Combinatorics and Projective Wellorders on the Reals

Vera Fischer

Kurt Gödel Research Center University of Vienna

8 July 2010

General outline

Basic Definitions ω -mad families Results Measure and Category $c \geq \aleph_3$ Open questions

- definable wellorder of the reals
- cardinal characteristics of the reals

イロン イボン イヨン イヨン 三日

Basic Definitions ω -mad families Measure and Category

- To what extent the combinatorial properties of the real line (expressed in terms of cardinal characteristics) are compatible with the existence of a projective wellorder of the reals?
- What other 'natural' combinatorial objects on the reals are consistent with the existence of a projective wellorder of the reals?

・ロン ・回 と ・ ヨ と ・ ヨ と

Eventual dominance

If $f, g \in {}^{\omega}\omega$ then $f \leq {}^{*}g$ (g dominates f) if $\exists n \in \omega$ s.t. $\forall m \geq n(f(m) \leq g(m)).$

Bounding number

 $\mathcal{B} \subseteq {}^{\omega}\omega$ is unbounded if there is no single function in ${}^{\omega}\omega$ which simultaneously dominates the elements of \mathcal{B} .

 $\mathfrak{b} = \min\{|\mathcal{B}| : \mathcal{B} \text{ is unbounded}\}$

・ロン ・回 と ・ ヨ と ・ ヨ と

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Localization} \\ \mbox{Coding with perfect trees} \\ \mbox{S-properness} \\ \mbox{Forcing a projective well-order of the reals and not CH} \\ \mbox{Cardinal Characteristics} \end{array} \qquad \begin{array}{c} \mbox{General outline} \\ \mbox{Basic Definitions} \\ \mbox{wall be address} \\ \mbox{Results} \\ \mbox{Measure and Category} \\ \mbox{c} \geq \aleph_3 \\ \mbox{Open questions} \end{array}$

Dominating number

 $\mathcal{D} \subseteq {}^{\omega}\omega$ is dominating if $\forall f \in {}^{\omega}\omega \exists g \in \mathcal{D}$ s.t. g dominates f. $\mathfrak{d} = \min\{|\mathcal{D}| : \mathcal{D} \text{ is dominating}\}$

Splitting number

$$\begin{split} S &\subseteq [\omega]^{\omega} \text{ is splitting if } \forall A \in [\omega]^{\omega} \exists B \in S \text{ s.t.} \\ |A \cap B| &= |A \cap B^c| = \omega. \\ \mathfrak{s} &= \min\{|S| : S \text{ is splitting}\} \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

3

- All cardinal characteristics have values between ℵ₁ and c. That is if f is a cardinal characteristics then ℵ₁ ≤ f ≤ c.
- ▶ ZFC relations between the card. char. (e.g. $b \leq 0$)
- Independence (e.g. b, s)

(ロ) (同) (E) (E) (E)

Introduction Localization Coding with perfect trees S-properness Forcing a projective well-order of the reals and not CH Cardinal Characteristics	General outline Basic Definitions ω -mad families Results Measure and Category $c \geq \aleph_3$ Open questions
--	--

If $a, b \in [\omega]^{\omega}$, then a, b are almost disjoint if $a \cap b$ is finite.

mad families

An infinite $\mathcal{A} \subseteq [\omega]^{\omega}$ is almost disjoint (a.d.) if its elements are pairwise almost disjoint; $\mathcal{A} \subseteq [\omega]^{\omega}$ is maximal almost disjoint (m.a.d.) if it is maximal with respect to inclusion among a.d. families.

ω -mad families

If \mathcal{A} is a.d., let $\mathcal{L}(\mathcal{A}) = \{b \in [\omega]^{\omega} : b \text{ is not covered by finitely many } a \in \mathcal{A}\}.$ A m.a.d. family \mathcal{A} is ω -mad if $\forall B \in [\mathcal{L}(\mathcal{A})]^{\omega}$ there is $a \in \mathcal{A}$ such that $|a \cap b| = \omega$ for all $b \in \mathcal{B}$.

向下 イヨト イヨト

L. Harrington

The existence of Δ_3^1 -definable wellorder of the reals is consistent with \mathfrak{c} being as large as desired and MA.

