
DEFINABLE MAXIMAL COFINITARY GROUPS

VERA FISCHER, SY DAVID FRIEDMAN, AND ASGER TÖRNQUIST

Abstract. Using countable support iteration of S-proper posets, for some appropriate stationary

set S, we obtain a generic extension of the constructible universe, in which b = c = ℵ2 and there is

a maximal cofinitary group with a Π1
2-definable set of generators.

1. Introduction

Following standard notation, we denote by S∞ the set of all permutations of the natural numbers.

A function f ∈ S∞ is said to be a cofinitary permutation, if it has only finitely many fixed points.

A subgroup G of S∞ is said to be a cofinitary group if each of its non-identity elements has only

finitely many fixed points, i.e. is a cofinitary permutation. A maximal cofinitary group, abbreviated

mcg, is a cofinitary group, which is maximal with respect to these properties, under inclusion. The

minimal size of a maximal cofinitary group is denoted ag. It is known that b ≤ ag (see [6]).

There has been significant interest towards the existence of maximal cofinitary groups which

are low in the projective hierarchy. The existence of a closed maximal cofinitary group is still

open, while S. Gao and Y. Zhang (see [7]) showed that the axiom of constructibility implies the

existence of a maximal cofinitary group with a co-analytic generating set. The result was improved

by B. Kastermans, who showed that in the constructible universe L there is a co-analytic maximal

cofinitary group (see [6]).

There is little known about the existence of nicely definable maximal cofinitary groups in models

of c > ℵ1. Our main result can be formulated as follows:

Theorem. There is a generic extension of the constructible universe in which b = c = ℵ2 and

there is a maximal cofinitary group with a Π1
2-definable set of generators.

The extension is obtained via a countable support iteration of S-proper posets, for some ap-

propriate stationary set S. Along the iteration cofinally often we add generic permutations which

using a ground model set of almost disjoint functions provide codes for themselves. Of use for

this construction is on the one hand the poset for adding a maximal cofinitary group of desired

cardinality, developed in [5], and on the other hand the coding techniques of [2] and [4].

The paper is organized as follows: in section 2 we give an outline of a poset which adjoins a

cofinitary permutation to a given co-fnitary group and describe our main coding techniques; section
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3 contains a detailed proof of our main theorem and in section 4 we conclude with the discussion

of some remaining open questions.

2. Maximal Cofinitary Groups and Coding

2.1. Adding generic permutations. Our methods for adding a generic permutation are based

on [5], where the first and third authors provide a poset which given an arbitrary index set A and

a (freely generated) cofinitary group G, generically adjoins a family of permutations {ga}a∈A such

that the group generated by G∪{ga}a∈A is cofinitary. We will be interested in the particular case in

which |A| = 1. Following the terminology of [5], given a non-empty set B, a mapping ρ : B → S∞ is

said to induce a cofinitary representation if the natural extension of ρ to a mapping ρ̂ : FB → S∞,

where FB denotes the free group on the set B, has the property that its image is a cofinitary group.

For A 6= ∅, we denote by WA the set of all reduced words on the alphabet A and by ŴA the set

of all words on the same alphabet which start and end with a different letter, or are a power of a

single letter. We refer to the elements of ŴA as good words. Note that every word is a conjugate of

a good word, that is ∀w ∈ WA∃w0 ∈ ŴA∃u ∈ WA such that w = uw0u
−1. The empty word is not

a good word.

Whenever a is an index, which does not belong to the set B, s is a finite partial injection from ω

to ω, ρ : B → S∞ is a mapping which induces a cofinitary representation and w is a reduced word

on the alphabet {a}∪B, we denote by ew[s, ρ] the (partial) function obtained by substituting every

appearance of a letter b from B with ρ(b), and every appearance of the letter a with the partial

mapping s. By definition, let e∅[s, ρ] be the identity. For the exact recursive definition see [5]. Note

that if s is injective, then so is ew[s, ρ] (see [5]).

