DEFINABLE MAXIMAL COFINITARY GROUPS

VERA FISCHER, SY DAVID FRIEDMAN, AND ASGER TÖRNQUIST

ABSTRACT. Using countable support iteration of S-proper posets, for some appropriate stationary set S, we obtain a generic extension of the constructible universe, in which $\mathfrak{b} = \mathfrak{c} = \aleph_2$ and there is a maximal cofinitary group with a Π_2^1 -definable set of generators.

1. INTRODUCTION

Following standard notation, we denote by S_{∞} the set of all permutations of the natural numbers. A function $f \in S_{\infty}$ is said to be a cofinitary permutation, if it has only finitely many fixed points. A subgroup \mathcal{G} of S_{∞} is said to be a cofinitary group if each of its non-identity elements has only finitely many fixed points, i.e. is a cofinitary permutation. A maximal cofinitary group, abbreviated mcg, is a cofinitary group, which is maximal with respect to these properties, under inclusion. The minimal size of a maximal cofinitary group is denoted \mathfrak{a}_g . It is known that $\mathfrak{b} \leq \mathfrak{a}_g$ (see [6]).

There has been significant interest towards the existence of maximal cofinitary groups which are low in the projective hierarchy. The existence of a closed maximal cofinitary group is still open, while S. Gao and Y. Zhang (see [7]) showed that the axiom of constructibility implies the existence of a maximal cofinitary group with a co-analytic generating set. The result was improved by B. Kastermans, who showed that in the constructible universe L there is a co-analytic maximal cofinitary group (see [6]).

There is little known about the existence of nicely definable maximal cofinitary groups in models of $\mathfrak{c} > \aleph_1$. Our main result can be formulated as follows:

Theorem. There is a generic extension of the constructible universe in which $\mathfrak{b} = \mathfrak{c} = \aleph_2$ and there is a maximal cofinitary group with a Π_2^1 -definable set of generators.

The extension is obtained via a countable support iteration of S-proper posets, for some appropriate stationary set S. Along the iteration cofinally often we add generic permutations which using a ground model set of almost disjoint functions provide codes for themselves. Of use for this construction is on the one hand the poset for adding a maximal cofinitary group of desired cardinality, developed in [5], and on the other hand the coding techniques of [2] and [4].

The paper is organized as follows: in section 2 we give an outline of a poset which adjoins a cofinitary permutation to a given co-fnitary group and describe our main coding techniques; section

Date: June 10, 2015.

 $^{2010\} Mathematics\ Subject\ Classification.\ 03E17; 03E35.$

Key words and phrases. maximal cofinitary groups; definablity; forcing.

The first author would like to thank the Austrian Science Fund (FWF) for the generous support through grant no. M1365-N13. The second author would also like to thank the Austrian Science Fund (FWF) for its generous support through Project P 25748.

3 contains a detailed proof of our main theorem and in section 4 we conclude with the discussion of some remaining open questions.

2. MAXIMAL COFINITARY GROUPS AND CODING

2.1. Adding generic permutations. Our methods for adding a generic permutation are based on [5], where the first and third authors provide a poset which given an arbitrary index set A and a (freely generated) cofinitary group G, generically adjoins a family of permutations $\{g_a\}_{a \in A}$ such that the group generated by $G \cup \{g_a\}_{a \in A}$ is cofinitary. We will be interested in the particular case in which |A| = 1. Following the terminology of [5], given a non-empty set B, a mapping $\rho : B \to S_{\infty}$ is said to *induce a cofinitary representation* if the natural extension of ρ to a mapping $\hat{\rho} : \mathbb{F}_B \to S_{\infty}$, where \mathbb{F}_B denotes the free group on the set B, has the property that its image is a cofinitary group. For $A \neq \emptyset$, we denote by W_A the set of all reduced words on the alphabet A and by \widehat{W}_A the set of all words on the same alphabet which start and end with a different letter, or are a power of a single letter. We refer to the elements of \widehat{W}_A as good words. Note that every word is a conjugate of a good word, that is $\forall w \in W_A \exists w_0 \in \widehat{W}_A \exists u \in W_A$ such that $w = uw_0u^{-1}$. The empty word is not a good word.

Whenever a is an index, which does not belong to the set B, s is a finite partial injection from ω to ω , $\rho: B \to S_{\infty}$ is a mapping which induces a cofinitary representation and w is a reduced word on the alphabet $\{a\} \cup B$, we denote by $e_w[s, \rho]$ the (partial) function obtained by substituting every appearance of a letter b from B with $\rho(b)$, and every appearance of the letter a with the partial mapping s. By definition, let $e_{\emptyset}[s, \rho]$ be the identity. For the exact recursive definition see [5]. Note that if s is injective, then so is $e_w[s, \rho]$ (see [5]).

Definition 2.1. Let *B* be a non-empty set, $a \notin B$ and $\rho : B \to S_{\infty}$ a mapping which induces a cofinitary representation. The poset $\mathbb{Q}_{\{a\},\rho}$ consists of all pairs (s,F) where $s \in {}^{<\omega}\omega$ is a finite partial injection, *F* is a finite set of words in $\widehat{W}_{\{a\}\cup B}$. The extension relation states that $(t,H) \leq$ (s,F) if and only if *t* end-extends $s, F \subseteq H$ and $\forall w \in F \forall n \in \omega$ if $e_w[t,\rho](n) = n$ then $e_w[s,\rho](n)$ is already defined (and so $e_w[s,\rho](n) = n$).

