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CICHOŃ’S DIAGRAM, REGULARITY PROPERTIES AND ∆1
3 SETS OF

REALS.

VERA FISCHER, SY DAVID FRIEDMAN, AND YURII KHOMSKII

Abstract. We study regularity properties related to Cohen, random, Laver, Miller

and Sacks forcing, for sets of real numbers on the ∆1
3 level of the projective hieararchy.

For ∆1
2 and Σ1

2 sets, the relationships between these properties follows the pattern of the

well-known Cichoń diagram for cardinal characteristics of the continuum. It is known that

assuming suitable large cardinals, the same relationships lift to higher projective levels,

but the questions become more challenging without such assumptions. Consequently, all

our results are proved on the basis of ZFC alone or ZFC with an inaccessible cardinal. We

also prove partial results concerning Σ1
3 and ∆1

4 sets.

§1. Introduction. The study of regularity properties in descriptive set the-
ory is closely related to cardinal characteristics of the continuum. By well-known
results of Solovay, Judah and Shelah, the statement “all Σ1

2 sets of reals are
Lebesgue measurable” is equivalent to “for every r ∈ ωω, the set of random reals
over L[r] has measure one”, and the statement “all ∆1

2 sets of reals are Lebesgue
measurable” is equivalent to “for every r ∈ ωω, there is a random real over L[r]”;
analogous results hold for the Baire property and Cohen reals. These character-
izations link the statements about projective regularity with the covering and
additivity numbers of the meager and null ideals on the reals. Likewise, Brendle
and Löwe [8] uncovered a link between the regularity properties naturally con-
nected to Laver-, Miller- and Sacks-forcing for Σ1

2 and ∆1
2 sets, and the cardinal

invariants b (the bounding number), d (the dominating number) and the size of
the continuum.

Thus, if we restrict attention to the second projective level, a very clear picture
emerges, in which the relationships between the various regularity statements fol-
low the familiar pattern of Cichoń’s diagram (see Figure 1 in Section 2). Other,
more exotic, regularity properties have also been extensively studied on the sec-
ond level, with some important contributions being [23, 8, 6, 9, 7]. See also [32]
for a very detailed and self-contained survey. An abstract approach has been
proposed by Ikegami in [24] and developed further in the PhD theses of Laguzzi
[36] and of the third author [35].
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Far less is known concerning sets higher up in the projective hierarchy, even
at the Σ1

3 and ∆1
3 levels. Concerning such questions, there are two, somewhat

divergent, methods of approach. According to one of them, adopted e.g. by
Ikegami in [24], Judah and Spinas in [31] and a few others, one assumes the ex-
istence of certain large cardinals, which imply that all the essential results from
the second level lift almost verbatim to higher levels (for the third level, this
requires the existence of sharps for sets of ordinals). Although this approach is
interesting and certainly worthy of further investigation, it is not the approach
we will take in this paper, for reasons that shall be explained in the next sec-
tion. Here, all results will be proved on the basis of ZFC alone or ZFC with
an inaccessible; indeed, we will put special emphasis on eliminating the inac-
cessible wherever possible (notice that the statement “all Σ1

3 sets are Lebesgue
measurable” already implies an inaccessible in L by [40]).

Some work in this direction, most of it contained in Chapter 9 of [3], has
been carried out by Judah, Shelah, Bagaria and others in the eighties and early
nineties, and our methods are related to the ones used there. On the other hand,
we have more modern means at our disposal, particularly the theory of “non-
elementary proper forcing” (in our case, “Suslin and Suslin+ proper forcing”)
developed by Judah, Shelah, Goldstern and Kellner, and a result of René David
[10] about the existence of a model of set theory in which ω1 is inaccessible in
L[r] for all reals r, but there exists a Σ1

3-good wellorder of the reals. Using these
methods, we will provide a complete solution to the situation on the ∆1

3-level.
Although our emphasis will be on the regularity properties corresponding to the
cardinal invariants appearing in Cichoń’s diagram (i.e., the regularity properties
connected to Cohen, random, Laver, Miller and Sacks forcing), our methods
are sufficiently general and certainly have many more applications regarding
questions of a similar nature.

The paper is structured as follows: in Section 2 we introduce the relevant
definitions, summarize known results on the second level and provide the mo-
tivation for the research carried out in the rest of the paper. In Section 3 we
recall the basic properties of Suslin and Suslin+ proper forcing, proving several
important technical results which may be interesting in their own right and have
applications other than those considered in this paper. In the crucial Section
4 we develop several methods for obtaining regularity for ∆1

3 sets of reals in a
“minimal” way, using various iterated forcing techniques. In Section 5 we use
these methods to separate regularity properties on the ∆1

3-level. In Section 6
we briefly consider two additional regularity properties that have received a lot
of attention is set theory, and in Section 7 we deal with some results concerning
Σ1

3 and ∆1
4 sets. Section 8 closes with some open questions.

§2. Regularity properties and Cichoń’s diagram.

2.1. Definitions. We assume that the reader is familiar with the standard
definitions of the Baire property, Lebesgue measure, the ideal M of meager sets
and N of measure-null sets, as well as the definitions of Cohen, random, Laver,
Miller and Sacks forcing. Following standard practice, we denote these forcing
notions with the letters C,B,L,M and S. If T is a tree on ω<ω or 2<ω then [T ]
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denotes the set of branches through T , and [t] denotes the basic open set for
t ∈ ω<ω or 2<ω.

Definition 2.1. A set A ⊆ ωω is

• Laver-measurable if ∀T ∈ L ∃S ∈ L s.t. S ≤ T and ([S] ⊆ A or [S] ∩ A =
∅).

• Miller-measurable if ∀T ∈M ∃S ∈M s.t. S ≤ T and ([S] ⊆ A or [S]∩A =
∅).

A set A ⊆ 2ω is
• Sacks-measurable if ∀T ∈ S∃S ∈ S s.t. S ≤ T and ([S] ⊆ A or [S]∩A = ∅).

Sacks-measurability is also known under the term Marczewski-measurability.
Although contemporary interest in properties such as the ones above is often
forcing-related, it is interesting to note that among Polish mathematicians, there
had been a considerable interest in them long before the advent of forcing, see
e.g. [44].

Both Lebesgue measure and the Baire property can be represented in the style
of Definition 2.1, using the following well-known characterizations:

1. A subset A of ωω or 2ω is Lebesgue-measurable iff every closed set C of
positive measure has a closed subset C ′ ⊆ C of positive measure such that
C ′ ⊆ A or C ′ ∩A = ∅.

2. A subset A of ωω or 2ω has the Baire property iff every basic open set
[t] has a basic open subset [s] ⊆ [t] such that [s] \ A is meager or [s] ∩ A
is meager. Moreover, this holds iff every Gδ non-meager set X has a Gδ
non-meager subset Y ⊆ X such that Y ⊆ A or Y ∩A = ∅.

If we choose to represent random forcing by the partial order of closed sets
of positive measure, and Cohen forcing by Gδ (or Borel) non-meager sets, we
obtain an exact equivalence between the two classical properties on one hand,
and B- and C-measurability in the sense analogous to Definition 2.1 on the other
hand. Therefore, we will frequently refer to the Baire property and Lebesgue
measure as “C-” and “B-measurability”, respectively.

Notation 2.2. If Γ is a class of sets (e.g. a projective class), we will use
the notation “Γ(P)” to abbreviate the statement “all sets of complexity Γ are
P-measurable.”, with P ranging over one of the forcing notions considered above.

2.2. The second level. While ZFC proves that analytic sets are P-measurable
for all P as above, statements such as Σ1

2(P) and ∆1
2(P) are independent of ZFC.

The following results of Solovay [42], Judah-Shelah [23] and Brendle-Löwe [8]
provide an exact characterization of regularity statements for Σ1

2 and ∆1
2 sets of

reals.

Theorem 2.3 (Solovay, 1970).

1. Σ1
2(B) ⇐⇒ ∀r {x | x is not random over L[r]} ∈ N .

2. Σ1
2(C) ⇐⇒ ∀r {x | x is not Cohen over L[r]} ∈ M.

Theorem 2.4 (Judah-Shelah, 1989).

1. ∆1
2(B) ⇐⇒ ∀r ∃x (x is random over L[r]).
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2. ∆1
2(C) ⇐⇒ ∀r ∃x (x is Cohen over L[r]).

Theorem 2.5 (Brendle-Löwe, 1999).

1. Σ1
2(L)⇐⇒∆1

2(L)⇐⇒ ∀r ∃x (x is dominating over L[r]).
2. Σ1

2(M)⇐⇒∆1
2(M)⇐⇒ ∀r ∃x (x is unbounded over L[r]).

3. Σ1
2(S)⇐⇒∆1

2(S)⇐⇒ ∀r ∃x (x /∈ L[r]).

These three theorems make it possible to compare the strength of various
hypotheses of the form Σ1

2(P) and ∆1
2(P) with one another. Notice that the

right-hand-side statements of Theorem 2.3 are naturally related to the cardinal
numbers add(N ) and add(M); the right-hand-side statement of Theorem 2.4 are
related to cov(N ) and cov(M); and those of Theorem 2.5 to b, d and 2ℵ0 . So it
is not surprising that the relationship between the regularity hypotheses follows
a pattern familiar from (part of) the Cichoń diagram—see Figure 1.

∆1
2(B) +3 Σ1

2(S)

∆1
2(S)

Σ1
2(L)

∆1
2(L)

+3 Σ1
2(M)

∆1
2(M)

5=

∀r(ωL[r]
1 < ω1) +3 Σ1

2(B) +3

KS

Σ1
2(C)

KS

+3 ∆1
2(C)

KS

Figure 1. A complete diagram of implications for Σ1
2 and ∆1

2

sets of reals.

The interpretation of this diagram is as usual: every implication appearing on
it is provable in ZFC, as well as the additional implication ∆1

2(L) + ∆1
2(C) ⇒

Σ1
2(C) (the counterpart to the cardinal equation add(M) = min(b, cov(M)) es-

tablished by John Truss [45]). Any other implication is not provable, i.e., any
constellation of true/false-assignments to the above statements not contradict-
ing the diagram, is actually consistent with ZFC. We call such an implication
diagram “complete”. The above facts are well-known, and can be proved by
iterating the right type of forcing notions over L and using the fact that certain
types of reals are, or are not, added by the iteration, thus forcing the right-hand-
side statements of Theorems 2.3, 2.4 and 2.5 to be true or false. This is in perfect
analogy to the proofs of the corresponding cardinal inequalities, which can be
found e.g. in [3, Chapter 7].

Notice that the statement ∀r(ωL[r]
1 < ω1) is a little bit special, since it is the

only one that requires the strength of an inaccessible; nevertheless, it is a natural
property in this setting because:

(a) it plays the same role as ℵ1 does in the standard Cichoń diagram for cardinal
characteristics, and
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(b) it is equivalent to a number of projective regularity statements, most notably
“all Σ1

2/Π1
1 sets have the perfect set property”.

The correspondence between regularity hypotheses on the second level, tran-
scendence over L and cardinal characteristics of the continuum is summarized
in Table 1 below.

Reg. hypothesis Transcendence over L[r] Cardinal char.

∀r(ωL[r]
1 < ω1) “making ground model reals countable” ℵ1

Σ1
2(B) measure-one many random reals add(N )

∆1
2(B) random reals cov(N )

Σ1
2(C) co-meager many Cohen reals add(M)

∆1
2(C) Cohen reals cov(M)

∆1
2(L) / Σ1

2(L) dominating reals b

∆1
2(M) / Σ1

2(M) unbounded reals d

∆1
2(S) / Σ1

2(S) new reals 2ℵ0

Table 1. Correspondence between regularity, transcendence
and cardinal characteristic.

