Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{\mathbb{P}\omega_3}$

Projective Maximal Families of Orthogonal Measures with Large Continuum

Vera Fischer

Kurt Gödel Research Center University of Vienna

November 28, 2011

< □ > < □ > < Ξ > < Ξ > < Ξ = < 0 < 0

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Maximal Families of Orthogonal Measures} \\ \mbox{The forcing construction} \\ \mbox{$L^{^{b}}\omega_3$} \end{array}$

General Overview Some recent results Orthogonal Measures

The results which we are to consider, concern the definability of certain combinatorial objects on the real line and in particular the question of how low in the projective hierarchy such objects exist.

- (Mathias) There is no Σ_1^1 mad family in $[\omega]^{\omega}$.
- (Miller) If V = L, then there is a Π_1^1 mad family in $[\omega]^{\omega}$.

Maximal Families of Orthogonal Measures The forcing construction $L^{\#\omega_3}$

General Overview Some recent results Orthogonal Measures

Theorem (L. Harrington)

The existence of Δ_3^1 -definable wellorder of the reals is consistent with \mathfrak{c} being as large as desired and MA.

Theorem (S. D. Friedman)

The existence of Δ_3^1 -definable wellorder of the reals is consistent with $\mathfrak{c} = \omega_2$ and MA.

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへで

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Maximal Families of Orthogonal Measures}\\ \mbox{The forcing construction}\\ \mbox{$L^{\mathbb{F}}\omega_3$} \end{array}$

General Overview Some recent results Orthogonal Measures

Note that Δ_3^1 wellorder is optimal for models of $\mathfrak{c} > \aleph_1$, since by a result of Mansfield if there is a Σ_2^1 definable w.o. on \mathbb{R} , then all reals are constructible.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Maximal Families of Orthogonal Measures} \\ \mbox{The forcing construction} \\ \mbox{$L^{\mathbb{P}}\omega_3$} \end{array}$

General Overview Some recent results Orthogonal Measures

The existence of a Δ_3^1 -definable w.o. on the reals is consistent with each of the following:

- $\ \ \, (\mathsf{F.}, \mathsf{Friedman}) \ \, \mathfrak{d} < \mathfrak{c} = \omega_2; \ \, \mathfrak{b} < \mathfrak{g} = \mathfrak{c} = \omega_2; \\ \, \mathfrak{b} < \mathfrak{a} = \mathfrak{s} = \mathfrak{c} = \omega_2;$
- (Friedman, Zdomskyy) the existence of a Π¹₂ definable ω-mad family on [ω]^ω together with b = c = ω₂;
- (F., Friedman, Zdomskyy) the existence of a Π¹₂ definable ω-mad family on [ω]^ω together with b = c = ω₃;
- (F., Friedman, Zdomskyy) Martin's Axiom and $\mathfrak{c} = \omega_3$.

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Maximal Families of Orthogonal Measures} \\ \mbox{The forcing construction} \\ \mbox{$L^{\mathbb{P}}\omega_3$} \end{array}$

General Overview Some recent results Orthogonal Measures

Let X be a Polish space, and let P(X) be the Polish space of Borel probability measures on X.

- If $\mu, \nu \in P(X)$ then μ and ν are said to be orthogonal, written $\mu \perp \nu$, if there is a Borel set $B \subseteq X$ such that $\mu(B) = 0$ and $\nu(X \setminus B) = 0$.
- A set of measures A ⊆ P(X) is said to be orthogonal if whenever μ, ν ∈ A and μ ≠ ν then μ ⊥ ν.
- A maximal orthogonal family, or m.o. family, is an orthogonal family $\mathcal{A} \subseteq P(X)$ which is maximal under inclusion.

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Maximal Families of Orthogonal Measures} \\ \mbox{The forcing construction} \\ \mbox{$L^{\mathbb{P}}\omega_3$} \end{array}$

General Overview Some recent results Orthogonal Measures

Theorem (Preiss, Rataj, 1985) There are no analytic m.o. families.

Theorem (F., Törnquist, 2009) If V = L then there is a Π_1^1 m.o. family.

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Maximal Families of Orthogonal Measures} \\ \mbox{The forcing construction} \\ \mbox{$L^{^{b}\omega_3$}$} \end{array}$

General Overview Some recent results Orthogonal Measures

We study Π_2^1 m.o. families in the context of $\mathfrak{c} \ge \omega_2$, with the additional requirement that there is a Δ_3^1 -definable wellorder of \mathbb{R} .

Theorem (F., Freidman, Törnquist, 2011)

It is consistent with $\mathfrak{c} = \mathfrak{b} = \omega_3$ that there is a Δ_3^1 -definable well order of the reals, a Π_2^1 definable maximal orthogonal family of measures and there are no Σ_2^1 -definable maximal sets of orthogonal measures.

There is nothing special about $\mathfrak{c} = \omega_3$. In fact the same result can be obtained for any reasonable value of \mathfrak{c} .

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Maximal Families of Orthogonal Measures} \\ \mbox{The forcing construction} \\ \mbox{$L^{^{b}\omega_3$}$} \end{array}$

General Overview Some recent results Orthogonal Measures

Theorem (F., Freidman, Törnquist, 2011)

It is consistent with $\mathfrak{b} = \omega_1$, $\mathfrak{c} = \omega_2$ that there is a Δ_3^1 -definable wellorder of the reals, a Π_2^1 definable maximal orthogonal family of measures and there are no Σ_2^1 -definable maximal sets of orthogonal measures.

