GLOBAL MAD SPECTRA

ÖMER BAĞ, VERA FISCHER, AND SY DAVID FRIEDMAN

ABSTRACT. We address the issue of controlling the spectrum of maximal almost disjoint families globally, i.e. for more than one regular cardinal κ simultaneously. Assuming GCH we show that there is a cardinal-preserving generic extension satisfying

$$\forall \kappa \in C(\mathfrak{sp}(\mathfrak{a}_{\kappa}) = B(\kappa))$$

where C denotes the class of successors of regular cardinals together with \aleph_0 , $B(\kappa)$ is a prescribed set of cardinals to which we refer as a κ -Blass spectrum and $\mathfrak{sp}(\mathfrak{a}_{\kappa})$ is the spectrum of κ -mad families.

1. INTRODUCTION

In the following we show that one can simultaneously control the cardinalities of κ -maximal almost disjoint families for many cardinals κ . We start by recalling some well-known definitions and introducing notation which will be used throughout the paper.

Definition 1.1. Let κ be a regular infinite cardinal. Let a and b be subsets of κ of size κ , i.e. $a, b \in [\kappa]^{\kappa}$.

- (1) The sets a and b are almost disjoint if $|a \cap b| < \kappa$.
- (2) A family $\mathcal{A} \subseteq [\kappa]^{\kappa}$ is almost disjoint if any two distinct elements in \mathcal{A} are almost disjoint. An almost disjoint family is maximal (mad) if it is maximal with respect to inclusion, i.e. it is not properly contained in another almost disjoint family.
- (3) The almost disjointness number \mathfrak{a}_{κ} is the minimal size of at least κ -sized mad families:

$$\mathfrak{a}_{\kappa} = \min\{|\mathcal{A}| \colon |\mathcal{A}| \ge \kappa \text{ and } \mathcal{A} \subseteq [\kappa]^{\kappa} \text{ is mad}\}.$$

By a diagonal argument it is easily shown that $\kappa < \mathfrak{a}_{\kappa} \leq \mathfrak{c}_{\kappa}$, where \mathfrak{c}_{κ} is used to denote 2^{κ} . It is also well-known that there exists always a κ -mad family of size \mathfrak{c}_{κ} . The next definition captures the cardinalities of κ -mad families in a model of set theory.

Definition 1.2. For a regular infinite cardinal κ , the spectrum of κ -mad families, denoted $\mathfrak{sp}(\mathfrak{a}_{\kappa})$, is defined as follows:

$$\mathfrak{sp}(\mathfrak{a}_{\kappa}) = \{ \delta \leq 2^{\kappa} \colon \exists \mathcal{A} \in \mathcal{P}([\kappa]^{\kappa}) \ [|\mathcal{A}| = \delta \land \mathcal{A} \text{ is } \kappa\text{-mad}] \}.$$

²⁰⁰⁰ Mathematics Subject Classification. 03E35, 03E17.

Key words and phrases. cardinal characteristics; higher Baire spaces; κ -mad families; global spectra.

Acknowledgments.: The authors would like to thank the Austrian Science Fund (FWF) for the generous support through Grants Y1012 and I4039.

It is known that $\mathfrak{sp}(\mathfrak{a}_{\kappa})$ is closed under singular limits (see e.g. [12, p. 901]). In [5], S. Hechler showed that consistently \mathfrak{c} is large and there is, for each cardinal $\mu \in [\aleph_1, \mathfrak{c}]$, a ω -mad family of size μ . In [1], A. Blass showed that assuming GCH there is a cardinal-preserving generic extension in which the spectrum of ω -mad families equals any prescribed set B of cardinals with $\min(B) = \aleph_1$, $\forall \mu \in B \ [\operatorname{cof}(\mu) = \omega \to \mu^+ \in B]$ and $|B| \geq \aleph_1 \to [\aleph_1, |B|] \subseteq B$ (such a set is referred to as a ω -Blass spectrum in this article). Making different assumptions on the possible spectrum C of ω -mad families, S. Shelah and O. Spinas showed in [12], that consistently $\mathfrak{sp}(\mathfrak{a}_{\omega}) = C$ and e.g. $\aleph_1 \notin C$. In [4], V. Fischer generalized the proof of [1] to a regular uncountable cardinal κ , showing that assuming GCH, there is a cardinal-preserving forcing extension in which $\mathfrak{sp}(\mathfrak{a}_{\kappa}) = B$ for a given κ -Blass spectrum B. In section 3, we will also consider the following invariants:

Definition 1.3. Let κ be regular and infinite. Let f and g be functions from κ to κ , i.e. $f, g \in {}^{\kappa}\kappa$.

- (1) We say that g eventually dominates f, written $f <^* g$, if $\exists \alpha < \kappa \ \forall \beta > \alpha \ [f(\beta) < g(\beta)]$.
- (2) A family $\mathcal{F} \subseteq {}^{\kappa}\kappa$ is dominating if $\forall g \in {}^{\kappa}\kappa \exists f \in \mathcal{F} \ [g <^* f].$
- (3) A set $\mathcal{F} \subseteq {}^{\kappa}\kappa$ is unbounded if $\forall g \in {}^{\kappa}\kappa \exists f \in \mathcal{F} \ [f \not<^* g].$
- (4) Finally, \mathfrak{b}_{κ} and \mathfrak{d}_{κ} denote the generalized bounding and dominating numbers respectively:

$$\mathfrak{b}_{\kappa} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq {}^{\kappa}\kappa \text{ is unbounded}\} \text{ and } \mathfrak{d}_{\kappa} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq {}^{\kappa}\kappa \text{ is dominating}\}.$$

In the above definition, we drop the lower index κ , if $\kappa = \aleph_0$, i.e. $\mathfrak{a} = \mathfrak{a}_{\aleph_0}, \mathfrak{b} = \mathfrak{b}_{\aleph_0}, \mathfrak{d} = \mathfrak{d}_{\aleph_0}, \mathfrak{c} = \mathfrak{c}_{\aleph_0}$. The inequality $\mathfrak{b}_{\kappa} \leq \mathfrak{a}_{\kappa}$ holds in ZFC for every regular cardinal κ . The characteristics \mathfrak{d} and \mathfrak{a} are known to be independent: $\mathfrak{a} < \mathfrak{d}$ holds in Cohen's model and the consistency of $\mathfrak{d} < \mathfrak{a}$ was shown in [10]. Without assuming large cardinals, the consistency of even $\mathfrak{b}_{\kappa} < \mathfrak{a}_{\kappa}$ is still open for regular uncountable cardinals. However, relative to the existence of supercompact cardinals, an even stronger consistency is established in [9]: If $\aleph_0 < \kappa^{<\kappa} = \kappa < \theta$ and θ is supercompact, then $\theta < \mathfrak{b}_{\kappa} < \mathfrak{d}_{\kappa}$ holds in a generic extension.

In Section 3, we show (Theorem 3.10 and 3.13):

Theorem. (GCH) If C is a class of regular infinite cardinals and E is an Easton function on C, then there is a cardinal preserving generic extension, where $\forall \kappa \in C \; [\mathfrak{a}_{\kappa} = \kappa^{+} = \mathfrak{b}_{\kappa} < \mathfrak{d}_{\kappa} = \mathfrak{c}_{\kappa} = E(\kappa)]$ holds. If E additionally satisfies $\forall \kappa \in C \; [\sup\{E(\beta): \beta \in C \cap \kappa\} \leq \kappa^{+}]$, then $\forall \kappa \in C \; [\mathfrak{sp}(\mathfrak{a}_{\kappa}) = \{\kappa^{+}, E(\kappa)\}]$ holds as well.

Finally, in Section 4 we show (Theorem 4.9) that one can control the spectrum on the successors of regular cardinals together with \aleph_0 :

Theorem. (GCH) Suppose that C is the class of successors of regular cardinals together with \aleph_0 and $\{B(\kappa): \kappa \in C\}$ is a family of κ -Blass spectra. Then there is a cardinal preserving generic extension where $\forall \kappa \in C$ [$\mathfrak{sp}(\mathfrak{a}_{\kappa}) = B(\kappa)$] holds.

The following notation is used throughout the article.

Definition 1.4.

(1) For any class C of ordinals and any ordinal λ , let $C_{\lambda}^{+} = \{\kappa \in C : \kappa > \lambda\}$ and $C_{\lambda}^{-} = \{\kappa \in C : \kappa \leq \lambda\}$.

(2) For any function E on a class of ordinals and any ordinal λ , let $E_{\lambda}^{+} = E \upharpoonright \{\kappa \in \operatorname{dom}(E) : \kappa > \lambda\}$ and $E_{\lambda}^{-} = E \upharpoonright \{\kappa \in \operatorname{dom}(E) : \kappa \leq \lambda\}.$

Recall the definition of the product of two forcing posets and the Product Lemma. If $(P, \leq_P, 1_Q)$ and $(Q, \leq_Q, 1_Q)$ are forcing posets, then their product $(P \times Q, \leq, 1)$ is defined by $(p, q) \leq (p', q') \Leftrightarrow$ $p \leq_P p' \land q \leq_Q q'$ and $1 = (1_P, 1_Q)$. The functions $i: P \to P \times Q$ and $j: Q \to P \times Q$ are defined as $i(p) = (p, 1_Q)$ and $i(q) = (1_P, q)$. It is known that the mappings i and j in the above definition are complete embeddings. More generally, if $(P_i, \leq_i, 1_i)$, for $i \in I$, are forcings, then their product $\prod_{i \in I} (P_i, \leq_i, 1_i)$ is given by the poset $(\prod_{i \in I} P_i, \leq, 1)$ where the relation is given as follows: For $p, q \in \prod_{i \in I} P_i, p \leq q$ iff $\forall i \in I \ [p(i) \leq_i q(i)]$ and $1 = \langle 1_i: i \in I \rangle$. If $(P, \leq_P, 1_Q)$ and $(Q, \leq_Q, 1_Q)$ are forcing posets, then forcing with $P \times Q$ adjoins both a P-generic filter and a Q-generic filter over the ground model (see e.g. [7, Lemma V.1.1.]). By the Product Lemma ([7, Theorem V.1.2.]) we refer to the fact that if P, Q, i and j are as above and $G \subseteq P$ and $H \subseteq Q$ holds, then the following are equivalent:

- (1) $G \times H$ is $P \times Q$ -generic over V.
- (2) G is P-generic over V and H is Q-generic over V[G].
- (3) H is Q-generic over V and G is P-generic over V[H].
- Furthermore, if (1), (2) or (3) holds, then $V[G \times H] = V[G][H] = V[H][G]$.

If $p \in \prod_{i \in I} P_i$, then supp(p) denotes the set $\{i \in I : p(i) \neq 1_i\}$, referred to as the support of p.

2. Excluding Values

In this section we show that the spectrum of κ -mad families (where κ is a regular cardinal) can be forced over a model of GCH to be any specified κ -Blass spectrum. Throughout this section let κ be a regular infinite cardinal.

Definition 2.1. A closed set B of cardinals is called a κ -Blass spectrum if it satisfies:

- (1) min $B = \kappa^+$,
- (2) $\forall \mu \in B \ [\operatorname{cof}(\mu) \leq \kappa \to \mu^+ \in B]$ and
- (3) if $|B| \ge \kappa^+$ then $[\kappa^+, |B|] \subseteq B$.

Let *D* be a closed set of cardinals such that $\min D \ge \kappa^+$. For each $\xi \in D$ let $\mathcal{I}_{\xi} = \{(\xi, \eta) : \eta < \xi\}$ be an index set of cardinality ξ ensuring that $\mathcal{I}_{\xi_1} \cap \mathcal{I}_{\xi_2} = \emptyset$ whenever $\xi_1 \neq \xi_2$ and $\xi_1, \xi_2 \in D$. Let $Q_{\mathcal{I}_{\xi}}$ be the poset for adding a κ -mad family of size $|\mathcal{I}_{\xi}| = \xi$. That is $Q_{\mathcal{I}_{\xi}}$ is the poset defined as:

Definition 2.2. The poset $Q_{\mathcal{I}_{\xi}}$ consists of all functions $p : \Delta^p \to [\kappa]^{<\kappa}$ such that Δ^p is in $[\mathcal{I}_{\xi}]^{<\kappa}$ and $q \leq p$ iff:

- (1) $\Delta^p \subseteq \Delta^q$ and $\forall x \in \Delta^p q(x) \supseteq p(x)$,
- (2) whenever (ξ, η_1) and (ξ, η_2) are distinct elements of Δ^p then

$$q(\xi,\eta_1) \cap q(\xi,\eta_2) \subseteq p(\xi,\eta_1) \cap p(\xi,\eta_2).$$

Remark 2.3. Note that in item (2) above, because of item (1), we have in fact, equality, i.e.

$$q(\xi, \eta_1) \cap q(\xi, \eta_2) = p(\xi, \eta_1) \cap p(\xi, \eta_2).$$

Lemma 2.4. Let D be a closed set of cardinals such that $\min D \ge \kappa^+$. Let $\mathbb{P} = \prod_{\xi \in D}^{<\kappa} \mathbb{Q}_{\mathcal{I}_{\xi}}$ be the product with supports of size less than κ . Then \mathbb{P} has the κ^+ -c.c. and is κ -closed, hence \mathbb{P} preserves cardinals.