Definition 2.1. Let B be a non-empty set, a /∈ B and ρ : B → S∞ a mapping which induces

a cofinitary representation. The poset Q{a},ρ consists of all pairs (s, F ) where s ∈ <ωω is a finite

partial injection, F is a finite set of words in Ŵ{a}∪B. The extension relation states that (t,H) ≤
(s, F ) if and only if t end-extends s, F ⊆ H and ∀w ∈ F∀n ∈ ω if ew[t, ρ](n) = n then ew[s, ρ](n)

is already defined (and so ew[s, ρ](n) = n).

Recall that a poset P is said to be σ-centered, if P =
⋃
n∈ω Pn where for each n, Pn is centered,

that is whenever p, q are conditions in Pn then there is r ∈ Pn which is their common extension.

Note that Q{a},ρ is σ-centered. If G is Q{a},ρ-generic, then g =
⋃
{s : ∃F (s, F ) ∈ G} is a cofinitary

permutation such that the mapping ρG : {a} ∪ B → S∞ defined by ρG(a) = g and ρG�B = ρ,

induces a cofinitary representation in V [G]. For the proofs of both of these statements see [5].

2.2. Coding with a ground model almost disjoint family of functions. We work over the

constructible universe L. Recall that a ZF− model M is said to be suitable iff

M � (ω2 exists and ω2 = ωL2 ).

In our construction, we will use a family F = {f〈ζ,ξ〉 : ζ ∈ ω · 2, ξ ∈ ω1
L} ∈ L of almost disjoint

bijective functions such that F ∩M = {f〈ζ,ξ〉 : ζ ∈ ω · 2, ξ ∈ (ωL1 )M} for every transitive model M

of ZF− (see [4, Proposition 3]).

For our purposes, we will need the following Lemma, which is analogous to [4, Proposition 4].



DEFINABLE MAXIMAL COFINITARY GROUPS 3

Lemma 2.2. There is a sequence S̄ = 〈Sβ : β < ω2〉 of almost disjoint stationary subsets of ω1,

which is Σ1 definable over Lω2 with parameter ω1, and whenever M,N are suitable models of ZF−

such that ωM1 = ωN1 , then S̄M agrees with S̄N on ωM2 ∩ ωN2 .

Proof. Let 〈Dγ : γ < ω1〉 be the canonical Lω1 definable ♦ sequence (see [1]) and for each α < ω2

let Aα be the L-least subset of ω1 coding α. Now, let Sα := {i < ω1 : Di = Aα ∩ i}. �

Let S̄ be as in the preceding Lemma and let S be a stationary subset of ω1 which is almost

disjoint from every element of S̄. We will use the following coding of an ordinal α < ω2 by a subset

of ω1 (see [4, Fact 5]).

Lemma 2.3. There is a formula φ(x, y) and for every α < ωL2 a set Xα ∈ ([ω1]ω1)L such that

• for every suitable model M containing Xα ∩ ωM1 , φ(x,Xα ∩ ωM1 ) has a unique solution in

M , and this solution equals α provided ω1 = ωM1 .

• for arbitrary suitable models M,N with ωM1 = ωN1 and Xα ∩ ωM1 ∈M ∩N , the solutions of

φ(x,Xα ∩ ωM1 ) in M,N coincide.

3. Π1
2-definable set of generators

In this section we will provide a generic extension of the constructible universe L in which

b = c = ℵ2 and there is a maximal cofinitary group with a Π1
2-definable set of generators. Fix a

recursive bijection ψ : ω × ω → ω. Recursively define a countable support iteration of S-proper

posets 〈Pα, Q̇β : α ≤ ω2, β < ω2〉 as follows. If α < ω1 let Q̇α be a Pα-name for Hechler forcing for

adding a dominating real.1 Suppose Pα has been defined and

• for every β ∈ Lim(α\ω1) the poset Qβ adds a cofinitary permutation gβ, and

• the mapping ρβ : Lim(α\ω1)→ S∞ where ρα(β) = gβ induces a cofinitary representation.