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Maximal Families of Orthogonal Measure}\\ \mbox{The forcing construction}\\ \mbox{L^{μ}}\omega_3 \end{array}$

 $\begin{array}{l} \mbox{Code for a measure} \\ \mbox{Coding a real into a measure} \\ \mbox{no } \Sigma_2^1 \mbox{-definable m.o.families} \end{array}$

Let X be a Polish space. Recall that if $\mu, \nu \in P(X)$ then μ is absolutely continuous with respect to ν , written $\mu \ll \nu$, if for all Borel subsets of X we have that $\nu(B) = 0$ implies that $\mu(B) = 0$. Two measures $\mu, \nu \in P(2^{\omega})$ are called absolutely equivalent, written $\mu \approx \nu$, if $\mu \ll \nu$ and $\nu \ll \mu$.

IntroductionCode for a measureMaximal Families of Orthogonal Measures
The forcing construction
 $L^{z}\omega_{3}$ Code for a measure
Coding a real into a measure
no Σ_{2}^{1} -definable m.o.families

For
$$s \in 2^{<\omega}$$
, let $N_s = \{x \in 2^{\omega} : s \subseteq x\}$. Let $p(2^{\omega})$ be the set of all $f : 2^{<\omega} \to [0, 1]$ such that

$$f(\emptyset) = 1 \land (\forall s \in 2^{<\omega})f(s) = f(s^0) + f(s^1)\}.$$

The spaces $p(2^{\omega})$ and $P(2^{\omega})$ are isomorphic via the $f \mapsto \mu_f$ where $\mu_f \in P(2^{\omega})$ is the measure uniquely determined by $\mu_f(N_s) = f(s)$ for all $s \in 2^{<\omega}$. The unique real $f \in p(2^{\omega})$ such that $\mu = \mu_f$ is called the code for μ .

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Maximal Families of Orthogonal Measures}\\ \mbox{The forcing construction}\\ \mbox{$L^{^{\mu}\omega_3}$} \end{array}$

Code for a measure Coding a real into a measure no Σ_{2}^{1} -definable m.o.families

Let $P_c(2^{\omega})$ be the set of all non-atomic measures and $p_c(2^{\omega})$ the set of all codes for non-atomic measures. We describe now a way of coding a given real $z \in 2^{\omega}$ into a measure $\mu \in P_c(2^{\omega})$.

- Let µ ∈ P_c(2^ω), s ∈ 2^{<ω}. Then let t(s, µ) be the lexicographically least t ∈ 2^{<ω} such that s ⊆ t, µ(N_{t⁰}) > 0 and µ(N_{t¹}) > 0, if it exists and otherwise we let t(s, µ) = Ø.
- ▶ Define recursively $t_n^{\mu} \in 2^{<\omega}$ by letting $t_0^{\mu} = \emptyset$ and $t_{n+1}^{\mu} = t(t_n^{\mu} \cap 0, \mu)$. Since μ is non-atomic, we have $lh(t_{n+1}^{\mu}) > lh(t_n^{\mu})$. Let $t_{\infty}^{\mu} = \bigcup_{n=0}^{\infty} t_n^{\mu}$.
- For f ∈ p_c(2^ω) and n ∈ ω ∪ {∞} we will write t^f_n for t^{μ_f}_n.
 Clearly the sequence (t^f_n : n ∈ ω) is recursive in f.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{2}\omega_{3}$ Code for a measure Coding a real into a measure no Σ_{2}^{1} -definable m.o.families

Define the relation $R \subseteq p_c(2^{\omega}) \times 2^{\omega}$ as follows: R(f, z) holds iff for all $n \in \omega$ we have

$$(z(n) = 1 \longleftrightarrow (f(t_n^f \cap 0) = \frac{2}{3}f(t_n^f) \land f(t_n^f \cap 1) = \frac{1}{3}f(t_n))) \land$$
$$(z(n) = 0 \Leftrightarrow f(t_n^f \cap 0) = \frac{1}{3}f(t_n^f) \land f(t_n^f \cap 1) = \frac{2}{3}f(t_n^f)).$$

Whenever $(f, z) \in R$ we say that f codes z.

 $\begin{array}{c} Introduction\\ \text{Maximal Families of Orthogonal Measures}\\ \text{The forcing construction}\\ \mathcal{L}^{\mathbb{P}\omega_3} \end{array}$

Code for a measure Coding a real into a measure no Σ_2^1 -definable m.o.families

Lemma (Coding Lemma)

There is a recursive function $G : p_c(2^{\omega}) \times 2^{\omega} \to p_c(2^{\omega})$ such that for all $f \in p_c(2^{\omega})$ and $z \in 2^{\omega}$ we have:

•
$$\mu_{G(f,z)} \approx \mu_f$$
, and

$$\blacktriangleright R(G(f,z),z)$$

< □ > < □ > < Ξ > < Ξ > < Ξ = < 0 < 0

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{\frac{2}{\omega_3}}$

Code for a measure Coding a real into a measure no Σ_2^1 -definable m.o.families

Proposition

Let $a \in \mathbb{R}$ and suppose that there either is a Cohen real over L[a] or there is a random real over L[a]. Then there is no $\Sigma_2^1(a)$ m.o. family.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^2 \omega_3$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3} Coding the w.o. Coding the m.o. family Dominating Reals

We proceed with the construction of a generic extension of L in which there is a Δ_3^1 definable well order of the reals, there is a Π_2^1 -definable m.o. family, there are no Σ_2^1 -definable m.o. families and $\mathfrak{c} = \aleph_3$.

A transitive ZF⁻ model is suitable if $\omega_3^{\mathcal{M}}$ exists and $\omega_3^{\mathcal{M}} = \omega_3^{L^{\mathcal{M}}}$. If \mathcal{M} is suitable then also $\omega_1^{\mathcal{M}} = \omega_1^{L^{\mathcal{M}}}$ and $\omega_2^{\mathcal{M}} = \omega_2^{L^{\mathcal{M}}}$.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^2 \omega_3$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3} Coding the w.o. Coding the m.o. family Dominating Reals

Fix a $\Diamond_{\omega_2}(cof(\omega_1))$ sequence $\langle G_{\xi} : \xi \in \omega_2 \cap cof(\omega_1) \rangle$ which is Σ_1 -definable over L_{ω_2} .