2.3. Beyond the second level. When looking higher up in the projective
hierarchy and attempting to generalize the theory to statements like Σ1

n(P) and
∆1
n(Q), for n ≥ 3, we are faced with two distinct methods of approach, as

mentioned in the introduction. For example, if L# denotes the least inner model
closed under sharps for sets of ordinals, Theorems 2.3, 2.4 and 2.5 can be lifted to
the next level, so in set-generic extensions of L# we obtain characterizations of
Σ1

3(P) and ∆1
3(P) in terms of transcendence properties over L#. An immediate

consequence is that all the properties of the diagram from Figure 1 lift to the
third projective level as well. For more on this approach, see the work of Ikegami
[24, Section 5]. Judah and Spinas [31] also proved results such as: if V is a
canonical model with n Woodin cardinals and a measurable above them, then
there is a forcing extension in which ∆1

n+4(B) holds but ∆1
n+4(C) fails.

In this paper, we do not adopt the “large cardinal approach”, for the following
reasons:

1. As the consistency of “for all P and n < ω, Σ1
n(P) holds” is just an inacces-

sible (it is true in the Solovay model), it seems unnatural to require stronger
hypotheses to prove more subtle statements about Σ1

n(P) or ∆1
n(P) for low

values of n (this view has been expressed by Bagaria, Judah, Shelah and
others in the past).

2. Assuming too strong large cardinals (for example, enough to yield Projec-
tive Determinacy) may trivialize the question. So, for this approach to
work properly one must assume exactly the right amount of large cardinal
strength, which is, arguably, a somewhat artificial requirement.

3. Without large cardinal assumptions, one can obtain results that are not
direct analogues of the second level results. In recent work of Friedman and
Schrittesser [16], a model for Proj(B)+¬∆1

3(C) was constructedt (“Proj”
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stands for the class of all projective sets). In particular, this showed that
the counterpart to the classical Bartoszyński-Raisonnier-Stern implication
“Σ1

n(B) ⇒ Σ1
n(C)” fails to lift to higher levels, for all n ≥ 3 (on the other

hand, the existence of a measurable implies Σ1
3(B)⇒ Σ1

3(C)). Other “non-
liftings” of implications will follow from our results as well, for example
that ∆1

n(L) + ∆1
n(C) ⇒ Σ1

n(C) (the analogue of the Truss-implication)
consistently fails for n = 3 and n = 4, see Theorem 7.12. In light of this,
it seems more interesting to study such questions in ZFC or at most ZFC
with an inaccessible.

So, if we must forgo large cardinal assumptions beyond an inaccessible, we
must also forgo beautiful characterization theorems like Theorem 2.3, 2.4 and
2.5. But then, is there anything at all we can say about the relationship between
the five regularity properties? Fortunately, a number of simple implications can
be proved by straightforward ZFC-arguments. First, an important observation:

Observation 2.6 (Brendle-Löwe). Let P ∈ {B,L,M,S}. For any tree T ∈ P,
there exists a natural homeomorphism ϕT between [T ] and the entire space (ωω

or 2ω), which preserves the property of “being a P-condition”. From this it
follows that if Γ is a class of sets closed under continuous preimages, and we are
only interested in the statement Γ(P), then we may safely drop the “below any
P-condition”-clause from the definition of P-measurability, and simply say that
a set A is P-measurable if and only if there exists a T ∈ P such that [T ] ⊆ A or
[T ]∩A = ∅. Similarly, A is C-measurable if and only if there is a Gδ non-meager
set X such that X ⊆ A or X ∩A = ∅.

Lemma 2.7 (Brendle-Löwe). Let Γ be a class of sets closed under continuous
pre-images. Then the following implications hold in ZFC:

1. Γ(L)⇒ Γ(M)⇒ Γ(S).
2. Γ(C)⇒ Γ(M).
3. Γ(B)⇒ Γ(S).

Proof. In view of the previous observation, proving Γ(P) ⇒ Γ(Q) amounts
to finding a Q-object below any P-object. For the first implication, note that a
Laver tree is a Miller tree, a Miller tree is a perfect tree in ωω, and the imagine
of this perfect tree under the natural homeomorphism between ωω and a dense
Gδ subset of 2ω, is an uncountable Gδ subset of 2ω which, by the perfect set
theorem, contains the branches of a Sacks tree.

For the second implication, note that a Gδ non-meager set is comeager in a basic
open set. It is not hard to inductively construct a Miller tree whose branches
are completely contained inside a set that is comeager in a basic open set.

Finally, every closed set of positive measure clearly contains a perfect subset. a
Summarizing the above, we obtain a different implicaiton diagrams for the

same regularity properties on the Σ1
n and ∆1

n level, for n ≥ 3, see Figure 2.
Note, however, that unlike Figure 1, this is not a “complete” diagram, in the
sense that it only shows the implications we know to exist so far, but it does
not claim that no additional implications exist. Also, notice that the analogue



CICHOŃ’S DIAGRAM, REGULARITY PROPERTIES AND ∆1
3 SETS OF REALS. 7

of ∀r(ωL[r]
1 < ω1) is missing from the diagram—it is not clear which hypothesis

should take its place.

∆1
n(B) +3 ∆1

n(S)

∆1
n(L) +3 ∆1

n(M)

2:

Σ1
n(S)

KS

Σ1
n(L) +3

KS

Σ1
n(M)

KS 2:

Σ1
n(B)

KS

Σ1
n(C) +3

6>

∆1
n(C)

^f

Figure 2. An incomplete diagram of implications for Σ1
n and

∆1
n sets of reals.

The long-term goal is to “complete” this diagram on the third level, and
potentially on all levels n ≥ 3 (i.e., to find all possible implications and prove
that all other implications are consistently false). There are still many obstacles
to this goal. However, if we restrict attention exclusively to the ∆1

3 sets, we
obtain a much simpler diagram (see Figure 3). In Section 5 we show that that
diagram is indeed complete, by constructing models for every combination of
“true”/“false”-assignments consistent with the diagram, in ZFC or ZFC with
an inaccessible. Partial results related to levels above ∆1

3 will be discussed in
Section 7.

We should mention that results concerning the Baire propety and Lebesgue
measurability were known prior to our work. The consistency of ∆1

3(C) +
¬∆1

3(B), for example, follows from [27], and the consistency of the converse,
∆1

3(B) + ¬∆1
3(C), was first proved by Bagaria in [28] and later (using different

methods) by Bagaria and Woodin in [2]. The consistency of Σ1
3(B)+¬∆1

3(C) had
remained open for a long time, until it became a corollary of the much stronger
theorem of [16]. To our knowledge, no study of the properties L, M and S on
higher levels has been carried out so far.

On the technical side, our proofs will involve Suslin and Suslin+ proper forc-
ings, a special case of the general theory of “non-elementary proper forcing”
developed by Shelah, cf. [41].

§3. Suslin and Suslin+ proper forcing. The theory of Suslin ccc forcings
is well-understood, and a detailed summary can be found in [3, Section 3.6].
In the context of forcing notions that are proper but not ccc, there is a closely
related concept, developed, among others, by Judah and Shelah in [22], Goldstern
in [19, 18], Shelah in [41] and Kellner in [33, 34]. In this section we will give a
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brief overview of some essential properties of Suslin and Suslin+ proper forcing,
and prove some results that will be crucial for the techniques in our paper.

3.1. Basic concepts. The main idea is to replace countable elementary sub-
models M ≺ Hκ for sufficiently large κ in the definition of “proper forcing” by
countable transitive (not necessarily collapses of elementary) models of (a suffi-
cient fragment of) ZFC. For that to make sense, the forcing notions need to be
definable.

Definition 3.1. Let P be a forcing partial order whose conditions are (or can
be coded by) reals. Assume that P, ≤P and ⊥P are definable by projective for-
mulas with a parameter a ∈ ωω. Let ZFC∗ denote some (unspecified) sufficiently
large finite fragment of ZFC, and let M be a countable transitive model of ZFC∗

containing the parameter a. Then PM , <MP and ⊥MP refer to the forcing notion
re-interpreted in M . A condition q ∈ P is called (M,P)-generic if (in V ) q 

“Ġ ∩ PM is a PM -generic filter over M”.

Following the terminology introduced by Shelah, countable models of ZFC∗

which contain the defining parameters will be called “candidates”.

Definition 3.2. Let (P,≤P,⊥P) be as above. We say that P is proper-for-
candidates if for all candidates M containing the defining parameter of P, and
every p ∈ PM , there exists a q ≤ p which is (M,P)-generic.

Some authors call this property “strongly proper”, although we will stick to
the above terminology in order to avoid confusion with other interpretations of
the term “strongly proper”.

Note that if M ≺ Hκ is a countable elementary submodel of a sufficiently
large Hκ such that Hκ |= ZFC∗ and contains all relevant parameters, then a
condition q is (M,P)-generic in the above sense if and only if it is (M,P)-generic
in the usual sense (with PM = P∩M). Hence, properness-for-candidates implies
ordinary properness.

Usually, properness-for-candidates is coupled with an absoluteness require-
ment on the definition of the partial order.

Definition 3.3. A forcing P is Suslin proper if P, ≤P and ⊥P are Σ1
1-relations,

and P is proper-for-candidates.

If P is Suslin proper, then PM = P ∩M , ≤MP =≤P ∩M2 and ⊥MP = ⊥P ∩M2

by Σ1
1-absoluteness. Moreover, the statement “{pi | i < ω} is predense below q”

is Π1
1 and hence absolute between candidates M and V . Clearly, all Suslin ccc

partial orders (i.e., all Suslin partial orders having the ccc) are Suslin proper, and
there are some well-known examples of non-ccc forcings that are Suslin proper—
most notably Mathias forcing. However, many standard forcing notions (e.g.,
Sacks, Miller and Laver forcing) are not quite Suslin proper, because ⊥P fails to
be a Σ1

1 relation (it is then only Π1
1). To fix this problem, an alternative notion

was proposed by Shelah and Goldstern:

Definition 3.4. A forcing P is Suslin+ proper if

1. P and ≤P are Σ1
1,
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2. there is a Σ1
2, (ω + 1)-place relation epd(p0, p1, . . . , q) (“effectively pre-

dense”) such that if epd(p0, p1, . . . , q) holds for pi, q ∈ P, then {pi | i < ω}
is predense below q, and

3. for every candidate M containing all relevant parameters, and all p ∈ PM ,
there is a q ≤ p such that for every D ∈M which is PM -dense, there exists
an enumeration {di | i < ω} ⊆ D such that epd(d0, d1, . . . , q) holds. In this
case we say that q is an effective (M,P)-generic condition, and we call this
property effective-properness-for-candidates.

So Suslin properness implies Suslin+ properness, which in turn implies proper-
ness. A sufficient condition for a forcing to be Suslin+ proper is an effective
version of Axiom A, where the amalgamation makes sure that epd is defined in a
Σ1

2-way. All standard definable tree-like forcings which are known to be proper
are in fact Suslin+ proper. A good exposition of this phenomenon can be found
in Kellner’s papers [33, 34].

Remark 3.5. In [18, Remark 1.7] it was shown that if d ∈ ωω is a code for
an analytic set, canonically coding (P,≤P,⊥P)), then the statement “d codes a
Suslin proper forcing” is a Π1

3 statement. The same holds for Suslin+ proper
forcing, i.e., if d is a code for a Σ1

2-set canonically coding (P,≤P) as well as the
relation epd, then “d codes a Suslin+ proper forcing” iff

≤P is a partial order, and

∀1M [M countable, transitive, M |= ZFC∗, d ∈M →
∀0p ∈ PM ∃1q ≤P p s.t. ∀0D ∈M(M |= “D is dense”→

∃1{di | i < ω} ⊆ D s.t. epd(d0, d1, . . . , q))]

(where ∀0 and ∃0 refers to natural number quantifiers and ∀1 and ∃1 to real
number quantifiers.) As countable, transitive models M can be coded by well-
founded relations E on ω, it is not hard to verify that the above statement is Π1

3.
In particular, if P is a Suslin (Suslin+) proper forcing then N |= “P is a Suslin
(Suslin+) proper forcing” for any inner model N with ω1 ⊆ N , by downwards
Π1

3-absoluteness.

Next, we want to look at the complexity of the forcing relation 
P. First, let
us fix the following terminology:

Definition 3.6. Let P be a forcing notion. We say that τ is a countable
P-name for a real if it is a countable set of pairs (ň, p), where n ∈ ω and p ∈ P.

