
HIGHER INDEPENDENCE

VERA FISCHER AND DIANA CAROLINA MONTOYA

Abstract. We study higher analogues of the classical independence number on ω. For κ regular
uncountable, we denote by i(κ) the minimal size of a maximal κ-independent family. We establish
ZFC relations between i(κ) and the standard higher analogues of some of the classical cardinal
characteristics, e.g. r(κ) ≤ i(κ) and d(κ) ≤ i(κ).

For κ measurable, assuming that 2κ = κ+ we construct a maximal κ-independent family
which remains maximal after the κ-support product of λ many copies of κ-Sacks forcing. Thus,
we show the consistency of κ+ = d(κ) = i(κ) < 2κ. We conclude the paper with interesting open
questions and discuss difficulties regarding other natural approaches to higher independence.

1. Introduction

A family A contained in [ω]ω is said to be independent if for every two finite disjoint subfamilies
B and C the set

⋂
B\

⋃
C is infinite. We refer to such sets as boolean combinations. The least size

of a maximal (under inclusion) independent family is denoted i. For an excellent introduction to
the subject of cardinal characteristics of the continuum and definition of various characteristics
we refer the reader to [2].

The past decade has seen an increased volume of work regarding natural higher analogues for
uncountable cardinals κ of the classical cardinal characteristics. However, even though we already
have a comparatively rich literature in this area there is very little known about analogues of the
notion of independence. Even in the classical, countable setting, the independence number, and
the notion of independence in general, do not seem to be that well-studied. Among the many
open questions surrounding independence are the consistency of cof(i) = ω and the consistency
of i < a. A difficulty in the study of the higher independence number is the fact that it is
not a priori clear what the natural generalization of the classical independence number should
be. Given an uncountable cardinal κ1 one may consider subfamilies A of [κ]κ which have the
property that every boolean combination generated by strictly less than κ many elements of A is
unbounded. That is, one may require that for every two disjoint subfamilies B and C of A, such
that |B| < κ and |C| < κ, the boolean combination

⋂
B\

⋃
C is unbounded. We refer to such
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families as strongly independent. A major problem presenting itself in the study of this notion of
strong independence on κ is the very existence of maximal, under inclusion, strongly independent
families. Results regarding these families, together with a number of interesting open questions
are included in the last section of the paper. An earlier study of the notion of strong independence
can be found in [20], where it is shown that the existence of a maximal strongly-ω1-independent
family is equiconsistent with the existence of a measurable.

A more restrictive, but fruitful, approach towards the generalization of the classical notion of
independence is the requirement that for a given family A ⊆ [κ]κ the finitely generated boolean
combinations are unbounded. That is, given a family A ⊆ [κ]κ we say that A is κ-independent if
for every two disjoint finite subfamilies B and C contained in A, the set

⋂
B\

⋃
C is unbounded.2

The existence of a maximal under inclusion κ-independent family is provided by the Axiom of
Choice and thus given an uncountable regular cardinal κ, one can define the higher independence
number, denoted i(κ), to be the minimal size of a maximal κ-independent family. A standard
diagonalization argument going over all boolean combinations, shows that κ+ ≤ i(κ). Classical
examples of independent families of cardinality 2ω do generalize into the uncountable and provide
the existence of κ-independent families and so of maximal κ-independent families of cardinality
2κ (see Lemma 4). An example of a strongly κ-independent family of cardinality 2κ, under some
additional hypothesis on κ, is provided in Lemma 56.

One of the main breakthroughs in the study of the classical independence number is the con-
sistency of i < u, established in 1992 by S. Shelah (see [23]). The consistency proof carries a
somewhat hidden construction of a Sacks indestructible maximal independent family, that is a
maximal independent family which remains maximal after the countable support product and
countable support iterations of Sacks forcing. A tree version of Shelah’s poset, known as party
forcing, has been used in [7] to establish the consistency of i = f < u, where f is the free sequences
number.3 For recent studies on Sacks indestructible, co-analytic maximal independent families
see [4], as well as [9, 1, 25]. In this paper, we prove:

Theorem. Let κ be a measurable cardinal and let 2κ = κ+. Then there is a maximal κ-
independent family which remains maximal after the κ-support product of λ-many copies of
κ-Sacks forcing.