▶ For $\alpha < \omega_3$, let W_{α} be the *L*-least subset of ω_2 coding α and

• let
$$S_{\alpha} = \{\xi \in \omega_2 \cap cof(\omega_1) : G_{\xi} = W_{\alpha} \cap \xi \neq \emptyset\}.$$

Then $\vec{S} = \langle S_{\alpha} : 1 < \alpha < \omega_3 \rangle$ is a sequence of stationary subsets of $\omega_2 \cap cof(\omega_1)$, which are mutually almost disjoint.

Introduction Maximal Families of Orthogonal Measures The forcing construction $\int_{-\frac{1}{2}\omega_3}^{\frac{1}{2}\omega_3}$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3} Coding the w.o. Coding the m.o. family Dominating Reals

For every α such that $\omega \leq \alpha < \omega_3$ shoot a club C_{α} disjoint from S_{α} via the poset \mathbb{P}^0_{α} , consisting of all closed subsets of ω_2 which are disjoint from S_{α} with the extension relation being end-extension, and let $\mathbb{P}^0 = \prod_{\alpha < \omega_3} \mathbb{P}^0_{\alpha}$ be the direct product of the \mathbb{P}^0_{α} 's with supports of size ω_1 , where for $\alpha \in \omega$, \mathbb{P}^0_{α} is the trivial poset. Then \mathbb{P}^0 is countably closed, ω_2 -distributive and ω_3 -c.c.

Introduction Maximal Families of Orthogonal Measures The forcing construction L^{ω_3} Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3} Coding the w.o. Coding the m.o. family Dominating Reals

For every α such that $\omega \leq \alpha < \omega_3$ let $D_{\alpha} \subseteq \omega_3$ be a set coding the triple $\langle C_{\alpha}, W_{\alpha}, W_{\gamma} \rangle$ where γ is the largest limit ordinal $\leq \alpha$. Let

$$\boldsymbol{E}_{\alpha} = \{ \mathcal{M} \cap \omega_2 : \mathcal{M} \prec \boldsymbol{L}_{\alpha + \omega_2 + 1}[D_{\alpha}], \omega_1 \cup \{D_{\alpha}\} \subseteq \mathcal{M} \}.$$

Then E_{α} is a club on ω_2 . Choose $Z_{\alpha} \subseteq \omega_2$ such that:

- $Even(Z_{\alpha}) = D_{\alpha}$, where $Even(Z_{\alpha}) = \{\beta : 2 \cdot \beta \in Z_{\alpha}\}$, and
- if $\beta < \omega_2$ is the $\omega_2^{\mathcal{M}}$ for some suitable model \mathcal{M} such that $Z_{\alpha} \cap \beta \in \mathcal{M}$, then $\beta \in E_{\alpha}$.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{z \omega_3}$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3} Coding the w.o. Coding the m.o. family Dominating Reals

Then we have

(*)_{α}: If $\beta < \omega_2$, \mathcal{M} is a suitable model such that $\omega_1 \subset \mathcal{M}$, $\omega_2^{\mathcal{M}} = \beta$, and $Z_{\alpha} \cap \beta \in \mathcal{M}$, then $\mathcal{M} \models \psi(\omega_2, Z_{\alpha} \cap \beta)$, where $\psi(\omega_2, X)$ is the formula "Even(X) codes a triple $\langle \overline{C}, \overline{W}, \overline{W} \rangle$, where \overline{W} and \overline{W} are the *L*-least codes of ordinals $\overline{\alpha}, \overline{\overline{\alpha}} < \omega_3$ such that $\overline{\overline{\alpha}}$ is the largest limit ordinal not exceeding $\overline{\alpha}$, and \overline{C} is a club in ω_2 disjoint from $S_{\overline{\alpha}}$ ".

Introduction Maximal Families of Orthogonal Measures The forcing construction $\int_{-\frac{1}{2}\omega_3}^{z}$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3} Coding the w.o. Coding the m.o. family Dominating Reals

Similarly to \vec{S} define a sequence $\vec{A} = \langle A_{\xi} : \xi < \omega_2 \rangle$ of stationary subsets of ω_1 using the "standard" \diamond -sequence. Code Z_{α} by a subset X_{α} of ω_1 with the poset \mathbb{P}^1_{α} consisting of all pairs $\langle s_0, s_1 \rangle \in [\omega_1]^{\leq \omega_1} \times [Z_{\alpha}]^{\leq \omega_1}$ where $\langle t_0, t_1 \rangle \leq \langle s_0, s_1 \rangle$ iff s_0 is an initial segment of $t_0, s_1 \subseteq t_1$ and $t_0 \setminus s_0 \cap A_{\xi} = \emptyset$ for all $\xi \in s_1$.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{\#\omega_3}$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3} Coding the w.o. Coding the m.o. family Dominating Reals

Then X_{α} satisfies the following condition:

 $\begin{array}{l} (**)_{\alpha}: \mbox{ If } \omega_1 < \beta \leq \omega_2 \mbox{ and } \mathcal{M} \mbox{ is a suitable model such that } \\ \omega_2^{\mathcal{M}} = \beta \mbox{ and } \{X_{\alpha}\} \cup \omega_1 \subset \mathcal{M}, \mbox{ then } \mathcal{M} \vDash \phi(\omega_1, \omega_2, X_{\alpha}), \mbox{ where } \\ \phi(\omega_1, \omega_2, X) \mbox{ is the formula: " Using the sequence } \vec{\mathcal{A}}, \ X \mbox{ almost } \\ \mbox{ disjointly codes a subset } \bar{Z} \mbox{ of } \omega_2, \mbox{ such that } Even(\bar{Z}) \mbox{ codes a triple } \\ \langle \bar{C}, \bar{W}, \bar{W} \rangle, \mbox{ where } \bar{W} \mbox{ and } \bar{\bar{W}} \mbox{ are the } L\mbox{-least codes of ordinals } \\ \bar{\alpha}, \bar{\bar{\alpha}} < \omega_3 \mbox{ such that } \bar{\bar{\alpha}} \mbox{ is the largest limit ordinal not exceeding } \bar{\alpha}, \\ \mbox{ and } \bar{C} \mbox{ is a club in } \omega_2 \mbox{ disjoint from } S_{\bar{\alpha}}". \end{array}$