In the above definition we think of reals as subsets of ω (or members of 2ω),
and if τ is of the above form and G a generic filter, then we think of τ [G] as the
set {n | ∃p ∈ G ((ň, p) ∈ τ)} ⊆ ω (or the corresponding function in 2ω).

Although not every name for a real is countable, if P is proper then for every
P-name for a real σ and p ∈ P there exists q ≤ p and a countable P-name τ for a
real such that q 
 τ = σ. If conditions of P are reals, each such countable name
can be canonically coded by a real. Moreover, if P is Σ1

1 then the statement “x
codes a countable name for a real” is Σ1

1. We will frequently identify countable
P-names for reals with the reals coding them.
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The following lemma generalizes [29, Theorem 2.1], and is crucial for comput-
ing the complexity of the forcing relation. In its formulation, “p 
 θ(τ)” is to be
understood as a formula with real variables p and τ (actually the reals coding
them)

Lemma 3.7. Let P be Suslin+ proper, p ∈ P and τ a countable P-name for a
real. Then for all n ≥ 2:

1. If θ is Π1
n then “p 
 θ(τ)” is Π1

n.
2. If θ is Σ1

n then “p 
 θ(τ)” is Π1
n+1.

Proof. The proof is by induction on the complexity of θ, with Π1
2 being the

base case. So first, assume θ is Π1
2.

Claim. The following are equivalent:

1. p 
 θ(τ),
2. for all candidates M containing τ, p, and any parameters appearing in the

definition of P or θ, we have M |= p 
 θ(τ).

As candidates are coded by well-founded relations E on ω, the above equivalence
gives us a Π1

2-definition of “p 
 θ(τ)”.

Proof of Claim. For (2) ⇒ (1), fix p and let M be the transitive collapse
of an elementary submodel of a sufficiently large Hκ, containing all necessary
parameters. Then by assumption M |= p 
 θ(τ), but by elementarity and
definability of 
 in Hκ, this implies p 
 θ(τ) (note that this direction is trivial
and does not require θ to have any particular complexity).

For (1) ⇒ (2), assume that p 
 θ(τ) and, towards contradiction, let M be such
that M |= p 6
 θ(τ) (note that by absoluteness, M |= p ∈ P and M |= “τ is a
countable name for a real”). Then there is p′ ≤ p in M such that M |= p′ 

¬θ(τ). Let q ≤ p′ be an (M,P)-generic condition, and let G be P-generic over
V with q ∈ G. Then G is also M -generic, and p′ ∈ G, hence M [G] |= ¬θ(τ [G]).
But this is a Σ1

2 formula, so by upwards absoluteness V [G] |= ¬θ(τ [G]). This
contradicts the assumption that p 
 θ(τ). a(Claim)

The rest follows by induction.

• For n ≥ 2, assume inductively that for Π1
n formulas χ, the relation “p 


χ(τ)” is Π1
n. Let θ be Σ1

n. Then p 
 θ(τ) iff ∀q (q ∈ P ∧ q ≤ p → q 6

¬θ(τ)), which is easily seen to be Π1

n+1.

• For n ≥ 2, assume inductively that for Σ1
n formulas χ, the relation “p 


χ(τ)” is Π1
n+1. Let θ be Π1

n+1, and write θ(τ) as ∀yχ(τ, y) for a Σ1
n formula

χ. Then the following are equivalent:
(1): p 
 θ(τ), and
(2): ∀q∀σ ((q ∈ P and q ≤ p and “σ is a countable name for a real”) →
q 
 χ(τ, σ)).

(1) → (2) is obvious, and for (2) → (1), note that if p 6
 θ(τ) then ∃q ≤ p
such that q 
 ¬θ(τ), so q 
 ∃y¬χ(τ, y). But then there is a countable name
σ and q′ ≤ q such that q′ 
 ¬χ(τ, σ), which contradicts (2).

As “q 
 χ(τ, σ)” is Π1
n+1 by induction, the statement in (2) is also Π1

n+1.

a
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3.2. Iterations. Next, we consider iterations of Suslin and Suslin+ proper
forcing notions. This is somewhat tricky, since, in general, even a two-step
iteration of Suslin+ forcing notions is not Suslin+ (see [34, Remark 4.12]), so
the definition of the iteration cannot be absolute between countable models M
and V . However, following [22] and [18], adequate preservation results can still
be proved, and that is sufficient for our purposes. In this paper we will only
consider iterations of length at most ω1 with countable support. Most of our
technical results just involve proper initial segments of the ω1-iteration, which
simplifies many things.

Definition 3.8. Let Pγ := 〈Pα, Q̇α | α < γ〉 be a countable (i.e., full) support
iteration of length γ < ω1. We call this a Suslin (Suslin+) proper iteration of

length γ if each iterand is Suslin (Suslin+) proper, i.e., for every α < γ, 
Pα“Q̇α
is Suslin (Suslin+) proper”.

Since the iteration Pγ is uniquely determined by the sequence 〈Q̇α | α < γ〉
of iterands, any candidate M containing the names for the defining parameters
of all the Q̇α’s can uniquely reconstruct the iteration (see e.g. [18, p. 350ff] for
details). We will refer to thisM -reconstruction of the iteration as PMγ . In general,

PMγ is not the same as Pγ ∩M . Later we will prove that being a Pγ-condition is

Π1
2, so by downward absoluteness PMγ ⊇ Pγ ∩M does hold. However, PMγ might

contain objects which M believes to be Pγ-conditions but which actually (in V )
are not.

Definition 3.9 (Judah-Shelah; Goldstern; Kellner). If G is a Pγ-generic fil-
ter over V , and M is a candidate, we can define GM = GMγ , the “potential

PMγ -generic filter over M induced by G”, by induction on α ≤ γ, following
[18, Definition 2.6] (see also [34, Definition 4.3.]).

• If α = β + 1 then GMα = {p ∈ PMα | p�β ∈ GMβ and p(β)[GMβ ] ∈ G(β)}.
• If α is limit then GMα = {p ∈ PMα | ∀β < α (p ∈ GMβ )}.

(here G(β) is the β-th component of G). Then GM := GMγ is the result of this
induction.

Remark 3.10.

1. The object GM is not always well-defined: for example, if at some stage
α < γ, GMα is not PMα -generic over M then it does not make sense to
evaluate p(α)[GMα ], so we cannot define GMα+1 either. Therefore, we allow

the possibility that GM is undefined; but when we say “GM is PMγ -generic

over M”, we mean that, inductively, every GMα is PMα -generic over M for
α < γ, and hence every GMα is properly defined (and GM is PMγ -generic
over M).

2. If GM is well-defined then, as a filter on PMγ , it takes the role that “G∩M”
would in the usual situation (i.e., where M is a collapse of an elementary
submodel). In general, GM and G∩M are different. However, their differ-
ence arises only from the difference between PMγ and Pγ ∩M . In particular,

if p ∈ GM and p is really a Pγ-condition, then in fact p ∈ G. This follows
inductively from the definition of GM (if all initial segments of p are real
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Pα-conditions, then, inductively, it follows that the definition of GMα cor-
responds to the standard definition of the iterated generic filter Gα). We
will need this fact several times in our arguments.

See [34] and [41] for a more detailed treatment of these issues.

Definition 3.11. Following [18, Remark 2.13] and [34, Definition 4.4], we
define:

• A condition q ∈ Pγ is (M,Pγ)-generic if q 
 “ĠM is a PMγ -generic filter
over M”.

• If p ∈ PMγ , then q is (M,Pγ , p)-generic if it is (M,Pγ)-generic and, addi-

tionally, q 
 p ∈ ĠM .

The purpose of the “(M,Pγ , p)-generic condition” is that we would like to say
“for p ∈ PMγ , there is q ≤ p which is (M,Pγ)-generic”, but we cannot say this
since p might not be in Pγ . Instead, saying that “q is (M,Pγ , p)-generic” is the
desired analogue.

The following theorem, proved by Judah-Shelah and by Goldstern, shows that
a property that is almost “properness-for-candidates” is preserved by countable
support iterations of Suslin and Suslin+ forcings.

Theorem 3.12 (Judah-Shelah; Goldstern). Let Pγ := 〈Pα, Q̇α | α < γ〉 be a
Suslin+ proper iteration of length γ < ω1. Then for every candidate M con-
taining the parameters of all Q̇α and containing γ, and for every p ∈ PMγ , there
exists a q which is (M,Pγ , p)-generic.

Proof. This is a specific instance of a more general preservation theorem,
where the iteration can have length γ ≤ ω2. In that case, we must first make
sense of the way a countable model M reflects the iteration. This general result is
proved in detail for Suslin proper forcings in [22, Lemma 2.8] and in [18, Theorem
2.16, Corollary 2.17], and in [19] it is also mentioned that analogous results hold
for Suslin+. Even stronger results are proved by Shelah in [41], and also by
Kellner in [34, Lemma 4.8]. a

Remark 3.13. As we are only dealing with countable iterations, the following
holds for Pα by induction on α < ω1:

1. Since by Theorem 3.12, each Pα is proper, Pα-names for reals have countable
names (modulo strengthening of the condition).

2. It follows that, inductively, we can assume that all components of p ∈ Pα
are represented by countable names for reals.

3. As countable names are coded by reals and α is countable, an entire con-
dition p ∈ Pα can be coded by a single real. As before, we will identify
Pα-conditions and countable Pα-names for reals with the reals coding them.

Now that we can treat Pα as a forcing with real number conditions, we can
also analyze the complexity of Pα, ≤α and the forcing relation 
α. We already
mentioned that Pα is not Suslin or Suslin+, i.e., neither Pα nor ≤α are Σ1

1.
However, we can prove the following result, inductively on α < ω1.

Lemma 3.14. Let Pω1 := 〈Pα, Q̇α | α < ω1〉 be a Suslin+ proper iteration.
Then the following holds for all α < ω1:
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1. Pα is Π1
2,

2. ≤α is Π1
2,

3. being a countable Pα-name for a real is Π1
2, and

4. for any p ∈ Pα and a countable Pα-name for a real τ , we have for all n ≥ 2:
(a) If θ is Π1

n then “p 
α θ(τ)” is Π1
n.

(b) If θ is Σ1
n then “p 
α θ(τ)” is Π1

n+1.

Proof. The case α = 1 follows from the definition of Suslin+ properness and
Lemma 3.7. Assume (1)–(4) holds for β < α. Then:

1. If α = β + 1 then p ∈ Pβ+1 iff p�β ∈ Pβ and “p(β) is a countable Pβ-name

for a real” and (p�β) 
β p(β) ∈ Q̇β . By induction, this is a conjunction

of three Π1
2 sentences, where the last one is so due to point (4) and the

fact that “p(β) ∈ Q̇β” is Σ1
1. If α is limit then (since we are dealing with

countable support iterations and α < ω1) p ∈ Pα iff ∀β < α (p�β ∈ Pβ).

Again, this statement is Π1
2 by the induction hypothesis.

2. If α = β + 1 then p ≤β+1 q iff (p�β) ≤β (q�β) and (p�β) 
β p(β) ≤Q̇β q(β),

which is again a conjunction of Π1
2 formulas, by induction. If α is limit

then p ≤α q iff ∀β < α (p�β) ≤β (q�β) which is likewise Π1
2.

3. The complexity of the set of countable Pα-names is the same as the com-
plexity of Pα, so this follows from point (1).

4. Similarly to the proof of Lemma 3.7, we prove this by induction on the
complexity of θ, starting with Π1

2. As before:

Claim. The following are equivalent:
(a) p 
α θ(τ),
(b) for all candidates M containing τ, p and α, and any parameters ap-

pearing in the definition of any Q̇β for β < α or in θ, we have M |=
p 
α θ(τ).

The proof of this equivalence is as in Lemma 3.7, using the “almost-
properness-for-candidates”-property satisfied by Pα (i.e., Theorem 3.12).
However, since Pα is not absolute between V and M , the argument must
proceed with some more care. Notice that by downward Π1

2-absoluteness,
we now already know that Pα ∩M ⊆ PMα .