S. Friedman

The existence of Δ_3^1 -definable wellorder of the reals is consistent with $\mathfrak{c} = \omega_2$ and MA.

Note that under MA all cardinal characteristics are equal to \mathfrak{c} .

 $\begin{array}{l} \mbox{General outline} \\ \mbox{Basic Definitions} \\ \mbox{ω-mad families} \\ \mbox{Results} \\ \mbox{Measure and Category} \\ \mbox{$c \geq \aleph_3$} \\ \mbox{Open questions} \end{array}$

Develop iteration techniques which allows one to separate certain cardinal characteristics in the presence of a projective wellorder.

V.F. - S.D. Friedman, 2009

- The existence of a Δ¹₃-wellorder of the reals is relatively consistent with ∂ < c = ω₂.
- The existence of a Δ¹₃-definable wellorder of the reals is relatively consistent with b < s = a = c = ω₂.
- The existence of a Δ¹₃-definable wellorder of the reals is relatively consistent with b < g = c = ω₂.

Conjecture

Each admissible assignment of \aleph_1 and \aleph_2 to the cardinal invariants (associated with measure and category) in the Cichón diagram, is relatively consistent with the existence of a projective wellorder of the reals.

Forcing a projective well-order of the reals and not CH Cardinal Characteristics $c \ge \aleph_3$ Open questions	Introduction Localization Coding with perfect trees S-properness Forcing a projective well-order of the reals and not CH Cardinal Characteristics	
--	--	--

There is general interest, however also major difficulties, in obtaining models in which the real line has desireable combinatorial properties and $\mathfrak{c} \geq \omega_3$.

(4) (5) (4) (5) (4)

$\begin{array}{c} \text{Basic Definitions} \\ & \omega \text{-mad families} \\ \text{Coding with perfect trees} \\ & S \text{-properness} \\ \text{Forcing a projective well-order of the reals and not CH} \\ & Cardinal Characteristics \\ \end{array} \begin{array}{c} \omega \text{-mad families} \\ \text{Results} \\ \text{Measure and Category} \\ \text{c} \geq \aleph_3 \\ \text{Open questions} \end{array}$
--

V.F., S.D. Friedman, L. Zdomskyy, 2010

The existence of a Δ_3^1 -definable wellorder of the reals is consistent with $\mathfrak{b} = \mathfrak{c} = \omega_3$ and the existence of a Π_2^1 -definable ω -mad subfamily of infinite subsets of ω .

We expect that an application of Jensen's coding technique will lead to the same result with essentially arbitrary values for \mathfrak{c} .

ゆ く き と く き と

 Introduction
 General outline

 Localization
 Basic Definitions

 Coding with perfect trees
 ω -mad families

 S-properness
 Results

 Forcing a projective well-order of the reals and not CH
 Measure and Category

 Cardinal Characteristics
 $c \ge \aleph_3$

 Open questions
 Open questions

- Is the existence of a ∆¹₃-projective wellorder of the reals relatively consistent with MA in the presence of c ≥ ℵ₃? (The iteration techniques from the previous theorem can take care only of Suslin posets).
- ► How about models, in which desired inequalities between cardinal characteristics of the real line hold, in the presence of a projective wellorder and c ≥ ℵ₃? (In the model from the last theorem there is a major problem in bookkeeping families of reals of size > ℵ₀.)
- Definable cardinal characteristics.

・ロト ・回ト ・ヨト ・ヨト

Introduction Localization Coding with perfect trees S-properness Forcing a projective well-order of the reals and not CH Cardinal Characteristics	Suitable models Definition of Localization Basic properties
--	---

Definition A transitive ZF^- model \mathcal{M} is suitable if $\mathcal{M} \vDash \omega_2 = \omega_2^L$ exists.

Throughout this section work in some generic extension $L[G^*]$ of L in which cofinalities have not been changed.