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{L}\omega_3$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3} Coding the w.o. Coding the m.o. family Dominating Reals

Let $\mathbb{P}^1 = \prod_{\alpha < \omega_3} \mathbb{P}^1_{\alpha}$, where \mathbb{P}^1_{α} is the trivial poset for all $\alpha \in \omega$, with countable support. Then \mathbb{P}^1 is countably closed and has the ω_2 -c.c.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{\Sigma} \omega_3$ $\begin{array}{l} \mbox{Preliminary stage} \\ \mbox{Localization} \\ \mbox{Coding Stage} \\ \hline \mbox{\mathbb{P}_{ω_3}} \\ \mbox{Coding the w.o.} \\ \mbox{Coding the m.o. family} \\ \mbox{Dominating Reals} \end{array}$

Now we shall force a localization of the X_{α} 's. Fix ϕ as in $(**)_{\alpha}$.

Definition

Let $X, X' \subset \omega_1$ be such that $\phi(\omega_1, \omega_2, X)$, $\phi(\omega_1, \omega_2, X')$ hold in any suitable \mathcal{M} with $\omega_1^{\mathcal{M}} = \omega_1^L$, X, X' in \mathcal{M} . Denote by $\mathcal{L}(X, X')$ the p.o. of all $r : |r| \to 2$, where $|r| \in \text{Lim}(\omega_1)$, such that:

1. if
$$\gamma < |r|$$
 then $\gamma \in X$ iff $r(3\gamma) = 1$

2. if
$$\gamma < |r|$$
 then $\gamma \in X'$ iff $r(3\gamma + 1) = 1$

3. if $\gamma \leq |r|$, \mathcal{M} is countable, suitable, such that $r \upharpoonright \gamma \in \mathcal{M}$ and $\gamma = \omega_1^{\mathcal{M}}$, then $\mathcal{M} \vDash \phi(\omega_1, \omega_2, X \cap \gamma) \land \phi(\omega_1, \omega_2, X' \cap \gamma)$.

The extension relation is end-extension.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^2 \omega_3$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3} Coding the w.o. Coding the m.o. family Dominating Reals

Set $\mathbb{P}^2_{\alpha+m} = \mathcal{L}(X_{\alpha+m}, X_{\alpha})$ for every $\alpha \in Lim(\omega_3) \setminus \{0\}$ and $m \in \omega$. Let \mathbb{P}^2_{0+m} be the trivial poset for every $m \in \omega$ and let

$$\mathbb{P}^2 = \prod_{lpha \in Lim(\omega_3)} \prod_{m \in \omega} \mathbb{P}^2_{lpha + m}$$

with countable supports. By the Δ -system Lemma in $\mathcal{L}^{\mathbb{P}^0 * \mathbb{P}^1}$ the poset \mathbb{P}^2 has the ω_2 -c.c.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^2 \omega_3$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3} Coding the w.o. Coding the m.o. family Dominating Reals

Observe that the poset $\mathbb{P}^2_{\alpha+m}$, where $\alpha > 0$, produces a generic function from ω_1 (of $L^{\mathbb{P}^0*\mathbb{P}^1}$) into 2, which is the characteristic function of a subset $Y_{\alpha+m}$ of ω_1 with the following property:

 $(***)_{\alpha}$: For every $\beta < \omega_1$ and any suitable \mathcal{M} such that $\omega_1^{\mathcal{M}} = \beta$ and $Y_{\alpha+m} \cap \beta$ belongs to \mathcal{M} , we have

$$\mathcal{M} \vDash \phi(\omega_1, \omega_2, X_{\alpha+m} \cap \beta) \land \phi(\omega_1, \omega_2, X_{\alpha} \cap \beta).$$

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへで

Introduction Maximal Families of Orthogonal Measures The forcing construction $l^{\#}\omega_3$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3} Coding the w.o. Coding the m.o. family Dominating Reals

Lemma The poset $\mathbb{P}_0 := \mathbb{P}^0 * \mathbb{P}^1 * \mathbb{P}^2$ is ω -distributive.

Introduction Maximal Families of Orthogonal Measures The forcing construction $\int_{-\frac{1}{2}\omega_3}^{z}$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_2}

Coding the w.o. Coding the m.o. family Dominating Reals

For $\alpha : 1 \leq \alpha < \omega_3$ we will say that there is a stationary kill of S_{α} , if there is a closed unbounded set C disjoint from S_{α} . We will say that the stationary kill of S_{α} is coded by a real, if there is a closed unbounded set constructible from this real.

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへで

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{z \omega_3}$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3} Coding the w.o. Coding the m.o. family

Dominating Reals

Let $\vec{B} = \langle B_{\zeta,m} : \zeta < \omega_1, m \in \omega \rangle \subseteq \omega$ be a nicely definable sequence of a. d. sets. We will define a f. s. iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} : \alpha \leq \omega_3, \beta < \omega_3 \rangle$ such that $\mathbb{P}_0 = \mathbb{P}^0 * \mathbb{P}^1 * \mathbb{P}^2$, for every $\alpha < \omega_3, \dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}_{α} -name for a σ -centered poset, in $\mathcal{L}^{\mathbb{P}_{\omega_3}}$ there is a Δ_3^1 -definable wellorder of the reals, a Π_2^1 -definable m.o. family and there are no Σ_2^1 -definable m.o. families.

