Maximal Cofinitary Groups Good, σ -Suslin posets Template Iterations

Template iterations and maximal cofinitary groups

Vera Fischer

Kurt Gödel Research Center University of Vienna

Budapest, September 19th, 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- cofin(S_∞) is the set of cofinitary permutations in S_∞, i.e. permutations σ ∈ S_∞ which have finitely many fixed points.
- A mapping $\rho : A \to S_{\infty}$ induces a cofinitary representation of \mathbb{F}_A if the canonical extension of ρ to a homomorphism $\hat{\rho} : \mathbb{F}_A \to S_{\infty}$ is such that $\operatorname{im}(\hat{\rho}) \subseteq \{I\} \cup \operatorname{cofin}(S_{\infty})$.

Evaluations

Let A be a set, $s \subseteq A \times \omega \times \omega$. For $a \in A$, let $s_a = \{(n, m) \in \omega \times \omega : (a, n, m) \in s\}$. For a word $w \in W_A$, define $e_w[s] \subseteq \omega \times \omega$ recursively as follows:

• if
$$w = a$$
 then $(n, m) \in e_w[s]$ iff $(n, m) \in s_a$,

▶ if
$$w = a^{-1}$$
 then $(n, m) \in e_w[s]$ iff $(m, n) \in s_a$, and

▶ if w = aⁱu for some u ∈ W_A and i ∈ {1, −1} without cancelation then

$$(n,m) \in e_w[s] \iff (\exists k)e_{a^i}[s](k,m) \wedge e_u[s](n,k).$$

 Maximal Cofinitary Groups Good, σ-Suslin posets Template Iterations
 Cofinitary representations The partial order

 Complete Embeddings
 Complete Embeddings

- ► If s_a is a partial injection for all a, then e_w[s] is a partial injection.
- We refer to $e_w[s]$ as the *evaluation* of w given s.
- ▶ By definition we let $e_{\emptyset}[s, \rho]$ be the identity in S_{∞} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let A, X be disjoint and let $\rho: X \to S_{\infty}$ be a function. For a word $w \in W_{A \cup X}$ and $s \subseteq A \times \omega \times \omega$, define

 $(n,m) \in e_w[s,\rho]$ iff $(n,m) \in e_w[s \cup \{(x,k,l) : \rho(x)(k) = l\}].$

If s_a is a partial injection for a, then $e_w[s, \rho]$ is also a partial injection, referred to as the *evaluation* of w given s and ρ .

Forcing M.c.g.'s

Let A, X be disjoint non-empty sets and let $\rho : X \to S_{\infty}$ induce a cofinitary representation. Then $\mathbb{Q}_{A,\rho}$ is the poset of all (s, F) where $s \subseteq A \times \omega \times \omega$ is finite, s_a is a finite injection for all a and $F \subseteq \widehat{W}_{A\cup X}$ is finite. Define $(s, F) \leq_{\mathbb{Q}_{A,\rho}} (t, E)$ iff

- ▶ $s \supseteq t$, $F \supseteq E$ and,
- ▶ for all $n \in \omega$ and $w \in E$, if $e_w[s, \rho](n) = n$ then already $e_w[t, \rho](n) \downarrow$ and $e_w[t, \rho](n) = n$.

If $X = \emptyset$ then we write \mathbb{Q}_A for $\mathbb{Q}_{A,\rho}$. If A is clear from the context we just write \mathbb{Q} .

- $\mathbb{Q}_{A,\rho}$ is Knaster.
- Let G be Q_{A,ρ} generic and let ρ_G : A ∪ X → S_∞ be a mapping extending ρ and such that for all a ∈ A

$$\rho_{G}(a) = \bigcup \{ s_{a} : (\exists F \in \widehat{W}_{A\cup X}) \ (s, F) \in G \}.$$

Then ρ_G induces a cofinitary representation of $A \cup X$ extending ρ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma: No new fixed points

Let A and B be disjoint set and $\rho: B \to S_{\infty}$ a function inducing a cofinitary representation of \mathbb{F}_B . Then

- ("Domain extension") For any (s, F) ∈ Q_{A,ρ}, a ∈ A and n ∈ ω such that n ∉ dom(s_a) there are cofinitely many m ∈ ω s.t. (s ∪ {(a, n, m)}, F) ≤ (s, F).
- ("Range extension") For any (s, F) ∈ Q_{A,ρ}, a ∈ A and m ∈ ω such that m ∉ ran(s_a) there are cofinitely many n ∈ ω s.t. (s ∪ {(a, n, m)}, F) ≤ (s, F).

Definition: a-good words

Let $a \in A$ and $j \ge 1$. A word $w \in W_{A \cup X}$ is called *a-good* of *rank* j if it has the form

$$w = a^{k_j} u_j a^{k_{j-1}} u_{j-1} \cdots a^{k_1} u_1 \tag{1}$$

where $u_i \in W_{A \setminus \{a\} \cup X} \setminus \{\emptyset\}$ and $k_i \in \mathbb{Z} \setminus \{0\}$, for $1 \le i \le j$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma: Evaluations again

Let $w \in \widehat{W}_{A\cup B}$ and $(s, F) \Vdash_{\mathbb{Q}_{A,\rho}} e_w[\rho_G](n) = m$ for some $n, m \in \omega$. Then $e_w[s, \rho](n) \downarrow$ and $e_w[s, \rho](n) = m$.

Proof:

By induction on $|oc(w) \cap A|$. If no letter from A occurs, the statement is true by definition of ρ_G . So suppose the claim holds for words with at most k letters from A and let w be such that $|oc(w) \cap A| = k + 1$. For a contradiction, assume $e_w[s, \rho](n)\uparrow$, but $(s, F) \Vdash_{\mathbb{Q}_{A,\rho}} e_w[\rho_G](n) = m$. The word w can be written $w = w_1w_0$ without cancelation where w_0 is *a*-good and *a* does not occur in w_1 .

We can find $s_1 \subseteq \{a\} \times \omega \times \omega$ finite such that $(s \cup s_1, F) \leq (s, F)$ and such that $n_1 = e_{w_0}[s \cup s_1, \rho](n) \neq e_{w_1}[s, \rho]^{-1}(m)$ if it is defined. Since

$$(s,F) \Vdash_{\mathbb{Q}_{A,\rho}} e_w[\rho_{\dot{G}}](n) = m$$

and $(s\cup s_1, F) \Vdash e_{\scriptscriptstyle W_0}[
ho_{\dot G}](n) = n_1$ we must have

$$(s \cup s_1, F) \Vdash e_{w_1}[\rho_{\dot{G}}](n_1) = m.$$

By inductive hypothesis $e_{w_1}[s \cup s_1, \rho](n_1) = m$. Since $a \notin oc(w_1)$ we have $e_{w_1}[s, \rho](n_1) = m$, contradicting the choice of n_1 .

