0, then q0

is compatible in QD,ρ with p.

We say that QB,ρ has the strong embedding property and q0 is
called a strong reduction of p. If C = A, B = D then the above
gives in particular that QA,ρ is a complete suborder of QB,ρ.
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Lemma: Quotients
Let A0 ∩ A1 = ∅, A = A0 ∪ A1. Let G be QA,ρ-generic,
H = G ∩QA0,ρ. Then K = {(s�A1,F ) : (s,F ) ∈ G} is
QA1,ρH -generic over V [H] and ρG = (ρH)K .
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Proof:
Let D ⊆ QA1,ρH be dense, D ∈ V [H]. Define
D ′ = {p ∈ QA,ρ : p |�A0 QA0,ρ

p�A1 ∈ Ḋ} and let p0 ∈ H forces
“D is dense”. We claim that D ′ is dense below p0 (in QA,ρ.) Let
(s,F ) = p ≤QA,ρ

p0. There is p0 ≤QA0,ρ
p |�A0 such that for any

p1 ≤QA0,ρ
p0, p1 is compatible with p. Thus we can find

q = (s0,F0) ∈ QA1,ρH and (t,E ) ≤QA0,ρ
p0 such that

(t,E ) QA0,ρ
q̇ ∈ Ḋ ∧ q̇ ≤QA1,ρḢ

ṗ�A1.

But then (s0 ∪ t,F0) ≤QA,ρ
(s�A1 ∪ t,F ), and so

(s0 ∪ t,F0 ∪ E ) ≤QA,ρ
(s,F ). Since clearly (s0 ∪ t,F0 ∪ E ) ∈ D ′,

this shows that D ′ is dense below p0. Now, since p0 ∈ G it follows
that there is q′ ∈ D ′ ∩ G . In V [H] it then holds that q′�A1 ∈ D,
which shows that K ∩ D 6= ∅.
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Theorem
Let |A| > ℵ0 and G be a QA,ρ-generic over V . Then im(ρG ) is a
maximal cofinitary group in V [G ].

Proof
Let z /∈ X ∪ A, where ρ : X → S∞. Suppose there in V [G ] there is
σ ∈ cofin(S∞) such that ρ′G : A ∪ X ∪ {z} → S∞ defined by
ρ′G �X ∪ A = ρG , ρ′G (z) = σ induces a cofinitary representation.
Let σ̇ be a name for σ. Then there is A0 ⊆ A countable so that σ̇
is a QA0,ρ-name and so σ ∈ V [H], where H = G ∩QA0,ρ.
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Let a1 ∈ A \ A0 and let K be defined as in the previous Lemma.
Note that for every N ∈ ω

Dσ,N = {(s,F ) ∈ QA1,ρH : (∃n ≥ N)sa1(n) = σ(n)}

is dense in QA1,ρH and so in V [H][K ]

∃∞n((ρH)K (a1)(n) = σ(n)).

However (ρH)K = ρG , which contradicts that ρ′G induces a
cofinitary representation.
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Definition: L
L consists of pairs (σ, φ) such that σ ∈ <ω(<ω[ω]), φ ∈ ω(<ω[ω])
such that σ ⊆ φ, ∀i < |σ|(|σ(i)| = i) and ∀i ∈ ω(|φ(i)| ≤ |σ|).
The extension relation is defined as follows: (σ, φ) ≤ (τ, ψ) if and
only if σ end-extends τ and ∀i ∈ ω (ψ(i) ⊆ φ(i)).

I A slalom is a function φ : ω → [ω]<ω such that
∀n ∈ ω(|φ(n)| ≤ n). A slalom localizes a real f ∈ ωω if there
is m ∈ ω such that ∀n ≥ m(f (n) ∈ φ(n)).

I L adds a slalom which localizes all ground model reals.
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I add(N ) is the least cardinality of a family F ⊆ ωω such that
no slalom localizes all members of F

I cof(N ) is the least cardinality of a family Φ of slaloms such
that every real is localized by some φ ∈ Φ.

I ag ≥ non(M).