向下 イヨト イヨト

Definition

Let $X \subseteq \omega_1$ and let $\phi(\omega_1, X)$ be a Σ_1 -sentence with parameters ω_1 , X which is true in all suitable models containing ω_1 and X as elements. Let $\mathcal{L}(\phi)$ be the poset of all $r : |r| \to 2$ where |r| is a countable limit ordinal such that:

1.
$$\forall \gamma \in |r| (\gamma \in X \text{ iff } r(2\gamma) = 1)$$

2. if $\gamma \leq |r|$, \mathcal{M} is a countable suitable model containing $r \upharpoonright \gamma$ as an element, where $\omega_1^{\mathcal{M}} = \gamma$, then $\phi(\gamma, X \cap \gamma)$ holds in \mathcal{M} . The extension relation is end-extension.

・ロン ・回 と ・ ヨ と ・ ヨ と

 $\mathcal{L}(\phi)$ is proper and does not add new reals. In fact $\mathcal{L}(\phi)$ has a countably closed dense suborder.

・ロト ・回ト ・ヨト ・ヨト

3

Let $Y \subseteq \omega_1$ be generic over L such that in L[Y] cofinalities have not been changed. Inductively define $\overline{\mu} = {\mu_i}_{i \in \omega_1}$ of L-countable ordinals as follows: μ_i is least $\mu > \sup_{j < i} \mu_j$ such that $L_{\mu}[Y \cap i] \models ZF^-$ and $L_{\mu} \models (\omega \text{ is the largest cardinal}).$

A real *R* codes *Y* below *i* if for all j < i

 $j \in Y$ iff $L_{\mu_i}[Y \cap j, R] \vDash ZF^-$.

For $T \subseteq 2^{<\omega}$ a perfect tree, let $|T| = \min\{i : T \in L_{\mu_i}[Y \cap i]\}$.

Introduction Localization Coding with perfect trees S-properness Forcing a projective well-order of the reals and not CH Cardinal Characteristics	Definition of $\mathcal{C}(ar{\mu},Y)$
---	--

Definition

Let $\mathcal{C}(Y)$ be the poset of all perfect trees T such that every branch R through T codes Y below |T|. Whenever T_0, T_1 are conditions in $\mathcal{C}(Y)$ let $T_0 \leq T_1$ iff $T_0 \subseteq T_1$.

 $\mathcal{C}(Y)$ is proper and ${}^{\omega}\omega$ -bounding.

向下 イヨト イヨト

Definition

Let $T \subseteq \omega_1$ be a stationary set. A poset \mathbb{Q} is *T*-proper, if for every countable elementary submodel \mathcal{M} of $H(\Theta)$, where Θ is a sufficiently large cardinal, such that $\mathcal{M} \cap \omega_1 \in T$, every condition $p \in \mathbb{Q} \cap \mathcal{M}$ has an $(\mathcal{M}, \mathbb{Q})$ -generic extension q.

- ▶ Let $S \subseteq \omega_1$ be a stationary, co-stationary set. Then Q(S) is the poset of all countable closed subsets of $\omega_1 \setminus S$, with the end-extension as the extension relation. Q(S) is $\omega_1 \setminus S$ -proper.
- S-proper posets preserve ω₁ and the stationarity of all stationary subsets of S. The countable support iteration of S-proper posets is S-proper.

Introduction Localization Coding with perfect trees S-properness Forcing a projective well-order of the reals and not CH Cardinal Characteristics	Destroying stationarity Preservation	
--	---	--

Lemma

Assume CH. Let $\langle \mathbb{P}_{\alpha} : \alpha \leq \delta \rangle$ be a countable support iteration of length $\delta \leq \omega_2$ of S-proper posets of size ω_1 . Then \mathbb{P}_{δ} is \aleph_2 -c.c.

Lemma

Assume CH. Let $\langle \mathbb{P}_{\alpha} : \alpha \leq \delta \rangle$ be a countable support iteration of length $\delta < \omega_2$ of S-proper posets of size ω_1 . Then $V^{\mathbb{P}_{\delta}} \models CH$.

Bookkeeping The wellorder The iteration Properties of \mathbb{P}_{ω_2} Preserving stationarity Δ_3^1 wellorder

Lemma

There is $F: \omega_2 \to L_{\omega_2}$ definable over L_{ω_2} via a formula ϕ and a sequence $\overline{S} = (S_{\beta} : \beta < \omega_2)$ of almost disjoint stationary subsets of ω_1 definable over L_{ω_2} via a formula ψ such that $F^{-1}(a)$ is unbounded in ω_2 for every $a \in L_{\omega_2}$, and

- If M, N are suitable models and ω₁^M = ω₁^N then F^M, F^N agree on ω₂^M ∩ ω₂^N.
- If *M* is suitable and ω₁^M = ω₁ then F^M, S^M equal the restrictions of F, S to the ω₂ of *M*.