In LPα define Qα as follows. If α is a successor , then Qα is a Pα-name for Hechler forcing for

adding a dominating real. If α ≥ ω1 is a limit , then α = ω1 · ν + ω · η for some ν 6= 0, ν < ω2,

η < ω1 and the conditions of Qα are pairs 〈〈s, F, s∗〉, 〈ck, yk〉k∈ω〉 where

(1) (s, F ) ∈ Q{α},ρα ;

(2) ∀k ∈ ω, ck is a closed bounded subset of ω1\η such that ck ∩ Sα+k = ∅;
(3) ∀k ∈ ω, yk is a 0, 1-valued function whose domain |yk| is a countable limit ordinal, such

that η ≤ |yk|, yk�η = 0 and for every γ such that η ≤ γ < |yk|, yk(2γ) = 1 if and only if

γ ∈ η +Xα = {η + µ : µ ∈ Xα};
(4) for every k ∈ ψ[s] and every countable suitable model M of ZF− such that ξ = ωM1 ≤ |yk|,

ξ is a limit point of ck and yk�ξ, ck ∩ ξ are elements of M , we have that

M � yk�ξ codes a limit ordinal ᾱ such that Sᾱ+k is non-stationary.

(5) s∗ is a finite subset of {fm,ξ : m ∈ ψ[s], ξ ∈ cm} ∪ {fω+m,ξ : m ∈ ψ[s], ym(ξ) = 1}.
The extension relation states that q̄ = 〈〈t,H, t∗〉, 〈dk, zk〉k∈ω〉 extends p̄ = 〈〈s, F, s∗〉, 〈ck, yk〉k∈ω〉 iff

(1) (t,H) ≤Q{α},ρα (s, F ),

(2) ∀f ∈ s∗, t\s ∩ f = ∅,

1For bookkeeping reasons it is more convenient to introduce the generators of the maximal cofinitary group at

limit stages greater or equal ω1.
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(3) ∀k ∈ ψ[s], dk end-extends ck and yk ⊆ zk
With this the recursive definition of Pω2 is complete. If p̄ ∈ Qα, where p̄ = 〈〈s, F, s∗〉, 〈ck, yk〉k∈ω〉

we write fin(p̄) for 〈s, F, s∗〉 and inf(p̄) for 〈ck, yk〉k∈ω. In particular fin(p̄)0 = s.

Lemma 3.1. For every condition p̄ = 〈〈s, F, s∗〉, 〈ck, yk〉k∈ω〉 ∈ Qα and every γ ∈ ω1 there exists

a sequence 〈dk, zk〉k∈ω such that q̄ = 〈〈s, F, s∗〉, 〈dk, zk〉k∈ω〉 ∈ Qα, q̄ ≤ p̄ and for all k ∈ ω we have

that |zk|,max dk ≥ γ.

Proof. As in [2, Lemma 1.1]. �

Lemma 3.2. For every p ∈ Qα and every dense open set D ⊆ Qα, there is q ≤ p such that

fin(q) = fin(p) and for every p1 ∈ D, p1 ≤ q there is p2 ∈ D, p2 ≤ q such that fin(p2)0 = fin(p1)0

and inf(p2) = inf(q).

Proof. Let p = 〈〈t0, F0, t
∗
0〉, 〈d0

k, z
0
k〉k∈ω〉. Let M be a countable elementary submodel of LΘ, for

Θ a sufficiently large regular cardinal, which contains Qα, p̄, Xα, D as elements and such that

j = M∩ ω1 /∈
⋃
k∈ψ[t0] Sα+k. Let 〈r̄n, sn〉n∈ω enumerate all pairs 〈r̄n, sn〉 where r̄n ∈ Qα ∩M, sn

is a finite partial injective function from ω to ω and each pair is enumerated cofinally often. Let

{jn}n∈ω be an increasing sequence which is cofinal in j. Inductively we will construct a decreasing

sequence 〈p̄n〉n∈ω ⊆ Q ∩M such that for all n, fin(p̄n) = fin(p̄).

Let p̄0 = p̄. Suppose p̄n has been defined. If there is r̄1,n ∈ M ∩ Q such that r̄1,n ≤ p̄n, r̄n
and fin(r̄1,n) = sn then extend inf(r̄1,n) to a sequence 〈dn+1

k , zn+1
k 〉k∈ω in M in such a way that

for all k ∈ ω, max dn+1
k ≥ jn, |zn+1

k | ≥ jn. Then let p̄n+1 = 〈fin(p̄0), 〈dn+1
k , zn+1

k 〉k∈ω〉. If there

is no such r̄1,n, then extend inf(p̄n) to a sequence 〈dn+1
k , zn+1

k 〉k∈ω in M such that for all k ∈ ω,

max dn+1
k ≥ jn, |zn+1

k | ≥ jn. With this the inductive construction is complete. For every k ∈ ω, let

dk =
⋃
n∈ω d

n
k ∪ {j} and zk =

⋃
n∈ω z

n
k . Let q = 〈fin(p̄), 〈dk, zk〉k∈ω〉.

