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Maximal Cofinitary Groups Cofinitary representations
The partial order

Complete Embeddings

> cofin(Sx) is the set of cofinitary permutations in S, i.e.
permutations o € Sy, which have finitely many fixed points.

> A mapping p: A — S« induces a cofinitary representation of
F 4 if the canonical extension of p to a homomorphism
p:Fa— S is such that im(p) C {/} U cofin(S).
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Evaluations
Let Abeaset,s CAXwxXw. Forae A, let
sa={(n,m)€wxw:(anm)e s} Foraword we Wj, define
ew[s] € w x w recursively as follows:

» if w = athen (n,m) € ey [s] iff (n,m) € s,,

» if w = a~! then (n,m) € e, [s] iff (m, n) € s,, and

» if w=a'u for some u € Wy and i € {1, -1} without

cancelation then

(n,m) € ey[s] <= (3k)e,i[s](k, m) A ey[s](n, k).
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Complete Embeddings

» If s, is a partial injection for all a, then e, [s] is a partial
injection.

» We refer to e, [s] as the evaluation of w given s.

» By definition we let gy[s, p] be the identity in Se.
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Let A, X be disjoint and let p : X — S, be a function. For a word
w € Wyux and s C A X w X w, define

(n,m) € ey[s, p] iff (n,m) € ex[sU{(x, k,I): p(x)(k) = 1}].

If s, is a partial injection for a, then ey [s, p] is also a partial
injection, referred to as the evaluation of w given s and p.
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Forcing M.c.g.'s
Let A, X be disjoint non-empty sets and let p : X — S, induce a
cofinitary representation. Then Q4 , is the poset of all (s, F)
where s C A X w X w is finite, s, is a finite injection for all a and
F C Waux is finite. Define (s, F) <q,, (t, E) iff

» sOt, FDOE and,

» for all n € w and w € E, if ey[s, p](n) = n then already

ew[t, p)(n){ and ey [t, p](n) = n.

If X =0 then we write Qa for Qa,. If Ais clear from the context
we just write Q.
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Complete Embeddings

> Qa,p is Knaster.

> Let G be Q4 , generic and let pg : AUX — S, be a
mapping extending p and such that for all a € A

pe(a) = J{sa: (3F € Waux) (s, F) € G}

Then pg induces a cofinitary representation of AU X
extending p.
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Lemma: No new fixed points

Let A and B be disjoint set and p : B — S, a function inducing a
cofinitary representation of Fg. Then

> ("Domain extension") For any (s, F) € Qa,, a € A and
n € w such that n ¢ dom(s,) there are cofinitely many m € w
s.t. (sU{(a,n,m)},F) <(s,F).

> ("Range extension”) For any (s,F) € Qa,, a€ Aand mecw

such that m ¢ ran(s;,) there are cofinitely many n € w s.t.
(su{(a,n,m)}, F) <(s,F).
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Definition: a-good words

Let ac Aand j > 1. A word w € Wy x is called a-good of rank j
if it has the form

w = akfujakf—luj_l s akl uy (1)

where u; € Wy (a3ux \ {0} and k; € Z\ {0}, for 1 < i <.
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Lemma: Evaluations again
Let w € Waug and (s, F) IFq,, ewl[pc](n) = m for some n,m € w.
Then ey[s, p](n){ and ey [s, p](n) = m.

Proof:

By induction on |oc(w) N A|. If no letter from A occurs, the
statement is true by definition of ps. So suppose the claim holds
for words with at most k letters from A and let w be such that
|oc(w) N A| = k + 1. For a contradiction, assume ey s, p](n) T, but
(s,F) IFq,, ewlpcl(n) = m. The word w can be written

w = wiwy without cancelation where wy is a-good and a does not
occur in wy.
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We can find s; C {a} X w X w finite such that (sU sz, F) < (s, F)
and such that ny; = ey, [s U s1, p](n) # ew[s, p] 1 (m) if it is
defined. Since

(s, F) Faa, ewlpgl(n) = m

and (s Usi, F) IF ewy[p](n) = n1 we must have
(sUst, F)IF ew[p](m) = m.