 $\begin{array}{l} \textbf{Bookkeeping}\\ \text{The wellorder}\\ \text{The iteration}\\ \text{Properties of } \mathbb{P}_{\omega_2}\\ \text{Preserving stationarity}\\ \Delta_3^1 \text{ wellorder} \end{array}$

Proof.

Define $F(\alpha) = a$ iff via Gödel pairing α codes a pair (α_0, α_1) where a has rank α_0 in the natural wellorder of the sets in L. For the almost disjoint stationary sets, let $(D_{\gamma} : \gamma < \omega_1)$ be the canonical L_{ω_1} definable \Diamond sequence, for each $\alpha < \omega_2$ let A_{α} be the L-least subset of ω_1 coding α and define S_{α} to be the set of all $i < \omega_1$ such that $D_i = A_{\alpha} \cap i$.

・ロト ・回ト ・ヨト ・ヨト

Introduction Bookkeeping Localization The wellorder Coding with perfect trees The iteration S-properness Forcing a projective well-order of the reals and not CH Cardinal Characteristics Δ_2^1 wellorder

Preserving stationarity

Recursively define a countable support iteration $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} : \alpha < \omega_2 \rangle$ such that $\mathbb{P} = \mathbb{P}_{\omega_2}$ will be the desired poset.

- For $\alpha < \beta < \omega_2$ we can assume that all \mathbb{P}_{α} -names for reals precede in the canonical wellorder $<_{I}$ of L all \mathbb{P}_{β} -names for reals which are not \mathbb{P}_{α} names.
- For $\alpha < \omega_2$, define a wellorder $<_{\alpha}$ on the reals of $L[G_{\alpha}]$, where G_{α} is a \mathbb{P}_{α} -generic as follows. If x is a real in $L[G_{\alpha}]$ let σ_x^{α} be the $<_L$ -least \mathbb{P}_{γ} -name for x, where $\gamma \leq \alpha$. Then let $x <_{\alpha} y$ if and only if $\sigma_x^{\alpha} <_L \sigma_y^{\alpha}$.

(ロ) (同) (E) (E) (E)

Introduction	Bookkeeping
Localization	The wellorder
Coding with perfect trees	The iteration
S-properness	Properties of \mathbb{P}_{ω_2}
Forcing a projective well-order of the reals and not CH	Preserving stationarity
Cardinal Characteristics	Δ_3^1 wellorder

Note that <_α is an initial segment of <_β.

Then if G is a \mathbb{P} -generic filter, $\langle {}^{G} = \bigcup \{ \langle {}^{G}_{\alpha} : \alpha < \omega_{2} \}$ will be the desired wellorder of the reals. Also, for x, y reals in $L[G_{\alpha}]$ such that $x <_{\alpha} y$ let $x * y = \{2n : n \in x\} \cup \{2n + 1 : n \in y\}$. Let S be a stationary set almost disjoint from every element of \overline{S} .

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Proceed with the definition of \mathbb{P}_{ω_2} . Let \mathbb{P}_0 be the trivial poset. Suppose \mathbb{P}_{α} has been defined. Let $\dot{\mathbb{Q}}_{\alpha} = \dot{\mathbb{Q}}_{\alpha}^0 * \dot{\mathbb{Q}}_{\alpha}^1$ be a \mathbb{P}_{α} -name for a poset such that $\dot{\mathbb{Q}}_{\alpha}^0$ is a \mathbb{P}_{α} -name for a proper forcing notion of size at most \aleph_1 and $\hat{\mathbb{Q}}_{\alpha}^1$ is defined as follows.