The (b)⇒ (a) direction is exactly as before, i.e., we simply take M to be the
collapse of an elementary submodel of Hκ. For (a)⇒ (b), assume p 
α θ(τ)
and let M be a candidate containing the relevant parameters, and, towards
contradiction, suppose M |= p 6
α θ(τ). By downward Π1

2-absoluteness we
know that p ∈ PMα , and also M knows that τ is a countable name for a real.

Then M |= ∃p′ ≤α p (p′ 
α ¬θ(τ)) (note that p′ may not be in Pα).
Now use Theorem 3.12, and find a condition q ∈ Pα which is (M,Pα, p)-
generic. Then, if G is Pα-generic over V , and q ∈ G, the derived object GM

(see Definition 3.9 (1)) is PMα -generic over M , and p′ ∈ GM . Therefore,
M [GM ] |= ¬θ(τ [G]), and by upward Σ1

2-absoluteness, ¬θ(τ [G]) holds in
V [G]. But also M |= p′ ≤α p and GM ⊆ PMα is a filter, so also p ∈ GM .
But p was in Pα, so by Remark 3.10 (2) p must in fact be in G. That
contradicts p 
α θ(τ). a(Claim).
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For the rest, proceed inductively as before: if θ is Σ1
n for n ≥ 2 then

p 
α θ(τ) iff ∀q (q ∈ Pα and q ≤α p → q 6
α ¬θ(τ)), which is Π1
n+1, using

the fact that Pα and ≤α are Π1
2, i.e., points (1) and (2) of the theorem.

Likewise, if θ(τ) ≡ ∀yχ(τ, y) is Π1
n+1 for n ≥ 2 and χ is Σ1

n, then, as before,
p 
α θ(τ) iff ∀q∀σ ((q ∈ Pα and q ≤α p and “σ is a countable Pα-name for
a real”) → q 
α χ(τ, σ)). Again this is Π1

n+1 using the fact that being a

countable Pα-name for a real is Π1
2, i.e., point (3) of the theorem.

a
From this theorem it follows that Pα, ≤α, being a countable Pα-name for a

real, and the relation “p 
α θ(τ)” for Π1
2 formulas θ, are all downwards absolute

between V and countable models M (containing the relevant parameters), and
absolute in both directions between V and models W ⊆ V with ω1 ⊆W .

3.3. Suslin+ proper iterations and inaccessibles. We end this section
with two further useful results about Suslin+ proper forcing, under the assump-

tion that ∀r(ω
L[r]
1 < ω1). The first result shows that this assumption is preserved

by Suslin+ iterations of countable length.
First, a preliminary Lemma.

Lemma 3.15. Suppose V |= ∀r (ω
L[r]
1 < ω1), Pγ := 〈Pα, Q̇α | α < γ〉 is a

Suslin+ proper iteration of length γ < ω1, and p is a Pγ-condition. Suppose
further that p and all the defining parameters of Pγ are coded by a real z. Then

there exists q ∈ Pγ such that q 
γ p ∈ Ġ and q 
γ “Ġ is L[ž]-generic”.

Proof. As ωV1 is inaccessible in L[z], we can find a candidate M ⊆ L[z]
containing all the reals and dense sets of L[z], and moreover reflecting all the
relevant properties of L[z] (for example, let M := Lλ[z] for some sufficiently
large λ < ωV1 such that Lλ[z] ≺ LωV1 [z]). As p and the parameters of Pγ are

now in M , by Theorem 3.12 we can find an (M,Pγ , p)-generic condition q. Then

q 
γ “ĠM is PMγ -generic over M” and, since M has the same reals and dense

sets as L[z], also q 
γ “Ġ is L[ž]-generic”. On the other hand, q 
γ p ∈ ĠM ,

and since p ∈ Pγ , this implies q 
γ p ∈ Ġ by Remark 3.10 (2). a

Theorem 3.16. Suppose V |= ∀r (ω
L[r]
1 < ω1) and Pγ := 〈Pα, Q̇α | α < γ〉 is

a Suslin+ proper iteration of length γ < ω1. Then V Pγ |= ∀r (ω
L[r]
1 < ω1).

Proof. Suppose, towards contradiction, that the conclusion is false, and let

ṙ be a countable Pγ-name for a real and p ∈ Pγ such that p 
γ ω
L[ṙ]
1 = ω1. Let

z be a real in V , coding p, ṙ and all the defining parameters of Pγ . By Lemma

3.15, there is a q ∈ Pγ such that q 
γ p ∈ Ġ and q 
γ “Ġ is L[ž]-generic”.

By Remark 3.5, we know that every iterand occurring in Pγ is Suslin+ proper

in L[z] as well, so L[z] |= “Pγ is proper”. Therefore q 
γ “L[ž][Ġ] is a proper
forcing extension of L[ž]”, so in particular

q 
γ ω
L[ž][Ġ]
1 = ω

L[ž]
1 .

Now notice that in any Pγ-extension V [G] of V , since ṙ[G] is constructible from
ṙ and G, and ṙ is coded in z, we know that L[ṙ[G]] ⊆ L[z][G], which implies
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ω
L[ṙ[G]]
1 ≤ ω

L[z][G]
1 . On the other hand, ω

L[z]
1 was countable by assumption. It

follows that

q 
γ ω
L[ṙ]
1 ≤ ωL[ž][Ġ]

1 = ω
L[ž]
1 < ω1

which, together with q 
γ p ∈ Ġ and p 
γ ω
L[ṙ]
1 = ω1, leads to a contradiction.

a

Remark 3.17. The definability of the forcing is essential in the preceding

result, since, in general, the assumption ∀r (ω
L[r]
1 < ω1) is not preserved even

by ccc forcings. For example, assuming that ω1 is not Mahlo in L, one can find

A ⊆ ω1 is such that L[A] |= ∀r (ω
L[r]
1 < ω1). Then, using the technique of almost

disjoint coding (see e.g. [25]), one can construct a ccc forcing notion coding A
by the generic real rG. So L[A][rG] = L[rG] will be a generic extension of L[A]

by a ccc forcing notion, while obviously satisfying ω
L[rG]
1 = ω1.

Our second result (which uses the previous result) is a strong absoluteness
property of extensions by Suslin+ iterations.

Definition 3.18. Let P be a forcing notion. Then

1. V is Σ1
n-P-absolute iff for all Σ1

n formulas φ, all P-generic G over V , and
all reals x ∈ V :

V |= φ(x) ⇐⇒ V [G] |= φ(x).

2. V is Σ1
n-P-correct iff for all Σ1

n formulas φ, all P-generic G over V , and all
reals x ∈ V [G]:

V [x] |= φ(x) ⇐⇒ V [G] |= φ(x).

Σ1
n-P-correctness implies Σ1

n-P-absoluteness, but not vice versa. In fact, Σ1
n-

P-correctness is much stronger. The following is clear:

Fact 3.19. If V is Σ1
3-P-correct, then Σ1

3-absoluteness holds between any two
models W and W ′ with V ⊆W ⊆W ′ ⊆ V [G].

Proof. Let φ be Σ1
3 and x ∈ W . If W |= φ(x) then W ′ |= φ(x) by upwards

Σ1
3-absoluteness (i.e., Shoenfield absoluteness). Conversely, if W ′ |= φ(x) then

by upwards Σ1
3-absoluteness V [G] |= φ(x), so by Σ1

3-P-correctness V [x] |= φ(x),
so by upwards-absoluteness again W |= φ(x). a

Σ1
n-P-correctness and Σ1

n-P-absoluteness for all set-forcings P have been inves-
tigated before, by Woodin, Bagaria and Friedman among others. For instance,
in [1] and [13] it is shown that Σ1

3-P-absoluteness for all set-forcings P can be
obtained from a reflecting cardinal, whereas Σ1

3-P-correctness for all set-forcings
P implies the existence of sharps for sets of ordinals by [46]).

If we restrict attention to Suslin+ proper forcing notions, Σ1
3-correctness can

be obtained just from an inaccessible. In fact, in [3, Lemma 9.5.4] it is proved

that if V |= ∀r (ω
L[r]
1 < ω1) and P is Suslin ccc, then V is Σ1

3-P-correct. We now
extend this result to all Suslin+ proper forcings P (and their iterations of length
ω1), relying on Theorem 3.16.

Theorem 3.20. Suppose V |= ∀r (ω
L[r]
1 < ω1) and Pω1

:= 〈Pα, Q̇α | α < ω1〉
is a Suslin+ proper iteration. Then V is Σ1

3-Pω1-correct.
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Proof. Since upwards Σ1
3-absoluteness always holds, it remains to prove the

converse. First we do it for countable iterations Pγ , γ < ω1.

Suppose, towards contradiction, that downwards-Σ1
3-Pγ-correctness fails. Then

there is a Σ1
3 formula φ, a countable Pγ-name for a real τ , and a condition p ∈ Pγ

such that

(∗) p 
γ (φ(τ) ∧ V [τ ] |= ¬φ(τ)).

Our goal is to contradict (∗). Let θ be a Π1
2 formula and σ a (without loss of

generality countable) Pγ-name for a real, such that

p 
γ (θ(τ, σ) ∧ V [τ ] |= ¬φ(τ)).

Let z be a real coding τ, σ, p and all the defining parameters appearing in Pγ
and in φ. By Lemma 3.15, there is a q forcing “Ġ is L[ž]-generic” and “p ∈ Ġ”.
Let Gγ be any such generic filter with q ∈ Gγ and let us work in V [Gγ ] for the
time being.

Let x := τ [Gγ ] and y = σ[Gγ ]. Since p ∈ Gγ , by (∗) we know that V [Gγ ] |=
θ(x, y). By Shoenfield absoluteness, we also know that L[z][x][y] |= θ(x, y). As
L[z][Gγ ] is a generic extension of L[z], we know that the intermediary models
L[z] ⊆ L[z][x] ⊆ L[z][x][y] ⊆ L[z][Gγ ] can all be represented by generic exten-
sions. Let Q be the forcing leading from L[z][x] to L[z][x][y] (to find Q, first look
at the quotient of Pγ modulo the sub-forcing generated by τ , and then take the
sub-forcing of that generated by σ). It follows that

L[z][x] |= ∃q ∈ Q (q 
Q θ(x̌, σ)).

But by Theorem 3.16, V [Gγ ] |= ∀r (ω
L[r]
1 < ω1). Therefore also V [x] |=

∀r (ω
L[r]
1 < ω1). Therefore, in particular, V [x] |= “ω1 is inaccessible in L[z][x]”.

So, in V [x], we can find an internal Q-generic filter H over L[z][x], so V [x] |=
(L[z][x][H] |= θ(x, σ[H])). By upwards-absoluteness, V [x] |= ∃y′θ(x, y′), i.e.,
V [x] |= φ(x). But this is a contradiction with (∗), since we had p 
 V [τ ] |=
¬φ(τ).

To complete the proof of the theorem, it only remains to verify Σ1
3-correctness

for the entire iteration of length ω1. But obviously, if V [Gω1
] |= φ(x) for some

Σ1
3 formula φ, then actually V [Gω1 ] |= ∃yθ(x, y), and since Pω1 is proper, x

and y must both appear at some stage γ < ω1, so by Shoenfield absoluteness
V [Gγ ] |= θ(x, y). Then, by what we have proved above, V [x] |= φ(x). a

§4. Methods for obtaining regularity. The purpose of this section is to
develop methods for obtaining regularity for ∆1

3 sets of reals, but doing this with
“as little damage as possible”, i.e., using forcing iterations that preserve certain
properties of the ground model. In total, we will present three separate methods
of achieving this goal. The first one is due to Judah:

Theorem 4.1 (Judah).

1. If V |= Σ1
2(B) and Bω1

denotes the ω1-product of random forcing, then
V Bω1 |= ∆1

3(B).
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2. If V |= Σ1
2(C) and Cω1

denotes the ω1-product of Cohen forcing, then
V Cω1 |= ∆1

3(C).