Proposition

Let G be $\mathbb{Q}_{A,\rho}$ -generic. Then $\rho_G : A \cup B \to S_\infty$ induces a cofinitary representation $\hat{\rho}_G : \mathbb{F}_{A \cup B} \to S_\infty$ such that $\hat{\rho}_G \upharpoonright \mathbb{F}_B = \hat{\rho}$.

Proof:

For each $a \in A$, $n \in \omega$, let $D_{a,n} = \{(s,F) \in \mathbb{Q}_{A,\rho} : (\exists m)(a,n,m) \in s\}$ and $R_{a,n} = \{(s,F) \in \mathbb{Q}_{A,\rho} : (\exists m)(a,m,n) \in s\}$. For $w \in \widehat{W}_{A\cup B}$, let $D_w = \{(s,F) \in \mathbb{Q}_{A,\rho} : w \in F\}$. Then D_w , $D_{a,n}$ and $R_{a,n}$ are dense and so $\rho_G : A \cup B \to S_\infty$ is a function as promised.

- 4 同 6 4 日 6 4 日 6 日

= ~ Q Q

It remains to see that ρ_G induces a cofinitary representation. Let $w \in W_{A \cup B}$. There are $w' \in \widehat{W}_{A \cup B}$, $u \in W_{A \cup B}$ such that $w = u^{-1}w'u$. Since $D_{w'}$ is dense $\exists (s, F) \in G$ such that $w' \in F$. Suppose then $e_{w'}[\rho_G](n) = n$. Then there is some $(t, E) \leq_{\mathbb{Q}_{A,\rho}} (s, F)$ in G forcing this. But then $e_{w'}[t, \rho](n) = n$ and so by definition $e_{w'}[s, \rho](n) = n$. Thus

$$\mathsf{fix}(e_{w'}[\rho_G]) = \mathsf{fix}(e_{w'}[s,\rho]),$$

which is finite. Finally, $fix(e_w[\rho_G]) = e_u[\rho_G]^{-1}(fix(e_{w'}[\rho_G]))$, so $fix(e_w[\rho_G])$ is finite.

Notation:

For $s \subseteq A \times \omega \times \omega$ and $A_0 \subseteq A$, write $s \upharpoonright A_0$ for $s \cap A_0 \times \omega \times \omega$. For a condition $p = (s, F) \in \mathbb{Q}_{A,\rho}$ we will write $p \upharpoonright A_0$ for $(s \upharpoonright A_0, F)$, and $p \upharpoonright A_0$ ("strong restriction") for $(s \upharpoonright A_0, F \cap \widehat{W}_{A_0 \cup B})$.

Lemma: Strong embeddings

Let $A_0 \subset A$, $A_1 = A \setminus A_0$, $p = (s, F) \in \mathbb{Q}_{A,\rho}$. Then there is $t_0 \subseteq (oc(s) \cap A_0) \times \omega \times \omega$ extending $s \upharpoonright A_0$ such that

►
$$(t_0, F \cap \widetilde{W}_{A_0 \cup B}) \leq_{\mathbb{Q}_{A_0, \rho}} p \parallel A_0$$
 and

▶ whenever $(t, E) \leq_{\mathbb{Q}_{A_0,\rho}} (t_0, F \cap \widehat{W}_{A_0 \cup B})$ then $(s \cup t, F) \leq_{\mathbb{Q}_{A,\rho}} (s, F)$, and so $(s \cup t, F \cup E)$ is a common extension of (t, E) and (s, F).

Maximal Cofinitary Groups	Cofinitary representations
Good, σ -Suslin posets	The partial order
Template Iterations	Complete Embeddings

Proof:

Let $\{w_1, \ldots, w_n\} = F \setminus W_{A_0 \cup B}$. Then $w_i = u_{i,k_i} v_{i,k_i} \cdots u_{i,1} v_{i,1} u_{i,0}$ where $u_{i,j} \in W_{A_0 \cup B}$ and $v_{i,j} \in W_{A_1 \cup B}$ are non- \emptyset except possibly u_{i,k_i} , $u_{i,0}$, each $v_{i,j}$ starts and ends with a letter from A_1 . There is $t \subseteq A_0 \times \omega \times \omega$ such that $t_0 \supseteq s \upharpoonright A_0$ and

• dom
$$(e_{u_{i,j}}[s \cup t, \rho]) \supseteq \operatorname{ran}(e_{v_{i,j}}[s, \rho]),$$

►
$$ran(e_{u_{i,j}}[s \cup t_0, \rho] \supseteq dom(e_{v_{i,j+1}}[s, \rho])$$
, and

$$\blacktriangleright (s \cup t_0, F) \leq_{\mathbb{Q}_{A,\rho}} (s, F).$$

Let $(t, E) \leq_{\mathbb{Q}_{A_0,\rho}} (t_0, F \cap \widehat{W}_{A_0 \cup B})$. If $e_{w_i}[s \cup t, \rho](n)\downarrow$, then by definition of t_0 we have $e_{w_i}[s \cup t_0, \rho](n)\downarrow$. Therefore if $e_{w_i}[s \cup t, \rho](n) = n$ we have $e_{w_i}[s \cup t_0, \rho](n) = n$, and so since $(s \cup t_0, F) \leq_{\mathbb{Q}_{A,\rho}} (s, F)$ it follows $e_{w_i}[s, \rho](n) = n$. Thus $(s \cup t, F) \leq_{\mathbb{Q}_{A,\rho}} (s, F)$ as required.

Lemma: Strong Embedding

Let $B, C \subseteq D$, $B \cap C = A$ be given set and $p \in \mathbb{Q}_{B,\rho}$. Then there is a condition $p_0 \in \mathbb{Q}_{A,\rho}$ such that whenever $q_0 \leq_{\mathbb{Q}_{C,\rho}} p_0$, then q_0 is compatible in $\mathbb{Q}_{D,\rho}$ with p.

We say that $\mathbb{Q}_{B,\rho}$ has the strong embedding property and q_0 is called a strong reduction of p. If C = A, B = D then the above gives in particular that $\mathbb{Q}_{A,\rho}$ is a complete suborder of $\mathbb{Q}_{B,\rho}$.

Lemma: Quotients

Let $A_0 \cap A_1 = \emptyset$, $A = A_0 \cup A_1$. Let G be $\mathbb{Q}_{A,\rho}$ -generic, $H = G \cap \mathbb{Q}_{A_0,\rho}$. Then $K = \{(s \upharpoonright A_1, F) : (s, F) \in G\}$ is \mathbb{Q}_{A_1,ρ_H} -generic over V[H] and $\rho_G = (\rho_H)_K$.