- If F(α) is not of the form {σ_x^α, σ_y^α} for some reals x, y in V^{P_α} then let Q_α¹ be a P_α * Q_α⁰-name for the trivial poset.
- Otherwise F(α) = {σ_x^α, σ_y^α} for some reals x <_α y in V^{P_α}. Let x_α = x, y_α = y. Then let Q_α¹ be a P_α * Q_α⁰-name for K_α⁰ * K_α¹ * K_α² where:

Destroying stationary sets (\mathbb{K}^0_{α}) In $V^{\mathbb{P}_{\alpha}*\dot{\mathbb{Q}}^0_{\alpha}}$ let \mathbb{K}^0_{α} be the direct limit $\langle \mathbb{P}^0_{\alpha,n}, \dot{\mathbb{K}}^0_{\alpha,n} : n \in \omega \rangle$, where $\dot{\mathbb{K}}^0_{\alpha}$ is a \mathbb{P}^0 -parameter $O(S_{\alpha})$ for $n \in \mathcal{N}$, we and $\dot{\mathbb{K}}^0_{\alpha}$ is a

 $\dot{\mathbb{K}}^{0}_{\alpha,n}$ is a $\mathbb{P}^{0}_{\alpha,n}$ -name for $Q(S_{\alpha+2n})$ for $n \in x_{\alpha} * y_{\alpha}$, and $\dot{\mathbb{K}}^{0}_{\alpha,n}$ is a $\mathbb{P}^{0}_{\alpha,n}$ -name for $Q(S_{\alpha+2n+1})$ for $n \notin x_{\alpha} * y_{\alpha}$.

 $\begin{array}{c} \mbox{Introduction} & \mbox{Bookkeeping} \\ \mbox{Localization} & \mbox{The wellorder} \\ \mbox{Coding with perfect trees} & \mbox{The iteration} \\ \mbox{S-propertiess} & \mbox{The iteration} \\ \mbox{Forcing a projective well-order of the reals and not CH} \\ \mbox{Cardinal Characteristics} & \mbox{A}_3^1 wellorder \end{array}$

Localization (\mathbb{K}^1_{α})

Let G^0_{α} be a $\mathbb{P}_{\alpha} * \dot{\mathbb{Q}}^0_{\alpha}$ -generic filter and let H_{α} be a \mathbb{K}^0_{α} -generic over $L[G^0_{\alpha}]$. In $L[G^0_{\alpha} * H_{\alpha}]$ let X_{α} be a subset of ω_1 , coding α , coding (x_{α}, y_{α}) , coding a level of L in which α has size at most ω_1 and coding the generic $G^0_{\alpha} * H_{\alpha}$ which we can regard as a subset of an element of L_{ω_2} .

Then let $\mathbb{K}^1_{\alpha} = \mathcal{L}(\phi_{\alpha})$ where $\phi_{\alpha} = \phi_{\alpha}(\omega_1, X_{\alpha})$ is the Σ_1 -sentence which holds iff X_{α} codes an ordinal $\bar{\alpha} < \omega_2$ and a pair (x, y) such that $S_{\bar{\alpha}+2n}$ is nonstationary for $n \in x * y$, $S_{\bar{\alpha}+2n+1}$ is nonstationary for $n \notin x * y$. Let \mathbb{K}^1_{α} be a $\mathbb{P}^0_{\alpha} * \mathbb{Q}^0_{\alpha} * \mathbb{K}^0_{\alpha}$ -name for \mathbb{K}^1_{α} .

Coding with Perfect Tress (\mathbb{K}^2_{α}) Let Y_{α} be \mathbb{K}^1_{α} -generic over $L[G^0_{\alpha} * H_{\alpha}]$. Since Y_{α} codes X_{α} , $L[G^0_{\alpha} * H_{\alpha} * Y_{\alpha}] = L[Y_{\alpha}]$. Let $\mathbb{K}^2_{\alpha} = \mathcal{C}(Y_{\alpha})$. Let \mathbb{K}^2_{α} be a $\mathbb{P}_{\alpha} * \mathbb{Q}^0_{\alpha} * \mathbb{K}^0_{\alpha} * \mathbb{K}^1_{\alpha}$ -name for \mathbb{K}^2_{α} .

With this the definition of $\hat{\mathbb{Q}}_{\alpha}$ and so $\mathbb{P} = \mathbb{P}_{\omega_2}$ is complete.

Lemma \mathbb{P} is S-proper and ω_2 -c.c.