The existence of this indestructible maximal κ-independent family is closely related to the
properties of a normal measure U on κ. With the indestructible family A, we associate a κ+-
complete filter fil<ω,κ(A) which is properly contained in U and its elements meet every boolean
combination on an unbounded set. The properties of this filter capture to a great extent the
indestructibility of the associated independent family.

2Clearly every strongly independent family is independent.
3Partial orders and their tree versions often differ. Good example is given by the poset for adding an infinitely

often equal real and its tree version. The former adds a Silver real and so kills all p-points (see [8]), while the latter
preserves p-points (see [15]).
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For readers familiar with the countable setting, we will draw a more detailed comparison. As
developed originally in the work of Shelah [23] and later analyzed for example in [7], an indepen-
dent family which is maximal in a strong sense and whose density filter (a similarly to fil<ω,κ(A)

associated filter) is selective (which means both a P -set and Q-set) is indestructible by countable
support products and iterations of Sacks forcing. While fil<ω,κ(A) is a κ-P -set, in the sense that
every subfamily of cardinality ≤ κ has a pseudo-intersection in the filter (see Definition 20 and
Lemma 21), the role of the Q-set property from the countable setting is taken by the fact that for
every ground model strictly increasing function in κκ there is a set in the filter whose enumeration
function grows faster than the given function (see Lemma 22 and Corollary 23).4 In both, the
countable and the uncountable setting a strengthening of the maximality of the corresponding
maximal independent family plays an important role. In the countable setting this strengthen-
ing is known as dense maximality, a property which originally appears in [16]. The κ-maximal
independent family which we construct is densely maximal in a similar sense (see Definition 24).
Moreover we make an explicit use of an equivalent characterisation of dense maximality given
in Lemma 25, characterization which plays a key role in our main theorem. An analogue to
the countable setting of the overall approach, which we take in this paper can be found in the
more recent studies [1, 25, 9]. Note that an analogue of the equivalent characterization given in
Lemma 25 implicitly appears in [23].

Finally, the existence of a κ-mad family, which remains maximal after an arbitrarily long
κ-supported product of κ-Sacks reals is a straightforward generalization of the classical case.
Moreover, if d(κ) = κ+ then a(κ) = κ+ (see [5] and [22]). Thus our result leads to the following
statement:

Theorem. Let κ be a measurable cardinal and 2κ = κ+. Then there is a cardinal preserving
generic extension in which

a(κ) = d(κ) = r(κ) = i(κ) = κ+ < 2κ.

One of the very interesting open questions regarding the classical independence number is the
consistency of i < a. As a very partial result towards this question we obtain the following:

Corollary. Let κ be regular uncountable. If i(κ) = κ+ then a(κ) = κ+.

Structure of the paper: In Section 2 we define a notion of independence at κ, for κ arbitrary
infinite cardinal and define the cardinal number i(κ) for κ regular uncountable. In Section 3, given
a measurable cardinal κ, witnessed by a normal measure U and working under the hypothesis
that 2κ = κ+, we define a κ+ closed poset PU which adjoins a maximal κ-independent family,
which we denote AG.5 In Section 4 we study the properties of an ideal on κ, to which we refer as
density ideal and denote id<ω,κ(AG), which is contained in the dual ideal of U and which naturally

4In the countable setting the filter in question is generated by a tower, see for example [4] and so the filter remains
a P -set throughout an iteration of Sacks forcing. For our current argument, which only deals with products of
κ-Sacks forcing, the fact that fil<ω,κ(A) is a κ-P -set is sufficient.