Along the iteration $\forall \alpha < \omega_3$, in $V^{\mathbb{P}_{\alpha}}$ we will define a set $O_{\alpha} \subseteq P_c(2^{\omega})$ of orthogonal measures and for $\alpha \in Lim(\omega_3)$, a subset $A_{\alpha} \subseteq [\alpha, \alpha + \omega)$.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{z \omega_3}$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3} Coding the w.o. Coding the m.o. family Dominating Reals

 \mathbb{Q}_{α} will add a generic real u_{α} . We will have that $L[G_{\alpha}] \cap {}^{\omega}\omega = L[\langle \dot{u}_{\xi}^{G_{\alpha}} : \xi < \alpha \rangle] \cap {}^{\omega}\omega$. This gives a canonical w.o. of the reals in $L[G_{\alpha}]$ which depends only on $\langle \dot{u}_{\xi} : \xi < \alpha \rangle$, whose \mathbb{P}_{α} -name will be denoted by $\dot{<}_{\alpha}$. Additionally arrange that for $\alpha < \beta$, $<_{\alpha}$ is an initial segment of $<_{\beta}$, where $<_{\alpha} = \dot{<}_{\alpha}^{G_{\alpha}}$ and $<_{\beta} = \dot{<}_{\beta}^{G_{\beta}}$. Then if G is a $\mathbb{P}_{\omega_{3}}$ -generic filter:

► $<^{G} = \bigcup \{ \stackrel{<}{<}^{G}_{\alpha} : \alpha < \omega_{3} \}$ will be is the desired w.o. of \mathbb{R} and,

O = U_{α<ω3} O_α ⊆ P_c(2^ω) will be Π¹₂-definable maximal family of orthogonal measures.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{^{L}\omega_3}$ $\begin{array}{l} \mbox{Preliminary stage} \\ \mbox{Localization} \\ \mbox{Coding Stage} \\ \mbox{\mathbb{P}_{ω_3}} \\ \mbox{Coding the w.o.} \\ \mbox{Coding the m.o. family} \\ \mbox{Dominating Reals} \end{array}$

Recursively define
$$\mathbb{P}_{\omega_3}$$
 as follows. For $\nu \in [\omega_2, \omega_3)$ let
 $i_{\nu} : \nu \cup \{\langle \xi, \eta \rangle : \xi < \eta < \nu\} \rightarrow Lim(\omega_3)$ be a fixed bijection. If G_{α}
is a \mathbb{P}_{α} -generic, $<_{\alpha} = \stackrel{<}{<}_{\alpha}^{G_{\alpha}}$ and $x, y \in L[G_{\alpha}] \cap {}^{\omega}\omega$ such that
 $x <_{\alpha} y$, let $x * y = \{2n\}_{n \in x} \cup \{2n + 1\}_{n \in y}$ and
 $\Delta(x * y) = \{2n + 2 : n \in x * y\} \cup \{2n + 1 : n \notin x * y\}.$

Suppose \mathbb{P}_{α} has been defined and let G_{α} be a \mathbb{P}_{α} -generic filter. If $\alpha = \omega_2 \cdot \alpha' + \xi$, where $\alpha' > 0$, $\xi \in Lim(\omega_2)$, let $\nu = o.t.(<_{\omega_2 \cdot \alpha'}^{G_{\alpha}})$ and let $i = i_{\nu}$.

◆□▶ ◆□▶ ◆目▶ ◆日▶ 目目 のへで

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^2 \omega_3$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3}

Coding the w.o. Coding the m.o. family Dominating Reals

Coding the w.o.. If
$$i^{-1}(\xi) = \langle \xi_0, \xi_1 \rangle$$
 for some $\xi_0 < \xi_1 < \nu$, let x_{ξ_0} , x_{ξ_1} be the ξ_0 -th, ξ_1 -th reals in $L[G_{\omega_2 \cdot \alpha'}]$ according to $\dot{<}_{\omega_2 \cdot \alpha'}^{G_{\alpha}}$. In $L^{\mathbb{P}_{\alpha}}$ let

$$\mathbb{Q}_{\alpha} = \{ \langle s_0, s_1 \rangle : s_0 \in [\omega]^{<\omega}, s_1 \in [\bigcup_{m \in \Delta(x_{\xi_0} * x_{\xi_1})} Y_{\alpha+m} \times \{m\}]^{<\omega} \},$$

where $\langle t_0, t_1 \rangle \leq \langle s_0, s_1 \rangle$ iff $s_1 \subseteq t_1$, s_0 is an initial segment of t_0 and $(t_0 \setminus s_0) \cap B_{\zeta,m} = \emptyset$ for all $\langle \zeta, m \rangle \in s_1$. Let u_α be the generic real added by \mathbb{Q}_α , $A_\alpha = \alpha + \omega \setminus \Delta(x_{\xi_0} * x_{\xi_1})$ and $O_\alpha = \emptyset$.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{-\omega \Im}$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3} Coding the w.o. Coding the m.o. family Dominating Reals