We will show that q is indeed a condition. For this we only need to verify part (4) of being a

condition, since the other clauses are clear. Fix k ∈ ψ[t0]. LetM0 be a countable suitable model of

ZF− such that ωM0
1 = j and zk, dk are elements of M0. Let M̄ be the Mostowski collapse of the

model M and let π :M→ M̄ be the corresponding isomorphism. Note that j = ω1 ∩M = ωM̄1 .

Since Xα ∈ M and M is an elementary submodel of LΘ, α is the unique solution of φ(x,Xα)

in M. Therefore ᾱ = π(α) is the unique solution of φ(x,Xα ∩ j) = φ(x, π(Xα)) in M̄. Note

also that SM̄ᾱ+k = π(Sα+k) = Sα+k ∩ j. Since ωM̄1 = ωM0
1 and Xα ∩ j ∈ M̄ ∩M0, the solutions

of φ(x,Xα ∩ j) in M̄ and M0 coincide. That is, the solution of φ(x,Xα ∩ j) in M0 is ᾱ. By

the properties of the sequence of stationary sets which we fixed in the ground model, we have

SM0
ᾱ+k = SM̄ᾱ+k = π(SMα+k) = Sα+k ∩ j. Since dk ∈ M0 and dk is unbounded in j, we obtain that

SM0
ᾱ+k is not stationary in M0. Therefore q is indeed a condition.

Consider an arbitrary extension p1 = 〈fin(p1), inf(p1)〉 of q̄ from the dense open set D and let

fin(p1)0 = r1. Then 〈r1, F0, t
∗
0〉 ∈ M, and so for some m, r̄∗ = 〈〈r1, F0, t

∗
0〉, 〈dmk , zmk 〉k∈ω〉 ∈ Qα ∩M.

Then there is some n ≥ m such that sn = r1, r̄n = r̄∗. Note that p1 ≤ q, r̄n and so p1 is a common

extension of p̄n, r̄n. By elementarity there is r̄1,n ∈ M ∩ D which is a common extension of p̄n,

r̄n, such that fin(r̄1,n) = 〈r1 = sn, F2, r
∗
2〉. Let p2 := 〈〈r1, F2, r

∗
2〉, 〈dk, zk〉k∈ω〉. Note that inf(p̄n+1)

extends inf(r̄1,n) and so p2 ≤ r̄1,n, which implies that p2 ∈ D. Clearly p2 ≤ q and so p2 is as

desired. �
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Lemma 3.3. Let M be a countable elementary submodel of LΘ for sufficiently large Θ containing

all relevant parameters, i = M∩ ω1, p̄ = 〈〈s, F, s∗〉, 〈d0
k, z

0
k〉k∈ω〉 an element of M∩ Qα. If i /∈⋃

k∈ψ[s] Sα+k, then there exists an (M,Qα)-generic condition q̄ ≤ p̄ such that fin(q̄) = fin(p̄).

Proof. Let {Dn}n∈ω be an enumeration of all dense open subsets of Qα fromM and let {in}n∈ω be

an increasing sequence which is cofinal in i. Inductively, construct a sequence 〈q̄n〉n∈ω ⊆ M∩ Qα

such that q̄0 = p̄, and

(1) for every n ∈ ω, q̄n+1 ≤ q̄n, fin(qn) = fin(p̄);

(2) if inf(qn) = 〈dnk , znk 〉k∈ω then for all k ∈ ω, max dnk ≥ in, |znk | ≥ in;

(3) for every p̄1 ∈ Dn extending q̄n, there is p̄2 ∈ Dn which extends q̄n and such that fin(p̄2)0 =

fin(p̄1)0, inf(p̄2) = inf(q̄n).