5Using the normal measure U and the hypothesis 2κ = κ+ one can alternatively use the properties of the poset
PU to construct a family A having all essential properties of AG using a transfinite recursion of length κ+.
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captures crucial properties of the independent family AG. In section 5.1, we show that the dual
filter of this ideal, denoted fil<ω,κ(AG) is a κ-P-set. In Section 6 we show that the family AG is
densely maximal in a natural sense and characterize dense maximality in terms of properties of
the density ideal. Section 7 introduces the concepts of preprocessed conditions and outer hulls
necessary for the proofs in the last section. In Section 8 we prove our main theorem, by showing
that the densely maximal κ-independent family AG remains maximal after the κ-support product
of λ many copies of κ-Sacks forcing. We conclude the paper with some open questions and an
appendix, discussing the notion of strong independence.

2. The Higher Independence Number

In the following we set to define a higher analogue of the notion of independent families on ω

for the special case in which the boolean combinations are finitely generated.

Definition 1. Let κ be a regular uncountable cardinal and let FF<ω,κ(A) be the set of all finite
partial functions with domain included in A and range the set {0, 1}. For each h ∈ FF<ω,κ(A)

let Ah =
⋂
{Ah(A) : A ∈ dom(h)} where Ah(A) = A if h(A) = 0 and Ah(A) = κ\A if h(A) = 1.

We refer to sets of the form Ah as boolean combinations.

With this we can state the definition of κ-independence. For a discussion of the most general
definition in which the boolean combinations are generated by arbitrarily large subfamilies of the
given family, see [11].

Definition 2.

(1) A family A ⊆ [κ]κ is said to be κ-independent if for each h ∈ FF<ω,κ(A) the set Ah is
unbounded. It is said to be a maximal κ-independent family if it is κ-independent and
maximal under inclusion.

(2) The least size of a maximal κ-independent family is denoted i(κ).

Remark 3. For κ = ω the above notions coincides with the classical notions of independence on
[ω]ω and i(κ) = i, where i is the classical independence number.

Lemma 4. Let κ be a regular infinite cardinal. Then
(1) Every κ-independent family is contained in a maximal κ-independent family.
(2) κ+ ≤ r(κ) ≤ i(κ)

(3) There is a maximal κ-independent family of cardinality 2κ.
(4) d(κ) ≤ i(κ).

Proof. Since the increasing union of a collection of κ-independent families is κ-independent, by
the Axiom of Choice every κ-independent family is contained in a maximal one. Note that if A
is a maximal κ-independent family, then the set of boolean combinations {Ah : h ∈ FF<ω,κ(A)}
is not split and so r(κ) ≤ |A|. For a construction of a κ-independent family of cardinality 2κ, see
[14, Theorem 4.2]. Finally, the proof that d(κ) ≤ i(κ) follows closely the proof of the classical
case, i.e. d ≤ i (see [18]). □
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One of the most interesting open questions, regarding the classical cardinal characteristics is
the consistency of i < a. By the last item of the above theorem and the fact that if d(κ) = κ+

implies that a(κ) = κ+ (see [5] and [22]), we obtain the following:

Corollary 5. Let κ be a regular uncountable cardinal. Then if i(κ) = κ+ then a(κ) = κ+.

3. Adjoining a maximal κ-independent family

In this section, we provide a partial order which adjoins a maximal κ-independent family, family
which we will later show to be indestructible by products of κ-Sacks forcing.

Let κ be a measurable cardinal and U a normal measure on κ.

Definition 6. Let PU be the poset of all pairs (A, A) where A is a κ-independent family of
cardinality κ and A ∈ U has the property that ∀h ∈ FF<ω,κ(A) the set Ah ∩ A is unbounded.
The extension relation is defined as follows: (A1, A1) ≤ (A0, A0) if and only if A1 ⊇ A0 and
A1 ⊆∗ A0.6

Lemma 7. Assume 2κ = κ+. Then PU is κ+-closed and κ++-cc.