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへで

Maximal Cofinitary Groups	Cofinitary representations
Good, σ -Suslin posets	The partial order
Template Iterations	Complete Embeddings

Proof:

Let $D \subseteq \mathbb{Q}_{A_1,\rho_H}$ be dense, $D \in V[H]$. Define $D' = \{p \in \mathbb{Q}_{A,\rho} : p \parallel A_0 \Vdash_{\mathbb{Q}_{A_0,\rho}} p \restriction A_1 \in \dot{D}\}$ and let $p_0 \in H$ forces "D is dense". We claim that D' is dense below p_0 (in $\mathbb{Q}_{A,\rho}$.) Let $(s, F) = p \leq_{\mathbb{Q}_{A,\rho}} p_0$. There is $p_0 \leq_{\mathbb{Q}_{A_0,\rho}} p \parallel A_0$ such that for any $p_1 \leq_{\mathbb{Q}_{A_0,\rho}} p_0$, p_1 is compatible with p. Thus we can find $q = (s_0, F_0) \in \mathbb{Q}_{A_1,\rho_H}$ and $(t, E) \leq_{\mathbb{Q}_{A_0,\rho}} p_0$ such that

$$(t,E)\Vdash_{\mathbb{Q}_{A_0,\rho}}\dot{q}\in\dot{D}\wedge\dot{q}\leq_{\mathbb{Q}_{A_1,\rho_{\dot{H}}}}\dot{p}\upharpoonright A_1.$$

But then $(s_0 \cup t, F_0) \leq_{\mathbb{Q}_{A,\rho}} (s \upharpoonright A_1 \cup t, F)$, and so $(s_0 \cup t, F_0 \cup E) \leq_{\mathbb{Q}_{A,\rho}} (s, F)$. Since clearly $(s_0 \cup t, F_0 \cup E) \in D'$, this shows that D' is dense below p_0 . Now, since $p_0 \in G$ it follows that there is $q' \in D' \cap G$. In V[H] it then holds that $q' \upharpoonright A_1 \in D$, which shows that $K \cap D \neq \emptyset$.

Theorem

Let $|A| > \aleph_0$ and G be a $\mathbb{Q}_{A,\rho}$ -generic over V. Then $\operatorname{im}(\rho_G)$ is a maximal cofinitary group in V[G].

Proof

Let $z \notin X \cup A$, where $\rho : X \to S_{\infty}$. Suppose there in V[G] there is $\sigma \in \operatorname{cofin}(S_{\infty})$ such that $\rho'_G : A \cup X \cup \{z\} \to S_{\infty}$ defined by $\rho'_G \upharpoonright X \cup A = \rho_G$, $\rho'_G(z) = \sigma$ induces a cofinitary representation. Let $\dot{\sigma}$ be a name for σ . Then there is $A_0 \subseteq A$ countable so that $\dot{\sigma}$ is a $\mathbb{Q}_{A_0,\rho}$ -name and so $\sigma \in V[H]$, where $H = G \cap \mathbb{Q}_{A_0,\rho}$.

Let $a_1 \in A \setminus A_0$ and let K be defined as in the previous Lemma. Note that for every $N \in \omega$

$$D_{\sigma,N} = \{(s,F) \in \mathbb{Q}_{A_1,\rho_H} : (\exists n \ge N) s_{a_1}(n) = \sigma(n)\}$$

is dense in \mathbb{Q}_{A_1,ρ_H} and so in V[H][K]

$$\exists^{\infty} n((\rho_H)_{\mathcal{K}}(a_1)(n) = \sigma(n)).$$

However $(\rho_H)_K = \rho_G$, which contradicts that ρ'_G induces a cofinitary representation.

Definition: \mathbb{L}

L consists of pairs (σ, ϕ) such that $\sigma \in {}^{<\omega}({}^{<\omega}[\omega]), \phi \in {}^{\omega}({}^{<\omega}[\omega])$ such that $\sigma \subseteq \phi, \forall i < |\sigma|(|\sigma(i)| = i)$ and $\forall i \in \omega(|\phi(i)| \le |\sigma|)$. The extension relation is defined as follows: $(\sigma, \phi) \le (\tau, \psi)$ if and only if σ end-extends τ and $\forall i \in \omega$ $(\psi(i) \subseteq \phi(i))$.

- A slalom is a function φ : ω → [ω]^{<ω} such that ∀n ∈ ω(|φ(n)| ≤ n). A slalom localizes a real f ∈ ^ωω if there is m ∈ ω such that ∀n ≥ m(f(n) ∈ φ(n)).
- ▶ L adds a slalom which localizes all ground model reals.

 Maximal Cofinitary Groups
 Loca

 Good, σ-Suslin posets
 Good

 Template Iterations
 Good

Localization Good σ -Suslin posets

- add(N) is the least cardinality of a family F ⊆ ω^ω such that no slalom localizes all members of F
- cof(N) is the least cardinality of a family Φ of slaloms such that every real is localized by some φ ∈ Φ.
- $\mathfrak{a}_g \geq \operatorname{non}(\mathcal{M}).$

In our intended forcing construction cofinally often we will force with the partial order \mathbb{L} , which using the above characterization will provide a lower bound for \mathfrak{a}_g .

Definition: σ -Suslin

Let $(\mathbb{S}, \leq_{\mathbb{S}})$ be a Suslin forcing notion, $\mathbb{S} \subseteq {}^{<\omega}\omega \times {}^{\omega}\omega$. We say that \mathbb{S} is *n-Suslin* if whenever $(s, f) \leq_{\mathbb{S}} (t, g)$ and (t, h) is a condition in \mathbb{S} such that

$$h{\upharpoonright}n\cdot|s|=g{\upharpoonright}n\cdot|s|$$

then (s, f) and (t, h) are compatible. A forcing notion is called σ -Suslin, if it is *n*-Suslin for some *n*.

- ▶ If S is *n*-Suslin and $m \ge n$, than S is also *m*-Suslin.
- Every σ-Suslin forcing notion is σ-linked and so has the Knaster property.
- Hechler forcing \mathbb{H} is 1-Suslin, localization \mathbb{L} is 2-Suslin.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition: Nice name for a real

Let \mathbb{B} be a partial order and $y \in \mathbb{B}$. For each $n \ge 1$ let \mathcal{B}_n be a maximal antichain below y. We will say that the set $\{(b, s(b))\}_{b \in \mathcal{B}_n, n \ge 1}$ is a nice name for a real below y if

- 1. whenever $n \geq 1$, $b \in \mathcal{B}_n$ then $s(b) \in {}^n\omega$
- 2. whenever $m > n \ge 1$, $b \in \mathcal{B}_n$, $b' \in \mathcal{B}_m$ and b, b' are compatible, then s(b) is an initial segment of s(b').