・ロン ・回 と ・ヨン ・ヨン

3

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$

Lemma A

Let G be a \mathbb{P} -generic and let x, y be reals in L[G]. If x < y, then there is a real R such that for every countable suitable \mathcal{M} , $R \in \mathcal{M}$, there is $\bar{\alpha} < \omega_2^{\mathcal{M}}$ such that $S_{\bar{\alpha}+2n}^{\mathcal{M}}$ is nonstationary in \mathcal{M} for $n \in x * y$ and $S_{\bar{\alpha}+2n+1}^{\mathcal{M}}$ is nonstationary in \mathcal{M} for $n \notin x * y$.

Proof

Pick α such that $F(\alpha) = \{\sigma_x^{\alpha}, \sigma_y^{\alpha}\}$. Then $x_{\alpha} = x$, $y_{\alpha} = y$. Let G_{α}^{0} be $\mathbb{P}_{\alpha} * \dot{\mathbb{Q}}_{\alpha}^{0}$ -generic, let H_{α} be \mathbb{K}_{α}^{0} -generic over $L[G_{\alpha}^{0}]$, let Y_{α} be the \mathbb{K}_{α}^{1} -generic over $L[G_{\alpha}^{0} * H_{\alpha}]$, let R_{α} be the \mathbb{K}_{α}^{2} -generic over $L[Y_{\alpha}]$.

Let \mathcal{M} be countable suitable, $R_{\alpha} \in \mathcal{M}$. However R_{α} codes Y_{α} and so $Y_{\alpha} \upharpoonright \gamma \in \mathcal{M}$, where $\gamma = \omega_1^{\mathcal{M}}$. Then in particular $X_{\alpha} \cap \gamma \in \mathcal{M}$. By the properties of localization $\phi_{\alpha}(\gamma, X_{\alpha} \cap \gamma)$ holds in \mathcal{M} and so $\exists \bar{\alpha} < \omega_2^{\mathcal{M}}$ such that $S_{\bar{\alpha}+2n}^{\mathcal{M}}$ is nonstationary in \mathcal{M} for $n \in x * y$ and $S_{\bar{\alpha}+2n+1}^{\mathcal{M}}$ is nonstationary in \mathcal{M} for $n \notin x * y$.

Lemma B Let G be \mathbb{P} -generic. Then for β not of the form $\alpha + 2n$, $n \in x_{\alpha}^{G} * y_{\alpha}^{G}$ and not of the form $\alpha + 2n + 1$, for $n \notin x_{\alpha}^{G} * y_{\alpha}^{G}$, the set S_{β} is stationary in L[G].

Proof

Let $p \in \mathbb{P}$ be a condition forcing that $\beta < \omega_2$ is not of the form $\alpha + 2n$, $n \in x_{\alpha}^G * y_{\alpha}^G$ and not of the form $\alpha + 2n + 1$, for $n \notin x_{\alpha}^G * y_{\alpha}^G$. Consider the forcing notion $\mathbb{P} \upharpoonright p$ which consists of all conditions in \mathbb{P} which extend p. Note that G is also $\mathbb{P} \upharpoonright p$ -generic. However $\mathbb{P} \upharpoonright p$ is S_β -proper and so S_β remains stationary in L[G].

・ロン ・回 と ・ ヨ と ・ ヨ と

Let G be \mathbb{P} -generic and let x, y be reals in L[G]. Then

- (1) x < y iff for some $\alpha < \omega_2$, $S_{\alpha+2n}$ is nonstationary for n in x * y and $S_{\alpha+2n+1}$ is nonstationary for n not in x * y.
- (2) If x < y then there is a real R such that for every countable suitable M, R ∈ M, there is ā < ω₂^M such that S^M_{ā+2n} is nonstationary in M for n ∈ x ∗ y and S^M_{ā+2n+1} is nonstationary in M for n ∉ x ∗ y.

Observation (1) implies the converse of (2).