Proof. Let {(Ai, Ai)}i∈κ be a decreasing sequence in PU . We can assume that {Ai}i∈κ is strictly
decreasing, i.e for each i > j we have Aj ⊆ Ai. Then A =

⋃
i∈κAi is an independent family of

cardinality κ and the diagonal intersection A′ = ∆i∈κAi ∈ U .
Now, for each i ∈ κ, let {hi,j}j∈κ enumerate FF<ω,κ(A). Recursively we will define a set

A′′ = {ki,l,m}l,m<i;i<κ which is a pseudo-intersection of {Ai}i∈κ and which meets every boolean
combination Ah for h ∈ FF<ω,κ(A) on an unbounded set. Then A = A′ ∪ A′′ is an element of U
and (A, A) ∈ PU is a common extension of {(Ai, Ai)}i∈κ.

Construction of A′′: At step i pick ki,m,l ∈ Ai ∩ Ahm,l

i for each m, l < i. Then in particular
ki,m,l ∈ Am for each m ≤ i and ki,m,l ∈ Ahm,l

m for each m, l < i. Take A′′ = {ki,m,l}m,l<i;i<κ.
Then A′′ meets every boolean combination on an unbounded set and is a pseudo-intersection. Fix
γ ∈ κ. Then for all ξ such that ξ > γ and all m, l < ξ we have that kξ,l,m ∈ Aξ ⊆ Aγ . Thus
A′′\Aγ ⊆ {kξ,l,m}ξ<γ;l,m<ξ, which is a bounded set.

The poset has the κ++-cc, because |PU | = κ+. Indeed,
∣∣∣[[κ]κ]κ∣∣∣ = κ+. □

Lemma 8. If (A, A) ∈ PU , then there is B /∈ A such that B ⊆ A and (A ∪ {B}, A) ≤ (A, A).

Proof. Let {hi}i∈κ be a fixed enumeration of FF<ω,κ(A). Since Ah0 ∩ A is unbounded, we can
find distinct k0,0, k0,1 in Ah0 ∩ A. Suppose we have defined {ki,j : i ∈ γ, j ∈ 2} distinct. Since
Ahγ ∩ A is unbounded, we can find distinct kγ,0, kγ,1 in (Ahγ ∩ A)\{ki,j : i ∈ γ, j ∈ 2}. Finally,
take B = {ki,0}i∈κ. Clearly B ⊆ A and A ∪ {B} is independent. To verify the latter note that
for each h ∈ FF<ω,κ(A) there are unboundedly many hi ⊇ h. Then for unboundedly many i ∈ κ,
ki,0 ∈ Ahi ∩B ⊆ Ah ∩B and ki,1 ∈ Ahi\B ⊆ Ah\B. □

Corollary 9. Let G be PU -generic filter. Then AG =
⋃
{A : ∃A ∈ U with (A, A) ∈ G} is a

κ-maximal independent family.
6Throughout A ⊆∗ B means |A\B| < κ.
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Proof. Suppose X ∈ [κ]κ \ AG and AG ∪ {X} is independent. Take (A, A) ∈ G such that

(A, A) ⊩ “AG ∪ {X} is independent and X /∈ AG”.

Since PU is κ+-closed, the set X belongs to the ground model. Now, if for each h ∈ FF<ω,κ(A)

the intersections Ah ∩X ∩A and Ah ∩A ∩Xc are unbounded, then (A ∪ {X}, A) ≤ (A, A) and

(A ∪ {X}, A) ⊩ “X ∈ AG”,

which is a contradiction. Therefore there is h ∈ FF<ω,κ(A) such that either Ah ∩ A ∩ X or
Ah∩A∩Xc is bounded. However, by Lemma 8, there is B /∈ A such that B ⊆ A and (A∪{B}, A) ≤
(A, A). But then,

(A ∪ {B}, A) ⊩ “∃h ∈ FF<ω,κ(AG) such that Ah
G ∩X or Ah

G \X is bounded.”

Therefore (A ∪ {B}, A) ⊩ “AG ∪ {X} is not independent”, which is a contradiction. □

Remark 10. Given a measurable cardinal κ and a normal measure U on κ, whenever A = AG

is the generic maximal κ-independent family given by a PU -generic filter G, we will say that A is
U-supported.