Proof. The κ -closedness is easily seen due to the regularity of κ and the fact that $\mathbb{Q}_{\mathcal{I}_{\xi}}$ is κ -closed for each $\xi \in D$. Let $W = \{p_{\alpha} : \alpha \in \kappa^+\} \subseteq \mathbb{P}$ be a set of conditions of size κ^+ . As $\kappa^{<\kappa} = \kappa < \kappa^+$, we can apply the Δ -system-lemma to $\{\operatorname{supp}(p_{\alpha}) : \alpha \in \kappa^+\}$ and get an element $U \in [\kappa^+]^{\kappa^+}$ such that $\{\operatorname{supp}(p_{\alpha}) : \alpha \in U\}$ forms a Δ -system with root R, where $|R| < \kappa$. The collection $A = \{\bigcup_{\xi \in R} \Delta^{p_{\alpha}(\xi)} : \alpha \in U\}$ is of size κ^+ and each element in there is of size $< \kappa$. Again by the Δ -system-lemma (applied to A), we get an $U' \in [U]^{\kappa^+}$ such that $A' = \{\bigcup_{\xi \in R} \Delta^{p_{\alpha}(\xi)} : \alpha \in U'\}$ forms a Δ -system with some root $\overline{\Delta}$, where $|\overline{\Delta}| < \kappa$. However, there are at most κ -many functions from $\overline{\Delta}$ to $[\kappa]^{<\kappa}$, since $\kappa^{<\kappa} = \kappa$. So there are at least two distinct $\alpha, \beta \in U'$ such that p_{α} and p_{β} coincide on $\overline{\Delta}$. These two conditions are compatible showing, by $\{p_{\alpha} : \alpha \in U'\} \subseteq W$, that W is not an antichain. The following condition $r \in \mathbb{P}$ extends both p_{α} and p_{β} : Let $\operatorname{supp}(r) =$ $\operatorname{supp}(p_{\alpha}) \cup \operatorname{supp}(p_{\beta}), \forall \xi \in \operatorname{supp}(r) [\Delta^{r(\xi)} = \Delta^{p_{\alpha}(\xi)} \cup \Delta^{p_{\beta}(\xi)}]$ and

$$r(\xi)(\xi,\gamma) = \begin{cases} p_{\alpha}(\xi)(\xi,\gamma) & \text{for } \xi \in \operatorname{supp}(p_{\alpha}) \setminus \operatorname{supp}(p_{\beta}) \lor (\xi,\gamma) \in \Delta^{p_{\alpha}(\xi)} \setminus \Delta^{p_{\beta}(\xi)} \\ p_{\beta}(\xi)(\xi,\gamma) & \text{for } \xi \in \operatorname{supp}(p_{\beta}) \setminus \operatorname{supp}(p_{\alpha}) \lor (\xi,\gamma) \in \Delta^{p_{\beta}(\xi)} \setminus \Delta^{p_{\alpha}(\xi)} \\ p_{\beta}(\xi)(\xi,\gamma) = p_{\alpha}(\xi)(\xi,\gamma) & \text{for } \xi \in R \land \gamma \in \bar{\Delta} \end{cases}$$

Lemma 2.5. Let D be a closed set of cardinals such that $\min D \ge \kappa^+$. Let $\mathbb{P} = \prod_{\xi \in D}^{<\kappa} \mathbb{Q}_{\mathcal{I}_{\xi}}$ be the product with supports of size less than κ . In $V^{\mathbb{P}}$ there is a κ -mad family of cardinality ξ for each $\xi \in D$.

Proof. Let $G \subseteq \mathbb{P}$ be generic over V. We show that for each $\xi \in D$, the set $\mathcal{A}^{\xi} = \{A_{\alpha}^{\xi} : \alpha \in \xi\}$ is κ -mad, where $A_{\alpha}^{\xi} = \bigcup_{p \in G} p(\xi)(\xi, \alpha)$.

So fix an element ξ in D. First, \mathcal{A}^{ξ} is almost disjoint: Let $\alpha, \beta \in \xi$ and $\alpha \neq \beta$. The conditions $p \in \mathbb{P}$ such that $(\xi, \alpha), (\xi, \beta) \in \Delta^{p(\xi)}$ are dense in \mathbb{P} . So there is $q \in G$ such that $(\xi, \alpha), (\xi, \beta) \in \Delta^{q(\xi)}$. Then $A_{\alpha}^{\xi} \cap A_{\beta}^{\xi} = p(\xi)(\xi, \alpha) \cap p(\xi)(\xi, \beta)$, which is of size $< \kappa$.

Furthermore \mathcal{A}^{ξ} is maximal: Let \dot{B} be a nice \mathbb{P} -name for an element in $[\kappa]^{\kappa}$. By the κ^+ -c.c. \dot{B} involves only $\leq \kappa$ -many conditions. So there is a (ξ, α) such that $(\xi, \alpha) \notin \Delta^{p'(\xi)}$ for any condition p' involved in \dot{B} . We show that $V[G] \vDash |\dot{B} \cap \dot{A}^{\xi}_{\alpha}| = \kappa$, which will finish the proof. Suppose that there is a $\gamma < \kappa$ and a condition $p \in G$ such that $p \Vdash \dot{B} \cap \dot{A}^{\xi}_{\alpha} \subseteq \gamma$. Recall that $|\Delta^{p(\xi)}| < \kappa$ and $p(\xi) \colon \Delta^{p(\xi)} \to [\kappa]^{<\kappa}$. Let $q \in G$ be a condition involved in \dot{B} such that for some $\delta > \gamma$,

$$\delta > \bigcup \{ p(\xi)(\xi,\beta) \colon (\xi,\beta) \in \Delta^{p(\xi)} \}$$
(*)

and $q \Vdash \check{\delta} \in \dot{B}$. As $p, q \in G$, p and q are compatible. Now consider the condition $r \in \mathbb{P}$ defined as follows:

• $\operatorname{supp}(r) = \operatorname{supp}(q) \cup \operatorname{supp}(p) \cup \{\xi\}$ • $\Delta^{r(\eta)} = \begin{cases} \Delta^{p(\eta)} \cup \Delta^{q(\eta)} \cup \{(\xi, \alpha)\} & \text{for } \eta = \xi\\ \Delta^{p(\eta)} \cup \Delta^{q(\eta)} & \text{for } \eta \in \operatorname{supp}(r) \setminus \{\xi\} \end{cases}$

GLOBAL MAD SPEACTRA

Furthermore, $r(\xi)(\xi, \alpha) = p(\xi)(\xi, \alpha) \cup \{\delta\}$ (note that $(\xi, \alpha) \notin \Delta^{q(\xi)}$ by its choice) and $\forall \eta \in$ supp $(r) \ \forall (\eta, \mu) \in \Delta^{r(\eta)} \ [(\eta, \mu) \neq (\xi, \alpha) \to r(\eta)(\eta, \mu) = p(\eta)(\eta, \mu) \cup q(\eta)(\eta, \mu)].$ Now r extends both p (by (*)) and q and $r \Vdash \delta \in \dot{B}$ (as $r \leq q$) and $r \Vdash \delta \in \dot{A}^{\xi}_{\alpha}$ contradicting that $r \Vdash \dot{B} \cap \dot{A}^{\xi}_{\alpha} \subseteq \gamma$ (as $r \leq p$ and $\delta > \gamma$).

Until the end of the section we will be occupied with the proof of the following statement.

Lemma 2.6. Let *C* be a κ -Blass spectrum. Let $\lambda \notin C$ and let $\mathbb{P} = \prod_{\xi \in C}^{<\kappa} \mathbb{Q}_{\mathcal{I}_{\xi}}$ be the product with supports of size less than κ . Then in $V^{\mathbb{P}}$ there are no κ -mad families of cardinality λ .

Note that the cofinality of the maximum of a κ -Blass spectrum is greater than κ (by item (2) in Definition 2.1). By counting nice names, it is argued that $V^{\mathbb{P}} \models \mathfrak{c}_{\kappa} = \max(C)$: $V^{\mathbb{P}} \models \mathfrak{c}_{\kappa} \ge \max(C)$ is clear. As $|C| \le \max(C)$, \mathbb{P} has size $\max(C)$. Then, by the κ^+ -c.c. of \mathbb{P} , there are no more than $\max(C)^{\kappa} = \max(C)$ -many nice names for subsets of κ .

Proof of Lemma 2.6. Let C be a κ -Blass spectrum and let $\lambda \notin C$. Take $\mu = \max\{\gamma \colon \gamma \in C \text{ and } \gamma < \lambda\}$. Then clearly $\mu \geq \kappa^+$ (by Definition 2.1(1)) and moreover $\kappa^+ \leq \operatorname{cof}(\mu) \leq \mu$ (by Definition 2.1(2)). By GCH in V, we obtain

$$\mu^{\kappa} = \mu. \tag{(\star)}$$

Suppose by way of contradiction that $\dot{\mathcal{A}} = \{\dot{a}_{\alpha} : \alpha < \lambda\}$ is forced by the maximal element in \mathbb{P} to be a κ -mad family of size λ in $V^{\mathbb{P}}$. We may assume that each \dot{a}_{α} is a nice name.

Definition 2.7.

- (1) Whenever \dot{x} is a \mathbb{P} -name for an unbounded subset of κ , we can assume that \dot{x} is a nice \mathbb{P} -name. That is, we identify \dot{x} with κ -many maximal antichains $\{A_{\alpha}(\dot{x})\}_{\alpha<\kappa}$ each of cardinality at most κ , such that the conditions in $A_{\alpha}(\dot{x})$ decide if " $\check{\alpha} \in \dot{x}$ ". We refer to $\Delta(\dot{x}) = \bigcup_{\alpha \in \kappa} A_{\alpha}(\dot{x})$ as the set of conditions involved in \dot{x} .
- (2) Let \dot{x} be a \mathbb{P} -name for a subset of κ and let $\Delta(\dot{x})$ be the set of conditions involved in \dot{x} . The set

$$J(\dot{x}) = \bigcup_{p \in \Delta(\dot{x})} \bigcup_{\xi \in \text{supp}(p)} \Delta^{p(\xi)}$$

is called the support of \dot{x} .

For each $\alpha \in \lambda$ let J_{α} denote the support of \dot{a}_{α} .

Let θ be large enough that $\mathbb{P} \in H(\theta)$ and $V \models \operatorname{cof}(\theta) > |\mathbb{P}|$. Let $\mathcal{M} \preceq H(\theta)$ be an elementary submodel such that $|\mathcal{M}| = \mu, \mu \subseteq \mathcal{M}, \mathcal{M}^{\kappa} \subseteq \mathcal{M}, C \subseteq \mathcal{M}, \mathbb{P} \in \mathcal{M}$ and \mathcal{M} contains all other relevant parameters. The equation (\star) is used here in order to ensure the property $\mathcal{M}^{\kappa} \subseteq \mathcal{M}$. The property $C \subseteq \mathcal{M}$ requires that $|C| \leq \mu$, which is ensured by Definition 2.1(3).

Let $\bar{\alpha} \in \lambda \setminus M$. Fix a permutation of the index set $\mathcal{I} = \bigcup_{\xi \in C} \mathcal{I}_{\xi}$ which

- fixes \mathcal{I}_{ξ} for $\xi \leq \mu$, and
- and for each $\xi > \mu$ maps the $\leq \kappa$ -sized set $J_{\bar{\alpha}} \cap \mathcal{I}_{\xi} \setminus M$ into $(\mathcal{I}_{\xi} \setminus \bigcup_{i < \lambda} J_i) \cap M$ (otherwise fixing elements of \mathcal{I}_{ξ}).