Recall that a poset \mathbb{P} is said to be σ -centered, if $\mathbb{P} = \bigcup_{n \in \omega} \mathbb{P}_n$ where for each n, \mathbb{P}_n is centered, that is whenever p, q are conditions in \mathbb{P}_n then there is $r \in \mathbb{P}_n$ which is their common extension. Note that $\mathbb{Q}_{\{a\},\rho}$ is σ -centered. If G is $\mathbb{Q}_{\{a\},\rho}$ -generic, then $g = \bigcup\{s : \exists F(s,F) \in G\}$ is a cofinitary permutation such that the mapping $\rho_G : \{a\} \cup B \to S_\infty$ defined by $\rho_G(a) = g$ and $\rho_G \upharpoonright B = \rho$, induces a cofinitary representation in V[G]. For the proofs of both of these statements see [5].

2.2. Coding with a ground model almost disjoint family of functions. We work over the constructible universe L. Recall that a ZF^- model M is said to be *suitable* iff

$$M \vDash (\omega_2 \text{ exists and } \omega_2 = \omega_2^L).$$

In our construction, we will use a family $\mathcal{F} = \{f_{\langle \zeta, \xi \rangle} : \zeta \in \omega \cdot 2, \xi \in \omega_1^L\} \in L$ of almost disjoint bijective functions such that $\mathcal{F} \cap M = \{f_{\langle \zeta, \xi \rangle} : \zeta \in \omega \cdot 2, \xi \in (\omega_1^L)^M\}$ for every transitive model M of ZF^- (see [4, Proposition 3]).

For our purposes, we will need the following Lemma, which is analogous to [4, Proposition 4].

Lemma 2.2. There is a sequence $\bar{S} = \langle S_{\beta} : \beta < \omega_2 \rangle$ of almost disjoint stationary subsets of ω_1 , which is Σ_1 definable over L_{ω_2} with parameter ω_1 , and whenever M, N are suitable models of $ZF^$ such that $\omega_1^M = \omega_1^N$, then $\bar{S}^{\bar{M}}$ agrees with \bar{S}^N on $\omega_2^M \cap \omega_2^N$.

Proof. Let $\langle D_{\gamma} : \gamma < \omega_1 \rangle$ be the canonical L_{ω_1} definable \diamond sequence (see [1]) and for each $\alpha < \omega_2$ let A_{α} be the *L*-least subset of ω_1 coding α . Now, let $S_{\alpha} := \{i < \omega_1 : D_i = A_{\alpha} \cap i\}$.

Let \overline{S} be as in the preceding Lemma and let S be a stationary subset of ω_1 which is almost disjoint from every element of \overline{S} . We will use the following coding of an ordinal $\alpha < \omega_2$ by a subset of ω_1 (see [4, Fact 5]).

Lemma 2.3. There is a formula $\phi(x, y)$ and for every $\alpha < \omega_2^L$ a set $X_{\alpha} \in ([\omega_1]^{\omega_1})^L$ such that

- for every suitable model M containing $X_{\alpha} \cap \omega_1^M$, $\phi(x, X_{\alpha} \cap \omega_1^M)$ has a unique solution in M, and this solution equals α provided $\omega_1 = \omega_1^M$.
- for arbitrary suitable models M, N with $\omega_1^M = \omega_1^N$ and $X_\alpha \cap \omega_1^M \in M \cap N$, the solutions of $\phi(x, X_{\alpha} \cap \omega_1^M)$ in M, N coincide.

3. Π^1_2 -definable set of generators

In this section we will provide a generic extension of the constructible universe L in which $\mathfrak{b} = \mathfrak{c} = \aleph_2$ and there is a maximal cofinitary group with a Π_2^1 -definable set of generators. Fix a recursive bijection $\psi: \omega \times \omega \to \omega$. Recursively define a countable support iteration of S-proper posets $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \alpha \leq \omega_2, \beta < \omega_2 \rangle$ as follows. If $\alpha < \omega_1$ let \mathbb{Q}_{α} be a \mathbb{P}_{α} -name for Hechler forcing for adding a dominating real.¹ Suppose \mathbb{P}_{α} has been defined and

• for every $\beta \in \text{Lim}(\alpha \setminus \omega_1)$ the poset \mathbb{Q}_β adds a cofinitary permutation g_β , and

• the mapping ρ_{β} : $\operatorname{Lim}(\alpha \setminus \omega_1) \to S_{\infty}$ where $\rho_{\alpha}(\beta) = g_{\beta}$ induces a cofinitary representation.

In $L^{\mathbb{P}_{\alpha}}$ define \mathbb{Q}_{α} as follows. If α is a successor, then \mathbb{Q}_{α} is a \mathbb{P}_{α} -name for Hechler forcing for adding a dominating real. If $\alpha \geq \omega_1$ is a limit, then $\alpha = \omega_1 \cdot \nu + \omega \cdot \eta$ for some $\nu \neq 0, \nu < \omega_2$, $\eta < \omega_1$ and the conditions of \mathbb{Q}_{α} are pairs $\langle \langle s, F, s^* \rangle, \langle c_k, y_k \rangle_{k \in \omega} \rangle$ where