4. The Density Ideal

The density ideal (see [10]) plays an important roles in describing the properties of maximal
independent families on ω. A higher analogue of this notion will play an equally important role
in the study of maximal κ-independent families indestructible by κ-Sacks forcing.

Definition 11. Let A be a U-supported independent family. The density ideal id<ω,κ(A) is
the ideal of all X ∈ U∗, where U∗ is the dual ideal of U , such that ∀h ∈ FF<ω,κ(A) there is
h′ ∈ FF<ω,κ(A) such that h′ ⊇ h and Ah′ ∩X = ∅.

Lemma 12.

(1) If A be an independent family, then id<ω,κ(A) is an ideal.
(2) If A0,A1 are independent families such that A0 ⊆ A1, then id<ω,κ(A0) ⊆ id<ω,κ(A1).

Proof. To prove item (1) above consider any X0 and X1 in id<ω,κ(A). Fix any h ∈ FF<ω,κ(A).
Then there is h0 ⊇ h such that Ah0 ∩ X0 = ∅ and there is h1 ⊇ h0 such that Ah1 ∩ X1 = ∅.
But then h1 ⊇ h and Ah1 ∩ (X0 ∪X1) = ∅. Clearly, id<ω,κ(A) is closed under subsets and thus
id<ω,κ(A) is an ideal.

To prove item (2) consider any X ∈ id<ω,κ(A0). Let h ∈ FF<ω,κ(A1). Then h′ = h ↾ A0 ∈
FF<ω,κ(A0) and by hypothesis there is h0 in FF<ω,κ(A0) extending h′ such that Ah0

0 ∩ X = ∅.
Let h1 = h0 ∪ h ↾ (A1\A0). Then Ah1

1 ∩X ⊆ Ah0
0 ∩X and so Ah1

1 ∩X = ∅. □

Remark 13. Note that id<ω,κ(A) is not necessarily κ-complete.

Lemma 14. ⊩PU id<ω,κ(AG) =
⋃
{id<ω,κ(A) : ∃A(A, A) ∈ G}.
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Proof. To see ⊩PU

⋃
{id<ω,κ(A) : ∃A(A, A) ∈ G} ⊆ id<ω,κ(AG) consider any PU -generic filter

G. In V [G] we have AG =
⋃
{A : ∃A(A, A) ∈ G}. Now for all (A, A) ∈ G, by Lemma 12.(2),

id<ω,κ(A) ⊆ id<ω,κ(AG). Therefore
⋃
{id<ω,κ(A) : ∃A(A, A) ∈ G} ⊆ id<ω,κ(AG).

The fact that ⊩PU id<ω,κ(AG) ⊆
⋃
{id<ω,κ(A) : ∃A(A, A) ∈ G} follows from the κ+-closure

of PU . Consider any p = (A, A) ∈ G and a PU -name Ẋ for a subset of κ such that p ⊩ Ẋ ∈
id<ω,κ(AG). Fix h ∈ FF<ω,κ(A). Then

p ⊩ ∃h′ ∈ FF<ω,κ(AG)(h ⊆ h′ and Ah′
G ∩X = ∅).

Thus there is (A′, A′) ≤ (A, A) such that h′ ∈ FF<ω,κ(A′), h′ ⊇ h and Ah′ ∩ X = ∅. Proceed
inductively to construct a decreasing sequence {(Ai, Ai)}i∈κ of conditions below p such that if
Aκ =

⋃
i∈κAi then for all h ∈ FF<ω,κ(Aκ) there is h′ ∈ FF<ω,κ(Aκ) extending h and such that

Ah′ ∩X = ∅. Thus X ∈ id<ω,κ(Aκ). By the κ+-closure of PU , there is p′ = (B, B) ∈ PU which is
an extension of all (Ai, Ai). Thus X ∈ id<ω,κ(B), p′ ≤ p and

p′ ⊩ Ẋ ∈
⋃

{id<ω,κ(A) : ∃A(A, A) ∈ G}.