Such a permutation of the index set exists, because if $\xi > \mu$, then $\xi > \lambda$ as well. Consequently $|\bigcup_{i<\lambda} J_i| = \lambda * \kappa = \lambda$, and $|\mathcal{I}_{\xi} \setminus \bigcup_{i<\lambda} J_i| = \xi > \kappa$ holds in $H(\theta)$ and by elementarity also in \mathcal{M} . This permutation of the index set \mathcal{I} induces an automorphism $\pi : \mathbb{P} \to \mathbb{P}$ of the poset. As names are defined recursively, $\pi \in \operatorname{Aut}(\mathbb{P})$ (where $\operatorname{Aut}(\mathbb{P})$ denotes the automorphism group of \mathbb{P}) induces a map $\pi^* \colon V^{(\mathbb{P})} \to V^{(\mathbb{P})}$ (where $V^{(\mathbb{P})}$ denotes the class of all \mathbb{P} -names) by $\pi^*(\tau) = \{\langle \pi^*(\sigma), \pi(p) \rangle \colon \langle \sigma, p \rangle \in \tau \}$. The automorphism π preserves antichains and the forcing relation. And as $\dot{a}_{\bar{\alpha}}$ is supposed to be a nice name, and any antichain of \mathbb{P} is of size $\leq \kappa$ (by the κ^+ -c.c. of \mathbb{P}) and M is closed w.r.t. κ -sequences, we have $\pi^*(\dot{a}_{\bar{\alpha}}) \in M$.

Let G be a generic filter. Then $\pi''(G)$ is a generic filter. It is well-known that $\mathcal{M}[\pi''(G)] \preceq ((H(\theta))^{V[\pi''(G)]}, \in)$ (see [11, Theorem III.2.11.]). As $\dot{\mathcal{A}}$ is forced to be κ -mad, we have

$$\Vdash_{\pi(\mathbb{P})} \forall x \in {}^{\kappa}\kappa \; \exists \beta < \lambda \; [|x \cap \dot{a}_{\beta}| = \kappa]$$

We can relativize the statement to $H(\theta)$, so

$$\Vdash_{\pi(\mathbb{P})} \forall x \in {}^{\kappa}\kappa \cap H(\theta) \ \exists \beta < \lambda \cap H(\theta) \ [|x \cap \dot{a}_{\beta}| = \kappa].$$

But $\mathcal{M}[\pi''(G)] \preceq ((H(\theta))^{V[\pi''(G)]}, \in)$ and $M \cap Ord = M[\pi''(G)] \cap Ord$, so
$$\Vdash_{\pi(\mathbb{P})} \forall x \in {}^{\kappa}\kappa \cap M \ \exists \beta < \lambda \cap M \ [|x \cap \dot{a}_{\beta}| = \kappa].$$

As $\pi^*(\dot{a}_{\bar{\alpha}})$ was in M, we have

$$\Vdash_{\pi(\mathbb{P})} \exists \beta < \lambda \cap M \ [|\pi^*(\dot{a}_{\bar{\alpha}}) \cap \dot{a}_{\beta}| = \kappa].$$

However $\pi^*(\dot{a}_{\beta}) = \dot{a}_{\beta}$ for ordinals $\beta \in M$ as the permutation π fixes the ordinals mentioned in \dot{a}_{β} for $\beta \in M$. Therefore we have

$$\Vdash_{\pi(\mathbb{P})} \exists \beta < \lambda \cap M \ [|\pi^*(\dot{a}_{\bar{\alpha}}) \cap \pi^*(\dot{a}_{\beta})| = \kappa]$$

and by applying π^{-1} we have

$$\Vdash_{\mathbb{P}} \exists \beta < \lambda \cap M \ [|\dot{a}_{\bar{\alpha}} \cap \dot{a}_{\beta}| = \kappa],$$

contradicting the κ -madness of $\dot{\mathcal{A}}$ in the generic extension.

3. Small Spectra

In this section we give several easy results concerning \mathfrak{a}_{κ} and $\mathfrak{sp}(\mathfrak{a}_{\kappa})$. First we show that in the extension by the poset of Definition 2.2, \mathfrak{a}_{κ} is small.

Definition 3.1. Let \mathbb{Q} be a forcing notion and κ be a regular cardinal. A κ -mad family \mathcal{A} is called \mathbb{Q} -indestructible if \mathcal{A} is still maximal in any \mathbb{Q} -generic extension of the ground model.

Lemma 3.2. $(2^{\kappa} = \kappa^+)$ Let \mathbb{P} be a poset of cardinality κ for a regular infinite cardinal κ . Then there is a \mathbb{P} -indestructible κ -mad family of cardinality κ^+ .

Proof. By the assumption $2^{\kappa} = \kappa^+$ we can fix an enumeration $\langle (p_{\xi}, \tau_{\xi}) : \kappa \leq \xi < \kappa^+ \rangle$ of all pairs (p, τ) such that $p \in \mathbb{P}$ and τ is a nice \mathbb{P} -name for a subset of κ (there are κ^+ -many nice \mathbb{P} -names since $[\mathbb{P}]^{\leq \kappa} = \kappa^+$). Recursively define subsets $\{A_{\xi} : \xi < \kappa^+\}$ of κ as follows: First let $\{A_{\xi} : \xi < \kappa\}$

7

be any partition of κ into sets of size κ . Let ξ be such that $\kappa \leq \xi < \kappa^+$ and suppose that we already defined A_η for every $\eta < \xi$. Now choose A_ξ such that the following conditions hold:

(1) $\forall \eta < \xi \ [|A_{\xi} \cap A_{\eta}| < \kappa]$ (2) If

$$p_{\xi} \Vdash |\tau_{\xi}| = \kappa \text{ and } \forall \eta < \xi \ [p_{\xi} \Vdash |\tau_{\xi} \cap A_{\eta}| < \kappa], \tag{(\star)}$$

then

$$\forall \alpha < \kappa \ \forall q \le p_{\xi} \ \exists r \le q \ \exists \beta \ge \alpha \ [\beta \in A_{\xi} \land r \Vdash \beta \in \tau_{\xi}]$$

To verify that A_{ξ} can indeed be chosen like above, note that (1) is easily satisfied as there are no κ -mad families of size κ . To satisfy (2), assume (\star) and let $\{B_i: i \in \kappa\}$ be an enumeration of $\{A_\eta: \eta < \xi\}$ and let $\langle (\alpha_i, q_i): i \in \kappa \rangle$ enumerate $\kappa \times \{q: q \leq p_{\xi}\}$. By (\star), for each $i \in \kappa$ we have $q_i \Vdash |\tau_{\xi} \setminus (\bigcup_{j \leq i} B_j)| = \kappa$, so choose any $r \leq q_i$ and $\beta_i \geq \alpha_i$ such that $\beta_i \notin \bigcup_{j \leq i} B_j$ and $r_i \Vdash \beta_i \in \tau_{\xi}$. Define A_{ξ} to be $\{\beta_i: i \in \kappa\}$.

Now consider the family $\mathcal{A} = \{A_{\xi} : \xi \in \kappa^+\}$ and show that this is κ -mad in V[G], where G is \mathbb{P} -generic over V. Suppose not and let (p_{ξ}, τ_{ξ}) be such that $p_{\xi} \in G$ and $p_{\xi} \Vdash \forall x \in \mathcal{A} \ [|\tau_{\xi} \cap x| < \kappa]$. Thus (\star) holds at ξ ; however also $p_{\xi} \Vdash |\tau_{\xi} \cap A_{\xi}| < \kappa$ holds, so there is an extension $q \leq p_{\xi}$ and an $\alpha < \kappa$ with $q \Vdash \tau_{\xi} \cap A_{\xi} \subseteq \alpha$, contradicting $\exists r \leq q \ \exists \beta \geq \alpha \ [\beta \in A_{\xi} \land r \Vdash \beta \in \tau_{\xi}]$.

Lemma 3.3. Let $V \vDash \text{GCH}$, let κ be a regular cardinal and $\lambda \ge \kappa^+$. Let $\mathbb{Q}_{\mathcal{I}_{\lambda}}^{\kappa}$ denote the poset as in Definition 2.2. Let \dot{f} be a $\mathbb{Q}_{\mathcal{I}_{\lambda}}^{\kappa}$ -name for a κ -real. Then there is a subset $J \subseteq \lambda$ such that $|J| \le \kappa$ and \dot{f} is equivalent to a $\mathbb{Q}_{\mathcal{I}_{\lambda}}^{\kappa}$ -name.

Proof. For each $\alpha < \kappa$, let A_{α} be a maximal antichain in $\mathbb{Q}_{\mathcal{I}_{\lambda}}^{\kappa}$ deciding $f(\alpha)$. By the κ^{+} -c.c. of $\mathbb{Q}_{\mathcal{I}_{\lambda}}^{\kappa}$ any antichain has size $\leq \kappa$. Hence $|\bigcup \{ \operatorname{dom}(p) : p \in \bigcup_{\alpha < \kappa} A_{\alpha} \}| \leq \kappa$. Define $J = \bigcup \{ \operatorname{dom}(p) : p \in \bigcup_{\alpha < \kappa} A_{\alpha} \}$, then \dot{f} is equivalent to a $\mathbb{Q}_{\mathcal{I}_{J}}^{\kappa}$ -name.

Theorem 3.4. Let $V \models \text{GCH}$, let κ be a regular cardinal and $\lambda \ge \kappa^+$. Let $\mathbb{Q}_{\mathcal{I}_{\lambda}}^{\kappa}$ denote the poset as in Definition 2.2. Then $V^{\mathbb{Q}_{\mathcal{I}_{\lambda}}^{\kappa}} \models \mathfrak{a}_{\kappa} = \kappa^+$.

Proof. Let $K \in [\lambda]^{\kappa} \cap V$. Since $|\mathbb{Q}_{\mathcal{I}_{K}}^{\kappa}| = \kappa$, by Lemma 3.2 (and GCH in V) in the ground model, there is a κ -mad family \mathcal{A} which remains maximal in the generic extension by $\mathbb{Q}_{\mathcal{I}_{K}}^{\kappa}$. But then \mathcal{A} remains maximal after forcing with $\mathbb{Q}_{\mathcal{I}_{J}}^{\kappa}$ for any $J \in [\lambda]^{\kappa}$, since any such $\mathbb{Q}_{\mathcal{I}_{J}}^{\kappa}$ is forcing equivalent (indeed isomorphic) to $\mathbb{Q}_{\mathcal{I}_{K}}^{\kappa}$. However by the previous lemma, any κ -real which might destroy the maximality of \mathcal{A} in $V^{\mathbb{Q}_{\mathcal{I}_{\lambda}}^{\kappa}}$ is in fact equivalent to a $\mathbb{Q}_{\mathcal{I}_{J}}^{\kappa}$ -name for some $J \subseteq \lambda$ such that $|J| \leq \kappa$.

We further remark that it is implicitly shown that the spectrum of madness can globally exclude the possible minimal values:

Remark 3.5. In [3, Theorem 4] it is shown that for a class of regular cardinals λ the triple $(\mathfrak{b}_{\lambda},\mathfrak{d}_{\lambda},\mathfrak{c}_{\lambda})$ can be controlled by forcing. As $\mathfrak{b}_{\lambda} \leq \mathfrak{a}_{\lambda}$ for every regular λ , it is consistently true that for every regular cardinal κ , the spectrum of κ -mad families consists only of $2^{\kappa} = \mathfrak{b}_{\kappa} = \mathfrak{d}_{\kappa}$, which is chosen (forced) to be greater than κ^+ .

Recall the following definition.

Definition 3.6.

- (1) A function E is called an *index function* if dom(E) is a class of regular cardinals.
- (2) An index function E is called an *Easton function*, if for each $\kappa \in \text{dom}(E)$, $E(\kappa)$ is a cardinal with $\text{cof}(E(\kappa)) > \kappa$ such that $\forall \kappa, \kappa' \in \text{dom}(E) \ [\kappa < \kappa' \to E(\kappa) \le E(\kappa')]$.