Let R be given. The conclusion of (2) holds for arbitrary suitable models and so it holds for $L_{\Theta}[R] = \mathcal{M}$ where Θ is large. Let $\alpha < \omega_2$ be the corresponding ordinal. As \overline{S} is definable over L_{ω_2} and $\Theta > \omega_2$, $S_{\beta}^{\mathcal{M}} = S_{\beta}$ for all $\beta < \omega_2$. Thus $S_{\alpha+2n}^{\mathcal{M}} = S_{\alpha+2n}$ is nonstationary in \mathcal{M} for n in x * y and $S_{\alpha+2n+1}^{\mathcal{M}} = S_{\alpha+2n+1}$ is nonstationary in \mathcal{M} for n not in x * y. These sets are nonstationary in the larger model L[G] and so by (1), we have x < y.

イロト イポト イヨト イヨト

Therefore in L[G], $<^{G} = \bigcup \{<^{G}_{\alpha}: \alpha < \omega_{2}\}$ has a Σ_{3}^{1} definition.

x < y iff there is a real R such that for every countable suitable $\mathcal{M}, R \in \mathcal{M}$, there is $\bar{\alpha} < \omega_2^{\mathcal{M}}$ such that $S_{\bar{\alpha}+2n}^{\mathcal{M}}$ is nonstationary in \mathcal{M} for $n \in x * y$ and $S_{\bar{\alpha}+2n+1}^{\mathcal{M}}$ is nonstationary in \mathcal{M} for $n \notin x * y$

It remains to observe that since $x \not\leq^G y$ is Π_3^1 and $<^G$ is a linear order, $<^G$ indeed has a Δ_3^1 definition.

Lemma

Let $S \subseteq \omega_1$ be a stationary set and let $\langle \mathbb{P}_i, \dot{\mathbb{Q}}_i : i < \delta \rangle$ be a countable support iteration of length $\delta \leq \omega_2$ of S-proper, ${}^{\omega}\omega$ -bounding posets. Then \mathbb{P}_{δ} is ${}^{\omega}\omega$ -bounding and S-proper.

高 とう ヨン うまと

Coding with perfect trees S-properness	Preservation Theorems $\mathfrak{d} < \mathfrak{c}$ $\mathfrak{b} < \mathfrak{g}$ $\mathfrak{b} < \mathfrak{a} = \mathfrak{s}$
---	---

Observation For all $\alpha < \omega_2$,

$\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}^{1}_{\alpha} \text{ is } S \text{-proper and } {}^{\omega}\omega \text{-bounding.}$

・ 回 と く ヨ と く ヨ と

æ

Theorem

It is consistent with $\mathfrak{d} < \mathfrak{c}$ that there is a Δ_3^1 wellorder of the reals.

Proof.

Let $\mathbb{P}_{\mathbb{S}}$ be defined just as $\mathbb{P} = \mathbb{P}_{\omega_2}$ with the additional requirement that $\hat{\mathbb{Q}}^0_{\alpha}$ is a \mathbb{P}_{α} -name for the trivial poset. Let G be $\mathbb{P}_{\mathbb{S}}$ -generic. Since destroying stationary sets, localization and coding with perfect trees are ${}^{\omega}\omega$ -bounding, $\mathbb{P}_{\mathbb{S}}$ is weakly bounding. Then $L[G] \models \mathfrak{d} = \omega_1 < \mathfrak{c} = \omega_2$.

通 とう ほうとう ほうど

Introduction Localization	Preservation Theorems
Coding with perfect trees S-properness	∂ < c b < α
Forcing a projective well-order of the reals and not CH	$\mathfrak{b} < \mathfrak{g}$ $\mathfrak{b} < \mathfrak{a} = \mathfrak{s}$
Cardinal Characteristics	

Theorem

It is consistent with $\mathfrak{b} < \mathfrak{g}$ that there is a Δ_3^1 wellorder of the reals.

Proof.

Let $\mathbb{P}_{\mathbb{M}}$ be defined just as $\mathbb{P} = \mathbb{P}_{\omega_2}$ with the additional requirement that $\hat{\mathbb{Q}}^0_{\alpha}$ is a \mathbb{P}_{α} -name for Miller forcing \mathbb{M} . Since \mathbb{M} is almost ${}^{\omega}\omega$ -bounding, $\mathbb{P}_{\mathbb{M}}$ is weakly bounding. The Miller real has supersets in all groupwise dense families from the ground model, and so if G is $\mathbb{P}_{\mathbb{S}}$ -generic, $\mathcal{L}[G] \vDash \mathfrak{b} = \omega_1 < \mathfrak{g} = \omega_2$.