In our intended forcing construction cofinally often we will force
with the partial order L, which using the above characterization
will provide a lower bound for ag .
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Definition: σ-Suslin
Let (S,≤S) be a Suslin forcing notion, S ⊆ <ωω× ωω. We say that
S is n-Suslin if whenever (s, f ) ≤S (t, g) and (t, h) is a condition in
S such that

h�n · |s| = g�n · |s|

then (s, f ) and (t, h) are compatible. A forcing notion is called
σ-Suslin, if it is n-Suslin for some n.
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I If S is n-Suslin and m ≥ n, than S is also m-Suslin.

I Every σ-Suslin forcing notion is σ-linked and so has the
Knaster property.

I Hechler forcing H is 1-Suslin, localization L is 2-Suslin.
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Definition: Nice name for a real
Let B be a partial order and y ∈ B. For each n ≥ 1 let Bn be a
maximal antichain below y . We will say that the set
{(b, s(b))}b∈Bn,n≥1 is a nice name for a real below y if

1. whenever n ≥ 1, b ∈ Bn then s(b) ∈ nω

2. whenever m > n ≥ 1, b ∈ Bn, b′ ∈ Bm and b, b′ are
compatible, then s(b) is an initial segment of s(b′).

We can assume that all names for reals are nice and abusing
notation we will write ḟ = {(b, s(b))}b∈Bn,n∈ω.
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Lemma: Canonical Projection of a name for a real

Let A be a complete suborder of B, y ∈ B and x a reduction of y
to A. Let ḟ = {(b, s(b))}b∈Bn,n≥1 be a nice name for a real below
y . Then there is ġ = {(a, s(a))}a∈An,n≥1, a A-nice name for a real
below x , such that for all n ≥ 1, for all a ∈ An, there is b ∈ Bn
such that a is a reduction of b and s(a) = s(b).

Whenever ḟ , ġ are as above, we will say that ġ is a canonical
projection of ḟ below x .

Vera Fischer Template iterations and maximal cofinitary groups



Maximal Cofinitary Groups
Good, σ-Suslin posets

Template Iterations

Localization
Good σ-Suslin posets

Definition: Good Suslin
Let S be a Suslin forcing notion, S ⊆ <ωω × ωω. Then S is said to
be good if whenever A is a complete suborder of B, x ∈ A is a
reduction of y ∈ B and ḟ is a nice name for a real below y such
that y B (š, ḟ ) ∈ Ṡ for some s ∈ <ωω, there is a canonical
projection ġ of ḟ below x such that x  (š, ġ) ∈ Ṡ.
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D and L are good σ-Suslin forcing notions.
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I Let (L,≤) be a linearly ordered set, x ∈ L. Then
Lx := {y ∈ L : y < x}.

I If L0 ⊆ L and A ⊆ L, then define the L0-closure of A as
follows:

clL0(A) = A ∪
⋃
x∈A

Lx ∩ L0.
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Definition: Template

A template is a tuple T = ((L,≤), I, L0, L1) where L = L0 ∪ L1,
L0 ∩ L1 = ∅, (L,≤) is a linear order, I ⊆ P(L), such that

I I is closed under finite intersections and unions, ∅, L ∈ I.

I If x , y ∈ L, y ∈ L1 and x < y then ∃A ∈ I(A ⊆ Ly ∧ x ∈ A).

I If A ∈ I, x ∈ L1\A, then A ∩ Lx ∈ I.

I {A ∩ L1 : A ∈ I} is well-founded when ordered by inclusion.

I All A ∈ I are L0-closed.
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I Define Dp : I → ON by letting Dp(A) = 0 for A ⊆ L0 and

Dp(A) = sup{Dp(B) + 1 : B ∈ I ∧ B ∩ L1 ⊂ A ∩ L1}.

Let Rk(T ) = Dp(L).

I For A ⊆ L let

TA = ((A,≤), I�A, L0 ∩ A, L1 ∩ A),

where I�A = {A ∩ B : B ∈ I}. If A ∈ I then
Rk(TA) = Dp(A).

I For x ∈ L let Ix = {B ∈ I : B ⊆ Lx}.
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Definition: Iterating good σ-Suslin posets along a template
and adding m.c.g.