□

Lemma 15. Let (A, A) ∈ PU and let X ∈ id<ω,κ(A). Then (A, A\X) ∈ PU .

Proof. It is sufficient to show that for each h ∈ FF<ω,κ(A) the set Ah ∩ (A\X) is unbounded.
Fix h ∈ FF<ω,κ(A). Since X ∈ id<ω,κ(A) there is h′ ⊇ h, h′ ∈ FF<ω,κ(A) extending h such that
Ah′ ∩X = ∅. Thus Ah′ ⊆ κ\X. However

Ah′ ∩A = (Ah′ ∩A ∩X) ∪ (Ah′ ∩A ∩Xc).

Thus Ah′ ∩A = Ah′ ∩A ∩Xc is unbounded. Therefore (A, A\X) is a condition. □

Corollary 16. Let G be a PU -generic filter. Then in V [G] the density ideal id(AG) is generated
by {κ\A : ∃A(A, A) ∈ G}. That is

⊩PU id<ω,κ(AG) =< {κ\A : ∃A(A, A) ∈ G} > .

Proof. Let G be a PU -generic filter. By Lemma 14, id<ω,κ(AG) =
⋃
{id<ω,κ(A) : ∃A(A, A) ∈ G}.

Let IG be the ideal generated by {κ\A : ∃A(A, A) ∈ G}.
First we will show that id<ω,κ(AG) ⊆ IG. Let X ∈ id<ω,κ(AG). Thus there is (A, A) ∈ G such

that X ∈ id<ω,κ(A). However the set DX = {(B, B) ∈ PU : X ∩ B = ∅} is dense below (A, A)

(indeed, if (B, B) ≤ (A, A) then X ∈ id<ω,κ(B) and by Lemma 15 (B, B\X) ≤ (B, B)) and so
there is (B, B) ∈ G such that X ∩B = ∅. That is X ⊆ κ\B and so X ∈ IG.

To show that IG ⊆ id<ω,κ(AG), consider any X ∈ IG. Then there is a finite set of conditions
{(Ai, Ai)}i∈n in G such that X ⊆

⋃
i∈n κ\Ai = κ\

⋂
i∈nAi. Note that (B, B) ∈ G, where

(B, B) = (
⋃

i∈nAi,
⋂

i∈nAi). Thus X ⊆ κ\B. Fix any h ∈ FF<ω,κ(AG). Then there is (C, C) ∈ G

such that h ∈ FF<ω,κ(C). Take (E , E) ∈ G which is a common extension of (B, B) and (C, C).
Then (E , E) ≤ (C, B) and so in particular (C, B) ∈ G. However the set HB = {(C′, C ′) : ∃Y ∈
C′(Y ⊆ B)} is dense below (C, B) (apply Lemma 8) and so there is (C′, C ′) ∈ G such that
for some Y ∈ C′, Y ⊆ B. Then h′ = h ∪ {(Y, 0)} ∈ FF<ω,κ(AG) and Ah′

G ∩ X = ∅. Thus
X ∈ id<ω,κ(AG). □
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5. The Density Filter

Of particular interest for our investigations will be the dual filter of the density ideal. Note that
the density filter plays an important role in the original work of [23] on the relative consistency
of i < u, from which the existence of a Sacks indestructible maximal independent family can be
extracted (see also [10]).

Remark 17. Let G be PU -generic, let FG = {A : ∃A such that (A, A) ∈ G} and let fil<ω,κ(AG)

be the dual filter of id<ω,κ(AG). By Corollary 16, fil<ω,G(AG) is generated by FG.

Lemma 18. Let (A, A) ∈ PU , Y ∈ [κ]κ and h ∈ FF<ω,κ(A). Then there is h∗ ⊇ h in FF<ω,κ(A)

and B ⊆ A such that (A, B) ≤ (A, A) and Ah∗ ∩B is contained either in Y , or in κ\Y .