Proof. See [3, Theorem 9.4.6]. a

It is not clear whether the above can be generalized beyond Cohen and random:
the proofs depend on properties of the meager and null ideals (such as the Fubini
property), as well as a strong homogeneity of Cohen- and random-products.

Next, we present our second method for obtaining ∆1
3-regularity. This is

inspired by Shelah’s original proof that ∆1
3(B) does not require an inaccessible,

see [40, §6].
Although we are primarily interested in the regularity properties mentioned

in Section 2, we would like our proofs to be sufficiently uniform and general, i.e.,
we would like them to be applicable to many forcing notions P at once. We could
require that P has trees as conditions (see e.g. arboreal forcing from [6, 24]), but
in some cases (e.g. Cohen) we prefer to work with Gδ sets instead. The reason
is that, otherwise, we would need to work “modulo an ideal” which would only
complicate the proofs unnecessarily. So we relax the requirement somewhat and
adopt the following:

Convention and Notation 4.2.

• Let us say that P is a real forcing notion if the conditions are Gδ sets of
reals, ordered by inclusion. For conditions p ∈ P, we will generally use “p”
to refer to the real number coding the condition (i.e., Gδ code), and “[p]”
to refer to the corresponding set of reals. When P-conditions are closed
sets, we may identify p with a tree and [p] with the set of branches through
that tree.

• We assume that, as usual, P adds a generic real, denoted by ġ, and that for
all p ∈ P we have 
P (p ∈ Ġ ↔ ġ ∈ [p]) (so the generic filter and real are
mutually reconstructible).

• We will also assume that for projective pointclasses Γ, the statements
– “∀A ∈ Γ ∀p ∈ P ∃q ≤ p ([q] ⊆ A or [q] ∩A = ∅)” and
– “∀A ∈ Γ ∃p ([p] ⊆ A or [p] ∩A = ∅)”

are equivalent, so that, as in Observation 2.7, in order to prove Γ(P) it
will suffice to prove the latter statement (this is achieved by using suitable
homeomorphisms between [p] for conditions p ∈ P and the entire space of
reals).

This level of generality will certainly take care of everything we are interested
in, and potentially much more. Note that we could be even more lenient in the
convention and allow the conditions of P to be Borel sets that are large with
respect to an ideal, following the approach of Zapletal [47].

Before stating the next theorem we introduce amoebas and quasi-amoebas for
real forcing notions.

Definition 4.3. Let P be a real forcing notion, and Q another forcing. We
say that
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1. Q is a quasi-amoeba for P if for every p ∈ P and every Q-generic G, there
is a q ∈ PV [G] such that q ≤P p and

V [G] |= ∀x ∈ [q] (x is P-generic over V ).

2. Q is an amoeba for P if for every p ∈ P and every Q-generic G, there is a
q ∈ PV [G] such that q ≤P p and for any larger model W ⊇ V [G],

W |= ∀x ∈ [q] (x is P-generic over V ).

There is a subtle difference between amoebas and quasi-amoebas, which is
not visible in the Cohen and random (and, in general, ccc) case, because the
assertion “[q] consists of Cohen/random reals over V ” is upwards absolute for
Cohen/random-conditions q. For non-ccc forcing this is not always the case: for
example, “T is a perfect tree of Sacks reals over V ” is not upwards absolute, as
shown in the next example.

Example 4.4.

1. A (the standard amoeba for measure) is an amoeba for B (see [3, Section
3.4]).

2. UM (the standard amoeba for category) is an amoeba for C (see [40, §4]).
Also, if D is Hechler forcing, then the two-step iteration (D ∗ D) is an
amoebas for C (see [3, Theorem 3.5.1]).

3. Mathias forcing R is an amoeba for itself ([38, Corollary 2.5]).
4. S is a quasi-amoeba, but not an amoeba, for itself ([4, Theorem 4, Corollary

5]).
5. M is a quasi-amoeba, but not an amoeba, for itself ([4, Proposition 7]).
6. L is not a quasi-amoeba for itself ([4, Theorem 5]).

One might expect quasi-amoebas to be quite useless in iterated forcing con-
structions, since the property of adding large sets of generic reals is only tempo-
rary. Nevertheless, the success of our methods is in part due to the realization
that quasi-amoebas are, in fact, sufficient for the following argument.

Theorem 4.5. Suppose P is a real forcing notion and AP a quasi-amoeba for
P. Furthermore, assume that both P and AP are Suslin+ proper. Let Pω1

:=

〈Pα, Q̇α | α < ω1〉 be a countable support iteration whose iterands are P and AP
interlaced (i.e., for even α, 
α Q̇α ∼= P and for odd α, 
α Q̇α ∼= AP). Then
V Pω1 |= ∆1

3(P).

Proof. Let Gω1
be Pω1

-generic over V , let A = {x | φ(x)} = {x | ¬ψ(x)} be
a ∆1

3 set in V [Gω1 ], defined by Σ1
3-formulas φ and ψ. As our iteration is proper,

we may assume, without loss of generality, that the parameters appearing in φ
and ψ are in the ground model V (otherwise, they are in some V [Gα0

], and we
repeat the same argument with V [Gα0

] as the ground model).

Our goal is to find a P-condition p in V [Gω1
] such that [p] ⊆ A or [p] ∩A = ∅.

Let x0 be the P-generic real over V , added at the first step of the iteration.
In V [Gω1

], either φ(x0) or ψ(x0) must hold, so without loss of generality we
assume that φ(x0) holds. Then ∃yθ(x0, y) holds for some Π1

2 formula θ such
that φ(x0) ≡ ∃yθ(x0, y). By properness, there is an α < ω1 such that y ∈ V [Gα],
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and by Shoenfield absoluteness V [Gα] |= θ(x0, y). In V , let p be a Pα-condition
and τ a countable Pα-name for a real, such that

p 
α θ(ġ0, τ)

where ġ0 is the name for the first P-generic real.

Let us adopt the following notation: let P1,α be the quotient of the iteration (i.e.,
such that P1 ∗P1,α

∼= Pα), and when x is a P-generic real over V , “p[x]” refers to
the P1,α-condition that remains of p after evaluating it according to x (i.e., the
filter Gx generated by x), and “τ [x]” refers to the P1,α-name that remains of τ
after evaluating it according to x. Here by “P1,α” we are, of course, referring to
the definition of the iteration. It is well-known that, if we consider τ and p as
coded by reals (in some explicit way), then there are Borel functions mapping
τ 7→ τ [x] and p 7→ p[x], in any model that contains x (this is similar to, e.g.,
[47, Proposition 2.3.1]).

Let θ̃(x, p, τ) be a conjunction of the following statements:

• “p[x] is a P1,α-condition”,
• “τ [x] is a countable P1,α-name for a real”, and
• p[x] 
1,α θ(x̌, τ [x]).

Since the quotient P1,α is a Suslin+ proper iteration, using Lemma 3.14 (1), (3)

and (4), we conclude that θ̃ is a Π1
2 statement. For convenience, we will suppress

the parameters p and τ from θ̃ (remember that they are in the ground model
V ).

As we have p 
 θ(ġ0, τ) and x0 is P-generic over V , we have

V [x0] |= θ̃(x0).

Therefore, going back to V , we have

p(0) 
P θ̃(ġ0).

But by Lemma 3.14 (4), the above statement is again Π1
2, so by Shoenfield

absoluteness, V [x0] |= p(0) 
P θ̃(ġ0). Let H1 be the next AP-generic over V [x0]
(i.e., V [x0][H1] = V [G2]). By the definition of a quasi-amoeba, in V [x0][H1]
there is a P-condition q, such that q ≤ p(0) and

V [x0][H1] |= ∀x ∈ [q] (x is P-generic over V [x0]).

Then
V [x0][H1] |= ∀x ∈ [q] (V [x0][x] |= θ̃(x)),

and by Π1
2-absoluteness between V [x0][x] and V [x0][H1]:

V [x0][H1] |= ∀x ∈ [q] (θ̃(x)).

Let Θ(q) abbreviate “∀x ∈ [q] (θ̃(x))”, and notice that, again, it is Π1
2. This is

the key step of our proof, since now, in all larger models V [Gβ ], 2 ≤ β < ω1, we
have

V [Gβ ] |= Θ(q).

It remains to show that V [Gω1 ] |= [q] ⊆ A, which will complete the proof. So, in
V [Gω1 ], let z be any real in [q]. Let β < ω1 be such that z ∈ V [Gβ ], and assume
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β is odd (so that β+1 is even). Since V [Gβ+1] |= Θ(q), in particular, V [Gβ+1] |=
θ̃(z). But looking at the meaning of θ̃, in particular it says “p[z] 
P1,α θ(ž, τ)”,
which implies “p[z] 
P1,α

∃y′θ(ž, y′)” and hence “p[z] 
P1,α
φ(ž)”. Notice that,

by genericity, we may assume that β was chosen to be sufficiently large so that
p[z] in fact belongs to G[β+1,β+α) (the generic filter restricted to stages [β+1, β+
α) of the iteration).

It follows that V [Gβ+α] |= φ(z), and by upwards-absoluteness, V [Gω1
] |= φ(z).

This completes the proof. a

Corollary 4.6. If P is Suslin+ proper and a quasi-amoeba for itself, then
V Pω1 |= ∆1

3(P). In particular V Sω1 |= ∆1
3(S) and V Mω1 |= ∆1

3(M).

If we want to obtain ∆1
3(P) for several different P at the same time, we can

alter the above construction somewhat, by interlacing more forcing notions. The
only requirement is that the iteration is sufficiently “repetitive”, in the sense of
the following definition:

Definition 4.7. Suppose Pω1
:= 〈Pα, Q̇α | α < ω1〉 is a Suslin+ proper itera-

tion, where all iterands have parameters in the ground model. Such an iteration
is called repetitive if for any α < β < ω1, there are unboundedly many γ < ω1

such that
〈Q̇ξ | α < ξ ≤ β〉 = 〈Q̇γ+ξ | α < ξ ≤ β〉.

The following theorem is a stronger version of Theorem 4.5:

Theorem 4.8. Suppose P and AP are as in Theorem 4.5, Pω1
:= 〈Pα, Q̇α |

α < ω1〉 is Suslin+ proper with parameters in the ground model and repetitive,
and both P and AP appear cofinally often in the iteration. Then V Pω1 |= ∆1

3(P).

Proof. The proof is exactly the same as that of Theorem 4.5. Instead of
looking at stages 1 and 2 of the iteration, we look at some stages α0 and α1.
Then we find the condition q in V [Gα1

] and Θ(q) holds from that point onwards.
Later we find a sufficiently large γ so that the segment Pα1,α1+α is “copied”
after γ, and rely on the same arguments as before. The details are left to the
reader. a

In our applications, the last theorem will only be used when we have a finite
number of Pi and quasi-amoeabs APi, i ≤ k. After iterating with (P0 ∗ AP0 ∗
· · · ∗ Pk ∗ APk)ω1

we obtain a model where ∆1
3(Pi) holds for all i ≤ k.

Our third method for obtaining ∆1
3-regularity works under the assumption

∀r (ω
L[r]
1 < ω1). Let us first mention an observation essentially due to Zapletal

(cf. [47, Proposition 2.2.2.]), showing that for real forcing notions P, when we
have an (M,P)-generic condition, we can assume, without loss of generality, that
all reals in this condition are M -generic.

Lemma 4.9 (Zapletal). Let P be a proper, real forcing notion, and M a count-
able model. If q is an (M,P)-generic condition, then there is q′ ≤ q such that
(in V ) all x ∈ [q] are M -generic.

Proof. Let B := {x ∈ [q] | x is M -generic}. As M is countable, it is easy
to see that B is Borel. Let ġ be the name for the P-generic real. Since q is
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(M,P)-generic, q 
 ġ ∈ B. But Borel sets are P-measurable (in the sense of
Definition 2.1). So either there exists a q′ ≤ q such that [q′] ⊆ B, in which case
we are done, or, for every q′ ≤ q there exists q′′ ≤ q′ such that [q′′]∩B = ∅. But
the latter case implies that {q′ | [q′]∩B = ∅} is dense below q, hence q 
 ġ /∈ B,
yielding a contradiction. a

Theorem 4.10. Suppose V |= ∀r (ω
L[r]
1 < ω1), P is a real forcing notion,

and Pω1
:= 〈Pα, Q̇α | α < ω1〉 is a Suslin+ proper iteration in which P appears

cofinally often. Then V Pω1 |= ∆1
3(P).