We can assume that all names for reals are nice and abusing notation we will write $\dot{f} = \{(b, s(b))\}_{b \in \mathcal{B}_n, n \in \omega}$.

Lemma: Canonical Projection of a name for a real

Let \mathbb{A} be a complete suborder of \mathbb{B} , $y \in \mathbb{B}$ and x a reduction of y to \mathbb{A} . Let $\dot{f} = \{(b, s(b))\}_{b \in \mathcal{B}_n, n \ge 1}$ be a nice name for a real below y. Then there is $\dot{g} = \{(a, s(a))\}_{a \in \mathcal{A}_n, n \ge 1}$, a \mathbb{A} -nice name for a real below x, such that for all $n \ge 1$, for all $a \in \mathcal{A}_n$, there is $b \in \mathcal{B}_n$ such that a is a reduction of b and s(a) = s(b).

Whenever \dot{f} , \dot{g} are as above, we will say that \dot{g} is a canonical projection of \dot{f} below x.

- ◆帰 ▶ ◆臣 ▶ ◆臣 ▶ ●目目 のQ@

Definition: Good Suslin

Let \mathbb{S} be a Suslin forcing notion, $\mathbb{S} \subseteq {}^{<\omega}\omega \times {}^{\omega}\omega$. Then \mathbb{S} is said to be *good* if whenever \mathbb{A} is a complete suborder of \mathbb{B} , $x \in \mathbb{A}$ is a reduction of $y \in \mathbb{B}$ and \dot{f} is a nice name for a real below y such that $y \Vdash_{\mathbb{B}} (\check{s}, \dot{f}) \in \dot{\mathbb{S}}$ for some $s \in {}^{<\omega}\omega$, there is a canonical projection \dot{g} of \dot{f} below x such that $x \Vdash (\check{s}, \dot{g}) \in \dot{\mathbb{S}}$.

$\mathbb D$ and $\mathbb L$ are good $\sigma\text{-Suslin}$ forcing notions.

Maximal Cofinitary Groups	Templates
Good, σ -Suslin posets	Iteration along a template
Template Iterations	Isomorphism of names

- Let (L, ≤) be a linearly ordered set, x ∈ L. Then L_x := {y ∈ L : y < x}.</p>
- ▶ If $L_0 \subseteq L$ and $A \subseteq L$, then define the L_0 -closure of A as follows:

$${\sf cl}_{L_0}(A)=A\cup \bigcup_{x\in A}L_x\cap L_0.$$

□ > < E > < E > E = のく()

Definition: Template

A template is a tuple $\mathcal{T} = ((L, \leq), \mathcal{I}, L_0, L_1)$ where $L = L_0 \cup L_1$, $L_0 \cap L_1 = \emptyset$, (L, \leq) is a linear order, $\mathcal{I} \subseteq \mathcal{P}(L)$, such that

- \mathcal{I} is closed under finite intersections and unions, $\emptyset, L \in \mathcal{I}$.
- If $x, y \in L$, $y \in L_1$ and x < y then $\exists A \in \mathcal{I}(A \subseteq L_y \land x \in A)$.
- If $A \in \mathcal{I}$, $x \in L_1 \setminus A$, then $A \cap L_x \in \mathcal{I}$.
- $\{A \cap L_1 : A \in \mathcal{I}\}$ is well-founded when ordered by inclusion.
- All $A \in \mathcal{I}$ are L_0 -closed.

Maximal Cofinitary Groups	Templates
Good, σ -Suslin posets	Iteration along a template
Template Iterations	Isomorphism of names

• Define
$$Dp : \mathcal{I} \to \mathbb{ON}$$
 by letting $Dp(A) = 0$ for $A \subseteq L_0$ and

 $\mathsf{Dp}(A) = \sup \{\mathsf{Dp}(B) + 1 : B \in \mathcal{I} \land B \cap L_1 \subset A \cap L_1\}.$

Let $\mathsf{Rk}(\mathcal{T}) = \mathsf{Dp}(L)$.

For $A \subseteq L$ let

$$\mathcal{T}_A = ((A, \leq), \mathcal{I} \upharpoonright A, L_0 \cap A, L_1 \cap A),$$

where $\mathcal{I} \upharpoonright A = \{A \cap B : B \in \mathcal{I}\}$. If $A \in \mathcal{I}$ then $\mathsf{Rk}(\mathcal{T}_A) = \mathsf{Dp}(A)$.

• For $x \in L$ let $\mathcal{I}_x = \{B \in \mathcal{I} : B \subseteq L_x\}.$

 Maximal Cofinitary Groups Good, σ-Suslin posets Template Iterations
 Templates

 Iteration along a template Isomorphism of names
 Isomorphism of names

Definition: Iterating good σ -Suslin posets along a template and adding m.c.g.

Let $\mathbb{Q} = \mathbb{Q}_{L_0}$ the poset adding a m.c.g. with L_0 -generators, \mathbb{S} good σ -Suslin. $\mathbb{P}(\mathcal{T}, \mathbb{Q}, \mathbb{S})$ is defined recursively:

If $\operatorname{Rk}(\mathcal{T}) = 0$, then $\mathbb{P}(\mathcal{T}, \mathbb{Q}, \mathbb{S}) = \mathbb{Q}_{L_0}$. Let $\mathbb{P}(\mathcal{T}, \mathbb{Q}, \mathbb{S})$ be defined for all templates of rank $< \kappa$. Let $\operatorname{Rk}(\mathcal{T}) = \kappa$ and for all $B \in \mathcal{I}(\operatorname{Dp}(B) < \kappa)$ let $\mathbb{P}_B = \mathbb{P}(\mathcal{T}_B, \mathbb{Q}, \mathbb{S})$. Then

▶ $\mathbb{P}(\mathcal{T}, \mathbb{Q}, \mathbb{S})$ consists of all $P = (p, F^p)$ where p is a finite partial function with dom $(p) \subseteq L$, $(p \upharpoonright L_0, F^p) \in \mathbb{Q}$ and if $x_p \stackrel{\text{def}}{=} \max\{ \text{dom}(p) \cap L_1 \}$ is defined then $\exists B \in \mathcal{I}_{x_p}$ such that $P \parallel L_{x_p} = (p \upharpoonright L_{x_p}, F^p \cap \widehat{W}_{x_p \cap L_0}) \in \mathbb{P}_B$, $p(x_p) = (\check{s}_x^p, \dot{f}_x^p)$, where $s_x^p \in {}^{<\omega}\omega, \dot{f}_x^p$ is a \mathbb{P}_B name for a real and $(P \parallel L_{x_p}, p(x_p)) \in \mathbb{P}_B * \dot{\mathbb{S}}.$