Proof. If there is h′ extending h such that Ah′∩A∩Y is bounded, then Ah′∩A =∗ Ah′∩A∩(κ\Y )

and so for all h′′ ⊇ h′ the set Ah′′ ∩A∩ (κ\Y ) is unbounded. Then take B = (Ah′ ∩A∩ (κ\Y ))∪
(A\Ah′

). Then B =∗ A and so B ∈ U , (A, B) is as desired.
If there is h′ ⊇ h such that Ah′ ∩ A ∩ (κ\Y ) is bounded, then Ah′ ∩ A =∗ Ah′ ∩ A ∩ Y and so

for all h′′ ⊇ h′ the set Ah′′ ∩A∩Y is unbounded. Then take B = (Ah′ ∩A∩Y )∪ (A\Ah′
). Then

B =∗ A and so B ∈ U , and the condition (A, B) is as desired.
Suppose, none of the above two cases holds. Thus for every h′ ⊇ h, the sets Ah′ ∩ A ∩ Y

and Ah′ ∩ A ∩ (κ\Y ) are unbounded. Then each of the sets B0 = (Ah ∩ A ∩ Y ) ∪ (A\Ah) and
B1 = (Ah ∩ A ∩ (κ\Y )) ∪ (A\Ah) meets every boolean combination Ah′ for h′ ∈ FF<ω,κ(A) on
an unbounded set. Thus if A\Ah ∈ U , both B and B′ are as desired. Suppose A\Ah /∈ U . Then
A∩Ah ∈ U and so either A∩Ah ∩ Y or A∩Ah ∩ (κ\Y ) is in the normal measure. We can chose
appropriately. □

Corollary 19. Let E = {Y, κ\Y } be a partition. Then the set of (A, A) ∈ PU such that for each
h ∈ FF<ω,κ(A) there is h′ ⊇ h in FF<ω,κ(A) with the property that Ah′ is either contained in Y ,
or in κ\Y is dense in PU .

Proof. Consider an arbitrary (A, A) ∈ PU . Fix h0 ∈ FF<ω,κ(A). Then there is A0 ⊆ A such
that (A, A0) ≤ (A, A) and there is h1 ∈ FF<ω,κ(A) extending h0 and B ⊆ A such that Ah1 ∩ B

is contained either in Y , or in κ\Y . However, by Lemma 8 there is B0 ⊆ B such that (A ∪
{B0}, B) ≤ (A, B). Then extend h1 to h′1 = h1∪{(B0, 0)} and note that h′1 ∈ FF<ω,κ(A1), where
A1 = A ∪ {B0}, and that Ah′

1
1 is either contained in Y or in κ\Y . Proceed inductively and use

the fact that PU is κ+-closed. □

Definition 20. Let F ⊆ [κ]κ. We say that F is a κ-P-set if every H ⊆ F of cardinality ≤ κ has
a pseudo-intersection in F .

Lemma 21. Let G be a PU -generic filter. Then FG is a κ-P-set.

Proof. Suppose FG is not a κ-P-set. Thus there is p ∈ PU such that

p ⊩ ∃H ∈ [FG]
κ s.t. ∀F ∈ FG∃H ∈ H(F ̸⊆∗ H).
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Fix G a PU -generic filter such that p ∈ G. Since PU is κ+-closed, we can find H′ = {Ai}i∈κ in the
ground model witnessing the above property. For each i ∈ κ, let Ai be such that (Ai, Ai) ∈ G.
We can assume that τ = {(Ai, Ai)}i∈κ is decreasing and that (A0, A0) ≤ p. Now, take q = (A, A)

in PU to be a common lower bound of τ . Then q ≤ p and q forces that A is a pseudo-intersection
of H′, which is a contradiction. □

5.1. Increasing Functions and the Density Filter. In the countable setting a key feature
of the Sacks indestructible maximal independent family appearing in [23] is the fact that the
associated density filter is a Q-set. The existence of sufficiently fast growing sets in fil<ω,κ(AG),
which we discuss in this section, will be of vital importance for our main result.