Proof. Let A = {x | φ(x)} = {x | ¬ψ(x)} be a ∆1
3 set in V [Gω1

]. As
the defining parameter appears at some initial stage of the iteration, and by

Theorem 3.16 we know that ∀r(ωL[r]
1 < ω1) holds in all V [Gα], let us again

assume, without loss of generality, that the parameters are in the ground model
V . Also, without loss of generality, we may assume that the first step of the
iteration is P.

Let x0 be the P-generic real over V . Again, let us assume V [Gω1
] |= φ(x0)

(without loss of generality). Now by Theorem 3.20 V is Σ1
3-Pω1

-correct, therefore
V [x0] |= φ(x0). Then in V , there is a p ∈ P such that p 
P φ(ġ). Then
also p 
P θ(ġ, τ) for some countable name τ and a Π1

2 formula θ such that
φ(x) ≡ ∃yθ(x, y). Now let z be a real coding p, τ , and the parameters of P and
θ. By Π1

2-absoluteness, L[z] |= p 
P θ(ġ, τ).

Since ωV1 is inaccessible in L[z], find a countable model M ⊆ L[z] reflecting
everything about PL[z] and containing all the parameters (as in the proof of
Lemma 3.15). By Lemma 4.9 there is q ≤ p such that all x in [q] are M -generic,
hence L[z]-generic. So (in V ) for all x ∈ [q] we have L[z][x] |= θ(x, τ [x]), and by
Π1

2-absoluteness

V |= ∀x ∈ [q] θ(x, τ [x]).

As this statement is Π1
2, it holds in V [Gω1

], so also the statement ∀x ∈ [q]∃yθ(x, y)
holds, so [q] ⊆ A. a

The advantage of this method over the one before is that we can avoid amoe-
bas, which is useful in situations where no suitable amoebas are available, or
those that are available fail to have nice properties. However, to do this we pay
the price of using an inaccessible, rather than obtaining a proof on the basis of
ZFC alone.

§5. Completing the ∆1
3-diagram. Figure 3 shows the diagram of implica-

tions for regularity properties on the ∆1
3-level.

We will now apply the techniques presented in the previous section to show
that this diagram is complete, by constructing models, in ZFC or ZFC with an
inaccessible, which separate the regularity statements. We have three methods
(Theorem 4.1, Theorem 4.8 and Theorem 4.10) at our disposal for proving that
∆1

3(P) is true in a model. But to separate regularity properties we need another
ingredient, namely, a method for showing that ∆1

3(P) is false in a given model.
For this, we note that one direction in the original characterization theorems 2.3,
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∆1
3(B) +3 ∆1

3(S)

∆1
3(L) +3 ∆1

3(M)

7?

∆1
3(C)

KS

Figure 3. Diagram of implications for ∆1
3 sets of reals.

2.4 and 2.5 can easily be generalized (for C and B this was already mentioned
and used in [2]).

Definition 5.1. A wellorder � of a set of reals, of length ω1, is called Σ1
n-good

if

1. � is a Σ1
n-relation, and

2. the statement “x codes the set of �-predecessors of y” is Σ1
n.

We say that � is a Σ1
n-good wellorder of the reals if it is a wellorder of the set

of all reals.

Fact 5.2. Suppose M is a model with a Σ1
n-good wellorder of the reals. Then:

1. Σ1
n(B) =⇒ {x | x is not random over M} ∈ N .

2. Σ1
n(C) =⇒ {x | x is not Cohen over M} ∈ M.

3. ∆1
n(B) =⇒ ∃x (x is random over M).

4. ∆1
n(C) =⇒ ∃x (x is Cohen over M).

5. ∆1
n(L) =⇒ ∃x (x is dominating over M).

6. ∆1
n(M) =⇒ ∃x (x is unbounded over M).

7. ∆1
n(S) =⇒ ∃x (x /∈M).

Proof. Points 1–4 follow from the original proofs of Solovay and Judah-
Shelah; see also [2, Lemmas 2.3, 2.85 and 2.105]. For 5 and 6, use an argument
analogous to the one in [8, Theorems 4.1 and 6.1] replacing Σ1

2 by Σ1
3 and ∆1

2

by ∆1
3 everywhere. 7 is obvious. a

We are going to use the following results about models with Σ1
3-good wellorders:

Theorem 5.3 (Bagaria-Woodin). Assuming just the consistency of ZFC, there
is a model, which we will denote by L∗, such that

1. L∗ |= Σ1
2(B) (and hence also Σ1

2(P) for all P ∈ {C,L,M,S}) and
2. there is a Σ1

3-good wellorder of the reals of L∗.

Proof. This model was first constructed in [2]. Easier constructions of mod-
els satisfying the above criteria are available using techniques developed recently
by Friedman, Fischer, Zdomskyy and others (e.g. [14, 15]). a

Theorem 5.4 (David). Assuming the consistency of ZFC + inaccessible, there
is a model, which we will denote by Ld, such that

1. Ld |= ∀r (ω
L[r]
1 < ω1), and
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2. there is a Σ1
3-good wellorder of the reals of Ld.

Proof. This was proved by René David in [10]. a
We should note that the Σ1

3-good wellorder of the reals of L∗ and Ld from the
above results remains a Σ1

3-good wellorder (of the ground-model reals) in forcing
extensions. All the models we construct will be forcing extensions of L, L∗ or
Ld, with the methods from the previous section guaranteeing that ∆1

3(P) holds
for certain P, while using Fact 5.2, together with known preservation results, to
guarantee that ∆1

3(Q) fails for other Q. The idea to use David’s model Ld to
separate regularity properties was first used by Judah and Spinas in [30].

We will use the diagrammatical notation employed by Bartoszyński and Judah
in [3, Sections 7.5, 7.6], with empty circles symbolizing “false” and full circles
“true”. There is a total of eleven possibilities of “true”/“false”-assignments not
contradicting the diagram, which we denote with the letters A–K and represent
in Table 2.

◦ = FALSE • = TRUE

◦ // ◦

◦ // ◦

??

◦

OO

Situation A

◦ // •

◦ // ◦

??

◦

OO

Situation B

• // •

◦ // ◦

??

◦

OO

Situation C
◦ // •

◦ // •

??

◦

OO

Situation D

◦ // •

• // •

??

◦

OO

Situation E

◦ // •

◦ // •

??

•

OO

Situation F
• // •

◦ // •

??

◦

OO

Situation G

• // •

• // •

??

◦

OO

Situation H

• // •

◦ // •

??

•

OO

Situation I
◦ // •

• // •

??

•

OO

Situation J

• // •

• // •

??

•

OO

Situation K

Table 2. Situations A–K in the ∆1
3-diagram
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In the following list we provide models for each situation. Whenever possible,
the models will be constructed in ZFC alone. In three cases, namely G, H and I,
we will have to make do with an inaccessible (although we conjecture that this
hypothesis can be eliminated).

• Situation A, determined by ¬∆1
3(S).

This holds in L, L∗ and Ld.

• Situation B, determined by ∆1
3(S) + ¬∆1

3(B) + ¬∆1
3(M).

The model for this is LSω1 , i.e., the countable support iteration of Sacks
forcing of length ω1 starting from L. Since Sacks forcing is a quasi-amoeba
for itself (see Example 4.4), ∆1

3(S) follows by Corollary 4.6. Moreover, since
Sω1

is ωω-bounding and does not add random reals (by the Sacks property),
it follows that, in this model, even ∆1

2(B) and ∆1
2(M) fail.

• Situation C, determined by ∆1
3(B) + ¬∆1

3(M).

Take the model (L∗)Bω1 . By Theorem 4.1 ∆1
3(B) holds. Because random

forcing is ωω-bounding, and because of Fact 5.2 (6), we have ¬∆1
3(M).

• Situation D, determined by ∆1
3(M) + ¬∆1

3(B) + ¬∆1
3(L) + ¬∆1

3(C).

Here the model is LMω1 . Since Miller forcing is a quasi-amoeba of itself (see
Example 4.4) ∆1

3(M) follows by Corollary 4.6. On the other hand, Miller
forcing does not add Cohen or random reals because of the Laver property
([3, Theorem 7.3.45]), so both ∆1

2(B) and ∆1
2(C) fail. Also, Miller forcing

does not add dominating reals ([3, Theorem 7.3.46]), so ∆1
2(L) fails.

• Situation E, determined by ∆1
3(L) + ¬∆1

3(B) + ¬∆1
3(C).

Here, let us provide two models. Spinas, in [43], constructs a version of
“amoeba for Laver” forcing, which he denotes by A(L), and proves that
it is an amoeba for Laver in the sense of Definition 4.3 and, at the same
time, satisfies the Laver property. It follows that the iteration (L ∗A(L))ω1

(i.e., the countable support iteration of length ω1 where L appears at even
stages and A(L) at odd stages) has the Laver property, hence L(L∗A(L))ω1 |=
¬∆1

2(B) + ¬∆1
2(C). But ∆1

3(L) holds by Theorem 4.5.

Another model is the one given in [29, Theorem 3.1], namely, the ω1-
iteration of Mathias forcing starting from L. Here an even stronger as-
sertion holds, namely “all ∆1

3-sets are Ramsey” which implies ∆1
3(L) (see

Section 6).

• Situation F, determined by ∆1
3(C) + ¬∆1

3(B) + ¬∆1
3(L).

Here we take (L∗)Cω1 . Then ∆1
3(C) holds by Theorem 4.1. On the other

hand, Cohen forcing adds neither dominating nor random reals, so by Fact
5.2 (3) and (5), neither ∆1

3(B) nor ∆1
3(L) holds.

• Situation G, determined by ∆1
3(B) + ∆1

3(M) + ¬∆1
3(L) + ¬∆1

3(C).

Use the model (Ld)(B∗M)ω1 , i.e., the ω1-iteration, with countable support,
of B and M interlaced starting from David’s model Ld (which requires an
inaccessible). By Theorem 4.10, both ∆1

3(B) and ∆1
3(M) hold. Since B
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and M do not add dominating reals, ∆1
3(L) fails by Fact 5.2 (5). To show

that ∆1
3(C) also fails we can use a weaker version of the Laver property,

namely the property of being “(F, g)-preserving” as defined in [3, Definition
7.2.23]. Both random and Miller forcing satisfy this property ([3, Lemma
7.2.25 and Theorem 7.2.26]), it is preserved in countable support iterations
([3, Theorem 7.2.29]), and it implies that no Cohen reals are added ([3,
Theorem 7.2.24]). Therefore ¬∆1

3(C) follows by Fact 5.2 (4).

• Situation H, determined by ∆1
3(B) + ∆1

3(L) + ¬∆1
3(C).

Here we use (Ld)(B∗L)ω1 , an ω1-iteration of random and Laver forcing start-
ing from David’s model. By Theorem 4.10 ∆1

3(B) and ∆1
3(L) hold, and

∆1
3(C) fails for the same reason as above, namely, because both random

and Laver forcing satisfy the “(F, g)-preserving” property.

• Situation I, determined by ∆1
3(B) + ∆1

3(C) + ¬∆1
3(L).

Here we use (Ld)(B∗C)ω1 . Again by Theorem 4.10 we have ∆1
3(B) and

∆1
3(C). But neither random nor Cohen forcing adds dominating reals, so
¬∆1

3(L) fails by Fact 5.2 (5).

• Situation J, determined by ∆1
3(L) + ∆1

3(C) + ¬∆1
3(B).