By inductive hypothesis ey, [s U s1, p](n1) = m. Since a ¢ oc(wy)

we have ey, [s, p](n1) = m, contradicting the choice of nj. O
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Proposition
Let G be Q4 ,-generic. Then pg : AU B — S5 induces a
cofinitary representation pg : Faus — Soo such that pg[Fg = p.

Proof:

For each a€ A, n € w, let

D.n={(s,F) € Qa,:(Im)(a,n,m) € s} and

Ran={(s,F) € Qa, : (Im)(a,m,n) € s}. For w € Waus, let

Dw ={(s,F) € Qa,:w € F}. Then Dy, D, and R, are dense
and so pg : AU B — S is a function as promised.
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It remains to see that p¢ induces a cofinitary representation. Let
w € Waug. There are w' € Wi g, u € Wy g such that

w = u~tw'u. Since D, is dense 3(s, F) € G such that w' € F.
Suppose then e, [pg](n) = n. Then there is some

(t,E) <qg, (s, F) in G forcing this. But then e,[t, p](n) = n and
so by definition e,[s, p](n) = n. Thus

fix(ew [p6]) = fix(ew[s, ),

which is finite. Finally, fix(ew[pc]) = eulpc] L (fix(ew[pc])), so
fix(ew[pc]) is finite. O
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Notation:

Fors C Axw xw and Ap C A, write s[Ag for sN Ag X w X w. For
a condition p = (s, F) € Qa,, we will write p[Ag for (s[Ao, F), and
p |l Ao (“strong restriction”) for (s[Ag, F N /V\Z\OLJB).

Lemma: Strong embeddings
Let Ao C A, Ay = A\Ag, p=(s,F) € Qa,. Then there is
to C (oc(s) N Ag) X w X w extending s[Ag such that
> (t07 Fn /VTVL\OUB) SQAO,p P ”AO and
> whenever (t, E) <q, , (to, F N moug) then
(sUt,F)<q,, (s,F), and so (sUt,FUE)is a common
extension of (t, E) and (s, F).
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Proof:

Let {Wl, ey W,,} = F\ WAOUB- Then w; = Ui k; Vi k; * Ui 1Vi1Uj0
where uj; € Wa,ug and v j € Wx,up are non-{) except possibly
Uik, Ujo, each v;; starts and ends with a letter from A;. There is
t C Ap X w X w such that tyg O s[Ap and

> dom(eui’j[s Ut,p]) 2 ran(evl.yj[s,p]),

> ran(ey, ;[s U to, p] 2 dom(ey, ;. [s, p]), and

> (sUto, F) SQA,p (s, F).
Let (t, E) <qg,,, (to, F N Waus). If ew[s U t, p](n) ], then by
definition of ty we have ey, [s U to, p](n)]. Therefore if
ew;[s U t, p](n) = n we have ey, [s U ty, p](n) = n, and so since
(sUto, F) <qg, (s, F) it follows ey,[s, p](n) = n. Thus
(sUt, F) <qy, (s, F) as required. O
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Lemma: Strong Embedding
Let B,C C D, BN C = A be given set and p € Qp,,. Then there
is a condition pg € Q4 , such that whenever qo <., po, then qo
is compatible in Qp , with p.