Coding the m.o. family. Let $i^{-1}(\xi) = \zeta \in \nu$. If the ζ -th real x_{ζ} according to $\dot{<}_{\omega_2 \cdot \alpha'}^{\mathcal{G}_{\alpha}}$ is not the code of a measure orthogonal to $\mathcal{O}'_{\alpha} = \bigcup_{\gamma < \alpha} \mathcal{O}_{\gamma}$, let \mathbb{Q}_{α} be trivial, $\mathcal{A}_{\alpha} = \emptyset$, $\mathcal{O}_{\alpha} = \emptyset$. Otherwise, let

$$\mathbb{Q}_{\alpha} = \{ \langle s_0, s_1 \rangle : s_0 \in [\omega]^{<\omega}, s_1 \in [\bigcup_{m \in \Delta(x_{\zeta})} Y_{\alpha+m} \times \{m\}]^{<\omega} \},$$

where $\langle t_0, t_1 \rangle \leq \langle s_0, s_1 \rangle$ iff $s_1 \subseteq t_1$, s_0 is an initial segment of t_0 and $(t_0 \setminus s_0) \cap B_{\zeta,m} = \emptyset$ for all $\langle \zeta, m \rangle \in s_1$. Let u_α be the generic real added by \mathbb{Q}_α . In $L^{\mathbb{P}_{\alpha+1}} = L^{\mathbb{P}_\alpha * \mathbb{Q}_\alpha}$ let $g_\alpha = G(x_\zeta, u_\alpha)$ be the code of a measure equivalent to μ_{x_ζ} which codes u_α , let $O_\alpha = \{\mu_{g_\alpha}\}$ and let $A_\alpha = \alpha + \omega \setminus \Delta(u_\alpha)$.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{\ell \omega_3}$ Preliminary stage Localization Coding Stage \mathbb{P}_{ω_3} Coding the w.o. Coding the m.o. family Dominating Reals

If α is not of the above form, i.e. α is a successor or $\alpha \in \omega_2$, let \mathbb{Q}_{α} be the following poset for adding a dominating real:

$$\mathbb{Q}_{\alpha} = \{ \langle s_0, s_1 \rangle : s_0 \in \omega^{<\omega}, s_1 \in [\mathsf{o.t.}(\dot{<}_{\alpha}^{\mathcal{G}_{\alpha}})]^{<\omega} \},\$$

where $\langle t_0, t_1 \rangle \leq \langle s_0, s_1 \rangle$ iff s_0 is an initial segment of $t_0, s_1 \subseteq t_1$, and $t_0(n) > x_{\xi}(n)$ for all $n \in \text{dom}(t_0) \setminus \text{dom}(s_0)$ and $\xi \in s_1$, where x_{ξ} is the ξ -th real in $L[G_{\alpha}] \cap \omega^{\omega}$ according to the wellorder $\dot{<}_{\alpha}^{G_{\alpha}}$. Let $A_{\alpha} = \emptyset$, $O_{\alpha} = \emptyset$.

 $\begin{array}{c} \mbox{Introduction} & \mbox{No Accidental Stationary Kill} \\ \mbox{Maximal Families of Orthogonal Measures} & \mbox{The forcing construction} & \mbox{L}^{\Gamma\omega 3} & \mbox{and } \Pi_2^1 & \mbox{Maximality of } O & \mbox{No } \Sigma_2^1 & \mbox{m.o. families} & \end{tabular}$

With this the definition of \mathbb{P}_{ω_3} is complete. Let $O = \bigcup_{\alpha < \omega_3} O_{\alpha}$.

Note in particular, that if $\mu \in O$, then f_{μ} codes u_{α} for some $\alpha \in \omega_3$. By definition u_{α} codes the code f_{ν} for a measure ν equivalent to μ and the sequence $\langle Y_{\alpha+m} : m \in \Delta(f_{\nu}) \rangle$. We will write $f_{\nu} = r(\mu)$.

 $\begin{array}{c|c} \mbox{Introduction} & \mbox{No Accidental Stationary Kill} \\ \mbox{Maximal Families of Orthogonal Measures} & \mbox{The forcing construction} & \mbox{Maximality of \mathcal{O}} \\ \mbox{L}^{\mathcal{F}\omega3} & \mbox{No Σ_2^1 m.o. families} \end{array}$

Lemma A Let $\gamma \leq \omega_3$ and let G_{γ} be a \mathbb{P}_{γ} -generic filter over L. Then $L[G_{\gamma}] \cap \omega^{\omega} = L[\langle \dot{u}_{\delta}^{G_{\gamma}} : \delta < \gamma \rangle] \cap \omega^{\omega}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{2}\omega_{3}$ No Accidental Stationary Kill Δ_3^1 and Π_2^1 Maximality of ONo Σ_2^1 m.o. families

Lemma B Let G be a \mathbb{P} -generic filter over L. Then for $\xi \in \bigcup_{\alpha \in Lim(\omega_3)} \dot{A}^G_{\alpha}$ there is no real coding a stationary kill of S_{ξ} .

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{F}\omega_3$ No Accidental Stationary Kill Δ_3^1 and Π_2^1 Maximality of ONo Σ_2^1 m.o. families

Corollary A

Let G be \mathbb{P} -generic over L and let x, y be reals in L[G]. Then

- ► $x <^{G} y$ iff there is $\alpha < \omega_{3}$ such that for all *m*, the stationary kill of $S_{\alpha+m}$ is coded by a real iff $m \in \Delta(x * y)$.
- ▶ $\mu \in O$ iff there is $\alpha < \omega_3$ such that for all *m*, the stationary kill of $S_{\alpha+m}$ is coded by a real iff $m \in \Delta(r(\mu))$.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{\Gamma\omega_3}$ No Accidental Stationary Kill Δ_3^1 and Π_2^1 Maximality of ONo Σ_2^1 m.o. families

Proof:

Let $x <^G y$ and let $\alpha' > 0$ be minimal with $x, y \in L[G_{\omega_2 \cdot \alpha'}]$, $i = i_{o.t.(\overset{G}{\leftarrow}_{\omega_2 \cdot \alpha'})}$. Find $\xi \in Lim(\omega_2)$ such that $i(\xi) = (\xi_x, \xi_y)$ where x, y are the ξ_x -th, ξ_y -th real resp. in $L[G_{\omega_2 \cdot \alpha'}]$ according to $\overset{G}{\leftarrow}_{\omega_2 \cdot \alpha'}$. Let $\alpha = \omega_2 \cdot \alpha' + \xi$. Then \mathbb{Q}_{α} adds a real coding a stationary kill for $S_{\alpha+m}$ for all $m \in \Delta(x * y)$. On the other hand if $m \notin \Delta(x * y)$, then $\alpha + m \in \dot{A}^G_{\alpha} = \alpha + (\omega \setminus \Delta(x * y))$ and so by Lemma B, there is no real in L[G] coding the stationary kill of $S_{\alpha+m}$.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{\mathbb{P}\omega_3}$ No Accidental Stationary Kill Δ_3^1 and Π_2^1 Maximality of ONo Σ_2^1 m.o. families

Now suppose that there exists α such that the stationary kill of $S_{\alpha+m}$ is coded by a real iff $m \in \Delta(x * y)$. Since the stationary kill of some $\alpha + m$'s is coded by a real in L[G], Lemma B implies that $\dot{\mathbb{Q}}_{\alpha}^{G}$ introduced a real coding stationary kill for all $m \in \Delta(a * b)$ for some reals $a \leq_{\alpha}^{G} b$, while there are no reals coding a stationary kill of $S_{\alpha+m}$ for $m \notin \Delta(a * b)$. Therefore $\Delta(a * b) = \Delta(x * y)$ and hence a = x, b = y, consequently $x \leq_{\alpha}^{G} y$.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{2\omega_3}$

No Accidental Stationary Kill Δ_3^1 and Π_2^1 Maximality of ${\cal O}$ No Σ_2^1 m.o. families

Lemma

Let G be a \mathbb{P} -generic real over L, $x, y \in {}^{\omega}\omega \cap L[G]$ and $\mu \in \mathcal{P}_{c}(2^{\omega}) \cap L[G]$. Then

- x < y iff there is a real r such that for every countable suitable model M such that r ∈ M, there is ā < ω₃^M such that for all m ∈ Δ(x ∗ y), (L[r])^M ⊨ S_{ā+m} is not stationary.
- $\mu \in O$ iff for every countable suitable model \mathcal{M} such that $\mu \in \mathcal{M}$, there is $\bar{\alpha} < \omega_3^{\mathcal{M}}$ such that $S_{\bar{\alpha}+m}$ is nonstationary in $(L[r(\mu)])^{\mathcal{M}}$ for every $m \in \Delta(r(\mu))$

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Maximal Families of Orthogonal Measures} \\ \mbox{The forcing construction} \\ L^F \omega_3 \end{array} \begin{array}{c} \mbox{No Accidental Stationary Kill} \\ \mbox{\Delta}_3^1 \mbox{ and } \Pi_2^1 \\ \mbox{Maximality of } \mathcal{O} \\ \mbox{No } \Sigma_2^1 \mbox{ moniform} \\ \mbox{Mon } \Sigma_2^1 \mbox{ moniform} \\ \mbox{Mon } \Sigma_2^1 \mbox{ moniform} \\ \mbox{Mon } \Sigma_2^1 \mbox{ mon } \\ \mbox{Mon } \Sigma_2^1 \mbox{ mon } \\ \mbox{Mon } \Sigma_2^1 \mbox{ mon } \\ \mbox{Mon }$

By Corollary A, there exists $\alpha < \omega_3$ such that $\dot{\mathbb{Q}}^G_{\alpha}$ adds a real r coding a stationary kill of $S_{\alpha+m}$ for all $m \in \Delta(x * y)$. Let \mathcal{M} be a countable suitable model containing r. It follows that $Y_{\alpha+m} \cap \omega_1^{\mathcal{M}} \in \mathcal{M}$ and hence $X_{\alpha} \cap \omega_1^{\mathcal{M}}$, $X_{\alpha+m} \cap \omega_1^{\mathcal{M}}$ also belong to \mathcal{M} . Observe that these sets are actually in $\mathcal{N} := (\mathcal{L}[r])^{\mathcal{M}}$.

Note also that \mathcal{N} is a countable suitable model and consequently by the definition of $\mathcal{L}(X_{\alpha+m}, X_{\alpha})$ we have that for every $m \in \Delta(x * y), \mathcal{N} \vDash$

Introduction Maximal Families of Orthogonal Measures The forcing construction L^Fw3 No Accidental Stationary Kill Δ_3^1 and Π_2^1 Maximality of ONo Σ_2^1 m.o. families

" Using \vec{A} , $X_{\alpha+m} \cap \omega_1$ (resp. $X_{\alpha} \cap \omega_1$) a. d. codes a subset \overline{Z}_m (resp. \tilde{Z}_0) of ω_2 , such that $Even(\overline{Z}_m)$ (resp. $Even(\tilde{Z}_0)$) codes $\langle \bar{C}, \bar{W}_m, \bar{W}_m \rangle$ (resp. $\langle \tilde{C}, \tilde{W}_0, \tilde{W}_0 \rangle$), where \bar{W}_m, \bar{W}_m are the *L*-least codes of ordinals $\bar{\alpha}_m, \bar{\alpha}_m < \omega_3$ (resp. $\tilde{W}_0 = \tilde{W}_0$ is the *L*-least code for a limit ordinal $\tilde{\alpha}_0$) such that $\bar{\alpha}_m = \tilde{\alpha}_0$ is the largest limit ordinal not exceeding $\bar{\alpha}_m$ and \bar{C} is a club in ω_2 disjoint from $S_{\bar{\alpha}_m}$."