Using our methods, we can easily see that (Ld)(C∗L)ω1 is a model for this,
where the fact that no random reals are added follows as in [3, Model
7.6.9]. However, in [26, Theorem 3.2] a model was constructed starting
just from ZFC. The method there was similar to an application of our
Theorem 4.5, iterating what was essentially a mixture of C, UM (amoeba
for category) and RF—Mathias forcing with a Ramsey ultrafilter F—with
finite support, starting in L. Since the use of the Ramsey ultrafilters makes
the iteration non-definable, one cannot use the arguments from Section 4
directly. Instead, the iteration was done in such a way that each segment
Pα,β of the iteration would appear again as Q̇δ, for cofinally many δ < ω1

(using a bookkeeping argument like in standard MA-proofs). In [26] it was
shown that such an iteration, starting from L, yields a model in which
∆1

3(R) (the Ramsey property; see Section 6) as well as ∆1
3(C) hold. The

former implies ∆1
3(L). On the other hand, the iteration remains σ-centered

implying that no random reals are added, hence ∆1
2(B) fails.

• Situation K, determined by ∆1
3(B) + ∆1

3(C) + ∆1
3(L).

Of course, the Solovay model satisfies this statement, so our only inter-
est here is in constructing a model in ZFC. But this is easy: since we do
not have to worry about preserving anything, we can freely apply Corol-
lary 4.6. For example, we can use the model L(B∗A∗C∗UM∗L∗A(L))ω1 , or
L(B∗A∗C∗UM∗R)ω1 . In fact, even L(B∗A∗C∗R)ω1 is sufficient, because, by the
Bartoszyński-Raisonnier-Stern argument, A already adds a comeager set of
Cohen reals (cf. [3, Theorem 2.3.1]).
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§6. Silver and Mathias. Clearly, the techniques we developed in Section 4
are sufficiently general and can be applied to many other regularity properties
related to forcing notions on the reals. In this section, we apply our techniques
to two additional properties which, though not related to the cardinal numbers
in Cichoń’s diagram, have nevertheless received a lot of attention.

Definition 6.1.

1. A subset A ⊆ [ω]ω has the Ramsey property if ∃a ∈ [ω]ω ([a]ω ⊆ A or
[a]ω ∩A = ∅).

2. For a, b ∈ [ω]ω with |b \ a| = ω, let [a, b]ω := {c ∈ [ω]ω | a ⊆ c ⊆ b}. We call
[a, b]ω the (a, b)-doughnut. A subset A ⊆ [ω]ω has the doughnut property if
∃a, b ([a, b]ω ⊆ A or [a, b]ω ∩A = ∅).

The Ramsey property is well-known, and the doughnut property was intro-
duced by DiPrisco and Henle in [11] as a generalization of the Ramsey property.
It is not hard to see that the Ramsey and doughnut properties are equivalent to
Mathias- and Silver-measurability, respectively. Therefore, we will denote them
with the letters R and V, which typically abbreviate the Mathias and the Silver
forcing partial orders. Mathias and Silver forcing are clearly Suslin+ proper.

On the ∆1
2- and Σ1

2-levels, the relationship between these and other properties
has been studied in [23, 20, 6]. The following are particularly interesting:

Fact 6.2 (Judah-Shelah; Halbeisen; Brendle-Halbeisen-Löwe).

1. Σ1
2(R) ⇐⇒ ∆1

2(R).
2. ∆1

2(C) =⇒ Σ1
2(V).

3. Σ1
2(V) =⇒ Σ1

2(M).

Proof. For 1 see [23, Theorem 2.7]. For 2 see [20, Lemma 2.1], and for 3 see
[6, Proposition 3.5]. a

Unlike the situation with the properties we previously considered, now there
are still some open questions on the second level:

Question 6.3. Does ∆1
2(L) =⇒ Σ1

2(V) hold? Or, at least, does ∆1
2(L) =⇒

∆1
2(V) hold?

As in Lemma 2.7 we have the following:

Lemma 6.4 (Folklore). Let Γ be closed under continuous pre-images. Then:

1. Γ(R)⇒ Γ(V)⇒ Γ(S).
2. Γ(R)⇒ Γ(L).

Proof. For the first implication, note that [a]ω is a (∅, a)-doughnut, and the
set of characteristic functions of x ∈ [a, b]ω is a perfect tree in 2ω. For the second
implication, use the fact that for any a ∈ [ω]ω it is easy to find a Laver tree T
such that ∀x ∈ [T ] (ran(x) ⊆ a). a

In his PhD thesis, Laguzzi proved two additional relationships of this kind.

Lemma 6.5 (Laguzzi). Let Γ be closed under continuous pre-images. Then:

1. Γ(C)⇒ Γ(V).
2. Γ(B)⇒ Γ(V).
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Proof. See [36, Fact 39 and Fact 55]. a
As an illustration of the application of our methods, let us repeat what we

did in Section 5, i.e., look at the ∆1
3-diagram with the additional properties V

and R (Figure 4). There are now eighteen situations, represented in Table 3 (we
have subdivided the situations from the previous section).

∆1
3(B) +3 ∆1

3(V) +3 ∆1
3(S)

∆1
3(R)

9A

+3 ∆1
3(L) +3 ∆1

3(M)

9A

∆1
3(C)

T\

KS

Figure 4. (Incomplete) implication diagram for ∆1
3 sets of re-

als, including R and V.

To find models for these situations we need the following additional facts (cf.
Fact 5.2).

Definition 6.6. Let M be a model. A real c ∈ [ω]ω is

• splitting over M if for all a ∈M ∩ [ω]ω (|a ∩ c| = |a \ c| = ω), and
• unsplit over M if for all a ∈M ∩ [ω]ω (|c ∩ a| < ω or |c \ a| < ω).

Fact 6.7. Suppose M is a model with a Σ1
n-good wellorder of the reals. Then:

1. ∆1
n(V) =⇒ ∃c (c is splitting over M).

2. ∆1
n(R) =⇒ ∃c (c is splitting over M) and ∃c (c is unsplit over M).

Proof. For the first implication, use the argument in [6, Proposition 2.5],
and for the second one, use [21, Theorem 2.2]. a

Splitting and unsplit reals are related to the well-known cardinal characteris-
tics s and r (the splitting and reaping number, respectively), in a way similar to
the relationship shown in Table 1 (although they do not characterize R and V
in any way).

We can now find models for the following situations from Table 3 (we only list
the ones that do not automatically follow from our results in Section 5).

• Situation B1, determined by ∆1
3(S) + ¬∆1

3(V) + ¬∆1
3(M).

Here the model is LSω1 . Sacks forcing preserves P-points, which is an iter-
able property (see [17, Lemma 2.9] and [3, Theorem 6.2.6]), so in particular
no splitting reals are added, hence ∆1

2(V) fails by Fact 6.7 (1).

• Situation B2, determined by ∆1
3(V) + ¬∆1

3(B) + ¬∆1
3(M).

Use (Ld)Vω1 . By the Sacks property of Silver forcing neither random nor
unbounded reals are added.
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◦ = FALSE • = TRUE

◦ // ◦ // ◦

◦ //

??

◦ // ◦

??

◦

OO

WW

Situation A

◦ // ◦ // •

◦ //

??

◦ // ◦

??

◦

OO

WW

Situation B1

◦ // • // •

◦ //

??

◦ // ◦

??

◦

OO

WW

Situation B2
• // • // •

◦ //

??

◦ // ◦

??

◦

OO

WW

Situation C

◦ // ◦ // •

◦ //

??

◦ // •

??

◦

OO

WW

Situation D1

◦ // • // •

◦ //

??

◦ // •

??

◦

OO

WW

Situation D2
◦ // ◦ // •

◦ //

??

• // •

??

◦

OO

WW

Situation E1

◦ // • // •

◦ //

??

• // •

??

◦

OO

WW

Situation E2

◦ // • // •

• //

??

• // •

??

◦

OO

WW

Situation E3
◦ // • // •

◦ //

??

◦ // •

??

•

OO

WW

Situation F

• // • // •

◦ //

??

◦ // •

??

◦

OO

WW

Situation G

• // • // •

◦ //

??

• // •

??

◦

OO

WW

Situation H1
• // • // •

• //

??

• // •

??

◦

OO

WW

Situation H2

• // • // •

◦ //

??

◦ // •

??

•

OO

WW

Situation I

◦ // • // •

◦ //

??

• // •

??

•

OO

WW

Situation J1
◦ // • // •

• //

??

• // •

??

•

OO

WW

Situation J2

• // • // •

◦ //

??

• // •

??

•

OO

WW

Situation K1

• // • // •

• //

??

• // •

??

•

OO

WW

Situation K2

Table 3. Situations A–K in the ∆1
3-diagram

• Situation D1, determined by ∆1
3(M) + ¬∆1

3(V) + ¬∆1
3(L) + ¬∆1

3(C).

Here we use LMω1 . Again ∆1
2(V) fails because Miller forcing preserves

P-points [3, Lemma 7.3.48].

• Situation D2, determined by ∆1
3(V) + ∆1

3(M) + ¬∆1
3(B) + ¬∆1

3(L) +
¬∆1

3(C).

Here we can use (Ld)(V∗M)ω1 . Both V and M have the Laver property, and
both do not add dominating reals.



CICHOŃ’S DIAGRAM, REGULARITY PROPERTIES AND ∆1
3 SETS OF REALS. 29

• Situation E1, determined by ∆1
3(L) + ¬∆1

3(V).

We don’t know if this situation is consistent!

• Situation E2, determined by ∆1
3(L) + ∆1

3(V) + ¬∆1
3(B) + ¬∆1

3(R) +
¬∆1

3(C).

Use (Ld)(L∗V)ω1 . Both L and V have the Laver property, implying that
neither random nor Cohen reals are added. To show that ∆1

3(R) fails,
recall the preservation property called “preservingvrandom” in [3, Definition
6.3.7]. Both L and V satisfy this property (for L see [3, Theorem 7.3.39] and
for V it follows from an even stronger result, namely [3, Lemma 6.3.39]), it
is preserved by countable support iteration [3, Theorem 6.1.13] and implies
that the ground model reals have positive measure [3, Thorem 6.3.13]. From
this, one can infer that there are no unsplit reals over the ground model,
in a way analogous to the well-known proof of the cardinal inequality s ≤
non(N ) (i.e., for every a ∈ [ω]ω, the set Xa := {b | b does not split a} has
measure zero). Hence, the result follows from Fact 6.7 (2).

• Situation E3, determined by ∆1
3(R) + ¬∆1

3(B) + ¬∆1
3(C).

Clearly LRω1 works here.

• Situation H1, determined by ∆1
3(B) + ∆1

3(L) + ¬∆1
3(R) + ¬∆1

3(C).

Use (Ld)(B∗L)ω1 . Both B and L have the “(F, g)-preserving” property,
implying that no Cohen reals are added. To show that ∆1

3(R) fails use
again the “preserving vrandom”-property. Random forcing satisfies this by
[3, Lemma 6.3.12], so, as before, we are done by Fact 6.7 (2).

• Situation H2, determined by ∆1
3(B) + ∆1

3(R) + ¬∆1
3(C).

Use (Ld)(B∗R)ω1 . Both B and R have the “(F, g)-preserving” property, im-
plying that no Cohen reals are added.

• Situation J1, determined by ∆1
3(C) + ∆1

3(L) + ¬∆1
3(B) + ¬∆1

3(R).

Use (Ld)(C∗L)ω1 . As in [3, Model 7.6.9] we can show that no random reals
are added by the iteration. To show that ∆1

3(R) fails, we note that both
C and L satisfy a strong iterable property implying that no unsplit reals
are added: see e.g. [12, Lemma 8, 9] and [5, Main Lemma 1.11], and apply
Fact 6.7 (2).

• Situation J2, determined by ∆1
3(C) + ∆1

3(R) + ¬∆1
3(B).

Here we can either use (Ld)(C∗R) or the ZFC-model from [26, Theorem 3.2]
which we also used in Situation J in Section 5.

• Situation K1, determined by ∆1
3(B) + ∆1

3(L) + ∆1
3(C) + ¬∆1

3(R).

Use (Ld)(B∗L∗C)ω1 . To show that no unsplit reals are added, use the iterable
version for C and L (as in Situation J1) and preservation of vrandom for B.
Again, ∆1

3(R) fails by Fact 6.7 (2).