- (1) $(s, F) \in \mathbb{Q}_{\{\alpha\}, \rho_{\alpha}};$
- (2) $\forall k \in \omega, c_k \text{ is a closed bounded subset of } \omega_1 \setminus \eta \text{ such that } c_k \cap S_{\alpha+k} = \emptyset;$
- (3) $\forall k \in \omega, y_k$ is a 0,1-valued function whose domain $|y_k|$ is a countable limit ordinal, such that $\eta \leq |y_k|, y_k \mid \eta = 0$ and for every γ such that $\eta \leq \gamma < |y_k|, y_k(2\gamma) = 1$ if and only if $\gamma \in \eta + X_{\alpha} = \{\eta + \mu : \mu \in X_{\alpha}\};$
- (4) for every $k \in \psi[s]$ and every countable suitable model M of ZF^- such that $\xi = \omega_1^M \leq |y_k|$, ξ is a limit point of c_k and $y_k | \xi, c_k \cap \xi$ are elements of M, we have that

 $M \models y_k \mid \xi$ codes a limit ordinal $\bar{\alpha}$ such that $S_{\bar{\alpha}+k}$ is non-stationary.

(5) s^* is a finite subset of $\{f_{m,\xi} : m \in \psi[s], \xi \in c_m\} \cup \{f_{\omega+m,\xi} : m \in \psi[s], y_m(\xi) = 1\}.$ The extension relation states that $\bar{q} = \langle \langle t, H, t^* \rangle, \langle d_k, z_k \rangle_{k \in \omega} \rangle$ extends $\bar{p} = \langle \langle s, F, s^* \rangle, \langle c_k, y_k \rangle_{k \in \omega} \rangle$ iff

- (1) $(t, H) \leq_{\mathbb{Q}_{\{\alpha\}, \rho_{\alpha}}} (s, F),$ (2) $\forall f \in s^*, t \setminus s \cap f = \emptyset,$

¹For bookkeeping reasons it is more convenient to introduce the generators of the maximal cofinitary group at limit stages greater or equal ω_1 .

(3) $\forall k \in \psi[s], d_k \text{ end-extends } c_k \text{ and } y_k \subseteq z_k$

With this the recursive definition of \mathbb{P}_{ω_2} is complete. If $\bar{p} \in \mathbb{Q}_{\alpha}$, where $\bar{p} = \langle \langle s, F, s^* \rangle, \langle c_k, y_k \rangle_{k \in \omega} \rangle$ we write fin (\bar{p}) for $\langle s, F, s^* \rangle$ and $\inf(\bar{p})$ for $\langle c_k, y_k \rangle_{k \in \omega}$. In particular fin $(\bar{p})_0 = s$.

Lemma 3.1. For every condition $\bar{p} = \langle \langle s, F, s^* \rangle, \langle c_k, y_k \rangle_{k \in \omega} \rangle \in \mathbb{Q}_{\alpha}$ and every $\gamma \in \omega_1$ there exists a sequence $\langle d_k, z_k \rangle_{k \in \omega}$ such that $\bar{q} = \langle \langle s, F, s^* \rangle, \langle d_k, z_k \rangle_{k \in \omega} \rangle \in \mathbb{Q}_{\alpha}, \ \bar{q} \leq \bar{p}$ and for all $k \in \omega$ we have that $|z_k|, \max d_k \geq \gamma$.

Proof. As in [2, Lemma 1.1].

Lemma 3.2. For every $p \in \mathbb{Q}_{\alpha}$ and every dense open set $D \subseteq \mathbb{Q}_{\alpha}$, there is $q \leq p$ such that fin(q) = fin(p) and for every $p_1 \in D$, $p_1 \leq q$ there is $p_2 \in D$, $p_2 \leq q$ such that $fin(p_2)_0 = fin(p_1)_0$ and $inf(p_2) = inf(q)$.

Proof. Let $p = \langle \langle t_0, F_0, t_0^* \rangle, \langle d_k^0, z_k^0 \rangle_{k \in \omega} \rangle$. Let \mathcal{M} be a countable elementary submodel of L_{Θ} , for Θ a sufficiently large regular cardinal, which contains \mathbb{Q}_{α} , \bar{p} , X_{α} , D as elements and such that $j = \mathcal{M} \cap \omega_1 \notin \bigcup_{k \in \psi[t_0]} S_{\alpha+k}$. Let $\langle \bar{r}_n, s_n \rangle_{n \in \omega}$ enumerate all pairs $\langle \bar{r}_n, s_n \rangle$ where $\bar{r}_n \in \mathbb{Q}_{\alpha} \cap \mathcal{M}$, s_n is a finite partial injective function from ω to ω and each pair is enumerated cofinally often. Let $\{j_n\}_{n \in \omega}$ be an increasing sequence which is cofinal in j. Inductively we will construct a decreasing sequence $\langle \bar{p}_n \rangle_{n \in \omega} \subseteq \mathbb{Q} \cap \mathcal{M}$ such that for all n, $\operatorname{fin}(\bar{p}_n) = \operatorname{fin}(\bar{p})$.