In the following we consider Easton products. That is:

Definition 3.7. If *E* is an index function, *I* is dom(*E*) and $\mathbb{R} = \prod_{\kappa \in I} \operatorname{Fn}_{\kappa}(E(\kappa) \times \kappa, 2)$, then the *Easton poset* $\mathbb{P}(E) \subseteq \mathbb{R}$ consists of those $p \in \mathbb{R}$ such that for all regular cardinals λ ,

$$|\{\kappa \in \lambda \cap I \colon p(\kappa) \neq \mathbb{1}\}| < \lambda$$

It is well-known that $\mathbb{P}(E) \cong \mathbb{P}(E_{\lambda}^{-}) \times \mathbb{P}(E_{\lambda}^{+})$, where $\mathbb{P}(E_{\lambda}^{+})$ is λ^{+} -closed and the second $\mathbb{P}(E_{\lambda}^{-})$ has the λ^{+} -c.c. if λ is regular and $2^{<\lambda} = \lambda$. In order to prove Theorem 3.10, which evaluates \mathfrak{a}_{κ} , \mathfrak{b}_{κ} and \mathfrak{d}_{κ} in the Easton extension, we need two easy lemmas.

Lemma 3.8. Suppose E_1, E_2 are index functions such that $\operatorname{dom}(E_1) = \operatorname{dom}(E_2) = I \subseteq \lambda^+$ for some ordinal λ and $\forall \kappa \in I[E_1(\kappa) \cap E_2(\kappa) = \emptyset]$. Further assume that E is an Easton function with $\operatorname{dom}(E) = I$ and $\forall \kappa \in I \ [E(\kappa) = E_1(\kappa) \cup E_2(\kappa)]$. Let G be $\mathbb{P}(E)$ -generic over V and let $G_1 = G \cap \mathbb{P}(E_1)$ and $G_2 = G \cap \mathbb{P}(E_2)$. Then G_1 is $\mathbb{P}(E_1)$ -generic over V and G_2 is $\mathbb{P}(E_2)$ -generic over $V[G_1]$ and $V[G] = V[G_1][G_2]$.

Proof. The mapping $j : \mathbb{P}(E_1) \times \mathbb{P}(E_2) \to \mathbb{P}(E)$ with $j((s_0, s_1, ...), (t_0, t_1, ...)) = (s_0 \cup t_0, s_1 \cup t_1, ...)$ is an isomorphism. So by [6, VII Corollary 7.6], $j^{-1}(G) = H$ is $\mathbb{P}(E_1) \times \mathbb{P}(E_2)$ -generic over Vand V[G] = V[H]. By [6, VII Lemma 1.3], $H = H_1 \times H_2$, where $H_j = i_j^{-1}(H)$ for $j \in \{1, 2\}$ and $i_1 : \mathbb{P}(E_1) \to \mathbb{P}(E_1) \times \mathbb{P}(E_2)$ and $i_2 : \mathbb{P}(E_2) \to \mathbb{P}(E_1) \times \mathbb{P}(E_2)$ are the complete embeddings defined as $i_1(p_1) = (p_1, 1_{\mathbb{P}(E_2)})$ and $i_2(p_2) = (1_{\mathbb{P}(E_1)}, p_2)$. By the Product Lemma, H_1 is $\mathbb{P}(E_1)$ -generic over V, H_2 is $\mathbb{P}(E_2)$ -generic over $V[G_1]$ and $V[H] = V[H_1][H_2]$. However

$$H_1 = \{ p_1 \in \mathbb{P}(E_1) \colon ((s_0, s_1, \dots), 1_{\mathbb{P}(E_2)}) \in H \} = \{ p_1 \in \mathbb{P}(E_1) \colon (s_0 \cup \emptyset, s_1 \cup \emptyset, \dots) \in G \} = G_1$$

and the same for H_2 and G_2 .

Lemma 3.9. Assume that E is an Easton function with $dom(E) = I \subseteq \lambda^+$ for a regular λ with $2^{<\lambda} = \lambda$. Let \dot{f} be a $\mathbb{P}(E)$ -name for a λ -real. Then there is an index function E' with dom(E') = I and $\forall \kappa \in I \ [E'(\kappa) \subseteq E(\kappa)]$ such that $\forall \kappa \in I \ |E'(\kappa)| \leq \lambda$ and \dot{f} is equivalent to a $\mathbb{P}(E')$ -name.

Proof. For each $\alpha < \lambda$ let A_{α} be a maximal antichain in $\mathbb{P}(E)$ deciding the value of $\dot{f}(\alpha)$. As $\mathbb{P}(E)$ has the λ^+ -c.c. each maximal antichain A_{α} is of size at most λ . So $|\bigcup\{\{\kappa\}\times \operatorname{dom}(p(\kappa)): \kappa \in I, p \in \bigcup_{\alpha < \lambda} A_{\alpha}\}| \leq \lambda$. Then \dot{f} is equivalent to a $\mathbb{P}(E')$ -name where $\forall \kappa \in I \ [E'(\kappa) = \bigcup\{\operatorname{dom}(p(\kappa)): p \in \bigcup_{\alpha < \lambda} A_{\alpha}\}]$.

In the next theorem consider the special case in which E is strictly increasing, $E(\kappa) \ge \kappa^{++}$, aiming to establish the consistency of $\mathfrak{b}_{\kappa} = \mathfrak{a}_{\kappa} = \kappa^{+} < \mathfrak{d}_{\kappa} = \mathfrak{c}_{\kappa}$ globally.

Theorem 3.10. (GCH) Let *E* be an Easton function such that $\forall \kappa \in \text{dom}(E) [E(\kappa) > \kappa^+]$ and let $\mathbb{P}(E)$ be the Easton product. Then $V^{\mathbb{P}(E)} \vDash \forall \kappa \in \text{dom}(E) [\mathfrak{a}_{\kappa} = \kappa^+ = \mathfrak{b}_{\kappa} < \mathfrak{d}_{\kappa} = \mathfrak{c}_{\kappa}]$.

Proof. Let $\kappa \in \operatorname{dom}(E)$ be arbitrary. Consider $\mathbb{P}(E)$ as $\mathbb{P}(E_{\kappa}^{-}) \times \mathbb{P}(E_{\kappa}^{+})$. Let K be a $\mathbb{P}(E)$ generic over V. By the Product Lemma, V[K] = V[H][G], where H is $\mathbb{P}(E_{\kappa}^{+})$ -generic over Vand G is $\mathbb{P}(E_{\kappa}^{-})$ -generic over V[H]. $\mathbb{P}(E_{\kappa}^{+})$ is κ^{+} -closed in V, so it preserves GCH at and below κ . Now consider $V[H] =: V_{1}$ as the ground model. In V[H] there is a $\mathbb{P}(E_{\kappa}^{-})$ -indestructible κ -mad family of size κ^{+} , denoted \mathcal{A}_{κ} : By the above lemma it suffices to show maximality in an
extension by $\mathbb{P}(E')$ for some index set E' such that $\forall \gamma \in \operatorname{dom}(E') |E'(\gamma)| \leq \kappa$. This poset $\mathbb{P}(E')$ can be completely embedded into $\mathbb{P}(\bar{E})$, where \bar{E} is an index function with domain dom(E) and $\forall \gamma \in \operatorname{dom}(E) [\bar{E}(\gamma) = \kappa]$. So it suffices to show maximality in the extension by $\mathbb{P}(\bar{E})$. On the
other hand $\mathbb{P}(\bar{E})$ is of size κ . However we saw that there is a κ -mad family of size κ^{+} whose
maximality is preserved in an extension by a poset of that size. Therefore in $V^{\mathbb{P}(E)}$ we have that
for every $\kappa \in \operatorname{dom}(E)$,

$$\mathfrak{a}_{\kappa} = \kappa^+ = \mathfrak{b}_{\kappa} < \mathfrak{c}_{\kappa} = E(\kappa).$$

because $\mathfrak{b}_{\kappa} \leq \mathfrak{a}_{\kappa}$ is provable in ZFC and it is well-known that $\mathfrak{c}_{\kappa} = E(\kappa)$ holds in the Easton extension.

To show that $\mathfrak{d}_{\kappa} \geq E(\kappa)$ let D be a family of κ -reals of size less than $E(\kappa)$. By the previous lemma, there is an index set E' such that $\mathbb{P}(E')$ is of size less than $E(\kappa)$ and $D \in V_1^{\mathbb{P}(E')}$. If $\alpha \in E(\kappa) \setminus E'(\kappa)$ than, by the Product Lemma, the real c_{α} added by $\operatorname{Fn}_{\kappa}(E(\kappa) \times \kappa, 2)$ is Cohen over $V_1^{\mathbb{P}(E')}$, in particular unbounded and hence D is not dominating. \Box

Remark 3.11. By the result in [8], it was sufficient to show that for each $\kappa \in \text{dom}(E)$ we have $\mathfrak{b}_{\kappa} = \kappa^+$ in the generic Easton extension, as this implies $\mathfrak{a}_{\kappa} = \kappa^+$.

Theorem 3.12. (GCH at and below κ) Assume that λ is a cardinal such that $\operatorname{cof}(\lambda) > \kappa$. Then in the generic extension by $\mathbb{C}(\kappa)_{\lambda} = (\operatorname{Fn}_{<\kappa}(\kappa \times \lambda, 2), \subseteq)$, every κ -mad family is either of size κ^+ or of size λ .

Proof. Let δ be such that $\kappa^+ < \delta < \lambda$, and for each $\alpha < \delta$ let \dot{X}^{α} be a $\mathbb{C}(\kappa)_{\lambda}$ -name for an element in $[\kappa]^{\kappa}$. We can identify any $\mathbb{C}(\kappa)_{\lambda}$ -name \dot{X} for a κ -real with κ -many maximal antichains $\{A_{\beta}^{\dot{X}}: \beta \in \kappa\}$ such that $A_{\beta}^{\dot{X}}$ decides " $\check{\beta} \in \dot{X}$ " in the generic extension. For such a name \dot{X} , let $S^{\dot{X}} = \bigcup \{ \operatorname{dom}(p): \exists \beta < \kappa \ [p \in A_{\beta}^{\dot{X}}] \}$, called the support of \dot{X} . By the κ^+ -c.c. of $\mathbb{C}(\kappa)_{\lambda}$, each maximal antichain has size at most κ , so $|S^{\dot{X}}| \leq \kappa$ for each name \dot{X} for a κ -real. For each $\alpha < \delta$, let S^{α} be the support for \dot{X}^{α} . Consequently $|\bigcup \{S^{\alpha}: \alpha < \delta\}| \leq \delta$ and $|(\kappa \times \lambda) \setminus \bigcup \{S^{\alpha}: \alpha < \delta\}| = \lambda$. Now consider the set $\{S^{\alpha}: \alpha < \kappa^{++}\}$. As GCH holds at and below κ and $|S^{\alpha}| < \kappa^+$, there is, by the Δ -System Lemma, an index set $B \in [\kappa^{++}]^{\kappa^{++}}$ such that $\{S^{\alpha}: \alpha \in B\}$ forms a Δ -System with root R. Further, for any two $\alpha, \beta \in B$, let $\varphi_{\alpha,\beta}: S^{\alpha} \to S^{\beta}$ be a bijection fixing the root R. Each such bijection $\varphi_{\alpha,\beta}$ induces an isomorphism $\psi_{\alpha,\beta}: (\operatorname{Fn}_{<\kappa}(S^{\alpha}, 2), \subseteq) \to (\operatorname{Fn}_{<\kappa}(S^{\beta}, 2), \subseteq)$ between the corresponding restrictions of the Cohen forcing by:

- (1) $\forall p \in \operatorname{Fn}_{<\kappa}(S^{\alpha}, 2) [\operatorname{dom}(\psi_{\alpha,\beta}(p)) = \varphi_{\alpha,\beta}(\operatorname{dom}(p))] \text{ and }$
- (2) $\forall x \in \operatorname{dom}(p) [(\psi_{\alpha,\beta}(p))((\varphi_{\alpha,\beta}(x)) = p(x))].$

Furthermore, if for $J \subseteq \kappa \times \lambda$, $V^{(\operatorname{Fn}_{<\kappa}(J,2))}$ denotes the class of all $\operatorname{Fn}_{<\kappa}(J,2)$ -names, then, as names are defined recursively, $\psi_{\alpha,\beta}$ induces a mapping $\psi_{\alpha,\beta}^* \colon V^{(\operatorname{Fn}_{<\kappa}(S^{\alpha},2))} \to V^{(\operatorname{Fn}_{<\kappa}(S^{\beta},2))}$ by $\psi_{\alpha,\beta}^*(\tau) = \{\langle \psi_{\alpha,\beta}^*(\sigma), \psi_{\alpha,\beta}(p) \rangle \colon \langle \sigma, p \rangle \in \tau \}$. The isomorphism $\psi_{\alpha,\beta}$ preserves maximal antichains, as well as the forcing relation. Note that for a fixed set $T \subseteq \kappa \times \lambda$ of cardinality κ , there are, by $[\kappa]^{\kappa} = \kappa^+$, at most κ^+ -many names for κ -reals with the same support T. By this reason and the fact that $|[B]^2| = \kappa^{++} > \kappa^+$, we can assume w.l.o.g. that for any two $\alpha, \beta \in B, \psi_{\alpha,\beta}^*$ maps \dot{X}^{α} to \dot{X}^{β} (if this was not true for B, thin B out so that a subset $B' \in [B]^{\kappa^{++}}$ satisfies this property).