Let Q = QL0 the poset adding a m.c.g. with L0-generators, S good
σ-Suslin. P(T ,Q,S) is defined recursively:

If Rk(T ) = 0, then P(T ,Q,S) = QL0 . Let P(T ,Q, S) be defined
for all templates of rank < κ. Let Rk(T ) = κ and for all
B ∈ I(Dp(B) < κ) let PB = P(TB ,Q,S). Then

I P(T ,Q, S) consists of all P = (p,F p) where p is a finite
partial function with dom(p) ⊆ L, (p�L0,F

p) ∈ Q and if

xp
def
= max{dom(p) ∩ L1} is defined then ∃B ∈ Ixp such that

P |� Lxp = (p�Lxp ,F
p ∩ ŴLxp∩L0) ∈ PB , p(xp) = (špx , ḟ

p
x ), where

spx ∈ <ωω, ḟ p
x is a PB name for a real and

(P |� Lxp , p(xp)) ∈ PB ∗ Ṡ.

Vera Fischer Template iterations and maximal cofinitary groups



Maximal Cofinitary Groups
Good, σ-Suslin posets

Template Iterations

Templates
Iteration along a template
Isomorphism of names

Define Q ≤P P iff dom(p) ⊆ dom(q), (q�L0,F
q) ≤Q (p�L0,F

p),
and if xp is defined then either

I xp < xq and ∃B ∈ Ixq such that P |� Lxq ,Q |� Lxq ∈ PB and
Q |� Lxq ≤PB

P |� Lxq , or

I xp = xq and ∃B ∈ Ixq witnessing P,Q ∈ P, and such that

(Q |� Lxq , q(xq)) ≤PB∗Ṡ (P |� Lxp , p(xp)).
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Completeness of Embeddings Lemma

Let T = ((L,≤), I, L0, L1), let Q = QL0 be the poset for adding
m.c.g. with L0-generators, S be good σ-Suslin.

Let B ∈ I, A ⊂ B be closed. Then PB is a poset, PA ⊂ PB , every
P = (p,F p) ∈ PB has a canonical reduction P0 = (p0,F

p0) ∈ PA

such that

I dom(p0) = dom(p) ∩ A, F p0 = F p,

I sp0
x = spx for all x ∈ dom(p0) ∩ L1

I (p0�L0,F
p0) is a strong QA-reduction of (p�L0,F

p)

and whenever D ∈ I, B,C ⊆ D, C is closed, C ∩ B = A and
Q0 ≤PC

P0, then Q0 and P are compatible in PD .
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If A = C , D = B then PA is a complete suborder of PB .
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Transitivity:

If Rk(T ) = 0, then since P = QL0 clear. So assume the Lemma for
all templates of rank < α, and let Rk(T ) = α. Fix P0,P1,P2 ∈ P
such that P1 ≤P P0 and P2 ≤P P1, and assume that xp0 is defined.
Fix witnesses B1 ∈ Ixp1

and B2 ∈ Ixp2
to P1 ≤P P0 and P2 ≤P P1.

Since Dp(B1 ∪ B2) < α, by inductive hypothesis

PB1 ,PB2 l PB1∪B2 ,

and so we have Pi |� Lxp2
∈ PB1∪B2 for 0 ≤ i ≤ 2, and

P2 |� Lxp2
≤PB1∪B2

P1 |� Lxp2
≤PB1∪B2

P0 |� Lxp2
.

Thus by inductive hypothesis P2 |� Lxp2
≤PB1∪B2

P0 |� Lxp2
.
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If xp0 < xp2 then by definition P2 ≤P P0. So assume that
xp0 = xp2 . Then pi (xp2) is a PB1∪B2-name for 0 ≤ i ≤ 2. Since
PB1 ,PB2 l PB1∪B2 we must have that

I P1 |� Lxp2
PB1∪B2

p1(xp2) ≤Ṡ p0(xp2), and

I P2 |� Lxp2
PB1∪B2

p2(xp2) ≤Ṡ p1(xp2) and so

I P2 |� Lxp2
PB1∪B2

p2(xp2) ≤Ṡ p0(xp2).

Thus (P2 |� Lxp2
, p2(xp2)) ≤PB1∪B2

∗Ṡ (P0�Lxp2
, p0(xp2)) as required.
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PA ⊂ PB :

Let I be of rank α. Let A ⊂ B be closed, B ∈ I. Let R ∈ PA and
let x = xr . By definition there is Ā ∈ (I�A)x such that

R |� Lx ∈ PĀ and ḟ r
x is a PĀ-name.