Let $\bar{p}_0 = \bar{p}$. Suppose \bar{p}_n has been defined. If there is $\bar{r}_{1,n} \in \mathcal{M} \cap \mathbb{Q}$ such that $\bar{r}_{1,n} \leq \bar{p}_n, \bar{r}_n$ and $\operatorname{fin}(\bar{r}_{1,n}) = s_n$ then extend $\operatorname{inf}(\bar{r}_{1,n})$ to a sequence $\langle d_k^{n+1}, z_k^{n+1} \rangle_{k \in \omega}$ in \mathcal{M} in such a way that for all $k \in \omega$, $\operatorname{max} d_k^{n+1} \geq j_n$, $|z_k^{n+1}| \geq j_n$. Then let $\bar{p}_{n+1} = \langle \operatorname{fin}(\bar{p}_0), \langle d_k^{n+1}, z_k^{n+1} \rangle_{k \in \omega} \rangle$. If there is no such $\bar{r}_{1,n}$, then extend $\operatorname{inf}(\bar{p}_n)$ to a sequence $\langle d_k^{n+1}, z_k^{n+1} \rangle_{k \in \omega}$ in \mathcal{M} such that for all $k \in \omega$, $\operatorname{max} d_k^{n+1} \geq j_n$, $|z_k^{n+1}| \geq j_n$. With this the inductive construction is complete. For every $k \in \omega$, let $d_k = \bigcup_{n \in \omega} d_k^n \cup \{j\}$ and $z_k = \bigcup_{n \in \omega} z_k^n$. Let $q = \langle \operatorname{fin}(\bar{p}), \langle d_k, z_k \rangle_{k \in \omega} \rangle$.

We will show that q is indeed a condition. For this we only need to verify part (4) of being a condition, since the other clauses are clear. Fix $k \in \psi[t_0]$. Let \mathcal{M}_0 be a countable suitable model of ZF^- such that $\omega_1^{\mathcal{M}_0} = j$ and z_k, d_k are elements of \mathcal{M}_0 . Let $\bar{\mathcal{M}}$ be the Mostowski collapse of the model \mathcal{M} and let $\pi : \mathcal{M} \to \bar{\mathcal{M}}$ be the corresponding isomorphism. Note that $j = \omega_1 \cap \mathcal{M} = \omega_1^{\bar{\mathcal{M}}}$. Since $X_\alpha \in \mathcal{M}$ and \mathcal{M} is an elementary submodel of L_{Θ} , α is the unique solution of $\phi(x, X_\alpha)$ in \mathcal{M} . Therefore $\bar{\alpha} = \pi(\alpha)$ is the unique solution of $\phi(x, X_\alpha \cap j) = \phi(x, \pi(X_\alpha))$ in $\bar{\mathcal{M}}$. Note also that $S_{\bar{\alpha}+k}^{\bar{\mathcal{M}}} = \pi(S_{\alpha+k}) = S_{\alpha+k} \cap j$. Since $\omega_1^{\bar{\mathcal{M}}} = \omega_1^{\mathcal{M}_0}$ and $X_\alpha \cap j \in \bar{\mathcal{M}} \cap \mathcal{M}_0$, the solutions of $\phi(x, X_\alpha \cap j)$ in $\bar{\mathcal{M}}$ and \mathcal{M}_0 coincide. That is, the solution of $\phi(x, X_\alpha \cap j)$ in \mathcal{M}_0 is $\bar{\alpha}$. By the properties of the sequence of stationary sets which we fixed in the ground model, we have $S_{\bar{\alpha}+k}^{\mathcal{M}_0} = S_{\bar{\alpha}+k}^{\bar{\mathcal{M}}} = S_{\alpha+k}^{\bar{\mathcal{M}}} \cap j$. Since $d_k \in \mathcal{M}_0$ and d_k is unbounded in j, we obtain that $S_{\bar{\alpha}+k}^{\mathcal{M}_0}$ is not stationary in \mathcal{M}_0 . Therefore q is indeed a condition.

Consider an arbitrary extension $p_1 = \langle \operatorname{fin}(p_1), \operatorname{inf}(p_1) \rangle$ of \bar{q} from the dense open set D and let $\operatorname{fin}(p_1)_0 = r_1$. Then $\langle r_1, F_0, t_0^* \rangle \in \mathcal{M}$, and so for some $m, \bar{r}^* = \langle \langle r_1, F_0, t_0^* \rangle, \langle d_k^m, z_k^m \rangle_{k \in \omega} \rangle \in \mathbb{Q}_{\alpha} \cap \mathcal{M}$. Then there is some $n \geq m$ such that $s_n = r_1, \bar{r}_n = \bar{r}^*$. Note that $p_1 \leq q, \bar{r}_n$ and so p_1 is a common extension of \bar{p}_n, \bar{r}_n . By elementarity there is $\bar{r}_{1,n} \in \mathcal{M} \cap D$ which is a common extension of \bar{p}_n , \bar{r}_n , such that $\operatorname{fin}(\bar{r}_{1,n}) = \langle r_1 = s_n, F_2, r_2^* \rangle$. Let $p_2 := \langle \langle r_1, F_2, r_2^* \rangle, \langle d_k, z_k \rangle_{k \in \omega} \rangle$. Note that $\operatorname{inf}(\bar{p}_{n+1})$ extends $\operatorname{inf}(\bar{r}_{1,n})$ and so $p_2 \leq \bar{r}_{1,n}$, which implies that $p_2 \in D$. Clearly $p_2 \leq q$ and so p_2 is as desired.

Lemma 3.3. Let \mathcal{M} be a countable elementary submodel of L_{Θ} for sufficiently large Θ containing all relevant parameters, $i = \mathcal{M} \cap \omega_1$, $\bar{p} = \langle \langle s, F, s^* \rangle, \langle d_k^0, z_k^0 \rangle_{k \in \omega} \rangle$ an element of $\mathcal{M} \cap \mathbb{Q}_{\alpha}$. If $i \notin \bigcup_{k \in \psi[s]} S_{\alpha+k}$, then there exists an $(\mathcal{M}, \mathbb{Q}_{\alpha})$ -generic condition $\bar{q} \leq \bar{p}$ such that $fin(\bar{q}) = fin(\bar{p})$.