Define $Q \leq_{\mathbb{P}} P$ iff dom $(p) \subseteq$ dom(q), $(q \upharpoonright L_0, F^q) \leq_{\mathbb{Q}} (p \upharpoonright L_0, F^p)$, and if x_p is defined then either

- ▶ $x_p < x_q$ and $\exists B \in \mathcal{I}_{x_q}$ such that $P \parallel L_{x_q}, Q \parallel L_{x_q} \in \mathbb{P}_B$ and $Q \parallel L_{x_q} \leq_{\mathbb{P}_B} P \parallel L_{x_q}$, or
- ▶ $x_p = x_q$ and $\exists B \in \mathcal{I}_{x_q}$ witnessing $P, Q \in \mathbb{P}$, and such that

$$(Q \parallel L_{x_q}, q(x_q)) \leq_{\mathbb{P}_B * \dot{\mathbb{S}}} (P \parallel L_{x_p}, p(x_p)).$$

 Maximal Cofinitary Groups Good, σ-Suslin posets Template Iterations
 Templates

 Iteration along a template Isomorphism of names
 Isomorphism of names

Completeness of Embeddings Lemma

Let $\mathcal{T} = ((L, \leq), \mathcal{I}, L_0, L_1)$, let $\mathbb{Q} = \mathbb{Q}_{L_0}$ be the poset for adding m.c.g. with L_0 -generators, \mathbb{S} be good σ -Suslin.

Let $B \in \mathcal{I}$, $A \subset B$ be closed. Then \mathbb{P}_B is a poset, $\mathbb{P}_A \subset \mathbb{P}_B$, every $P = (p, F^p) \in \mathbb{P}_B$ has a canonical reduction $P_0 = (p_0, F^{p_0}) \in \mathbb{P}_A$ such that

- dom (p_0) = dom $(p) \cap A$, $F^{p_0} = F^p$,
- $s_x^{p_0} = s_x^p$ for all $x \in \operatorname{dom}(p_0) \cap L_1$

• $(p_0 \upharpoonright L_0, F^{p_0})$ is a strong \mathbb{Q}_A -reduction of $(p \upharpoonright L_0, F^p)$

and whenever $D \in \mathcal{I}$, $B, C \subseteq D$, C is closed, $C \cap B = A$ and $Q_0 \leq_{\mathbb{P}_C} P_0$, then Q_0 and P are compatible in \mathbb{P}_D .

 Maximal Cofinitary Groups
 Templates

 Good, σ-Suslin posets
 Iteration along a template

 Template Iterations
 Isomorphism of names

If A = C, D = B then \mathbb{P}_A is a complete suborder of \mathbb{P}_B .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 わらで

 Maximal Cofinitary Groups Good, σ-Suslin posets Template Iterations
 Templates

 Iteration along a template Isomorphism of names
 Isomorphism of names

Transitivity:

If $\operatorname{Rk}(\mathcal{T}) = 0$, then since $\mathbb{P} = \mathbb{Q}_{L_0}$ clear. So assume the Lemma for all templates of rank $< \alpha$, and let $\operatorname{Rk}(\mathcal{T}) = \alpha$. Fix $P_0, P_1, P_2 \in \mathbb{P}$ such that $P_1 \leq_{\mathbb{P}} P_0$ and $P_2 \leq_{\mathbb{P}} P_1$, and assume that x_{p_0} is defined. Fix witnesses $B_1 \in \mathcal{I}_{x_{p_1}}$ and $B_2 \in \mathcal{I}_{x_{p_2}}$ to $P_1 \leq_{\mathbb{P}} P_0$ and $P_2 \leq_{\mathbb{P}} P_1$. Since $\operatorname{Dp}(B_1 \cup B_2) < \alpha$, by inductive hypothesis

$$\mathbb{P}_{B_1}, \mathbb{P}_{B_2} \lessdot \mathbb{P}_{B_1 \cup B_2},$$

and so we have $P_i \parallel L_{x_{p_2}} \in \mathbb{P}_{B_1 \cup B_2}$ for $0 \leq i \leq 2$, and

$$P_2 \parallel L_{x_{p_2}} \leq_{\mathbb{P}_{B_1 \cup B_2}} P_1 \parallel L_{x_{p_2}} \leq_{\mathbb{P}_{B_1 \cup B_2}} P_0 \parallel L_{x_{p_2}}.$$

Thus by inductive hypothesis $P_2 \parallel L_{x_{p_2}} \leq_{\mathbb{P}_{B_1 \cup B_2}} P_0 \parallel L_{x_{p_2}}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If
$$x_{p_0} < x_{p_2}$$
 then by definition $P_2 \leq_{\mathbb{P}} P_0$. So assume that
 $x_{p_0} = x_{p_2}$. Then $p_i(x_{p_2})$ is a $\mathbb{P}_{B_1 \cup B_2}$ -name for $0 \leq i \leq 2$. Since
 $\mathbb{P}_{B_1}, \mathbb{P}_{B_2} < \mathbb{P}_{B_1 \cup B_2}$ we must have that
 $\blacktriangleright P_1 || L_{x_{p_2}} \Vdash_{\mathbb{P}_{B_1 \cup B_2}} p_1(x_{p_2}) \leq_{\dot{\mathbb{S}}} p_0(x_{p_2})$, and
 $\blacktriangleright P_2 || L_{x_{p_2}} \Vdash_{\mathbb{P}_{B_1 \cup B_2}} p_2(x_{p_2}) \leq_{\dot{\mathbb{S}}} p_1(x_{p_2})$ and so
 $\blacktriangleright P_2 || L_{x_{p_2}} \Vdash_{\mathbb{P}_{B_1 \cup B_2}} p_2(x_{p_2}) \leq_{\dot{\mathbb{S}}} p_0(x_{p_2})$.
Thus $(P_2 || L_{x_{p_2}}, p_2(x_{p_2})) \leq_{\mathbb{P}_{B_1 \cup B_2} * \dot{\mathbb{S}}} (P_0 || L_{x_{p_2}}, p_0(x_{p_2}))$ as required.