Now define a new $\mathbb{C}(\kappa)_{\lambda}$ -name \dot{X}^{δ} for a κ -real such that its support S^{δ} satisfies $S^{\delta} \cap \bigcup_{\alpha < \delta} S^{\alpha} = R$ and for any $\alpha \in B$, S^{α} is mapped to S^{δ} by a bijection $\varphi_{\alpha,\delta}$ fixing the root R and again assume that the induced functions $\psi^*_{\alpha,\delta}$ map \dot{X}^{α} to \dot{X}^{δ} .

Suppose that $\Vdash_{\mathbb{C}(\kappa)_{\lambda}} \forall \alpha, \beta \in \delta \ [|\dot{X}^{\alpha} \cap \dot{X}^{\beta}| < \kappa]$. We will reach a contradiction by showing that the family $\{X^{\alpha} : \alpha < \delta\}$ is not maximal in the generic extension, witnessed by X^{δ} . So fix an arbitrary $\beta < \delta$. As $|S^{\beta}| = \kappa$, $[\kappa]^{\kappa} = \kappa^{+}$ and $|B| = \kappa^{++}$, there are at least two distinct elements $\alpha, \alpha' \in B$ such that the supports S^{α} and $S^{\alpha'}$ have the same intersection with S^{β} , i.e. $S^{\alpha} \cap S^{\beta} = S^{\alpha'} \cap S^{\beta}$. Fix an $\alpha \in B$ with this property. Then $S^{\alpha} \cap S^{\beta} \subseteq R$, because if $I = S^{\alpha} \cap S^{\beta} = S^{\alpha'} \cap S^{\beta}$, then $I \subseteq S^{\alpha}$ and $I \subseteq S^{\alpha'}$ and consequently $I \subseteq S^{\alpha} \cap S^{\alpha'} = R$. On the other hand we have $S^{\delta} \cap S^{\beta} = R \cap S^{\beta} = S^{\alpha} \cap S^{\beta}$, where the first equality holds because $S^{\delta} \cap \bigcup_{\alpha < \delta} S^{\alpha} = R$ and the second holds because $S^{\alpha} \cap S^{\beta} \subseteq R$. Now, as $S^{\delta} \cap S^{\beta} = S^{\alpha} \cap S^{\beta} \subseteq R$, the canonical bijection $\varphi_{\alpha,\delta} : S^{\alpha} \to S^{\delta}$ extends to a bijection Φ between $S^{\alpha} \cup S^{\beta}$ and $S^{\delta} \cup S^{\beta}$, where Φ further induces an isomorphism $\Psi : (\operatorname{Fn}_{<\kappa}(S^{\alpha} \cup S^{\beta}, 2), \subseteq) \to (\operatorname{Fn}_{<\kappa}(S^{\delta} \cup S^{\beta}, 2), \subseteq)$ and Ψ itself induces a map $\Psi^{*} : V^{(\operatorname{Fn}_{<\kappa}(S^{\alpha} \cup S^{\beta}, 2))} \to V^{(\operatorname{Fn}_{<\kappa}(S^{\delta} \cup S^{\beta}, 2))}$. By the assumption $\Vdash_{\mathbb{C}(\kappa)_{\lambda}} \forall \alpha, \beta \in \delta \ [|\dot{X}^{\alpha} \cap \dot{X}^{\beta}| < \kappa]$ and as S^{α} (resp. S^{β}) is the support for \dot{X}^{α} (resp. \dot{X}^{β}), $\Vdash_{\operatorname{Fn}_{<\kappa}(S^{\alpha} \cup S^{\beta}, 2)} |\dot{X}^{\delta} \cap \dot{X}^{\beta}| < \kappa$ is true. So $\Vdash_{\mathbb{C}(\kappa)_{\lambda}} |\dot{X}^{\delta} \cap \dot{X}^{\beta}| < \kappa$, showing that $\{X^{\alpha} : \alpha < \delta\}$ is not maximal in the generic extension.

Theorem 3.13. (GCH) Let *E* be an Easton function such that $\forall \kappa \in \text{dom}(E)$ [sup{ $E(\beta): \beta \in \text{dom}(E) \cap \kappa$ } $\leq \kappa^+$] and let $\mathbb{P}(E)$ be the Easton product. Then

$$V^{\mathbb{P}(E)} \vDash \forall \kappa \in \operatorname{dom}(E)[\mathfrak{sp}(\mathfrak{a}_{\kappa}) = \{\kappa^+, E(\kappa)\}].$$

Proof. Let $\kappa \in \operatorname{dom}(E)$ be arbitrary. Consider $\mathbb{P}(E)$ as $\mathbb{P}(E_{\kappa}^{-}) \times \mathbb{P}(E_{\kappa}^{+})$. Let K be a $\mathbb{P}(E)$ -generic over V. By the Product Lemma, V[K] = V[H][G], where H is $\mathbb{P}(E_{\kappa}^{+})$ -generic over V and G is $\mathbb{P}(E_{\kappa}^{-})$ -generic over V[H]. The poset $(\mathbb{P}(E_{\kappa}^{-}))^{V}$ has the κ^{+} -c.c. and $(\mathbb{P}(E_{\kappa}^{+}))^{V}$ is κ^{+} -closed. Furthermore, the closure property of $(\mathbb{P}(E_{\kappa}^{+}))^{V}$ ensures that $(\mathbb{P}(E_{\kappa}^{-}))^{V} = (\mathbb{P}(E_{\kappa}^{-}))^{V[H]}$. Consider $V_{0} := V[H]$ as the ground model and let δ be a cardinal in V_{0} such that $\kappa^{+} < \delta < E(\kappa)$.

Define \mathcal{I} to be the index set $\bigcup_{\alpha \leq \kappa} E(\alpha) \times \alpha \times \{\alpha\}$, which is a disjoint union. Suppose by way of contradiction that $\dot{\mathcal{X}} = \{\dot{X}^{\alpha} : \alpha < \delta\}$ is forced by the maximal element in $\mathbb{P}(E^{-})$ to be a μ mod family of size δ in $V^{\mathbb{P}(E^{-})}$. We can identify any $\mathbb{P}(E^{-})$ pame $\dot{\mathcal{X}}$ for a μ real

 $\mathbb{P}(E_{\kappa}^{-})$ to be a κ -mad family of size δ in $V_{0}^{\mathbb{P}(E_{\kappa}^{-})}$. We can identify any $\mathbb{P}(E_{\kappa}^{-})$ -name \dot{X} for a κ -real with κ -many maximal antichains $\{A_{\beta}^{\dot{X}}: \beta \in \kappa\}$ such that $A_{\beta}^{\dot{X}}$ decides " $\check{\beta} \in \dot{X}$ " in the generic extension. For such a name \dot{X} , let $S^{\dot{X}} = \bigcup_{\alpha \leq \kappa} \{ \operatorname{dom}(p(\alpha)) : \exists \beta < \kappa \ [p \in A_{\beta}^{\dot{X}}] \} \subseteq \mathcal{I}$, called the

support of \dot{X} . By the κ^+ -c.c. of $\mathbb{P}(E_{\kappa}^-)$, each maximal antichain has size at most κ , so $|S^{\dot{X}}| \leq \kappa$ for each name \dot{X} for a κ -real. Now for each $\alpha < \delta$, let S^{α} be the support of \dot{X}^{α} .

Let θ be large enough that $\mathbb{P}(E_{\kappa}^{-}) \in H(\theta)$ and $V_0 \models \operatorname{cof}(\theta) > |\mathbb{P}(E_{\kappa}^{-})|$. Let $\mathcal{M} \leq H(\theta)$ be an elementary submodel such that $|\mathcal{M}| = \kappa^+$, $\kappa^+ \subseteq \mathcal{M}$, $\mathcal{M}^{\kappa} \subseteq \mathcal{M}$, $\{E(\alpha) : \alpha \leq \kappa\} \subseteq \mathcal{M}$, $\mathbb{P}(E_{\kappa}^{-}) \in \mathcal{M}$, $\forall \alpha < \kappa \cap \operatorname{dom}(E)$ $[E(\alpha) \times \alpha \times \{\alpha\} \subseteq \mathcal{M}]$ and \mathcal{M} contains all other relevant parameters. The hypothesis of the theorem is used here in order to ensure the property $\forall \alpha < \kappa \cap \operatorname{dom}(E)$ $[E(\alpha) \times \alpha \times \{\alpha\} \subseteq \mathcal{M}]$, which makes the choice of the permutation of the index set possible (in the next paragraph) and makes it easy to find the desired automorphism of the forcing.

Let $\bar{\alpha} \in \delta \setminus M$. Now fix a permutation φ of the index set \mathcal{I} with $\varphi \upharpoonright (E(\alpha) \times \alpha \times \{\alpha\}) = E(\alpha) \times \alpha \times \{\alpha\}$ (for each $\alpha \leq \kappa$) which maps the $\leq \kappa$ -sized set $[S^{\bar{\alpha}} \cap (E(\alpha) \times \alpha \times \{\alpha\})] \setminus M$ into $[(E(\alpha) \times \alpha \times \{\alpha\}) \setminus \bigcup_{i < \delta} S^i] \cap M$ (otherwise fixing elements of $E(\alpha) \times \alpha \times \{\alpha\}$). This permutation φ of the index set induces an automorphism $\pi : \mathbb{P}(E_{\kappa}^{-}) \to \mathbb{P}(E_{\kappa}^{-})$ of the poset. As names are defined recursively, $\pi \in \operatorname{Aut}(\mathbb{P}(E_{\kappa}^{-}))$ induces a map $\pi^* \colon V_0^{(\mathbb{P}(E_{\kappa}^{-}))} \to V_0^{(\mathbb{P}(E_{\kappa}^{-}))}$ (where $V_0^{(\mathbb{P}(E_{\kappa}^{-}))}$ denotes the class of all $\mathbb{P}(E_{\kappa}^{-})$ -names) by $\pi^*(\tau) = \{\langle \pi^*(\sigma), \pi(p) \rangle \colon \langle \sigma, p \rangle \in \tau\}$. The automorphism π preserves antichains and the forcing relation. And as $\dot{X}^{\bar{\alpha}}$ is supposed to be a nice name, and any antichain of $\mathbb{P}(E_{\kappa}^{-})$ is of size $\leq \kappa$ and M is closed w.r.t. κ -sequences, we have $\pi^*(\dot{X}^{\bar{\alpha}}) \in M$.