Note that in particular for every $m \neq m'$ in $\Delta(x * y)$, $\overline{\bar{\alpha}}_m = \overline{\bar{\alpha}}_{m'}$.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{E_{\omega_3}}$ No Accidental Stationary Kill Δ_3^1 and Π_2^1 Maximality of ONo Σ_2^1 m.o. families

Suppose there is such a real r. By Löwenheim-Skolem, r has the property from the formulation with respect to *all* suitable \mathcal{M} , and so for $\mathbb{H}_{\Theta}^{\mathbb{P}}$, where Θ is sufficiently large. That is $\exists \alpha < \omega_3$ such that $\forall m \in \Delta(x * y) \ L_{\Theta}[r] \vDash S_{\alpha+m}$ is not stationary. Then the stationary kill of at least some $S_{\alpha+m}$ was coded by a real.

By Lemma B, $\hat{\mathbb{Q}}_{\alpha}^{G}$ adds a real u_{α} coding stationary kill for all $m \in \Delta(a * b)$ for some reals $a \stackrel{G}{<}{}_{\alpha}^{G} b$, while there are no reals coding a stationary kill of $S_{\alpha+m}$ for $m \notin \Delta(a * b)$. Therefore $\Delta(a * b) \supset \Delta(x * y)$, and so $\Delta(a * b) = \Delta(x * y)$. Thus a = x, b = y and hence $x \stackrel{G}{<}{}_{\alpha}^{G} y$.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^2 \omega_3$ No Accidental Stationary Kill Δ_3^1 and Π_2^1 Maximality of ONo Σ_2^1 m.o. families

Lemma The family O is maximal in $P_c(2^{\omega})$.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{\Gamma}\omega_3$

No Accidental Stationary Kill Δ_3^1 and Π_2^1 Maximality of ONo Σ_2^1 m.o. families

Proof:

Suppose in $L^{\mathbb{P}_{\omega_3}}$ there is a code x for a measure orthogonal to every measure in the family O. Choose α minimal such that $\alpha = \omega_2 \cdot \alpha' + \xi$ for some $\alpha' > 0$, $\xi \in Lim(\omega_2)$ and $x \in L[G_{\omega_2 \cdot \alpha'}]$. Let $\nu = o.t.(\dot{\leq}^{G_{\alpha}}_{\omega_2 \cdot \alpha'})$ and let $i = i_{\nu}$. Then $x = x_{\zeta}$ is the ζ -th real according to the wellorder $\dot{\leq}^{G_{\alpha}}_{\omega_2 \cdot \alpha'}$, where $\zeta \in \nu$ and so for some $\xi \in Lim(\omega_2)$, $i^{-1}(\xi) = \zeta$. But then $x_{\zeta} = x$ is the code of a measure orthogonal to $O'_{\alpha} = \bigcup_{\gamma < \alpha} O_{\gamma}$ and so by construction O_{α} contains a measure equivalent to μ_x , which is a contradiction.

To obtain a Π_2^1 -definable m.o. family in $L^{\mathbb{P}_{\omega_3}}$ consider the union of O with the set of all point measures.

Since \mathbb{P}_{ω_3} is a finite support iteration, we have added Cohen reals along the iteration cofinally often. Thus for every real a in $\mathcal{L}^{\mathbb{P}_{\omega_3}}$ there is a Cohen real over $\mathcal{L}[a]$ and so in $\mathcal{L}^{\mathbb{P}_{\omega_3}}$ there are no Σ_2^1 m.o. families. Also note that since cofinally often we have added dominating reals, $\mathcal{L}^{\mathbb{P}_{\omega_3}} \models \mathfrak{b} = \omega_3$.

 $\begin{array}{c} \mbox{Introduction} & \mbox{No Accidental Stationary Kill} \\ \mbox{Maximal Families of Orthogonal Measures} \\ \mbox{The forcing construction} & \mbox{L}^{F \omega 3} & \mbox{no } \Gamma_2^{1} & \mbox{Maximality of } \mathcal{O} \\ \mbox{No } \Sigma_2^{1} & \mbox{mo. families} \end{array}$

Theorem (F., Friedman, Törnquist)

It is consistent with $\mathfrak{c} = \mathfrak{b} = \omega_3$ that there is a Δ_3^1 -definable wellorder of the reals, a Π_2^1 definable maximal orthogonal family of measures and there are no Σ_2^1 -definable maximal sets of orthogonal measures.

Introduction Maximal Families of Orthogonal Measures The forcing construction $L^{\mathbb{P}}\omega_3$ No Accidental Stationary Kil Δ_3^1 and Π_2^1 Maximality of ONo Σ_2^1 m.o. families

THANK YOU!

Vera Fischer Projective Maximal Families of Orthogonal Measures with Larg

Let X be a topological space and $\mu : \mathcal{B}(X) \to [0, 1]$ such that $\mu(\emptyset) = 0$, $\mu(X) = 1$ and $\mu(\bigcup_{n \in \omega} A_n) = \sum_{n \in \omega} \mu(A_n)$ for every pairwise disjoint family $\{A_n\}_{n \in \omega} \subseteq \mathcal{B}(X)$.

If s_n enumerates $2^{<\omega}$ and $f_n: 2^{\omega} \to \mathbb{R}$ is defined as follows:

$$f_n(x) = \begin{cases} 1 & \text{if } s_n \subseteq x \\ 0 & \text{otherwise,} \end{cases}$$

then the metric on
$$P(2^{\omega})$$
 defined by

$$\delta(\mu,\nu) = \sum_{n=0}^{\infty} 2^{-n-1} \frac{\left|\int f_n d\mu - \int f_n d\nu\right|}{\|f_n\|_{\infty}} \text{ makes the map } f \mapsto \mu_f$$
an isometric bijection if we equip $p(2^{\omega})$ with the metric

$$d(f,g) = \sum_{n=0}^{\infty} 2^{-n-1} |f(s_n) - g(s_n)|.$$

・ロ> < 回> < 三> < 三> < 三> < 回> < 回> <