By the properties of I there is B̄ ∈ IB,x such that Ā = B̄ ∩ A.
Then Rk(TB̄) < α and so by inductive hypothesis PĀ l PB̄ .
Therefore

R |� Lx ∈ PB̄ and ḟ r
x is a PB̄ -name.

That is R ∈ PB .
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Definition of p0(P ,A,B)

Let I be of rank α. Let A ⊂ B be closed, B ∈ I. Let
P = (p,F p) ∈ PB . We have to construct P0 = p0(P,A,B). By
definition there is B̄ ∈ IB,x such that

P̄ = P |� Lx = (p�Lx ,F
p ∩ ŴLx∩L0) ∈ PB . Let Ā = B̄ ∩ A. Then by

inductive hypothesis there is P̄0 = p0(P̄, Ā, B̄) = (p̄0,F
p̄0). Define

P0 = (p0,F
p0) as follows:

I p0�Lx = p̄0, p0�L\Lx = p�L\Lx ,

I If x /∈ A let p0(x) = p(x), and

I if x ∈ A let p0(x) be a canonical projection of p(x) below P̄0

(since S is a good Suslin, such projection exists).

I F p0 = F p ∩ ŴA.
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Strong embedding of P
Let D ∈ I, C closed such that C ∩ B = A, C ∪ B ⊆ D. Let
Q0 = (q0,F

q0) ≤PC
P0. We have to show that Q0 is compatible

with P (in PD).

Case x /∈ A:
Suppose x /∈ A. Then x /∈ C . Using the properties of I find
C̄ ∈ (I�C )x , D̄ ∈ Ix such that Ā = B̄ ∩ C̄ , B̄ ∪ C̄ ⊂ D̄ and

Q̄0 := Q0 |� Lx ≤PC̄
P0 |� Lx = P̄0.

Passing to an extension if necessary we can assume that Q̄0�L0 is a
strong QC̄ reduction of Q0�L0. Since P̄0 is a canonical reduction
of P̄ = P |� Lx , there is Q̄ = (q̄,F q̄) which is a common extension
of Q̄0 and P̄ in PD̄ .
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Define the common extension Q = (q,F q) as follows:

I q�Lx = q̄

I q(x) = p(x)

I q� dom(q0)\Lx = q0\Lx

I q� dom(p)\(dom(q0) ∪ L=
x ) = p� dom(p)\(dom(q0) ∪ L=

x )

I F q = F q0 ∪ F p
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Case x ∈ A:
Assume x ∈ A. Then x ∈ C . By the properties of I find
C̄ ∈ (I�C )x and D̄ ∈ Ix such that Ā = C̄ ∩ D̄, C̄ ∪ B̄ ⊆ D̄ and C̄
is a witness to Q0 |� L=

x ≤PC
P0 |� L=

x . Thus in particular

I Q̄0 = Q0 |� Lx ≤PC̄
P̄0 = P0 |� Lx , and

I Q̄0 PC̄
q0(x) ≤ p0(x) = p(x).

Passing to an extension if necessary we can assume that Q̄0�L0 is a
strong QC̄ -reduction of Q̄0�L0.
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Using the facts that S is good n-Suslin poset and that p0(x) is a
canonical projection of p(x) below P̄0 find T = (t,F t) extending
Q̄0 and P̄ in PD̄ such that for some nice name t(x) for a condition
in S below T ,

T = (t,F t) PD̄
t(x) ≤Ṡ q0(x), p(x).

Define the common extension Q = (q,F q) of Q0 and P as follows:

I q�Lx = t,

I q(x) = t(x)

I q� dom(q0)\Lx = q0\Lx

I q� dom(p)\(dom(q0) ∪ L=
x ) = p� dom(p)\(dom(q0) ∪ L=

x )

I F q = F q0 ∪ F p

Vera Fischer Template iterations and maximal cofinitary groups



Maximal Cofinitary Groups
Good, σ-Suslin posets

Template Iterations

Templates
Iteration along a template
Isomorphism of names

Lemma

I P(T ,Q, S) is Knaster.

I Let x ∈ L1, A ∈ Ix . Then the two-step iteration PA ∗ S
completely embeds into P.