• Situation K2, determined by ∆1
3(B) + ∆1

3(R) + ∆1
3(C).

Here L(B∗A∗R∗C)ω1 clearly suffices.
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To conclude: all situations except E1 are consistent. Moreover, we have ZFC-
models for B1, D1, E3, J2 and K2, whereas for the other cases we need an
inaccessible. The difficulty concerning Situation E1 lies in the fact that we do
not know whether ∆1

3(L) ⇒∆1
3(V) holds (cf. Question 6.3).

§7. Beyond ∆1
3. Although our techniques were primarily developed to deal

with the ∆1
3-level of the projective hieararchy, there are some applications to

higher levels as well. In this section we summarize what can be said about
higher levels using our techniques. We have two applications: concerning the
diagram on the ∆1

4-level, and concerning the separation of ∆1
3-regularity from

Σ1
3-regularity, as well as ∆1

4-regularity from Σ1
4-regularity.

7.1. The ∆1
4-diagram. Consider the analogue of Figure 3 but with ∆1

3 re-

placed by ∆1
4. It turns out that, under the assumption ∀r (ω

L[r]
1 < ω1), both

Theorem 4.1 and Theorem 4.8 have suitable generalizations. The first general-
ization is due to Judah and Spinas:

Theorem 7.1 (Judah-Spinas). Assuming ∀r(ω
L[r]
1 < ω1), there exists a model

N0, which has a Σ1
4-good wellorder of the reals, and, moreover, such that N

Bω1
0 |=

∆1
4(B) and N

Cω1
0 |= ∆1

4(C).

For the proof, see [30]. The method is, in essence, an analogue of Theorem
4.1, but starting from David’s model Ld instead of L, and using some additional
tricks.

The following is a direct generalization of our own Theorem 4.5.

Theorem 7.2. Suppose V |= ∀r (ω
L[r]
1 < ω1), P is a real forcing notion and

AP a quasi-amoeba for P, and assume that both P and AP are Suslin+ proper.
Let Pω1

:= 〈Pα, Q̇α | α < ω1〉 be a Suslin+ proper iteration whose iterands are
P and AP interlaced (i.e., the same conditions hold as in Theorem 4.5). Then
V Pω1 |= ∆1

4(P).

Proof. The proof is exactly the same as that of Theorem 4.5. The reader
can verify that every step in that proof is valid if we:

1. Replace ∆1
3 by ∆1

4, Σ1
3 by Σ1

4 and Π1
2 by Π1

3 everywhere.
2. Use Σ1

3-Pω1
-correctness instead of Shoenfield absoluteness everywhere, which

is valid by Theorem 3.20. Notice that in the proof we only used Shoenfield
absoluteness between models that lay between V and V [Gω1

], so by Fact
3.19 we are safe.

3. Use Lemma 3.14 (4) to conclude that θ̃ is Π1
3.

a
Just as before, we actually have a stronger version which allows us to mix

different partial orders P.

Theorem 7.3. Suppose V |= ∀r (ω
L[r]
1 < ω1), P and AP are as before, Pω1

:=

〈Pα, Q̇α | α < ω1〉 is Suslin+ proper with parameters in the ground model and
repetitive, and both P and AP appear cofinally often in the iteration. Then
V Pω1 |= ∆1

4(P).



CICHOŃ’S DIAGRAM, REGULARITY PROPERTIES AND ∆1
3 SETS OF REALS. 31

Using Theorem 7.1 and Theorem 7.3, it follows that we can construct a model
for any of the situations from Section 5 which was obtained by an application
of the first two methods (Theorem 4.1 and Theorem 4.8) and not by tdhe third
method (Theorem 4.10).

Corollary 7.4. Situations A, B, C, D, E, F and K in the ∆1
4-diagram are

consistent relative to ZFC + inaccessible.

7.2. Separating ∆ from Σ. Recall that, in the long-run, we would like to
find “complete” diagrams on the combined ∆1

n- and Σ1
n-levels, for n ≥ 3 (cf.

Figure 2). But there are many obstacles, and the most urgent one seems to be
the following:

Question 7.5. Does Σ1
n(P) ⇐⇒ ∆1

n(P) hold for P ∈ {L,M,S} and n ≥ 3?

Further progress in the study of the joint Σ1
n/∆1

n-diagram seems to depend
largely on the solution to the above question.

Nevertheless, there are a few interesting things we can prove. Recall that,
after Shelah proved that Σ1

3(B) implies an inaccessible in [40], Raisonnier [39]
provided an alternative and simpler proof, based on the following:

Definition 7.6. Let F be a non-principal filter on ω. F is called a rapid filter
if

∀c ∈ [ω]ω ∃a ∈ F ∀n (|c(n) ∩ a| ≤ n),

or, equivalently, if F considered as a subset of ω↑ω (the space of strictly increasing
functions from ω to ω) is a dominating family in ω↑ω.

The point is that rapid filters provide natural counterexamples to several reg-
ularity properties. The following is a folklore result:

Fact 7.7. If F is a rapid filter, then F (considered as a subset of ω↑ω) is not
measurable and does not have the Baire property.

Rapid filters also provide counterexamples to the Ramsey and doughnut prop-
erties from Section 6, albeit using a derived construction:

Definition 7.8. For a ∈ [ω]ω, let
...
a := [0, a(0)) ∪ [a(1), a(2)) ∪ [a(3), a(4)) ∪ . . .

where {a(n) | n < ω} is the increasing enumeration of a. If F is a filter on ω, let...
F := {a ∈ [ω]ω | ...a ∈ F}.

It is clear that the operation F 7→
...
F does not increase the complexity. In

[37] Mathias proved that if F is a rapid filter then
...
F does not have the Ramsey

property. We improve this result as follows:

Lemma 7.9. If F is a rapid filter then
...
F does not have the doughnut property.

Proof. Let a, b ∈ [ω]ω be arbitrary and assume |b \ a| = ω. It is easy to see
that [a, b]ω cannot be a subset of

...
F : pick any x, y ∈ [a, b]ω such that x = y \ {n}

for some n. Then, clearly,
...
x and

...
y have finite intersection, so x and y cannot

both be in
...
F (this argument works for any non-principal filter F).
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So it remains to show that [a, b]ω cannot be completely disjoint from
...
F . Let f

be an enumeration of b \ a. As F is rapid, there is a y ∈ F be such that for all
n, |f(n) ∩ y| ≤ n. We will find an x ∈ [a, b]ω ∩

...
F . The real x is constructed as

follow: if i ∈ a then i ∈ x; if i /∈ b then i /∈ x; and if i ∈ b \ a, then, whether i
is in x or not will depends on the consideration described below (notice that, in
any case, x will be a member of [a, b]ω). For every n ≥ 1 and every element y(n),
there is always at least one member of b \ a which lies strictly between y(n− 1)
and y(n). Let mn be the largest of them. Now it is easy to see that by making
the right choice of either “mn ∈ x” or “mn /∈ x” we can always make sure that
y(n) is in

...
x = [0, x(0)) ∪ [x(1), x(2)) ∪ . . . (it does not matter what we do with

the other i ∈ b \ a which lie between y(n− 1) and y(n)). If we do this for every
n, we obtain a set x which is in [a, b]ω, and moreover, y \ {y(0)} ⊆ ...

x . Since
y ∈ F holds by assumption, x ∈

...
F follows. a

Raisonnier’s proof of Shelah’s theorem is based on the following crucial lemma:

Lemma 7.10 (Raisonnier). Suppose ωL1 = ω1 and Σ1
2(B) holds. Then there

exists a Σ1
3 rapid filter (the Raisonnier filter).

Looking at Raisonnier’s argument, it is straightforward to obtain the following
generalization to higher projective levels:

Lemma 7.11. Suppose M is a model with a Σ1
n-good wellorder of the reals. If

ωM1 = ω1 and for every r there is a measure-one set of random reals over M [r],
then there exists a Σ1

n+1 rapid filter.

We can use Raisonnier’s argument to prove the following separation results:

Theorem 7.12.

1. It is consistent relative to ZFC that ∆1
3(P) holds for all P considered in

Sections 5 and 6, but Σ1
3(B),Σ1

3(C),Σ1
3(R) and Σ1

3(V) fail.
2. It is consistent relative to ZFC + inaccessible that ∆1

4(P) holds for all P
considered in Sections 5 and 6, but Σ1

4(B),Σ1
4(C),Σ1

4(R) and Σ1
4(V) fail.

Proof. For 1, take the model for Situation K2 in Section 6, i.e., L(B∗A∗R∗C)ω1 .
Since both antecedents of Lemma 7.10 are satisfied we are done by Fact 7.7 and
Lemma 7.9. For 2, take the model (Ld)(B∗A∗C∗R)ω1 , use Theorem 7.3 to obtain
∆1

4(P) for all P, and again note that both antecedents of Lemma 7.11 are satisfied
for M = Ld and n = 3, so again we are done by Fact 7.7 and Lemma 7.9. a

The above result has a number of interesting consequences regarding “non-
lifting” of implications that were true on the second level. We had the following
non-trivial implications:

1. ∆1
2(C) + ∆1

2(L) ⇒ Σ1
2(C) (analogue of Truss, cf. [45]).

2. ∆1
2(R) =⇒ Σ1

2(R) (Judah-Shelah, cf. [23]).
3. ∆1

2(C) =⇒ Σ1
2(V) (Halbeisen, cf. [20, Lemma 2.1]).

By Theorem 7.12, all of the above fail to lift to the third and fourth levels of the
projective hierarchy.
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§8. Open questions. Although we have made significant progress in this
area of research, many questions are still open. The most urgent question seems
to be:

Question 8.1. Is ∆1
3(P) + ¬Σ1

3(P) consistent for P ∈ {S,M,L}? More gen-
erally, is ∆1

n(P) + ¬Σ1
n(P) consistent for these P?

We conjecture that the answer is positive. Recall that in Theorem 7.12 we
proved the consistency of ∆1

3(R) +¬Σ1
3(R) using the Raisonnier filter. It would

seem plausible that a similar method will work to settle Question 8.1 as well. In
fact, we conjecture the following:

Conjecture 8.2. It is consistent, relative to ZFC, that ∆1
3(P) holds for all

P but Σ1
3(S) fails (and therefore, Σ1

3(P) fails for all P).

The next question concerns the use of inaccessibles in our proofs. Of course,
when proving results about Σ1

3(P) or higher projective sets, inaccessibles cannot
be avoided (at least if our proofs are to work uniformly for all P). However,
they are not necessary for ∆1

3-results, and their use in our proofs seems to arise
mostly from a lack of finer methods. Therefore we conjecture the following:

Conjecture 8.3. All the situations on the ∆1
3-level (specifically Situations

G, H, and I from Section 5 and B2, D2, E2, H1, H2, J1 and K1 from Section
6) have models based just in ZFC.

The plan would be to improve Theorem 4.10 by replacing the assumption

∀r (ω
L[r]
1 < ω1) by a weaker assumption (for example, about the existence of

many generics over L[r]) that can be obtained without inaccessibles but is still
sufficiently strong to guarantee similar results. Then we can obtain models using
this method, starting with some other ZFC-model instead of Ld.

Other questions involve finding complete diagrams for levels beyond ∆1
3.

Question 8.4.

1. Find a complete diagram for ∆1
3- and Σ1

3-regularity (cf. Figure 2).
2. Find models for Situations G, H, I and J in the ∆1

4-diagram.
3. Find a complete diagram for regularity properties of all projective sets.

Finally, the following simple questions are well-known, but have, so far, re-
mained unresolved:

Question 8.5. What is the consistency strength of Σ1
3(R) and Σ1

3(L)?
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[10] René David, ∆1
3 reals, Ann. Math. Logic, vol. 23 (1982), no. 2-3, pp. 121–125 (1983).

[11] Carlos A. Di Prisco and James M. Henle, Doughnuts, floating ordinals, square
brackets, and ultraflitters, J. Symbolic Logic, vol. 65 (2000), no. 1, pp. 461–473.
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