 Maximal Cofinitary Groups Good, σ-Suslin posets Template Iterations
 Templates

 Iteration along a template Isomorphism of names
 Isomorphism of names

$\mathbb{P}_A \subset \mathbb{P}_B$:

Let \mathcal{I} be of rank α . Let $A \subset B$ be closed, $B \in \mathcal{I}$. Let $R \in \mathbb{P}_A$ and let $x = x_r$. By definition there is $\overline{A} \in (\mathcal{I} \upharpoonright A)_x$ such that

$$R \parallel L_x \in \mathbb{P}_{ar{\mathcal{A}}}$$
 and \dot{f}_x^r is a $\mathbb{P}_{ar{\mathcal{A}}}$ -name.

By the properties of \mathcal{I} there is $\overline{B} \in \mathcal{I}_{B,x}$ such that $\overline{A} = \overline{B} \cap A$. Then $\mathsf{Rk}(\mathcal{T}_{\overline{B}}) < \alpha$ and so by inductive hypothesis $\mathbb{P}_{\overline{A}} \leq \mathbb{P}_{\overline{B}}$. Therefore

$$R \parallel L_x \in \mathbb{P}_{\bar{B}}$$
 and \dot{f}_x^r is a $\mathbb{P}_{\bar{B}}$ -name.

That is $R \in \mathbb{P}_B$.

 Maximal Cofinitary Groups Good, σ-Suslin posets Template Iterations
 Templates

 Iteration along a template Isomorphism of names
 Isomorphism of names

Definition of $p_0(P, A, B)$

Let \mathcal{I} be of rank α . Let $A \subset B$ be closed, $B \in \mathcal{I}$. Let $P = (p, F^p) \in \mathbb{P}_B$. We have to construct $P_0 = p_0(P, A, B)$. By definition there is $\overline{B} \in \mathcal{I}_{B,x}$ such that $\overline{P} = P || L_x = (p | L_x, F^p \cap \widehat{W}_{x \cap L_0}) \in \mathbb{P}_B$. Let $\overline{A} = \overline{B} \cap A$. Then by inductive hypothesis there is $\overline{P}_0 = p_0(\overline{P}, \overline{A}, \overline{B}) = (\overline{p}_0, F^{\overline{p}_0})$. Define $P_0 = (p_0, F^{p_0})$ as follows:

$$\blacktriangleright p_0 \upharpoonright L_x = \bar{p}_0, \ p_0 \upharpoonright L \setminus L_x = p \upharpoonright L \setminus L_x,$$

• If
$$x \notin A$$
 let $p_0(x) = p(x)$, and

if x ∈ A let p₀(x) be a canonical projection of p(x) below P
₀ (since S is a good Suslin, such projection exists).

$$\blacktriangleright F^{p_0} = F^p \cap \widehat{W}_A.$$

 Maximal Cofinitary Groups Good, σ-Suslin posets
 Templates

 Template Iterations
 Isomorphism of names

Strong embedding of $\ensuremath{\mathbb{P}}$

Let $D \in \mathcal{I}$, C closed such that $C \cap B = A$, $C \cup B \subseteq D$. Let $Q_0 = (q_0, F^{q_0}) \leq_{\mathbb{P}_C} P_0$. We have to show that Q_0 is compatible with P (in \mathbb{P}_D).

Case $x \notin A$:

Suppose $x \notin A$. Then $x \notin C$. Using the properties of \mathcal{I} find $\overline{C} \in (\mathcal{I} \upharpoonright C)_x$, $\overline{D} \in \mathcal{I}_x$ such that $\overline{A} = \overline{B} \cap \overline{C}$, $\overline{B} \cup \overline{C} \subset \overline{D}$ and

$$\bar{Q}_0 := Q_0 \parallel L_x \leq_{\mathbb{P}_{\bar{C}}} P_0 \parallel L_x = \bar{P}_0.$$

Passing to an extension if necessary we can assume that $\overline{Q}_0 \upharpoonright L_0$ is a strong $\mathbb{Q}_{\overline{C}}$ reduction of $\mathbb{Q}_0 \upharpoonright L_0$. Since \overline{P}_0 is a canonical reduction of $\overline{P} = P \upharpoonright L_x$, there is $\overline{Q} = (\overline{q}, F^{\overline{q}})$ which is a common extension of \overline{Q}_0 and \overline{P} in $\mathbb{P}_{\overline{D}}$.

Maximal Cofinitary Groups	Templates
Good, σ -Suslin posets	Iteration along a template
Template Iterations	Isomorphism of names

Define the common extension $Q = (q, F^q)$ as follows:

- $q \upharpoonright L_x = \bar{q}$
- q(x) = p(x)
- $q \upharpoonright \operatorname{dom}(q_0) \setminus L_x = q_0 \setminus L_x$
- ► $q \restriction \operatorname{dom}(p) \setminus (\operatorname{dom}(q_0) \cup L_x^=) = p \restriction \operatorname{dom}(p) \setminus (\operatorname{dom}(q_0) \cup L_x^=)$
- $\blacktriangleright F^q = F^{q_0} \cup F^p$

Case $x \in A$:

Assume $x \in A$. Then $x \in C$. By the properties of \mathcal{I} find $\overline{C} \in (\mathcal{I} \upharpoonright C)_x$ and $\overline{D} \in \mathcal{I}_x$ such that $\overline{A} = \overline{C} \cap \overline{D}$, $\overline{C} \cup \overline{B} \subseteq \overline{D}$ and \overline{C} is a witness to $Q_0 \parallel L_x^= \leq_{\mathbb{P}_C} P_0 \parallel L_x^=$. Thus in particular

▶
$$ar{Q}_0 = Q_0 \parallel L_x \leq_{\mathbb{P}_{ar{\mathcal{C}}}} ar{P}_0 = P_0 \parallel L_x$$
, and

$$\bullet \ \bar{Q}_0 \Vdash_{\mathbb{P}_{\bar{C}}} q_0(x) \leq p_0(x) = p(x).$$

Passing to an extension if necessary we can assume that $\overline{Q}_0 \upharpoonright L_0$ is a strong $\mathbb{Q}_{\overline{C}}$ -reduction of $\overline{Q}_0 \upharpoonright L_0$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□

Using the facts that S is good *n*-Suslin poset and that $p_0(x)$ is a canonical projection of p(x) below \overline{P}_0 find $T = (t, F^t)$ extending \overline{Q}_0 and \overline{P} in $\mathbb{P}_{\overline{D}}$ such that for some nice name t(x) for a condition in S below T,

$$T = (t, F^t) \Vdash_{\mathbb{P}_{\bar{D}}} t(x) \leq_{\dot{\mathbb{S}}} q_0(x), p(x).$$

Define the common extension $Q = (q, F^q)$ of Q_0 and P as follows:

- $q \upharpoonright L_x = t$,
- $\blacktriangleright q(x) = t(x)$
- $q \upharpoonright \operatorname{dom}(q_0) \setminus L_x = q_0 \setminus L_x$
- ► $q \restriction \operatorname{dom}(p) \setminus (\operatorname{dom}(q_0) \cup L_x^=) = p \restriction \operatorname{dom}(p) \setminus (\operatorname{dom}(q_0) \cup L_x^=)$
- $\blacktriangleright F^q = F^{q_0} \cup F^p$

 Maximal Cofinitary Groups Good, σ-Suslin posets
 Templates

 Template Iterations
 Isomorphism of names

Lemma

- $\mathbb{P}(\mathcal{T}, \mathbb{Q}, \mathbb{S})$ is Knaster.
- Let x ∈ L₁, A ∈ I_x. Then the two-step iteration P_A * S completely embeds into P.
- For any p ∈ P(T, Q, S) there is countable A ⊆ L such that p ∈ P_{cl(A)}. If τ is a P-name for a real then there is a countable A ⊆ L such that τ is a P_{cl(A)}-name.

Lemma

Let $\mathbb{P} = \mathbb{P}(\mathcal{T}, \mathbb{Q}_{L_0}, \mathbb{L})$ and let λ_0 be a regular uncountable cardinal such that $\lambda_0 \subseteq L_1$ (as an order), λ_0 is cofinal in L, and $L_\alpha \in \mathcal{I}$ for all $\alpha < \lambda_0$. Then in $V^{\mathbb{P}}$, non $(\mathcal{M}) = \lambda_0$ and so $\mathfrak{a}_g \geq \lambda_0$.

Proof

Let G be \mathbb{P} -generic and let ϕ_{α} be the slalom added in coordinate $\alpha < \lambda_0$. Since λ_0 is regular, uncountable and is cofinal in L, the family $\langle \phi_{\alpha} : \alpha < \mu \rangle$ localizes all reals V[G] (indeed any real must appear in some $V[G \cap \mathbb{P}_{L_{\alpha}}]$ for some $\alpha < \lambda_0$.) Thus $cof(\mathcal{N}) \leq \lambda_0$. On the other hand, if $F \subseteq \omega^{\omega}$ is a family of size $< \lambda_0$ in V[G], then there must be some $\alpha < \lambda_0$ such that all reals of F already are in $V[G \cap \mathbb{P}_{L_{\alpha}}]$, and so ϕ_{α} localizes all reals in F. Thus $add(\mathcal{N}) \geq \lambda_0$. Therefore $non(\mathcal{M}) = \lambda_0$ and so $\mathfrak{a}_g \geq \mu$.

 Maximal Cofinitary Groups Good, σ-Suslin posets Template Iterations
 Templates

 Iteration along a template Isomorphism of names
 Isomorphism of names

Lemma

Let $\mathbb{P} = \mathbb{P}(\mathcal{T}, \mathbb{Q}_{L_0}, \mathbb{L})$, *L* of uncountable cofinality, L_0 cofinal in *L*. Then \mathbb{P} adds a maximal cofinitary group of size $|L_0|$.

Proof:

Let G be \mathbb{P} -generic, $\rho_G : L_0 \to S_\infty$ be defined as follows: for $x \in L_0$ let $\rho_G(x) = \bigcup \{s_x^p : p \in G \land p \upharpoonright L_0 = (s^p, F^p)\}$. Note that $\rho_G = \rho_{G_0}$ where $G_0 = G \cap \mathbb{P}_{L_0}$ and so it induced a cofinitary representation of \mathbb{F}_{L_0} . We claim that $\operatorname{im}(\rho_G)$ is a m.c.g.

Otherwise, there are $\sigma \in \operatorname{cofin}(S_{\infty})$ and $b_0 \notin L_0$ such that $\rho'_G : L_0 \cup \{b_0\} \to S_{\infty}$, where $\rho'_G \upharpoonright L_0 = \rho_G$ and $\rho'_G(b_0) = \sigma$, induces a cofinitary representation. Let $\dot{\sigma}$ be a \mathbb{P} -name for σ . Then for some countable $A \subseteq L$, $\dot{\sigma}$ is a $\mathbb{P}_{\operatorname{cl}(A)}$ -name. Since L_0 is cofinal in L and L has uncountable cofinality, there is $x \in L_0$ such that $\operatorname{cl}(A) \subseteq L_x$ and so $\mathbb{P}_{\operatorname{cl}(A)} \lessdot \mathbb{P}_{L_x}$. Let $H = G \cap \mathbb{P}_{L_x}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Claim

In V[H] the set $D_{\sigma,N}$ consisting of all $p \in \mathbb{P}/H$ such that for some $n \ge N(s_x^p(n) = \sigma(n))$ where $p \upharpoonright L_0 = (s^p, F^p)$ is dense.

Proof:

Let $p_0 \in \mathbb{P}/H$. Thus $p \upharpoonright L_0 \cap L_x \in H_0 := G \cap \mathbb{P}_{L_0 \cap L_x}$. The set $D^0_{\sigma,N,x} = \{p \in (\mathbb{Q}_{L_0}/\mathbb{Q}_{L_x \cap L_0}) : (\exists n \ge N)s^p_x(n) = \sigma(n)\}$ is dense in $V[H_0]$ and so $\exists (t, E) \le (s^{p_0} \upharpoonright L_0 \setminus L_x, F^{p_0})$ such that $(t, E) \in D^0_{\sigma,N,x}$ i.e. $t_x(n) = \sigma(n)$ for some $n \ge N$. Define $p_1 \in \mathbb{P}/H$ as follows: $p_1 \upharpoonright L_x = p_0 \upharpoonright L_x, p_1 \upharpoonright (L_0 \setminus L_x) = (t, E), p_1 \upharpoonright L_1 \setminus L_x = p_0 \upharpoonright L_1 \setminus L_x$. Then in $V[H], p_1 \le p_0$ and $p_1 \in D_{\sigma,n}$.

(人間) (人) (人) (人) (人) (人)

= nar

 Maximal Cofinitary Groups
 Templates

 Good, σ-Suslin posets
 Iteration along a template

 Template Iterations
 Isomorphism of names

Then in V[G] there are infinitely many *n* such that $\sigma(n) = \sigma_x(n)$, contradicting the fact that ρ'_G induces a cofinitary representation.