I For any p ∈ P(T ,Q, S) there is countable A ⊆ L such that
p ∈ Pcl(A). If τ is a P-name for a real then there is a
countable A ⊆ L such that τ is a Pcl(A)-name.
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Lemma
Let P = P(T ,QL0 ,L) and let λ0 be a regular uncountable cardinal
such that λ0 ⊆ L1 (as an order), λ0 is cofinal in L, and Lα ∈ I for
all α < λ0. Then in V P, non(M) = λ0 and so ag ≥ λ0.
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Proof
Let G be P-generic and let φα be the slalom added in coordinate
α < λ0. Since λ0 is regular, uncountable and is cofinal in L, the
family 〈φα : α < µ〉 localizes all reals V [G ] (indeed any real must
appear in some V [G ∩ PLα ] for some α < λ0.) Thus cof(N ) ≤ λ0.
On the other hand, if F ⊆ ωω is a family of size < λ0 in V [G ],
then there must be some α < λ0 such that all reals of F already
are in V [G ∩ PLα ], and so φα localizes all reals in F . Thus
add(N ) ≥ λ0. Therefore non(M) = λ0 and so ag ≥ µ.
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Lemma
Let P = P(T ,QL0 ,L), L of uncountable cofinality, L0 cofinal in L.
Then P adds a maximal cofinitary group of size |L0|.

Proof:
Let G be P-generic, ρG : L0 → S∞ be defined as follows: for
x ∈ L0 let ρG (x) =

⋃
{spx : p ∈ G ∧ p�L0 = (sp,F p)}. Note that

ρG = ρG0 where G0 = G ∩ PL0 and so it induced a cofinitary
representation of FL0 . We claim that im(ρG ) is a m.c.g.

Otherwise, there are σ ∈ cofin(S∞) and b0 /∈ L0 such that
ρ′G : L0 ∪ {b0} → S∞, where ρ′G �L0 = ρG and ρ′G (b0) = σ, induces
a cofinitary representation. Let σ̇ be a P-name for σ. Then for
some countable A ⊆ L, σ̇ is a Pcl(A)-name. Since L0 is cofinal in L
and L has uncountable cofinality, there is x ∈ L0 such that
cl(A) ⊆ Lx and so Pcl(A) l PLx . Let H = G ∩ PLx .
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Claim
In V [H] the set Dσ,N consisting of all p ∈ P/H such that for some
n ≥ N(spx (n) = σ(n)) where p�L0 = (sp,F p)} is dense.

Proof:
Let p0 ∈ P/H. Thus p�L0 ∩ Lx ∈ H0 := G ∩ PL0∩Lx . The set
D0
σ,N,x = {p ∈ (QL0/QLx∩L0) : (∃n ≥ N)spx (n) = σ(n)} is dense in

V [H0] and so ∃(t,E ) ≤ (sp0�L0\Lx ,F
p0) such that (t,E ) ∈ D0

σ,N,x

i.e. tx(n) = σ(n) for some n ≥ N. Define p1 ∈ P/H as follows:
p1�Lx = p0�Lx , p1�(L0\Lx) = (t,E ), p1�L1\Lx = p0�L1\Lx . Then
in V [H], p1 ≤ p0 and p1 ∈ Dσ,n.
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Then in V [G ] there are infinitely many n such that σ(n) = σx(n),
contradicting the fact that ρ′G induces a cofinitary
representation.
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Assume CH. Let λ =
⋃

n λn, where λn is a regular cardinal,
{λn}n∈ω increasing and λ0 ≥ ℵ2. Consider a template T = (L, I)
such that

I λ0 ⊆ L1, λ0 is cofinal in L, Lα ∈ I for all α < λ0.

I L has uncountable cofinality, L0 is cofinal in L.

Then in V P for P = P(T ,QL0 ,L)

I λ0 = non(M), and so λ0 ≤ ag

I there is a mcg of size λ and so ag ≤ λ.
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An isomorphism of names argument provides that in V P there are
no mcg of size < λ and so V P � ag = λ.
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Theorem (V.F., A. Törnquist)

It is consistent with the usual axioms of set theory that the minimal
size of a maximal cofinitary group is of countable cofinality.