Let G be a generic filter. Then $\pi''(G)$ is a generic filter. It is well-known that $\mathcal{M}[\pi''(G)] \preceq ((H(\theta))^{V_0[\pi''(G)]}, \in)$ (see [11, Theorem III.2.11.]). As $\dot{\mathcal{X}}$ is forced to be κ -mad, we have

$$\Vdash_{\pi(\mathbb{P}(E_{\kappa}^{-}))} \forall x \in {}^{\kappa}\kappa \; \exists \beta < \delta \; [|x \cap \dot{X}^{\beta}| = \kappa].$$

We can relativize the statement to $H(\theta)$, so

$$\Vdash_{\pi(\mathbb{P}(E_{\kappa}^{-}))} \forall x \in {}^{\kappa}\kappa \cap H(\theta) \; \exists \beta < \delta \cap H(\theta) \; [|x \cap \dot{X}^{\beta}| = \kappa].$$

But $\mathcal{M}[\pi''(G)] \preceq ((H(\theta))^{V_0[\pi''(G)]}, \in)$ and $M \cap Ord = M[\pi''(G)] \cap Ord$, so

 $\Vdash_{\pi(\mathbb{P}(E_{\kappa}^{-}))} \forall x \in {}^{\kappa}\kappa \cap M \ \exists \beta < \delta \cap M \ [|x \cap \dot{X}^{\beta}| = \kappa].$

As $\pi^*(\dot{X}^{\bar{\alpha}})$ was in $M \subseteq \mathcal{M}[\pi''(G)]$, we have

$$\Vdash_{\pi(\mathbb{P}(E_{\kappa}^{-}))} \exists \beta < \delta \cap M \ [|\pi^{*}(\dot{X}^{\bar{\alpha}}) \cap \dot{X}^{\beta}| = \kappa].$$

However $\pi^*(\dot{X}^\beta) = \dot{X}^\beta$ for ordinals $\beta \in M$ as the permutation π fixes the ordinals mentioned in \dot{X}^β for $\beta \in M$. Therefore we have

$$\Vdash_{\pi(\mathbb{P}(E_{\kappa}^{-}))} \exists \beta < \delta \cap M \ [|\pi^{*}(\dot{X}^{\bar{\alpha}}) \cap \pi^{*}(\dot{X}^{\beta})| = \kappa]$$

and by applying π^{-1} we have

$$\Vdash_{\mathbb{P}(E_{\kappa}^{-})} \exists \beta < \delta \cap M \ [|\dot{X}^{\bar{\alpha}} \cap \dot{X}^{\beta}| = \kappa],$$

contradicting the κ -madness of $\dot{\mathcal{X}}$ in the generic extension.

4. Global Spectra

In this section we show that the spectrum of κ -mad families at successors of regular cardinals together with \aleph_0 can be forced to be any prescribed family of κ -Blass spectra. We first give a lemma which we use later.

Lemma 4.1. Let κ be a regular cardinal. Any κ -c.c. forcing poset \mathbb{Q} preserves κ -mad families.

Proof. Suppose $\mathcal{X} = \{X_i \in [\kappa]^{\kappa} : i < \lambda\}$ is a kappa-mad family in the ground model. Suppose by way of contradiction that a condition $p \in \mathbb{Q}$ forces that \dot{A} is unbounded in κ and almost disjoint from X_i for each $i \in \lambda$, i.e. $p \Vdash \dot{A} \in [\kappa]^{\kappa} \land \forall i < \lambda \ [|\dot{A} \cap \check{X}_i| < \kappa]$. Let $X = \{\alpha \in \kappa : \exists q \leq p \ [q \Vdash \alpha \in \dot{A}]\}$. Then X is in the ground model and is unbounded in κ . But as \mathbb{Q} is κ -cc, for each $i < \lambda$ there is $\alpha_i < \kappa$ such that $p \Vdash \dot{A} \cap X_i \subseteq \alpha_i$. It follows that $X \cap X_i$ is also bounded by α_i for each i, contradicting the maximality of \mathcal{X} in the ground model. \Box

Next, we simultaneously add, for each regular cardinal κ of a class C, κ -mad families of sizes determined by closed sets $C(\kappa)$. Since (for now) we are aiming only to add (and not to exclude) sizes of κ -mad families, we do not have to require the sets $C(\kappa)$ to be κ -Blass spectra.

Definition 4.2. Let *C* be a class of regular cardinals, and for each $\kappa \in C$ let $C(\kappa)$ be a closed set of cardinals such that $\min(C(\kappa)) \geq \kappa^+$, $\operatorname{cof}(\max(C(\kappa))) > \kappa$ and $\forall \kappa, \kappa' \in C$ [$\kappa < \kappa' \to \max(C(\kappa)) \leq \max(C(\kappa'))$].

- (1) For each $\kappa \in C$ and any well-ordered set ξ let $\mathcal{I}_{\kappa,\xi} = \{(\kappa,\xi,\eta) : \eta < \xi\}$ be an index set of cardinality $|\xi|$ ensuring that $\mathcal{I}_{\kappa_1,\xi_1} \cap \mathcal{I}_{\kappa_2,\xi_2} = \emptyset$ whenever $\kappa_1 \neq \kappa_2$ or $\xi_1 \neq \xi_2$ where $\kappa_1, \kappa_2 \in C, \, \xi_1 \in C(\kappa_1), \, \xi_2 \in C(\kappa_2).$
- (2) For a cardinal α and a well-ordered set β , let the poset $\mathbb{Q}_{\mathcal{I}_{\alpha,\beta}}$ consists of all functions $p: \Delta^p \to [\alpha]^{<\alpha}$ such that Δ^p is in $[\mathcal{I}_{\alpha,\beta}]^{<\alpha}$ and $q \leq p$ iff:
 - $\Delta^p \subseteq \Delta^q$ and $\forall x \in \Delta^p [q(x) \supseteq p(x)],$
 - whenever (α, β, η_1) and (α, β, η_2) are distinct elements of Δ^p then

 $q(\alpha,\beta,\eta_1)\cap q(\alpha,\beta,\eta_2)\subseteq p(\alpha,\beta,\eta_1)\cap p(\alpha,\beta,\eta_2).$

- (3) For each $\kappa \in C$, let $\mathbb{P}(C(\kappa)) = \prod_{\xi \in C(\kappa)}^{<\kappa} \mathbb{Q}_{\mathcal{I}_{\kappa,\xi}}$ be the product with supports of size less than κ .
- (4) The forcing poset $\mathbb{P}(C)$ consists of elements $p \in \prod_{\kappa \in C} \mathbb{P}(C(\kappa))$ with Easton support, i.e. such that for every regular cardinal λ we have $|\{\alpha \in \lambda \cap C : p(\kappa) \neq 1\}| < \lambda$.

Lemma 4.3. Suppose λ is a regular cardinal and $\lambda^{<\lambda} = \lambda$. Let $C \subseteq \lambda^+$ and let $C(\kappa)$ (for each $\kappa \in C$) and $\mathbb{P}(C)$ be as in Definition 4.2. Then $\mathbb{P}(C)$ has the λ^+ -c.c..

Proof. Let $D = \{p_{\alpha} : \alpha < \lambda^+\} \subseteq \mathbb{P}(C)$ be a set of conditions; we have to show that D is not an antichain. For each $\alpha \in \lambda^+$, let $D_{\alpha} := \bigcup \{ \operatorname{dom}(p_{\alpha}(\kappa)(\delta)) : \kappa \in C, \delta \in C(\kappa) \}$. By definition of the conditions in $\mathbb{P}(C)$, $|D_{\alpha}| < \lambda$ for each $\alpha < \lambda^+$. By the assumption $\lambda^{<\lambda} = \lambda$, we can apply the Δ -System Lemma and conclude that there is a set $A \in [\lambda^+]^{\lambda^+}$ and a root R such that $\forall \alpha, \beta \in A \ [\alpha \neq \beta \rightarrow D_{\alpha} \cap D_{\beta} = R]$. However, as $\lambda^{|R|} \leq \lambda^{<\lambda} = \lambda < \lambda^+$, there must exist $\alpha', \beta' \in A$, such that $\alpha' \neq \beta'$ and for each $(\kappa, \delta, \gamma) \in R$, $p_{\alpha'}(\kappa)(\delta)(\kappa, \delta, \gamma) = p_{\beta'}(\kappa)(\delta)(\kappa, \delta, \gamma)$. This implies that $p_{\alpha'} \not\perp p_{\beta'}$ showing that D is not an antichain.

Lemma 4.4. If C, $\{C(\kappa) : \kappa \in C\}$ and $\mathbb{P}(C)$ are as in Definition 4.2 and λ is an ordinal, then $\mathbb{P}(C) \cong \mathbb{P}(C_{\lambda}^{+}) \times \mathbb{P}(C_{\lambda}^{-})$.

Lemma 4.5. (GCH) If C, $\{C(\kappa) : \kappa \in C\}$ and $\mathbb{P}(C)$ are as in Definition 4.2, then $\mathbb{P}(C)$ preserves cardinals.

Proof. It suffices to show that any regular uncountable cardinal δ of the ground model V, remains regular in V[K], where K is $\mathbb{P}(C)$ -generic over V. Suppose by way of contradiction that there is a cardinal δ such that $\gamma = (\operatorname{cof}(\delta))^{V[K]} < \delta$. As cofinalities are regular and regularity is downwards absolute, γ is regular in V[K] and V. Let $f \in V[K]$ be such that $f \colon \gamma \to \delta$ and $\sup(\operatorname{ran}(f)) = \delta$. By Lemma 4.4 and the Product Lemma, V[K] = V[H][G] holds, where H is $\mathbb{P}(C_{\gamma}^+)^V$ -generic over V and G is $\mathbb{P}(C_{\gamma}^-)^V$ -generic over V[H]. However, as $\mathbb{P}(C_{\gamma}^+)^V$ is γ^+ -closed in $V, V \models$ GCH and γ is regular, $\gamma^{<\gamma} = \gamma$ holds in V[H] and $\mathbb{P}(C_{\gamma}^-)^V = \mathbb{P}(C_{\gamma}^-)^{V[H]}$. So by Lemma 4.3, $\mathbb{P}(C_{\gamma}^-)^V$ has the γ^+ -c.c. in V[H]. By the Approximation Lemma (see [7, Lemma IV.7.8]) there is a function $F \in V[H]$ such that $F \colon \gamma \to \mathcal{P}(\delta)$ and $\forall \xi \in \gamma [f(\xi) \in F(\xi) \land (|F(\xi)| \leq \gamma)^{V[H]}]$. However, $\mathbb{P}(C_{\gamma}^+)^V$ was γ^+ -closed in V, so $F \in V$ and $\forall \xi \in \gamma [f(\xi) \in F(\xi) \land (|F(\xi)| \leq \gamma)^V]$. This is contradicting the regularity of γ in V, because $|\bigcup_{\xi < \gamma} F(\gamma)| \leq \gamma$ and $\sup(\bigcup_{\xi < \gamma} F(\gamma)) = \delta$.

Theorem 4.6. Let C, $\{C(\kappa) : \kappa \in C)\}$ and $\mathbb{P}(C)$ be as in Definition 4.2. Then:

$$V^{\mathbb{P}(C)} \vDash \forall \kappa \in C \ [\mathfrak{sp}(\mathfrak{a}_{\kappa}) \supseteq C(\kappa)].$$

Proof. Let K be $\mathbb{P}(C)$ -generic over the ground model. For each $\kappa \in C$, $\delta \in C(\kappa)$ and $\xi \in \delta$, let $A_{\delta,\xi}^{\kappa} = \bigcup \{ p(\kappa)(\delta)(\kappa, \delta, \xi) \colon p \in K \}$. For each $\kappa \in C$ and $\delta \in C(\kappa)$ let $\mathcal{A}_{\delta}^{\kappa} = \{ A_{\delta,\xi}^{\kappa} \colon \xi \in \delta \}$. We show that for each $\kappa \in C$ and $\delta \in C(\kappa)$, $V^{\mathbb{P}(C)} \models \mathcal{A}_{\delta}^{\kappa}$ is κ -mad. Let $\kappa \in C$ and $\delta \in C(\kappa)$ be fixed.

The set $\mathcal{A}^{\kappa}_{\delta}$ is almost disjoint: Let $\alpha, \beta \in \delta$ and $\alpha \neq \beta$. The conditions $p \in \mathbb{P}(C)$ such that $(\kappa, \delta, \alpha), (\kappa, \delta, \beta) \in \Delta^{p(\kappa)(\delta)}$ are dense in $\mathbb{P}(C)$. So there is $q \in K$ such that $(\kappa, \delta, \alpha), (\kappa, \delta, \beta) \in \Delta^{q(\kappa)(\delta)}$. Then $A^{\kappa}_{\delta,\alpha} \cap A^{\kappa}_{\delta,\beta} = p(\kappa)(\delta)(\kappa, \delta, \alpha) \cap p(\kappa)(\delta)(\kappa, \delta, \beta)$, which is of size $<\kappa$.