Now define a condition q̄ such that fin(q̄) = fin(p̄), inf(q̄) = 〈dk, zk〉k∈ω where dk =
⋃
n∈ω d

n
k ∪{i},

zk =
⋃
n∈ω z

n
k . To verify that q̄ is indeed a condition, proceed as in the proof of q being a condition

from Lemma 3.2. Then q̄ ≤ p̄ and we will show that q̄ is (M,Qα)-generic. For this it is sufficient

to show that for every n ∈ ω, the set Dn ∩ M is predense below q̄. Thus fix some n ∈ ω and

p̄1 = 〈〈t1, F1, t
∗
1〉, inf(p̄1)〉 an arbitrary extension of q̄. Without loss of generality p̄1 ∈ Dn. Since

p̄1 ≤ q̄n we obtain the existence of F2, t
∗
2 ∈ M such that p̄2 = 〈〈t1, F2, t

∗
2〉, 〈dnk , znk 〉k∈ω〉 ≤ q̄n and

p̄2 ∈M∩Dn. Then p̄3 = 〈〈t1, F1 ∪ F2, t
∗
1 ∪ t∗2〉, inf(p̄1)〉 is a common extension of p̄1 and p̄2. �

Corollary 3.4. For every α < ω2, the poset Qα is S-proper. Consequently, Pω2 is S-proper and

hence preserves cardinals. More precisely, for every condition p̄ = 〈〈s, F, s∗〉, 〈ck, yk〉k∈ω〉〉 ∈ Q1
α the

poset {r̄ ∈ Qα : r̄ ≤ p̄} is ω1\
⋃
n∈ψ[s] Sα+n-proper.

3.1. Properties of Q = Qα. Throughout the subsection, let α be a limit ordinal such that ω1 ≤
α < ω2. We study the properties of Q := Qα in LPα .

Claim 3.5 (Domain Extension). For every condition p̄ = 〈〈s, F, s∗〉, 〈cm, ym〉m∈ω〉, natural number

n such that n /∈ dom(s) there are co-finitely many m ∈ ω such that 〈〈s∪{(n,m)}, F, s∗〉, 〈cm, ym〉m∈ω〉
is a condition extending p̄.

Proof. Fix p̄, n as above. By [5, Lemma 2.7] there is a co-finite set I such that for all m ∈ I

(s ∪ {(n,m)}, F ) ≤Q{α},ρα (s, F ). Since s∗ is finite, we can define N0 = max{f(n) : n ∈ s∗}. Then

for every m ∈ I\N0,

〈〈s ∪ {(n,m)}, F, s∗〉, 〈ck, yk〉k∈ω〉 ≤ p̄.
�

Claim 3.6 (Range Extension). For any condition p̄ = 〈〈s, F, s∗〉, 〈cm, ym〉m∈ω〉, natural number

m /∈ ran(s) there are co-finitely many n ∈ ω such that 〈〈s ∪ {(n,m)}, F, s∗〉, 〈ck, yk〉k∈ω〉 is a

condition, extending p̄.

Proof. Fix p̄, m as above. By [5, Lemma 2.7] there is a co-finite set I such that for all n ∈ I,

(s ∪ {(n,m)}, F ) ≤Q{α},ρα (s, F ). Now for every n, consider the set An = {f(n)}f∈s∗ . If there are

infinitely many n such that m ∈ An then ∃f ∈ s∗∃∞n such that f(n) = m, which is a contradiction

to f being a bijection. That is ∀∞n(m /∈ An). Choose N such that ∀n ≥ N(m /∈ An). Then

∀n ∈ I\N(〈〈s ∪ {(n,m)}, F, s∗〉, 〈ck, yk〉k∈ω〉) is an extension of p̄ with the desired properties. �

The following claim is straightforward.
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Claim 3.7. For every w0 ∈ Ŵ{α}∪Lim(α\ω1) the set Dw0 = {p̄ ∈ Q : w0 ∈ fin(p̄)1} is dense.

Claim 3.8. Suppose q̄ = 〈〈s, F, s∗〉, 〈ck, yk〉k∈ω〉 Qα ew[ρG](n) = n for some w ∈ Ŵ{α}∪Lim(α\ω1).

Then ew[s, ρα](n) is defined and ew[s, ρα](n) = n.