Vera Fischer Template iterations and maximal cofinitary groups



Maximal Cofinitary Groups
Good, σ-Suslin posets

Template Iterations

Templates
Iteration along a template
Isomorphism of names

Thank you!
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Good words
Let ŴA consist of all w ∈WA such that either w = an for some
a ∈ A and n ∈ Z \ {0}, or w starts and ends with a different letter
(i.e. there are u ∈WA, a, b ∈ A, a 6= b, and i , j ∈ {−1, 1} such
that w = aiubj without cancelation). Any w ∈WA can be written

as w = u−1w ′u for some w ′ ∈ ŴA and u ∈WA.

Vera Fischer Template iterations and maximal cofinitary groups



Good words
Domain extension: proof

Lemma
Let s ⊆ A× ω× ω be finite such that sa is a partial injection for all
a ∈ A. Fix a ∈ A, and let w ∈WA∪X be a-good. Then for any
n ∈ ω \ dom(sa) and C ⊆ ω finite there are cofinitely many m ∈ ω
such that for all l ∈ ω

ew [s ∪ {(a, n,m)}, ρ](l) ∈ C iff ew [s, ρ](l)↓ ∧ ew [s, ρ](l) ∈ C
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Proof:
By induction on the rank j . Let w be an a-good word of rank 1,

w = ak1u1.

Assume first k1 > 0. Then pick m /∈ dom(a) and m /∈ C . Suppose
ew [s ∪ {(a, n,m)}, ρ](l) ∈ C but ew [s, ρ](l)↑. Then there is some
0 < i < k1 such that eaiu1

[s, ρ](l) = n. If i < k1 − 1 then
eai+2u1

[s ∪ {(a, n,m)}, ρ](l)↑, so we must have i = k1 − 1. But
then ew [s ∪ {(a, n,m)}, ρ](l) = m /∈ C , a contradiction.

The case k1 < 0 is analogous.
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Now let w be a-good of rank j > 1, w = akj uj w̄ , where w̄ is
a-good of rank j − 1. Let C ′ = e

u−1
j a
−kj [s, ρ](C ). By IH there is

I0 ⊆ ω cofinite such that for all m ∈ I0, all l ∈ ω we have that
ew̄ [s ∪ {(a, n,m)}, ρ](l) ∈ C ′ iff ew̄ [s, ρ](l)↓ ∧ ew̄ [s, ρ](l) ∈ C ′. Let
I1 ⊆ ω be cofinite such that for all m ∈ I1, and all l ∈ ω

eaki uj [s ∪ {(a, n,m)}, ρ](l) ∈ C

⇐⇒ eaki uj [s, ρ](l)↓ ∧ eaki uj [s, ρ](l) ∈ C .

Then let m ∈ I1 ∩ I0, and suppose ew [s ∪ {(a, n,m)}, ρ](l) ∈ C .
Then ew̄ [s ∪ {(a, n,m)}, ρ](l) ∈ C ′ and so ew̄ [s, ρ](l) ∈ C ′. It
follows that e

a
kj uj

[s ∪ {(a, n,m)}, ρ](ew̄ [s, ρ](l)) ∈ C and so we

have e
a
kj uj

[s, ρ](ew̄ [s, ρ](l)) = ew [s, ρ](l) ∈ C , as required.
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Proof: No New Fixed Points, Domain Extension
Sufficient to consider the case F = {w}. We may assume that
a ∈ oc(w) (otherwise - done). If w is a-good, then the statement
follows from the previous lemma. If w is not a-good, then write
w = uvak (without cancelation), where u ∈WA\{a}∪B , v is

a-good, and k ∈ Z. Let w̄ = vaku. Then w̄ is a-good, and so
∃I ⊆ ω cofinite such that

(∀m ∈ I )(s ∪ {(a, n,m)}, {w̄}) ≤PA,ρ
(s, {w̄}).
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We claim that (s ∪ {(a, n,m)}, {w}) ≤ (s, {w}) when m ∈ I .
Indeed, if ew [s ∪ {(a, n,m)}, ρ](l) = l then it is not hard to check
that

ew̄ [s ∪ {(a, n,m)}, ρ](evak [s ∪ {(a, n,m)}, ρ](l))

= evak [s ∪ {(a, n,m)}, ρ](l)

and so

ew̄ [s, ρ](evak [s ∪ {(a, n,m)}, ρ](l)) = evak [s ∪ {(a, n,m)}, ρ](l),

which implies ew [s, ρ](l) = l .
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