Furthermore, $\mathcal{A}_{\delta}^{\kappa}$ is maximal: Let \dot{X} be a $\mathbb{P}(C)$ -name for an element in $[\kappa]^{\kappa}$. Again by Lemma 4.4, $\mathbb{P}(C) \cong \mathbb{P}(C_{\kappa}^{+}) \times \mathbb{P}(C_{\kappa}^{-}), V[K] = V[H][G]$, where H is $\mathbb{P}(C_{\kappa}^{+})^{V}$ -generic over V and G is $\mathbb{P}(C_{\kappa}^{-})^{V}$ -generic over V[H]. By the same reason as in the previous proof, $\mathbb{P}(C_{\kappa}^{-})^{V} = \mathbb{P}(C_{\kappa}^{-})^{V[H]}$ and $\mathbb{P}(C_{\kappa}^{-})^{V}$ has the κ^{+} -c.c. in V[H]. The first part $\mathbb{P}(C_{\kappa}^{+})$ is κ^{+} -closed in V, so it does not add new subsets of κ . Hence it suffices to show that $\mathcal{A}_{\delta}^{\kappa}$ is κ -mad in the extension by $\mathbb{P}(C_{\kappa}^{-})$ regarding V[H] as the ground model. By the κ^{+} -c.c. of $\mathbb{P}(C_{\kappa}^{-}), \dot{X}$ involves only $\leq \kappa$ -many conditions and $\delta \geq \kappa^{+}$. So there is an $(\kappa, \delta, \alpha) \notin \Delta^{p'(\kappa)(\delta)}$ for any condition p' involved in \dot{X} . We show that $V[H][G] \models |X \cap A_{\delta,\alpha}^{\kappa}| = \kappa$, which will finish the proof.

Suppose that there is a $\gamma < \kappa$ and a condition $p \in G$ such that $p \Vdash \dot{X} \cap \dot{A}_{\delta,\alpha}^{\kappa} \subseteq \gamma$.

Recall that $|\Delta^{p(\kappa)(\delta)}| < \kappa$ and $p(\kappa)(\delta) \colon \Delta^{p(\kappa)(\delta)} \to [\kappa]^{<\kappa}$. Let $q \in G$ be a condition involved in \dot{X} such that for some $\rho > \gamma$ and

$$\rho > \bigcup \{ p(\kappa)(\delta)(\kappa, \delta, \mu) \colon (\kappa, \delta, \mu) \in \Delta^{p(\kappa)(\delta)} \}, \tag{*}$$

 $q \Vdash \check{\rho} \in X$. As $p, q \in G$, p and q are compatible. Now consider the condition $r \in \mathbb{P}(C_{\kappa}^{-})$ defined as follows:

• $\operatorname{supp}(r) = \operatorname{supp}(q) \cup \operatorname{supp}(p) \cup \{\kappa\}$ • $\operatorname{supp}(r(\eta)) = \begin{cases} \operatorname{supp}(p(\eta)) \cup \operatorname{supp}(q(\eta)) \cup \{\delta\} & \text{for } \eta = \kappa \\ \operatorname{supp}(p(\eta)) \cup \operatorname{supp}(q(\eta)) & \text{for } \eta \in \operatorname{supp}(r) \setminus \{\kappa\} \end{cases}$ • $\Delta^{r(\eta)(\theta)} = \begin{cases} \Delta^{p(\eta)(\theta)} \cup \Delta^{q(\eta)(\theta)} \cup \{(\kappa, \delta, \alpha)\} & \text{if } \eta = \kappa \land \theta = \delta \\ \Delta^{p(\eta)(\theta)} \cup \Delta^{q(\eta)(\theta)} & \text{if } \eta \in \operatorname{supp}(r), \theta \in \operatorname{supp}(r(\eta)), (\eta, \theta) \neq (\kappa, \delta) \end{cases}$

Furthermore, $r(\kappa)(\delta)(\kappa, \delta, \alpha) = p(\kappa)(\delta)(\kappa, \delta, \alpha) \cup \{\rho\}$ (note that $(\kappa, \delta, \alpha) \notin \Delta^{q(\kappa)(\delta)}$ by its choice) and $\forall \eta \in \operatorname{supp}(r) \ \forall \theta \in \operatorname{supp}(r(\eta)) \ \forall (\eta, \theta, \mu) \in \Delta^{r(\eta)(\theta)} \ [(\eta, \theta, \mu) \neq (\kappa, \delta, \alpha) \to r(\eta)(\theta)(\eta, \theta, \mu) = p(\eta)(\theta)(\eta, \theta, \mu) \cup q(\eta)(\theta)(\eta, \theta, \mu)]$. Now r extends both p (by (*)) and q and $r \Vdash \rho \in \dot{X}$ (as $r \leq q$) and $r \Vdash \rho \in \dot{A}^{\kappa}_{\delta,\alpha}$ contradicting that $r \Vdash \dot{B} \cap \dot{A}^{\kappa}_{\delta,\alpha} \subseteq \gamma$ (as $r \leq p$ and $\rho > \gamma$).

Remark 4.7. One can show by a counting nice names argument that in Theorem 4.6, also $V^{\mathbb{P}(C)} \vDash \forall \kappa \in C \ [\mathfrak{c}_{\kappa} = \max(C(\kappa))]$ holds.

Now we start with the exclusion of values. In order to do this we will replace the closed sets $C(\kappa)$ by κ -Blass spectra $B(\kappa)$. We first give a lemma.

Lemma 4.8.

- (1) Let λ be a regular cardinal. If $\beta \leq \alpha$ are two ordinals, then $\mathbb{Q}_{\mathcal{I}_{\lambda,\beta}} \ll \mathbb{Q}_{\mathcal{I}_{\lambda,\alpha}}$.
- (2) Let λ be a regular cardinal. If X is an index set and C, D: X → Card such that ∀x ∈ X [C(x) ≤ D(x)], then Π^{<λ}_{ξ∈X} Q<sub>I_{λ,C(ξ)} < Π^{<λ}_{ξ∈X} Q<sub>I_{λ,D(ξ)}.
 (3) If C is a set of regular cardinals, and for each λ ∈ C, C_λ, D_λ: X_λ → Card are two functions
 </sub></sub>
- (3) If C is a set of regular cardinals, and for each $\lambda \in C$, C_{λ} , $D_{\lambda} \colon X_{\lambda} \to Card$ are two functions on some index set X_{λ} such that $\forall x \in X_{\lambda} \ [C_{\lambda}(x) \leq D_{\lambda}(x)]$, then the Easton supported product $\prod_{\lambda \in C} \prod_{\xi \in X_{\lambda}}^{<\lambda} \mathbb{Q}_{\mathcal{I}_{\lambda,C_{\lambda}(\xi)}}$ is a complete suborder of the Easton supported product $\prod_{\lambda \in C} \prod_{\xi \in X_{\lambda}}^{<\lambda} \mathbb{Q}_{\mathcal{I}_{\lambda,D_{\lambda}(\xi)}}$.

Proof. (1) Recall the definition of $\mathbb{Q}_{\mathcal{I}_{\lambda,\alpha}}$ for an ordinal $\alpha \ (>\lambda)$. It is known that this forcing can be decomposed in a two-step iteration as follows: Let $\beta \leq \alpha$ and let G be a $\mathbb{Q}_{\mathcal{I}_{\lambda,\beta}}$ -generic over the ground model V and let $\mathcal{A} = \{A_i : i < \beta\}$ be the (maximal) almost disjoint family added by $\mathbb{Q}_{\mathcal{I}_{\lambda,\beta}}$. In V[G] let $\mathbb{R}_{\mathcal{I}_{\lambda,\alpha\setminus\beta}}$ consist of pairs (p, H), where $p \colon \Delta^p \to [\lambda]^{<\lambda}$ such that $\Delta^p \in [\mathcal{I}_{\lambda,\alpha\setminus\beta}]^{<\lambda}$, $H \in [\beta]^{<\lambda}$ with $(p, H) \leq (q, K)$ iff $p \leq_{\mathbb{Q}_{\mathcal{I}_{\lambda,\alpha}}} q$, $K \subseteq H$ and for every $j \in \Delta^q$ and $i \in K$, $p(\lambda, \alpha, j) \cap A_i \subseteq q(\lambda, \alpha, j) \cap A_i$ holds. Then $\mathbb{Q}_{\mathcal{I}_{\lambda,\alpha}} \simeq \mathbb{Q}_{\mathcal{I}_{\lambda,\beta}} * \mathbb{R}_{\mathcal{I}_{\lambda,\alpha\setminus\beta}}$.

(2) We make a similar observation for products. Let λ be a regular cardinal and let C and D be functions on the same index set X as in the assumption of (2). Then $\prod_{\xi \in X}^{<\lambda} \mathbb{Q}_{\mathcal{I}_{\lambda,C(\xi)}}$ is a complete suborder of $\prod_{\xi \in X}^{<\lambda} \mathbb{Q}_{\mathcal{I}_{\lambda,D(\xi)}}$, as the later can be decomposed as follows: Let G be a $\prod_{\xi \in X}^{<\lambda} \mathbb{Q}_{\mathcal{I}_{\lambda,C(\xi)}}$ -generic over V. In V[G] consider the product $P' := \prod_{i \in X}^{<\lambda} \mathbb{R}_{\mathcal{I}_{\lambda,D(i)\setminus C(i)}}$. Then $\prod_{\xi \in X}^{<\lambda} \mathbb{Q}_{\mathcal{I}_{\lambda,D(\xi)}} \simeq \prod_{\xi \in X}^{<\lambda} \mathbb{Q}_{\mathcal{I}_{\lambda,C(\xi)}} * \dot{P'}$.

(3) Finally, if we have a set C of regular cardinals and for each $\lambda \in C$ two closed sets of cardinals C_{λ} and D_{λ} as in the assumption of (3). Then we have that the Easton supported product $\prod_{\lambda \in C} \prod_{\xi \in X_{\lambda}}^{<\lambda} \mathbb{Q}_{\mathcal{I}_{\lambda,C_{\lambda}(\xi)}} =: P$ is a complete suborder of the Easton supported product

 $\prod_{\lambda \in C} \prod_{\xi \in X_{\lambda}}^{<\lambda} \mathbb{Q}_{\mathcal{I}_{\lambda, D_{\lambda}(\xi)}} =: Q. \text{ Let } G \text{ be a } P \text{-generic over } V. \text{ In } V[G] \text{ consider the Easton supported}$ product $P' := \prod_{\lambda \in C} \prod_{\xi \in X_{\lambda}}^{<\lambda} \mathbb{R}_{\mathcal{I}_{\lambda, D_{\lambda}(\xi) \setminus C_{\lambda}(\xi)}}.$ Then $Q \simeq P * \dot{P}'.$

Theorem 4.9. (GCH) Let C be the class of successors of regular cardinals together with \aleph_0 and $\{B(\kappa): \kappa \in C\}$ be a family of κ -Blass spectra. Let $\mathbb{P}(C)$ be as in Definition 4.2. Then,

$$V^{\mathbb{P}(C)} \vDash \forall \kappa \in C \ [\mathfrak{sp}(\mathfrak{a}_{\kappa}) = B(\kappa)].$$

Proof. First, the positive requirement, i.e. the requirement that in the generic extension there is for each $\kappa \in C$ and $\delta \in B(\kappa)$ a κ -mad family of size δ , is done by Theorem 4.6.

Second, the negative requirement is verified: Fix $\kappa \in C$. We show that there is no κ -mad family of size $\lambda \notin B(\kappa)$ in the final extension. Note that $\mathbb{P}(C) \cong \mathbb{P}(C_{\kappa}^{-}) \times \mathbb{P}(C_{\kappa}^{+})$ and $\mathbb{P}(C_{\kappa}^{+})$ is κ^{+} -closed, hence does not add new κ -reals. So, by considering $V^{\mathbb{P}(C_{\kappa}^{+})}$ as the ground model, it is sufficient to show

$$V^{\mathbb{P}(C_{\kappa})} \models$$
 "there are no κ -mad families of size λ ". (1)

For this, we show that

$$V^{\mathbb{P}'(C_{\kappa}^{-})} \vDash$$
 "there are no κ -mad families of size λ ". (2)

for a suitable $\mathbb{P}(C_{\kappa}^{-}) \ll \mathbb{P}'(C_{\kappa}^{-})$. By use of Lemma 4.1, we will argue that (2) implies (1). Also note that $\mathbb{P}(C_{\kappa}^{+})$ preserves GCH at and below κ (as $\mathbb{P}(C_{\kappa}^{+})$ is κ^{+} -closed and does not add new sequences of length $\leq \kappa$).

Let λ' be greater than λ , $\max(B(\kappa))$ and $\max(B(\bar{\kappa}))$ for every $\bar{\kappa} \in C \cap \kappa$. In $\mathbb{P}(C_{\kappa}^{-})$ replace $\mathbb{Q}_{\xi}^{\bar{\kappa}}$ ($\bar{\kappa} \in C \cap \kappa, \xi \in B(\bar{\kappa})$) by $\mathbb{Q}_{\lambda'}^{\bar{\kappa}}$. This gives us $\mathbb{P}'(C_{\kappa}^{-})$. Now we have to verify (2).