Proof. Let $\{D_n\}_{n\in\omega}$ be an enumeration of all dense open subsets of \mathbb{Q}_{α} from \mathcal{M} and let $\{i_n\}_{n\in\omega}$ be an increasing sequence which is cofinal in *i*. Inductively, construct a sequence $\langle \bar{q}_n \rangle_{n\in\omega} \subseteq \mathcal{M} \cap \mathbb{Q}_{\alpha}$ such that $\bar{q}_0 = \bar{p}$, and

- (1) for every $n \in \omega$, $\bar{q}_{n+1} \leq \bar{q}_n$, $\operatorname{fin}(q_n) = \operatorname{fin}(\bar{p})$;
- (2) if $\inf(q_n) = \langle d_k^n, z_k^n \rangle_{k \in \omega}$ then for all $k \in \omega$, $\max d_k^n \ge i_n$, $|z_k^n| \ge i_n$;
- (3) for every $\bar{p}_1 \in D_n$ extending \bar{q}_n , there is $\bar{p}_2 \in D_n$ which extends \bar{q}_n and such that $\operatorname{fin}(\bar{p}_2)_0 = \operatorname{fin}(\bar{p}_1)_0$, $\operatorname{inf}(\bar{p}_2) = \operatorname{inf}(\bar{q}_n)$.

Now define a condition \bar{q} such that $\operatorname{fin}(\bar{q}) = \operatorname{fin}(\bar{p})$, $\operatorname{inf}(\bar{q}) = \langle d_k, z_k \rangle_{k \in \omega}$ where $d_k = \bigcup_{n \in \omega} d_k^n \cup \{i\}$, $z_k = \bigcup_{n \in \omega} z_k^n$. To verify that \bar{q} is indeed a condition, proceed as in the proof of q being a condition from Lemma 3.2. Then $\bar{q} \leq \bar{p}$ and we will show that \bar{q} is $(\mathcal{M}, \mathbb{Q}_{\alpha})$ -generic. For this it is sufficient to show that for every $n \in \omega$, the set $D_n \cap \mathcal{M}$ is predense below \bar{q} . Thus fix some $n \in \omega$ and $\bar{p}_1 = \langle \langle t_1, F_1, t_1^* \rangle, \operatorname{inf}(\bar{p}_1) \rangle$ an arbitrary extension of \bar{q} . Without loss of generality $\bar{p}_1 \in D_n$. Since $\bar{p}_1 \leq \bar{q}_n$ we obtain the existence of $F_2, t_2^* \in \mathcal{M}$ such that $\bar{p}_2 = \langle \langle t_1, F_2, t_2^* \rangle, \langle d_k^n, z_k^n \rangle_{k \in \omega} \rangle \leq \bar{q}_n$ and $\bar{p}_2 \in \mathcal{M} \cap D_n$. Then $\bar{p}_3 = \langle \langle t_1, F_1 \cup F_2, t_1^* \cup t_2^* \rangle, \operatorname{inf}(\bar{p}_1) \rangle$ is a common extension of \bar{p}_1 and \bar{p}_2 .

Corollary 3.4. For every $\alpha < \omega_2$, the poset \mathbb{Q}_{α} is S-proper. Consequently, \mathbb{P}_{ω_2} is S-proper and hence preserves cardinals. More precisely, for every condition $\bar{p} = \langle \langle s, F, s^* \rangle, \langle c_k, y_k \rangle_{k \in \omega} \rangle \rangle \in \mathbb{Q}^1_{\alpha}$ the poset $\{\bar{r} \in \mathbb{Q}_{\alpha} : \bar{r} \leq \bar{p}\}$ is $\omega_1 \setminus \bigcup_{n \in \psi[s]} S_{\alpha+n}$ -proper.

3.1. Properties of $\mathbb{Q} = \mathbb{Q}_{\alpha}$. Throughout the subsection, let α be a limit ordinal such that $\omega_1 \leq \alpha < \omega_2$. We study the properties of $\mathbb{Q} := \mathbb{Q}_{\alpha}$ in $L^{\mathbb{P}_{\alpha}}$.

Claim 3.5 (Domain Extension). For every condition $\bar{p} = \langle \langle s, F, s^* \rangle, \langle c_m, y_m \rangle_{m \in \omega} \rangle$, natural number n such that $n \notin \text{dom}(s)$ there are co-finitely many $m \in \omega$ such that $\langle \langle s \cup \{(n,m)\}, F, s^* \rangle, \langle c_m, y_m \rangle_{m \in \omega} \rangle$ is a condition extending \bar{p} .

Proof. Fix \bar{p} , n as above. By [5, Lemma 2.7] there is a co-finite set I such that for all $m \in I$ $(s \cup \{(n,m)\}, F) \leq_{\mathbb{Q}_{\{\alpha\},\rho_{\alpha}}} (s,F)$. Since s^* is finite, we can define $N_0 = \max\{f(n) : n \in s^*\}$. Then for every $m \in I \setminus N_0$,

$$\langle \langle s \cup \{(n,m)\}, F, s^* \rangle, \langle c_k, y_k \rangle_{k \in \omega} \rangle \leq \bar{p}.$$

Claim 3.6 (Range Extension). For any condition $\bar{p} = \langle \langle s, F, s^* \rangle, \langle c_m, y_m \rangle_{m \in \omega} \rangle$, natural number $m \notin \operatorname{ran}(s)$ there are co-finitely many $n \in \omega$ such that $\langle \langle s \cup \{(n,m)\}, F, s^* \rangle, \langle c_k, y_k \rangle_{k \in \omega} \rangle$ is a condition, extending \bar{p} .