Proof. Let G be Qα generic over LPα such that q ∈ G. By definition of the extension relation

there is a condition r̄ = 〈〈t,H, t∗〉, 〈dk, zk〉k∈ω〉 in G such that ew[ρG](n) = ew[t, ρα](n) = n. Then

(t,H) ≤Q{α},ρα (s, F ) and since the extension of Q{α},ρα does not allow new fixed points we obtain

ew[s, ρα](n) = n. �

Lemma 3.9. Let G be Qα-generic over LPα and let gα =
⋃
p̄∈G fin(p̄)0. Then gα is a cofinitary

permutation and 〈gβ〉β≤α is a cofinitary group.

Proof. Since for every n,m in ω, the sets Dn = {p̄ ∈ Q : n ∈ dom(fin(p̄)0)}, Rm = {p̄ ∈ Q,m ∈
ran(fin(p̄)0)} are dense, it is easy to see than g = gα is a surjective function. Injectivity follows

directly from the properties of Q{α},ρα (see [5]), and so g is a permutation.

We will show that the group generated by {gβ}β∈Lim(α\ω1) ∪ {gα} is a cofinitary group. Fix an

arbitrary word w ∈W{α}∪Lim(α\ω1). Then there are w′ ∈ Ŵ{α}∪Lim(α\ω1) and u ∈W{α}∪Lim(α\ω1)

such that w = u−1w′u. Since Dw′ is dense, there is a condition p̄ = 〈〈s, F, s∗〉, 〈ck, yk〉k∈ω〉 in G such

that w′ ∈ F . Suppose ew′ [ρG](n) = n. Then there is q̄ ∈ G, q̄ ≤ p̄ such that q̄  ew′ [ρG](n) = n.

By the above Lemma, ew′ [t, ρα](n) = n, where q̄ = 〈(t, F ′, t∗), 〈dk, zk〉k∈ω〉 and so by the extension

relation ew′ [s, ρα](n) = n. Then fix(ew′ [ρG]) = fix(ew′ [s, ρα]) which is finite and so fix(ew[ρG]) is

also finite. �

Lemma 3.10 (Generic Hitting). In LPα suppose 〈{h}∪{gβ}β<α〉 is a cofinitary group and h is not

covered by finitely many members of F with indices above η. Then LPα+1 � ∃∞n ∈ ω(gα(n) = h(n)).

Proof. We claim that for every N ∈ ω, the set DN = {q̄ : ∃n ≥ N(s(n) = h(n))} is dense in Qα.

Let p̄ = 〈〈s, F, s∗〉, 〈ck, yk〉k∈ω〉 be an arbitrary condition. By [5, Lemma 2.19] there is N such that

for all n ≥ N ,

(s ∪ {(n, h(n))}, F ) ≤Q{α},ρα (s, F ).

Since h is not covered by the members of s∗, we have that ∃∞n such that h(n) /∈ {f(n)}f∈s∗ .
Denote this set Ih(p̄). Let n ∈ Ih(p̄)\max{Np̄, N}. Then

q̄ := 〈〈s ∪ {(n, h(n))}, F, s∗〉, 〈ck, yk〉k∈ω〉 ≤ p̄

and q̄ ∈ DN . Therefore LPα+1 � ∃∞n(gα(n) = h(n)). �

Lemma 3.11. The group G := 〈gα〉α∈Lim(ω2\ω1) added by Pω2 is a maximal cofinitary group.

Proof. Suppose G is not maximal. Then there is a cofinitary permutation h such that

〈{gα}α∈Lim(ω2\ω1) ∪ {h}〉

is cofinitary. Let α < ω2 be the least limit ordinal such that α = ω1 · ξ for some ξ 6= 0 and such

that h ∈ LPα . Then there is η ≥ 0 such that h is not covered by finitely many members of F
whose second index is above η. Therefore by the Generic Hitting Lemma the poset Qω1·ξ+ω·η adds

a generic permutation gω1·ξ+ω·η which is infinitely often equal to h, which is a contradiction. �
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3.2. Coding. Let Gα be Qα-generic filter over LPα and let gα :=
⋃
p̄∈G fin(p̄)0. For every k ∈ ψ[gα]

define Y α
k :=

⋃
p̄∈Gα inf(p̄)1, Cαk :=

⋃
p̄∈Gα inf(p̄)0 and S∗ :=

⋃
p̄∈Gα fin(p̄)2. Let G := Gω2 .