向下 イヨト イヨト

Introduction Localization Coding with perfect trees S-properness Forcing a projective well-order of the reals and not CH	Preservation Theorems $\vartheta < c$ $\flat < \mathfrak{g}$ $\flat < \mathfrak{a} = \mathfrak{s}$
Cardinal Characteristics	

Theorem

It is consistent with b < s = a that there is a Δ_3^1 definable wellorder of the reals.

Proof

Let Q be an almost ${}^{\omega}\omega$ -bounding poset which adds a real not split by the ground model reals. By a result of S. Shelah if $V \vDash CH$ and \mathcal{A} is a mad family in V, then in $V_1 = V^{\mathbb{C}(\omega_1)}$ there is an almost ${}^{\omega}\omega$ -bounding poset which destroys the maximality of \mathcal{A} .

高 とう ヨン うまと

Let F_0 be a bookkeeping function, dom $(F_0) = \omega_2$ such that every relevant name for a mad family is enumerated cofinally often. Let \mathbb{P}_Q be defined just as \mathbb{P} with the additional requirement that $\mathbb{Q}^0_{\alpha} = \mathbb{H}^0_{\alpha} * \dot{\mathbb{H}}^1_{\alpha} * \dot{\mathbb{H}}^2_{\alpha}$ where

- \mathbb{H}^{0}_{α} adds ω_{1} Cohen reals.
- If F₀(α) is a P_α-name for a mad family then H¹_α is an almost ^ωω-bounding poset which destroys its maximality. If F₀(α) is not a P_α-name for a mad family then H¹_α is the trivial poset.
- \mathbb{H}^2_{α} is Shelah's poset Q.

▲圖▶ ★ 国▶ ★ 国▶

Introduction Localization Coding with perfect trees S-properness Forcing a projective well-order of the reals and not CH Cardinal Characteristics	Preservation Theorems $\vartheta < c$ $\mathfrak{b} < \mathfrak{g}$ $\mathfrak{b} < \mathfrak{a} = \mathfrak{s}$
--	---

Let G be \mathbb{P}_Q -generic.

- Cohen forcing, Q and the posets used to kill mad families are almost ^ωω-bounding. Thus P_Q is weakly bounding and so L[G] ⊨ b = ω₁.
- ▶ Let $W \subseteq L[G] \cap [\omega]^{\omega}$, $|W| = \omega_1$. Then $W \subseteq L[G_{\alpha}]$ for some $\alpha < \omega_2$. However \mathbb{H}^2_{α} adds a real not split by W and so $L[G] \models \mathfrak{s} = \omega_2$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Suppose A is a mad family in L[G], |A| = ω₁. Since F₀⁻¹(Å) is unbounded there is β ≥ α with F₀(β) = Å. Then ℍ_α¹ destroys the maximality of A and so L[G_{β+1}] ⊨ A is not mad, which is a contradiction. Thus L[G] ⊨ α = ω₂.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Introduction Localization Coding with perfect trees S-properness Forcing a projective well-order of the reals and not CH Cardinal Characteristics	Preservation Theorems $\vartheta < \mathfrak{c}$ $\vartheta < \mathfrak{g}$ $\vartheta < \mathfrak{a} = \mathfrak{s}$
--	--

1. Which other inequalities between the standard cardinal characteristics of the real line are consistent with the existence of a projective wellorder of the reals?

2. What is the complexity in the projective hierarchy of the witnesses of the corresponding cardinal characteristics in these models?

ヨット イヨット イヨッ

Introduction Localization Coding with perfect trees S-properness Forcing a projective well-order of the reals and not CH Cardinal Characteristics	Preservation Theorems
--	-----------------------

A family $D \subseteq [\omega]^{\omega}$ is groupwise dense if

1. if $X \in D$ and $Y \setminus X$ is finite, then $Y \in D$

 if Π is a family of infinitely many pairwise disjoint finite subsets of ω, the union of some subfamily of Π is in D.

The groupwise density number \mathfrak{g} is the minimal κ such that for some family \mathcal{D} of κ -many groupwise dense families, $\bigcap \mathcal{D} = \emptyset$

・ 同 ト ・ ヨ ト ・ ヨ ト