Proof. Fix \bar{p} , m as above. By [5, Lemma 2.7] there is a co-finite set I such that for all $n \in I$, $(s \cup \{(n,m)\}, F) \leq_{\mathbb{Q}_{\{\alpha\}, \rho_{\alpha}}} (s, F)$. Now for every n, consider the set $A_n = \{f(n)\}_{f \in s^*}$. If there are infinitely many n such that $m \in A_n$ then $\exists f \in s^* \exists^{\infty} n$ such that f(n) = m, which is a contradiction to f being a bijection. That is $\forall^{\infty} n(m \notin A_n)$. Choose N such that $\forall n \geq N(m \notin A_n)$. Then $\forall n \in I \setminus N(\langle \langle s \cup \{(n,m)\}, F, s^* \rangle, \langle c_k, y_k \rangle_{k \in \omega} \rangle)$ is an extension of \bar{p} with the desired properties. \Box

The following claim is straightforward.

Claim 3.7. For every $w_0 \in \widehat{W}_{\{\alpha\} \cup Lim(\alpha \setminus \omega_1)}$ the set $D_{w_0} = \{\bar{p} \in \mathbb{Q} : w_0 \in fin(\bar{p})_1\}$ is dense.

Claim 3.8. Suppose $\bar{q} = \langle \langle s, F, s^* \rangle, \langle c_k, y_k \rangle_{k \in \omega} \rangle \Vdash_{\mathbb{Q}_{\alpha}} e_w[\rho_G](n) = n \text{ for some } w \in \widehat{W}_{\{\alpha\} \cup Lim(\alpha \setminus \omega_1)}.$ Then $e_w[s, \rho_\alpha](n)$ is defined and $e_w[s, \rho_\alpha](n) = n$.

Proof. Let G be \mathbb{Q}_{α} generic over $L^{\mathbb{P}_{\alpha}}$ such that $q \in G$. By definition of the extension relation there is a condition $\bar{r} = \langle \langle t, H, t^* \rangle, \langle d_k, z_k \rangle_{k \in \omega} \rangle$ in G such that $e_w[\rho_G](n) = e_w[t, \rho_\alpha](n) = n$. Then $(t, H) \leq_{\mathbb{Q}_{\{\alpha\}, \rho_\alpha\}}} (s, F)$ and since the extension of $\mathbb{Q}_{\{\alpha\}, \rho_\alpha\}}$ does not allow new fixed points we obtain $e_w[s, \rho_\alpha](n) = n$.

Lemma 3.9. Let G be \mathbb{Q}_{α} -generic over $L^{\mathbb{P}_{\alpha}}$ and let $g_{\alpha} = \bigcup_{\bar{p} \in G} fin(\bar{p})_0$. Then g_{α} is a cofinitary permutation and $\langle g_{\beta} \rangle_{\beta \leq \alpha}$ is a cofinitary group.

Proof. Since for every n, m in ω , the sets $D_n = \{\bar{p} \in \mathbb{Q} : n \in \text{dom}(\text{fin}(\bar{p})_0)\}, R_m = \{\bar{p} \in \mathbb{Q}, m \in \text{ran}(\text{fin}(\bar{p})_0)\}\)$ are dense, it is easy to see than $g = g_\alpha$ is a surjective function. Injectivity follows directly from the properties of $\mathbb{Q}_{\{\alpha\},\rho_\alpha}$ (see [5]), and so g is a permutation.

We will show that the group generated by $\{g_{\beta}\}_{\beta \in \operatorname{Lim}(\alpha \setminus \omega_1)} \cup \{g_{\alpha}\}$ is a cofinitary group. Fix an arbitrary word $w \in W_{\{\alpha\} \cup \operatorname{Lim}(\alpha \setminus \omega_1)}$. Then there are $w' \in \widehat{W}_{\{\alpha\} \cup \operatorname{Lim}(\alpha \setminus \omega_1)}$ and $u \in W_{\{\alpha\} \cup \operatorname{Lim}(\alpha \setminus \omega_1)}$ such that $w = u^{-1}w'u$. Since $D_{w'}$ is dense, there is a condition $\bar{p} = \langle \langle s, F, s^* \rangle, \langle c_k, y_k \rangle_{k \in \omega} \rangle$ in G such that $w' \in F$. Suppose $e_{w'}[\rho_G](n) = n$. Then there is $\bar{q} \in G, \bar{q} \leq \bar{p}$ such that $\bar{q} \Vdash e_{w'}[\rho_G](n) = n$. By the above Lemma, $e_{w'}[t, \rho_{\alpha}](n) = n$, where $\bar{q} = \langle (t, F', t^*), \langle d_k, z_k \rangle_{k \in \omega} \rangle$ and so by the extension relation $e_{w'}[s, \rho_{\alpha}](n) = n$. Then fix $(e_{w'}[\rho_G]) = \operatorname{fix}(e_{w'}[s, \rho_{\alpha}])$ which is finite and so fix $(e_w[\rho_G])$ is also finite.