We say that Qg , has the strong embedding property and qo is
called a strong reduction of p. If C = A, B = D then the above
gives in particular that Q4 , is a complete suborder of Qp ,.
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Lemma: Quotients

Let AgNA; =0, A= AgUA;. Let G be Q4 ,-generic,
H=GnNQa,p Then K ={(s[A1,F):(s,F) € G}is
Qa, ,p,,-generic over V[H] and pg = (pH)k.
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Proof:

Let D C Qa,,p, be dense, D € V[H]. Define
D'={pecQa,:prlA FQa,, PIAL € D} and let pg € H forces
“D is dense”. We claim that D’ is dense below pg (in Qa,.) Let
(s,F)=p <qa, po- Thereis po <Qa,, P [ A such that for any
P1 <Qa,, Po, P1 is compatible with p. Thus we can find

q = (s0, Fo) € Qa, py and (t, E) <q,,, Po such that

(t,E)IFq,, §€EDAG <Qay.p, PIAL

But then (sp U t, Fo) <q,, (s[A1Ut, F), and so

(soUt,FoUE) <q,, (s, F). Since clearly (soUt, FoUE) € D,
this shows that D’ is dense below pg. Now, since pg € G it follows
that there is ¢’ € D' N G. In V[H] it then holds that ¢'[A; € D,
which shows that K N D # 0. O
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Theorem
Let |A] > Rg and G be a Q4 ,-generic over V. Then im(pg) is a
maximal cofinitary group in V[G].

Proof

Let z ¢ X U A, where p: X — S4. Suppose there in V[G] there is
o € cofin(Sx) such that plz : AUX U{z} — S defined by

PelX UA=pg, plc(z) = o induces a cofinitary representation.
Let & be a name for o. Then there is Ag C A countable so that ¢
is a Qay,p-name and so o € V[H], where H = G N Q4 p.
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Let a3 € A\ Ap and let K be defined as in the previous Lemma.
Note that for every N € w

Do = (s, F) € Qay pyy : (30 = N)saz,(n) = o(n)}
is dense in Q4, p,, and so in V[H][K]
3%n((pr)k (a1)(n) = o(n)).

However (pr)k = pg, which contradicts that pl; induces a
cofinitary representation. O
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Good o-Suslin posets

Definition: L

IL consists of pairs (o, ¢) such that o € <“(<“[w]), ¢ € “(=¥[w])
such that o C ¢, Vi < |o|(|o(i)| = i) and Vi € w(|¢(i)| < |o]).
The extension relation is defined as follows: (o, ¢) < (7,%) if and
only if o end-extends 7 and Vi € w (¢(i) C ¢(i)).

» A slalom is a function ¢ : w — [w]<“ such that
Vn € w(|p(n)| < n). A slalom localizes a real f € “w if there
is m € w such that Yn > m(f(n) € ¢(n)).

» L adds a slalom which localizes all ground model reals.
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Good o-Suslin posets

» add(N) is the least cardinality of a family F C w* such that
no slalom localizes all members of F

» cof(N) is the least cardinality of a family & of slaloms such
that every real is localized by some ¢ € ®.

> ag > non(M).

In our intended forcing construction cofinally often we will force
with the partial order L., which using the above characterization
will provide a lower bound for a,.
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Good o-Suslin posets

Good, o-Suslin posets

Definition: o-Suslin
Let (S, <g) be a Suslin forcing notion, S C <“w x “w. We say that
S is n-Suslin if whenever (s, f) <s (t,g) and (t, h) is a condition in
S such that

hin-|s| = gln-|s|
then (s, f) and (t, h) are compatible. A forcing notion is called
o-Suslin, if it is n-Suslin for some n.
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Good o-Suslin posets

» If Sis n-Suslin and m > n, than S is also m-Suslin.

» Every o-Suslin forcing notion is o-linked and so has the
Knaster property.

» Hechler forcing H is 1-Suslin, localization L is 2-Suslin.
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Good, o-Suslin posets

Definition: Nice name for a real
Let B be a partial order and y € B. For each n > 1 let B, be a
maximal antichain below y. We will say that the set
{(b,s(b))}beB,,n>1 is a nice name for a real below y if

1. whenever n > 1, b € B, then s(b) € "w

2. whenever m>n>1,be B, b € B, and b, b’ are
compatible, then s(b) is an initial segment of s(b).