The following is clear using easy extendibility arguments together with Lemmas 3.1, 3.5, 3.6.

Lemma 3.12. The sets Y α
k , Cαk , and S∗ have the following properties:

• S∗ = {f〈m,ξ〉 : m ∈ ψ[gα], ξ ∈ Cαm} ∪ {f〈ω+m,ξ〉 : m ∈ ψ[gα], Y α
m(ξ) = 1}.

• If m ∈ ψ[gα] then dom(Y α
m) = ω1 and Cαm is a club in ω1 disjoint from Sα+m.

• If m ∈ ψ[gα] then |gα ∩ f〈m,ξ〉| < ω if and only if ξ ∈ Cαm.

• If m ∈ ψ[gα] then |gα ∩ f〈ω+m,ξ〉| < ω if and only if Y α
m(ξ) = 1.

Corollary 3.13. Let n ∈ ω\ψ[gα]. Then Sα+n remains stationary in LPω2 .

Proof. Let G be Pω2-generic over L and let p ∈ G such that p  β /∈ {α + n : n ∈ ψ[gα]}. Then G

is also Pω2(p)-generic, where Pω2(p) := {q : q ≤ p} is the countable support iteration of Qγ(p(γ))

for γ < ω2. However for every γ, the poset Qγ(p(γ)) is Sβ-proper and so the entire iteration is

Sβ-proper. �

Lemma 3.14. In L[G] let A = {gα : ω1 ≤ α < ω2, α limit}. Then g ∈ A if and only if for every

countable suitable model M of ZF− containing g as an element there exists a limit ordinal ᾱ < ωM2
such that SMᾱ+k is non-stationary in M for all k ∈ ψ[g].

Proof. The proof is analogous to that of [4, Lemma 13]. Let g ∈ A. Find α < ω2 such that g = gα,

and let M be a countable suitable model containing g as an element. Then Cαk ∩ ωM1 , Y α
k �ωM1 are

elements of M for all k ∈ ψ[gα]. Fix any m ∈ ψ[gα]. Then there is p̄ = 〈〈s, F, s∗〉, 〈ck, yk〉k∈ω〉 ∈ G
such that m ∈ ψ[s] and Cαm ∩ ωM1 = cm, Y α

m ∩ ωM1 = ym. By definition of being a condition we

obtain that

M � Y α
m ∩ ωM1 codes a limit ordinal ᾱm such that Sᾱm+m is not stationary.

Note that for every distinct m1,m2 in ψ[gα] we have that Y α
m1
∩ ωM1 = Y α

m2
∩ ωM1 , and so ᾱm does

not depend on m.

To see the other implication, fix g such that for every countable suitable model containing g

as an element there exists ᾱ < ωM2 such that SMᾱ+k is non-stationary in M for all k ∈ ψ[g]. By

the Löwenheim-Skolem theorem the same holds for arbitrary suitable models of ZF− containing

g. In particular this holds in M = LΘ[G] for some sufficiently large Θ, say Θ > ω100. Then

ωM2 = ω
L[G]
2 = ωL2 , S̄M = S̄, and the notions of stationarity of subsets of ω1 coincide in M and

L[G]. Thus there is a limit ordinal α < ω2 such that Sα+k is non-stationary for all k ∈ ψ[g]. By the

above corollary for every β /∈ {α + k : k ∈ ψ[gα]} the set Sβ is stationary. Therefore ψ[g] ⊆ ψ[gα]

and so g = gα. �

Thus as the right-hand side of the equivalence stated in Lemma 3.14 is Π1
2, we obtain:

Theorem 3.15. There is a generic extension of the constructible universe in which b = c = ℵ2

and there is a maximal cofinitary group with a Π1
2-definable set of generators.
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4. Remarks

We expect that the techniques of [3] can be modified to produce a generic extension of the

constructible universe in which b = c = ℵ3 and there is a maximal cofinitary group with a Π1
2-

definable set of generators. Of interest remains the following question: Is it consistent that there

is a Π1
2 definable maximal cofinitary group and b = c = ℵ2?
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