Lemma 3.10 (Generic Hitting). In $L^{\mathbb{P}_{\alpha}}$ suppose $\langle \{h\} \cup \{g_{\beta}\}_{\beta < \alpha} \rangle$ is a cofinitary group and h is not covered by finitely many members of \mathcal{F} with indices above η . Then $L^{\mathbb{P}_{\alpha+1}} \vDash \exists^{\infty} n \in \omega(g_{\alpha}(n) = h(n))$.

Proof. We claim that for every $N \in \omega$, the set $D_N = \{\bar{q} : \exists n \geq N(s(n) = h(n))\}$ is dense in \mathbb{Q}_{α} . Let $\bar{p} = \langle \langle s, F, s^* \rangle, \langle c_k, y_k \rangle_{k \in \omega} \rangle$ be an arbitrary condition. By [5, Lemma 2.19] there is N such that for all $n \geq N$,

$$(s \cup \{(n, h(n))\}, F) \leq_{\mathbb{Q}_{\{\alpha\}, \rho_{\alpha}}} (s, F).$$

Since h is not covered by the members of s^* , we have that $\exists^{\infty} n$ such that $h(n) \notin \{f(n)\}_{f \in s^*}$. Denote this set $I_h(\bar{p})$. Let $n \in I_h(\bar{p}) \setminus \max\{N_{\bar{p}}, N\}$. Then

$$\bar{q} := \langle \langle s \cup \{(n, h(n))\}, F, s^* \rangle, \langle c_k, y_k \rangle_{k \in \omega} \rangle \leq \bar{p}$$

and $\bar{q} \in D_N$. Therefore $L^{\mathbb{P}_{\alpha+1}} \vDash \exists^{\infty} n(g_{\alpha}(n) = h(n))$.

Lemma 3.11. The group $\mathcal{G} := \langle g_{\alpha} \rangle_{\alpha \in Lim(\omega_2 \setminus \omega_1)}$ added by \mathbb{P}_{ω_2} is a maximal cofinitary group.

Proof. Suppose \mathcal{G} is not maximal. Then there is a cofinitary permutation h such that

$$\langle \{g_{\alpha}\}_{\alpha \in \operatorname{Lim}(\omega_2 \setminus \omega_1)} \cup \{h\} \rangle$$

is cofinitary. Let $\alpha < \omega_2$ be the least limit ordinal such that $\alpha = \omega_1 \cdot \xi$ for some $\xi \neq 0$ and such that $h \in L^{\mathbb{P}_{\alpha}}$. Then there is $\eta \geq 0$ such that h is not covered by finitely many members of \mathcal{F} whose second index is above η . Therefore by the Generic Hitting Lemma the poset $\mathbb{Q}_{\omega_1 \cdot \xi + \omega \cdot \eta}$ adds a generic permutation $g_{\omega_1 \cdot \xi + \omega \cdot \eta}$ which is infinitely often equal to h, which is a contradiction. \Box

3.2. Coding. Let G_{α} be \mathbb{Q}_{α} -generic filter over $L^{\mathbb{P}_{\alpha}}$ and let $g_{\alpha} := \bigcup_{\bar{p} \in G} \operatorname{fin}(\bar{p})_{0}$. For every $k \in \psi[g_{\alpha}]$ define $Y_k^{\alpha} := \bigcup_{\bar{p} \in G_{\alpha}} \inf(\bar{p})_1, C_k^{\alpha} := \bigcup_{\bar{p} \in G_{\alpha}} \inf(\bar{p})_0 \text{ and } S^* := \bigcup_{\bar{p} \in G_{\alpha}} \inf(\bar{p})_2.$ Let $G := G_{\omega_2}$.

The following is clear using easy extendibility arguments together with Lemmas 3.1, 3.5, 3.6.

Lemma 3.12. The sets Y_k^{α} , C_k^{α} , and S^* have the following properties:

- $S^* = \{f_{\langle m,\xi \rangle} : m \in \psi[g_\alpha], \xi \in C_m^\alpha\} \cup \{f_{\langle \omega+m,\xi \rangle} : m \in \psi[g_\alpha], Y_m^\alpha(\xi) = 1\}.$ If $m \in \psi[g_\alpha]$ then dom $(Y_m^\alpha) = \omega_1$ and C_m^α is a club in ω_1 disjoint from $S_{\alpha+m}$.
- If $m \in \psi[g_{\alpha}]$ then $|g_{\alpha} \cap f_{\langle m, \xi \rangle}| < \omega$ if and only if $\xi \in C_m^{\alpha}$.
- If $m \in \psi[g_{\alpha}]$ then $|g_{\alpha} \cap f_{\langle \omega+m, \xi \rangle}| < \omega$ if and only if $Y_m^{\alpha}(\xi) = 1$.

Corollary 3.13. Let $n \in \omega \setminus \psi[g_\alpha]$. Then $S_{\alpha+n}$ remains stationary in $L^{\mathbb{P}_{\omega_2}}$.

Proof. Let G be \mathbb{P}_{ω_2} -generic over L and let $p \in G$ such that $p \Vdash \beta \notin \{\alpha + n : n \in \psi[g_\alpha]\}$. Then G is also $\mathbb{P}_{\omega_2}(p)$ -generic, where $\mathbb{P}_{\omega_2}(p) := \{q : q \leq p\}$ is the countable support iteration of $\mathbb{Q}_{\gamma}(p(\gamma))$ for $\gamma < \omega_2$. However for every γ , the poset $\mathbb{Q}_{\gamma}(p(\gamma))$ is S_{β} -proper and so the entire iteration is S_{β} -proper.