We can assume that all names for reals are nice and abusing
notation we will write f = {(b, s(b))}beB, ncw-
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Good o-Suslin posets

Lemma: Canonical Projection of a name for a real
Let A be a complete suborder of B, y € B and x a reduction of y
to A. Let f = {(b,s(b))}beB, n>1 be a nice name for a real below

y. Then there is & = {(a,5(a)) }acA,n>1, @ A-nice name for a real
below x, such that for all n > 1, for all a € A, thereis b € B,

such that a is a reduction of b and s(a) = s(b).

Whenever f,g_ are as above, we will say that g is a canonical
projection of f below x.
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Good o-Suslin posets

Definition: Good Suslin

Let S be a Suslin forcing notion, S C <“w x “w. Then S is said to
be good if whenever A is a complete suborder of B, x € A is a
reduction of y € B and f is a nice name for a real below y such
that y Ik (3, f) € S for some s € <“w, there is a canonical
projection & of f below x such that x IF (3,&) € S.
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Good o-Suslin posets

D and L are good o-Suslin forcing notions.
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> Let (L, <) be a linearly ordered set, x € L. Then
Ly:={yel:y<x}.
» If Lo C L and A C L, then define the Lg-closure of A as
follows:
cliy(A) = AU | LeN L.
X€EA
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Definition: Template
A template is a tuple T = ((L, <),Z, Lo, L1) where L = Lo U Ly,
LonLy =0, (L,<) is a linear order, Z C P(L), such that

» T is closed under finite intersections and unions, 0, L € Z.
Ifx,yel yeliand x<ythen3JAcZ(AC L, Ax €A).
If AcZ, x € [1\A, then ANL, €.
{ANLy: A€ T} is well-founded when ordered by inclusion.
All A € T are Lg-closed.

v

v

v

v
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» Define Dp : Z — ON by letting Dp(A) =0 for A C Ly and
Dp(A) =sup{Dp(B)+1:BeZABNL CANLi}.

Let Rk(7) = Dp(L).
» For AC L let

Ta=((A <), ZIA Lo NA L1 NA),

where ZIA={ANB: B €Z}. If AcZ then
Rk(7a) = Dp(A).
» ForxelletZ,={BeZ:BCL}.
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Definition: lterating good o-Suslin posets along a template
and adding m.c.g.

Let Q = Q, the poset adding a m.c.g. with Lp-generators, S good
o-Suslin. P(7,Q,S) is defined recursively:

If Rk(7T) =0, then P(7,Q,S) = Qy,. Let P(T,Q,S) be defined

for all templates of rank < k. Let Rk(7) = « and for all

B € Z(Dp(B) < k) let Pg = P(Tg,Q,S). Then

» P(7,Q,S) consists of all P = (p, FP) where p is a finite

partial function with dom(p) C L, (p[Lo, FP) € Q and if
Xp o max{dom(p) N L1} is defined then 3B € 7, such that
Pl Ly, = (pILy,, FP N W ﬂLo) € Pg, p(xp) = (3, fp) where
sP e <“’w, fP is a Pg name for a real and
(P Ly p(xp)) € P 5.
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Define Q <p P iff dom(p) C dom(q), (q[Lo, F9) <g (pILo, FP),
and if x, is defined then either

> X, < Xg and 3B € T, such that P| L, Q| Ly, € Pg and
Q ” qu <pg P” quv or

> xp = xq and 3B € T, witnessing P, @ € IP, and such that

(@I Lxgs a(xq)) <pyug (P I Lxys P(x0))-

Vera Fischer
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Completeness of Embeddings Lemma

Let 7 = ((L, <),Z, Lo, Ly), let Q = Qq, be the poset for adding
m.c.g. with Lg-generators, S be good o-Suslin.