Let $\lambda \notin B(\kappa)$. Define μ to be $\max(B(\kappa) \cap \lambda)$. Note that $\operatorname{cof}(\mu) > \kappa$ (by Definition 2.1(2)) and $|B(\kappa)| \leq \mu$ (by Definition 2.1(3)).

Suppose by way of contradiction that $\dot{\mathcal{A}} = \{\dot{a}_{\alpha} : \alpha < \lambda\}$ is forced by the maximal element in $\mathbb{P}'(C_{\kappa}^{-})$ to be a κ -mad family of size λ in $V^{\mathbb{P}'(C_{\kappa}^{-})}$. We may assume that each \dot{a}_{α} is a nice name.

We identify a nice name \dot{x} for a κ -real with κ -many maximal antichains $\{A_{\alpha}(\dot{x})\}_{\alpha < \kappa}$ each of cardinality κ , such that the conditions in $A_{\alpha}(\dot{x})$ decide " $\check{\alpha} \in \dot{x}$ ". We refer to $\Delta(\dot{x}) = \bigcup_{\alpha \in \kappa} A_{\alpha}(\dot{x})$ as the set of conditions involved in \dot{x} . The set

$$J(\dot{x}) = \bigcup_{p \in \Delta(\dot{x})} \bigcup_{\xi \in \text{supp}(p)} \bigcup_{\beta \in \text{supp}(p(\xi))} \Delta^{p(\xi)(\beta)}$$

is called the support of \dot{x} .

For each $\alpha \in \lambda$ let J_{α} be the support of \dot{a}_{α} .

Let θ be large enough that $\mathbb{P}'(C_{\kappa}^{-}) \in H(\theta)$ and $V \models \operatorname{cof}(\theta) > |\mathbb{P}'(C_{\kappa}^{-})|$. Let $\mathcal{M} \preceq H(\theta)$ be an elementary submodel such that $|\mathcal{M}| = \mu, \ \mu \subseteq M, \ M^{\kappa} \subseteq M, \ C_{\kappa}^{-} \subseteq M, \ B(\kappa) \subseteq M, \ \lambda' \in M, \ \mathbb{P}'(C_{\kappa}^{-}) \in M$ and M contains all other relevant parameters.

Let $\bar{\alpha} \in \lambda \setminus M$. Fix a permutation of the index set $\mathcal{I} = \bigcup_{\xi \in C_{\kappa}^{-\beta} \in B(\xi)} \bigcup_{\xi \in \mathcal{I}_{\kappa}^{-\beta} \in B(\xi)} \mathcal{I}_{\xi,\beta}$ which fixes $\mathcal{I}_{\kappa,\beta}$ for

 $\beta \leq \mu$, and for $\xi \neq \kappa \lor \beta > \mu$ maps the $\leq \kappa$ -sized set $J_{\bar{\alpha}} \cap \mathcal{I}_{\xi,\beta} \setminus M$ into $(\mathcal{I}_{\xi,\beta} \setminus \bigcup_{i < \lambda} J_i) \cap M$ (otherwise fixing elements of $\mathcal{I}_{\xi,\beta}$). Such a permutation of the index set exists, because if $\beta > \mu$, then $\beta > \lambda$ as well. Consequently $|\bigcup_{i < \lambda} J_i| = \lambda * \kappa = \lambda$, and $|\mathcal{I}_{\kappa,\beta} \setminus \bigcup_{i < \lambda} J_i| = \beta > \kappa$ holds in

 $H(\theta)$ and by elementarity also in \mathcal{M} . The same holds if $\xi \neq \kappa$, because we enlarged the index set to λ' , i.e. $|\mathcal{I}_{\xi,\lambda'} \setminus \bigcup_{i < \lambda} J_i| = \lambda' > \kappa$. This permutation of the index set \mathcal{I} induces an automorphism $\pi : \mathbb{P}'(C_{\kappa}^-) \to \mathbb{P}'(C_{\kappa}^-)$ of the poset. As names are defined recursively, $\pi \in \operatorname{Aut}(\mathbb{P}'(C_{\kappa}^-))$ induces a map $\pi^* : V^{(\mathbb{P}'(C_{\kappa}^-))} \to V^{(\mathbb{P}'(C_{\kappa}^-))}$ (where $V^{(\mathbb{P}'(C_{\kappa}^-))}$ denotes the class of all $\mathbb{P}'(C_{\kappa}^-)$ -names) by $\pi^*(\tau) = \{\langle \pi^*(\sigma), \pi(p) \rangle : \langle \sigma, p \rangle \in \tau \}$. The automorphism π preserves antichains and the forcing relation. And as $\dot{a}_{\bar{\alpha}}$ is supposed to be a nice name, and any antichain of $\mathbb{P}'(C_{\kappa}^-)$ is of size $\leq \kappa$ (by the κ^+ -c.c. of $\mathbb{P}'(C_{\kappa}^-)$) and M is closed w.r.t. κ -sequences, we have $\pi^*(\dot{a}_{\bar{\alpha}}) \in M$.

Let G be a generic filter. Then $\pi''(G)$ is a generic filter. It is well-known that $\mathcal{M}[\pi''(G)] \preceq ((H(\theta))^{V[\pi''(G)]}, \in)$ (see [11, Theorem III.2.11.]). As $\dot{\mathcal{A}}$ is forced to be κ -mad, we have

$$\Vdash_{\pi(\mathbb{P}'(C_{\kappa}^{-}))} \forall x \in {}^{\kappa}\kappa \; \exists \beta < \lambda \; [|x \cap \dot{a}_{\beta}| = \kappa]$$

We can relativize the statement to $H(\theta)$, so

$$\Vdash_{\pi(\mathbb{P}'(C_{\kappa}^{-}))} \forall x \in {}^{\kappa} \kappa \cap H(\theta) \; \exists \beta < \lambda \cap H(\theta) \; [|x \cap \dot{a}_{\beta}| = \kappa].$$

But $\mathcal{M}[\pi''(G)] \preceq ((H(\theta))^{V[\pi''(G)]}, \in)$ and $M \cap Ord = M[\pi''(G)] \cap Ord$, so

$$\Vdash_{\pi(\mathbb{P}'(C_{\kappa}^{-}))} \forall x \in {}^{\kappa} \kappa \cap M \ \exists \beta < \lambda \cap M \ [|x \cap \dot{a}_{\beta}| = \kappa]$$

As $\pi^*(\dot{a}_{\bar{\alpha}})$ was in $M \subseteq \mathcal{M}[\pi''(G)]$, we have

$$\Vdash_{\pi(\mathbb{P}'(C_{\kappa}^{-}))} \exists \beta < \lambda \cap M \ [|\pi^*(\dot{a}_{\bar{\alpha}}) \cap \dot{a}_{\beta}| = \kappa].$$

However $\pi^*(\dot{a}_\beta) = \dot{a}_\beta$ for ordinals $\beta \in M$ as the permutation π fixes the ordinals mentioned in \dot{a}_β for $\beta \in M$. Therefore we have

$$\Vdash_{\pi(\mathbb{P}'(C_{\kappa}^{-}))} \exists \beta < \lambda \cap M \ [|\pi^{*}(\dot{a}_{\bar{\alpha}}) \cap \pi^{*}(\dot{a}_{\beta})| = \kappa]$$

and by applying π^{-1} we have

$$\Vdash_{\mathbb{P}'(C_{\kappa}^{-})} \exists \beta < \lambda \cap M \ [|\dot{a}_{\bar{\alpha}} \cap \dot{a}_{\beta}| = \kappa],$$

contradicting the κ -madness of $\dot{\mathcal{A}}$ in the generic extension and verifying (2).

However, (2) implies (1): If $\mathbb{P}(C_{\kappa}^{-})$ did add a κ -mad family of an undesired size, this κ -mad family would be preserved, by Lemma 4.1, in the extension by $\mathbb{P}'(C_{\kappa}^{-})$ since the quotient of $\mathbb{P}'(C_{\kappa}^{-})$ over $\mathbb{P}(C_{\kappa}^{-})$ is κ -c.c (here we use that κ is the successor of a regular cardinal or equal to \aleph_{0}). However we showed that there is no κ -mad family of an undesired size in the extension by $\mathbb{P}'(C_{\kappa}^{-})$.

5. Questions

We conclude the paper, with some remaining open questions. It still remains of interest, if the result in Theorem 4.9 still holds if the assumption of being successor of a regular for elements of the intended spectrum at κ is omitted. More precisely one can ask:

Question 5.1. Let C be a class of regular cardinals and $\{B(\kappa) : \kappa \in C\}$ be a family of κ -Blass spectra. Is there a cardinal-preserving forcing extension satisfying $\forall \kappa \in C \; [\mathfrak{sp}(\mathfrak{a}_{\kappa}) = B(\kappa)]$?

GLOBAL MAD SPEACTRA

It is still open which sets of cardinals can be realized as the spectrum of \aleph_0 -madness. Not all of the requirements given by the notion of a Blass-spectrum are in general necessary (see [12]), and in fact giving a characterization of those sets which can be realized as $\mathfrak{sp}(\mathfrak{a})$ remains open:

Question 5.2. When can a set of cardinals be realized as $\mathfrak{sp}(\mathfrak{a})$ in a cardinal preserving extension?

Finally, concerning Theorems 3.10 and 3.13 one can ask:

Question 5.3. Is $\mathfrak{a}_{\kappa} = \kappa^+ = \mathfrak{b}_{\kappa} < \mathfrak{d}_{\kappa} = \mathfrak{c}_{\kappa}$ or $\mathfrak{sp}(\mathfrak{a}_{\kappa}) = \{\kappa^+, 2^{\kappa}\}$ consistent globally in the presence of large cardinals?

References

- A. Blass: Simple Cardinal Characteristics of the Continuum, in: "Set theory of the reals", Israel Conference Proceedings, vol.6, pp. 63-90, Am. Math. Soc., Providence, 1993.
- [2] J. Brendle: Mad Families and Iteration Theory, in: Y. Zhang (ed.): "Logic and Algebra", Contemporary Mathematics; 302. Providence, RI: American Math. Soc., 2002.
- [3] J. Cummings, S. Shelah: Cardinal invariants above the continuum, Annals of Pure and Applied Logic 75 (1995), 251-268.
- [4] V. Fischer: Maximal Cofinitary Groups Revisited, Math. Log. Quart. 61 (2015), 367-379.
- [5] S. Hechler: Short completed nested sequences in βN/N and small maximal almost disjoint families, General Topology and itse Applications 2 (1972), 139-149.
- [6] K. Kunen: Set Theory. An Introduction to Independence Proofs, North-Holland, Amsterdam/New York/Oxford, 1980.
- [7] K. Kunen: Set Theory, College Publications, London, 2013.
- [8] D. Raghavan, S. Shelah: Two results on cardinal invariants at uncountable cardinals; in: Proceedings of the 14th and 15th Asian Logic Conferences (Mumbai, India and Daejeon, South Korea), World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, pages 129-138. World Scientific, 2019.
- [9] D. Raghavan, S. Shelah: Boolean ultrapowers and iterated forcing, preprint.
- [10] S. Shelah, S: Two cardinal invariants of the continuum ($\mathfrak{d} < \mathfrak{a}$) and FS linearly ordered iterated forcing, Acta Math., 192(2), 2004, 187-223.
- [11] S. Shelah, S: Proper and Improper Forcing, Springer-Verlag, Berlin/Heidelberg, 1998.
- [12] S. Shelah, O. Spinas: Mad spectra, The Journal of Symbolic Logic (2015): 901-916.

INSTITUTE OF MATHEMATICS, KURT GÖDEL RESEARCH CENTER, UNIVERSITY OF VIENNA, KOLINGASSE 14-16, 1090 WIEN, AUSTRIA

Email address: oemer.bag@univie.ac.at

INSTITUTE OF MATHEMATICS, KURT GÖDEL RESEARCH CENTER, UNIVERSITY OF VIENNA, KOLINGASSE 14-16, 1090 WIEN, AUSTRIA

Email address: vera.fischer@univie.ac.at

INSTITUTE OF MATHEMATICS, KURT GÖDEL RESEARCH CENTER, UNIVERSITY OF VIENNA, KOLINGASSE 14-16, 1090 WIEN, AUSTRIA

Email address: sdf@logic.univie.ac.at