Lemma 3.14. In L[G] let $A = \{g_{\alpha} : \omega_1 \leq \alpha < \omega_2, \alpha \text{ limit}\}$. Then $g \in A$ if and only if for every countable suitable model M of ZF⁻ containing g as an element there exists a limit ordinal $\bar{\alpha} < \omega_2^M$ such that $S^M_{\bar{\alpha}+k}$ is non-stationary in M for all $k \in \psi[g]$.

Proof. The proof is analogous to that of [4, Lemma 13]. Let $g \in A$. Find $\alpha < \omega_2$ such that $g = g_\alpha$, and let M be a countable suitable model containing g as an element. Then $C_k^{\alpha} \cap \omega_1^M$, $Y_k^{\alpha} \upharpoonright \omega_1^M$ are elements of M for all $k \in \psi[g_{\alpha}]$. Fix any $m \in \psi[g_{\alpha}]$. Then there is $\bar{p} = \langle \langle s, F, s^* \rangle, \langle c_k, y_k \rangle_{k \in \omega} \rangle \in G$ such that $m \in \psi[s]$ and $C_m^{\alpha} \cap \omega_1^{\mathcal{M}} = c_m, Y_m^{\alpha} \cap \omega_1^{\mathcal{M}} = y_m$. By definition of being a condition we obtain that

 $\mathcal{M} \vDash Y_m^{\alpha} \cap \omega_1^{\mathcal{M}}$ codes a limit ordinal $\bar{\alpha}_m$ such that $S_{\bar{\alpha}_m+m}$ is not stationary.

Note that for every distinct m_1, m_2 in $\psi[g_\alpha]$ we have that $Y_{m_1}^\alpha \cap \omega_1^{\mathcal{M}} = Y_{m_2}^\alpha \cap \omega_1^{\mathcal{M}}$, and so $\bar{\alpha}_m$ does not depend on m.

To see the other implication, fix g such that for every countable suitable model containing gas an element there exists $\bar{\alpha} < \omega_2^M$ such that $S^M_{\bar{\alpha}+k}$ is non-stationary in M for all $k \in \psi[g]$. By the Löwenheim-Skolem theorem the same holds for arbitrary suitable models of ZF^- containing g. In particular this holds in $M = L_{\Theta}[G]$ for some sufficiently large Θ , say $\Theta > \omega_{100}$. Then $\omega_2^M = \omega_2^{L[G]} = \omega_2^L, \ \bar{S}^M = \bar{S}, \ \text{and the notions of stationarity of subsets of } \omega_1 \ \text{coincide in } M \ \text{and}$ L[G]. Thus there is a limit ordinal $\alpha < \omega_2$ such that $S_{\alpha+k}$ is non-stationary for all $k \in \psi[g]$. By the above corollary for every $\beta \notin \{\alpha + k : k \in \psi[g_\alpha]\}$ the set S_β is stationary. Therefore $\psi[g] \subseteq \psi[g_\alpha]$ and so $g = g_{\alpha}$.

Thus as the right-hand side of the equivalence stated in Lemma 3.14 is Π_2^1 , we obtain:

Theorem 3.15. There is a generic extension of the constructible universe in which $\mathfrak{b} = \mathfrak{c} = \aleph_2$ and there is a maximal cofinitary group with a Π^1_2 -definable set of generators.

4. Remarks

We expect that the techniques of [3] can be modified to produce a generic extension of the constructible universe in which $\mathbf{b} = \mathbf{c} = \aleph_3$ and there is a maximal cofinitary group with a Π_2^1 -definable set of generators. Of interest remains the following question: Is it consistent that there is a Π_2^1 definable maximal cofinitary group and $\mathbf{b} = \mathbf{c} = \aleph_2$?

References

- [1] K. Devlin Constructibility, Perspectives in Mathematical Logic. Springer -Verlag, Berlin, 1984.
- [2] V. Fischer, S. D. Friedman Cardinal characteristics and projective wellorders, Annals of Pure and Applied Logic, 161 (2010), 916-922.
- [3] V.Fischer, S. D. Freidman, L. Zdomskyy Projective wellorders and mad families with large continuum, Annals of Pure and Applied Logic 162 (2011), pp. 853-862.
- [4] S. D. Friedman, L. Zdomskyy Projective mad families, Annals of Pure and Applied Logic, vol. 161(12), 2010, 1581 - 1587.
- [5] V. Fischer, A. Törnquist Maximal cofinitary groups and template iterations, Fundamenta mathematicae, preprint.
- [6] B. Kastermans The complexity of maximal cofinitary groups, Proc. of the Amer. Math. Soc., Vol. 137(1), 2009, 307 - 316.
- S. Gao, Y. Zhang Definable set of generators in maximal cofinitary groups Advances in Mathematics, 217, 2008, 814 - 832.

KURT GÖDEL RESEARCH CENTER, UNIVERSITY OF VIENNA, WÄHRINGER STRASSE 25, 1090 VIENNA, AUSTRIA *E-mail address:* vera.fischer@univie.ac.at

KURT GÖDEL RESEARCH CENTER, UNIVERSITY OF VIENNA, WÄHRINGER STRASSE 25, 1090 VIENNA, AUSTRIA *E-mail address:* sdf@logic.univie.ac.at

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF COPENHAGEN, UNIVERSITETSPARK 5, 2100 COPEN-HAGEN, DENMARK

E-mail address: asgert@math.ku.dk