Let B€Z, AC B be closed. Then Pg is a poset, P4 C Pg, every
P = (p, FP) € Pg has a canonical reduction Py = (pg, F) € Py
such that

» dom(pg) = dom(p) N A, FPO = FP,

> 0 = sk for all x € dom(pg) N Ly

> (polLo, FP) is a strong Qa-reduction of (p[Lg, FP)

and whenever D € Z, B,C C D, Cis closed, CNB = A and
Qo <p. Po, then Qo and P are compatible in Pp.
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If A= C, D = B then P4 is a complete suborder of Pg.
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Transitivity:

If Rk(7") =0, then since P = Qy, clear. So assume the Lemma for
all templates of rank < «, and let Rk(7") = a.. Fix Py, Py, P> € P

such that Py <p Py and P, <p P1, and assume that Xy, is defined.
Fix witnesses B; € prl and B, € pr2 to P1 <p Py and P> <p P;.
Since Dp(B1 U By) < «a, by inductive hypothesis

Pg,, P, <Ppus,,
and so we have P; |l Ly, € Pgup, for 0 </ <2, and
P2l Lx,, <Pg, s, P11 Ly, <Pgus, Poll Lx,,-

Thus by inductive hypothesis P, || L, <Pg,s, Fo I Lx,, -
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If Xp, < Xp, then by definition P, <p Py. So assume that
Xpy = Xp,. Then pj(xp,) is a Pg,up,-name for 0 </ < 2. Since
PBI,sz < PBluBz we must have that
> Pill Ly, Fpg s, P1(Xp) <g Po(Xp,), and
> P2 ” LXP2 ”_PBIUBQ pg(sz) SS pl(Xp2) and so
> P LXp2 “_PB]_UB2 P2(Xp2) <g Po(Xp, )-
Thus (P2 | pr2aP2(sz)) SPBluB2*S (Po[prz,po(xpz)) as required.
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P C Pg:
Let Z be of rank . Let AC B bg closed, BeZ. Let R € P4 and
let x = x,. By definition there is A € (Z]A), such that

R|l Lx € Pz and ! is a Pz-name.

By the properties of Z there is B € 1p,x such that A=BnA.
Then Rk(7g) < a and so by inductive hypothesis P3; < Pg.
Therefore

R|l Ly € Pg and f/ is a Pg-name.
That is R € Pg.
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Definition of po(P, A, B)

Let Z be of rank a. Let A C B be closed, B € Z. Let

P = (p,FP) e Pg. We have to construct Py = po(P, A, B). By
definition there is B € IBX such that

P=P|Lc=(p [LX,FPOWQLO)E]P’B Let A= BN A. Then by

inductive hypothesis there is Py = po(P, A, B) = (o, FP). Define
Py = (po, FP) as follows:
> polLx = Po, polL\Lx = p[L\Lx,
» If x ¢ Alet pp(x) = p(x), and
> if x € A let po(x) be a canonical projection of p(x) below Py
(since S is a good Suslin, such projection exists).

> FP = FP N V4.
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Strong embedding of P

Let D € Z, C closed such that CNB=A, CUB C D. Let

Qo = (g0, F%) <p. Py. We have to show that Qg is compatible
with P (in Pp).

Case x ¢ A:
Suppose x ¢ A. Then x ¢ C. Using the properties of 7 find
Ce(ZIC)x, DT, suchthat A=BnC, BuCc D and

Qo = QoI Lx <p, Po|l Lx = Po.

Passing to an extension if necessary we can assume that QLo is a
strong Q¢ reduction of Qg[Lg. Since Py is a canonical reduction
of P = P| Ly, there is @ = (g, F7) which is a common extension
of Qo and P in Pp.
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Define the common extension Q@ = (g, F9) as follows:

» qllx=qg

> () = p(x)

> gl dom(qo)\Lx = qo\Lx

> gl dom(p)\(dom(qo) U L) = p[ dom(p)\(dom(qo) U L)

> F9 = F% U FP
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Case x € A:

Assume x € A. Then x € C. By the properties of Z find

C € (ZIC)x and D € T, suchthatA CNnD, CUBCDandC
is a witness to Qo || Ly <p. Po |l LY. Thus in particular

> Qo= Qoll Lx <p, P02P0| x, and

> Qo IFpz qo(x) < po(x) = p(x).
Passing to an extension if necessary we can assume that QLo is a
strong Qg-reduction of Qo Lo.
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Using the facts that S is good n-Suslin poset and that po(x) is a
canonical projection of p(x) below Py find T = (t, F?) extending
Qo and P in Pj such that for some nice name t(x) for a condition
inS below T,

T = (t, Ft) H_IPD t(X) SS CIo(X)aP(X)-

Define the common extension Q = (g, F9) of Qp and P as follows:
> q“—x =t
> q(x) = t(x)

>
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Lemma

» P(7,Q,S) is Knaster.
> Let x € L1, A € Z,. Then the two-step iteration P4 * S
completely embeds into P.

» For any p € P(7,Q,S) there is countable A C L such that
p € Pg(a)- If 7 is a P-name for a real then there is a
countable A C L such that 7 is a P 4)-name.
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Lemma
Let P =P(7,Qy,,L) and let Ay be a regular uncountable cardinal

such that A\g C Ly (as an order), \g is cofinal in L, and L, € Z for
all @ < Xg. Then in VF, non(M) = \g and so ag > Ao.
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Proof

Let G be P-generic and let ¢, be the slalom added in coordinate
a < Ag. Since Ag is regular, uncountable and is cofinal in L, the
family (¢q : @ < p) localizes all reals V[G] (indeed any real must
appear in some V[G NP, ] for some oo < Ag.) Thus cof(N) < A.
On the other hand, if F C w* is a family of size < Ag in V[G],
then there must be some @ < Ag such that all reals of F already
are in V[G NP, ], and so ¢, localizes all reals in F. Thus
add(N') > Xg. Therefore non(M) = X and so ag > L. O
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Lemma
Let P =P(7,Qy,,L), L of uncountable cofinality, Ly cofinal in L.
Then P adds a maximal cofinitary group of size |Lg|.

Proof:

Let G be P-generic, pg : Lg — Soo be defined as follows: for

x € Lo let pg(x) =U{sk : p € G A plLo = (sP, FP)}. Note that
pG = pg, where Gg = G NPy, and so it induced a cofinitary
representation of ;. We claim that im(pg) is a m.c.g.

Otherwise, there are o € cofin(Sx) and by ¢ Lo such that

P LoU{bo} = S, Where pi-[Lo = pg and piz(bg) = o, induces
a cofinitary representation. Let ¢ be a P-name for . Then for
some countable A C L, ¢ is a [P a)-name. Since Ly is cofinal in L
and L has uncountable cofinality, there is x € Ly such that

cl(A) C Lx and so Pgay <P, Let H= GNP,
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Claim
In V[H] the set D, y consisting of all p € P/H such that for some
n > N(sf(n) = o(n)) where p[Lo = (sP, FP)} is dense.

Proof:

Let pp € P/H. Thus p[Lo N Ly € Hy := GNPrynr,. The set
ng,\,,x ={p € (QL,/QL.n1L,) : 3n> N)s£(n) = a(n)} is dense in
V[Ho] and so 3(t, E) < (sP[Lo\Lx, FP) such that (t, E) € D%, .
i.e. ty(n) = o(n) for some n > N. Define p; € P/H as follows:
pilLx = polLx, prl(Lo\Lx) = (t, E), p1[L1\Lx = po[L1\Lx. Then
in V[H], p1 < po and p1 € D, p. O
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Then in V[G] there are infinitely many n such that o(n) = o(n),
contradicting the fact that p/; induces a cofinitary
representation. L]
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Assume CH. Let A = J, An, where A, is a regular cardinal,
{A\n}new increasing and Ao > N,. Consider a template 7 = (L, 7)
such that

» \g C Ly, Npiscofinalin L, L, € Z for all a < Ag.