< □ > < □ > < Ξ > < Ξ > < Ξ = < 0 < 0

Maximal Cofinitary Groups	Templates
Good, σ -Suslin posets	Iteration along a template
Template Iterations	Isomorphism of names

Assume *CH*. Let $\lambda = \bigcup_n \lambda_n$, where λ_n is a regular cardinal, $\{\lambda_n\}_{n \in \omega}$ increasing and $\lambda_0 \geq \aleph_2$. Consider a template $\mathcal{T} = (L, \mathcal{I})$ such that

• $\lambda_0 \subseteq L_1$, λ_0 is cofinal in L, $L_\alpha \in \mathcal{I}$ for all $\alpha < \lambda_0$.

► *L* has uncountable cofinality, L_0 is cofinal in *L*. Then in $V^{\mathbb{P}}$ for $\mathbb{P} = \mathbb{P}(\mathcal{T}, \mathbb{O}_{L_0}, \mathbb{L})$

•
$$\lambda_0 = \mathsf{non}(\mathcal{M})$$
, and so $\lambda_0 \leq \mathfrak{a}_g$

• there is a mcg of size λ and so $\mathfrak{a}_g \leq \lambda$.

Maximal Cofinitary Groups	Templates
Good, σ -Suslin posets	Iteration along a template
Template Iterations	Isomorphism of names

An isomorphism of names argument provides that in $V^{\mathbb{P}}$ there are no mcg of size $< \lambda$ and so $V^{\mathbb{P}} \models \mathfrak{a}_g = \lambda$.

= 9QP

Theorem (V.F., A. Törnquist)

It is consistent with the usual axioms of set theory that the minimal size of a maximal cofinitary group is of countable cofinality.

(ロ) (部) (注) (注) (注) (の)

Maximal Cofinitary Groups	Templates
Good, σ -Suslin posets	Iteration along a template
Template Iterations	Isomorphism of names

Thank you!

Good words

Let W_A consist of all $w \in W_A$ such that either $w = a^n$ for some $a \in A$ and $n \in \mathbb{Z} \setminus \{0\}$, or w starts and ends with a different letter (i.e. there are $u \in W_A$, $a, b \in A$, $a \neq b$, and $i, j \in \{-1, 1\}$ such that $w = a^i u b^j$ without cancelation). Any $w \in W_A$ can be written as $w = u^{-1}w'u$ for some $w' \in \widehat{W}_A$ and $u \in W_A$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma

Let $s \subseteq A \times \omega \times \omega$ be finite such that s_a is a partial injection for all $a \in A$. Fix $a \in A$, and let $w \in W_{A \cup X}$ be *a*-good. Then for any $n \in \omega \setminus \text{dom}(s_a)$ and $C \subseteq \omega$ finite there are cofinitely many $m \in \omega$ such that for all $l \in \omega$

 $e_w[s \cup \{(a, n, m)\}, \rho](l) \in C \text{ iff } e_w[s, \rho](l) \downarrow \land e_w[s, \rho](l) \in C$

Proof:

By induction on the rank j. Let w be an a-good word of rank 1,

$$w=a^{k_1}u_1.$$

Assume first $k_1 > 0$. Then pick $m \notin \text{dom}(a)$ and $m \notin C$. Suppose $e_w[s \cup \{(a, n, m)\}, \rho](l) \in C$ but $e_w[s, \rho](l)\uparrow$. Then there is some $0 < i < k_1$ such that $e_{a^i u_1}[s, \rho](l) = n$. If $i < k_1 - 1$ then $e_{a^{i+2}u_1}[s \cup \{(a, n, m)\}, \rho](l)\uparrow$, so we must have $i = k_1 - 1$. But then $e_w[s \cup \{(a, n, m)\}, \rho](l) = m \notin C$, a contradiction.

The case $k_1 < 0$ is analogous.

Now let w be a-good of rank j > 1, $w = a^{k_j} u_j \bar{w}$, where \bar{w} is a-good of rank j - 1. Let $C' = e_{u_j^{-1}a^{-k_j}}[s, \rho](C)$. By IH there is $l_0 \subseteq \omega$ cofinite such that for all $m \in l_0$, all $l \in \omega$ we have that $e_{\bar{w}}[s \cup \{(a, n, m)\}, \rho](l) \in C'$ iff $e_{\bar{w}}[s, \rho](l) \downarrow \land e_{\bar{w}}[s, \rho](l) \in C'$. Let $l_1 \subseteq \omega$ be cofinite such that for all $m \in l_1$, and all $l \in \omega$

$$e_{a^{k_i}u_j}[s \cup \{(a, n, m)\}, \rho](I) \in C$$

$$\iff e_{a^{k_i}u_j}[s, \rho](I) \downarrow \land e_{a^{k_i}u_j}[s, \rho](I) \in C.$$

Then let $m \in I_1 \cap I_0$, and suppose $e_w[s \cup \{(a, n, m)\}, \rho](l) \in C$. Then $e_{\bar{w}}[s \cup \{(a, n, m)\}, \rho](l) \in C'$ and so $e_{\bar{w}}[s, \rho](l) \in C'$. It follows that $e_{a^{k_j}u_j}[s \cup \{(a, n, m)\}, \rho](e_{\bar{w}}[s, \rho](l)) \in C$ and so we have $e_{a^{k_j}u_j}[s, \rho](e_{\bar{w}}[s, \rho](l)) = e_w[s, \rho](l) \in C$, as required.

Proof: No New Fixed Points, Domain Extension

Sufficient to consider the case $F = \{w\}$. We may assume that $a \in oc(w)$ (otherwise - done). If w is a-good, then the statement follows from the previous lemma. If w is not a-good, then write $w = uva^k$ (without cancelation), where $u \in W_{A \setminus \{a\} \cup B}$, v is a-good, and $k \in \mathbb{Z}$. Let $\overline{w} = va^k u$. Then \overline{w} is a-good, and so $\exists I \subseteq \omega$ cofinite such that

$$(\forall m \in I)(s \cup \{(a, n, m)\}, \{\bar{w}\}) \leq_{\mathbb{P}_{A, \rho}} (s, \{\bar{w}\}).$$

We claim that $(s \cup \{(a, n, m)\}, \{w\}) \leq (s, \{w\})$ when $m \in I$. Indeed, if $e_w[s \cup \{(a, n, m)\}, \rho](I) = I$ then it is not hard to check that

$$\begin{split} e_{\bar{w}}[s \cup \{(a, n, m)\}, \rho](e_{va^{k}}[s \cup \{(a, n, m)\}, \rho](l)) \\ &= e_{va^{k}}[s \cup \{(a, n, m)\}, \rho](l) \end{split}$$

and so

 $e_{\bar{w}}[s,\rho](e_{va^k}[s \cup \{(a,n,m)\},\rho](l)) = e_{va^k}[s \cup \{(a,n,m)\},\rho](l),$ which implies $e_w[s,\rho](l) = l.$