» L has uncountable cofinality, Lo is cofinal in L.
Then in VF for P =P(T,Q,,L)

» Ao = non(M), and so A\g < ag

> there is a mcg of size A and so a, < A.
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An isomorphism of names argument provides that in V¥ there are
no mcg of size < A and so VF £ ag = A
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Theorem (V.F., A. Tornquist)

It is consistent with the usual axioms of set theory that the minimal
size of a maximal cofinitary group is of countable cofinality.
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Thank you!




Good words
Domain extension: proof

Good words

Let W4 consist of all w € W, such that either w = a” for some
ac Aand neZ\ {0}, or w starts and ends with a different letter
(i.e. there are u€ Wy, a,b€ A, a# b, and i,j € {—1,1} such

that w = a’ub/ without cancelation). Any w € Wy can be written

1

as w = u"*w'u for some w’ € W4 and u € Wa.
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Lemma
Let s C A X w X w be finite such that s, is a partial injection for all

a€ A FixaeA, and let w € Wyux be a-good. Then for any
n € w\ dom(s,) and C C w finite there are cofinitely many m € w

such that for all | € w

ew[sU{(a,n,m)}, p](1) € Ciff ey[s, p]() A ewls, p](/) € C
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Proof:

By induction on the rank j. Let w be an a-good word of rank 1,

w = aklul.
Assume first k; > 0. Then pick m ¢ dom(a) and m ¢ C. Suppose
ew[sU{(a,n,m)}, p](I) € C but eys, p](/)T. Then there is some
0 < i < ky such that e, [s,p](/) = n. If i < kg — 1 then
eyi+2,,[S U {(a, n,m)}, p](/) 1, so we must have i = k; — 1. But
then e, [s U {(a,n,m)}, p](/) = m ¢ C, a contradiction.

The case k; < 0 is analogous.
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Now let w be a-good of rank j > 1, w = a¥u;w, where W is

a-good of rank j — 1. Let C" =e 1 -k[s,p](C). By IH there is

lo € w cofinite such that for all mje Iy, all I € w we have that
ew[sU{(a,n,m)}, p](1) € C"iff ezs, p](1)4 A ex[s, p](I) € C'. Let
l1 C w be cofinite such that for all me I, and all | € w

eak,uj[s U{(a,n,m)},p](/) € C
— eakiuj[sﬂ p](l)\l’ /\ eakiuj[s? p](/) € C
Then let m € Iy N Iy, and suppose ey [s U {(a,n,m)}, p](I) € C.

Then ez [s U {(a,n,m)}, p](/) € C’ and so ez[s,p](/) € C'. It
follows that e [s U {(a,n,m)}, pl(erls, p](/)) € C and so we
J

have eakjuj[s,p](eﬁ,[s, pl(1)) = ewl[s, p](I) € C, as required. O
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Proof: No New Fixed Points, Domain Extension

Sufficient to consider the case F = {w}. We may assume that

a € oc(w) (otherwise - done). If w is a-good, then the statement
follows from the previous lemma. If w is not a-good, then write
w = uva® (without cancelation), where u € Wa\(ayus, Vv is
a-good, and k € Z. Let w = vaku. Then w is a-good, and so

31 C w cofinite such that

(Vm e 1)(s U{(a,n,m},{w}) <e,, (s, {w}).
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We claim that (s U {(a, n, m)},{w}) < (s,{w}) when m € I.
Indeed, if ey [s U {(a,n,m)}, p](/) = I then it is not hard to check
that

exls U {(2,n, m)}, pl(evaels U {2 m m)}, A1)
= evak[s U {(37 n, m)}a p](/)

and so

eV_V[Sv p](evak [5 U {(a’ n, m)}’ P](/)) = gk [5 U {(a’ n, m)}’ p](/),

which implies e, [s, p](/) = I.
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