If E ⊆ κ is an unbounded set and for each α ∈ κ let sE(α) = min{β ∈ E : β > α}.

Lemma 22. Let f ∈ V ∩ κκ be a strictly increasing function and let (A, A) ∈ PU . Then there
is A∗ ⊆ A such that (A, A∗) ≤ (A, A) and if {a(i)}i<κ is the increasing enumeration of A∗ then
f(a(i)) < a(i+ 1) for all i.

Proof. Let Cf = {ξ < κ : ∀ζ < ξ(f(ζ) < ξ)}. Thus Cf is a club and so Cf ∈ U . Then
E = A ∩ Cf ∈ U . Let {hi}i<κ be an enumeration of the elements of FF<ω,κ(A) such that each
element occurs unboundedly often. The set A∗ will be constructed as the union of an increasing
sequence {Bξ}ξ<κ of subsets of A.

Let B0 = ∅. If Ah0 ∩ E ̸= ∅, let a0 = minAh0 ∩ E. Otherwise, take a0 = minAh0 ∩A. Let

B1 = {a0} ∪ (E ∩ sE(f(a0))) ∪ {sE(f(a0))}.

Suppose we have defined Bξ. If (Ahξ+1 ∩ E)\(Bξ ∪ {supBξ}) ̸= ∅, let aξ+1 = min((Ahξ+1 ∩
E)\(Bξ ∪ {supBξ})). Otherwise, let aξ+1 = min{a ∈ Ahξ+1 ∩A : a > supBξ}. Let

Bξ+1 = Bξ ∪ {aξ+1} ∪ (E ∩ sE(f(aξ+1))) ∪ {sE(f(aξ))}.

Now, suppose ξ is a limit and for all ζ < ξ, the set Bζ has been defined. Take B∗
ξ =

⋃
ζ<ξ Bζ .

If (Ahξ ∩ E)\(B∗
ξ ∪ {supB∗

ξ}) ̸= ∅, let aξ = min(Ahξ ∩ E)\(B∗
ξ ∪ {supB∗

ξ}) ̸= ∅. Otherwise, let
aξ = min{a ∈ Ahξ ∩A : a > supB∗

ξ}. Let

Bξ = B∗
ξ ∪ {aξ} ∪ E ∩ sE(f(aξ)) ∪ {sE(f(aξ))}.

Finally, take A∗ =
⋃

ξ<κBξ. Then A∗ meets every boolean combination Ah of A on an unbounded
set (witnessed by the aξ’s), A∗ ⊆ A and since {aξ}ξ<κ is unbounded in κ and

E ∩ sE(f(aξ)) ⊆ Bξ ⊆ A∗

for each ξ, we also have that E ⊆ A∗. Let b < a be elements of A∗. If a ∈ E, then by definition
of Cf we have that f(b) < a. If a /∈ E and a = aξ+1 for some ξ, then

aξ < f(aξ) < sE(f(aξ)) < aξ+1

by construction. If ξ is a limit, a = aξ and f(aζ) < sE(f(aζ)) < aξ for each ζ < ξ again by
construction. Since b = aζ for some ζ < ξ, f(b) < a. □

The following Corollary will play an important role in the main result of the paper.
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Corollary 23. Let G be PU -generic, f ∈ V ∩ κκ be strictly increasing. Then there is A ∈
fil<ω,κ(AG) such that if {a(i)}i∈κ is the increasing enumeration of A then f(a(i)) < a(i + 1) for
all i ∈ κ.

Proof. Since fil<ω,κ(AG) is generated by FG (the set of second coordinated of elements of the
generic filter G) we may use the previous lemma and get the result.

Indeed, this is a standard density argument: Let Df be the set of all (A, A) ∈ PU such that if
{a(i)}i<κ is the enumeration function of A then f(a(i)) < a(i + 1) for all i < κ. By Lemma 22
the set Df is dense. Thus, G ∩ Df ̸= ∅ and so there is (A, A) ∈ G ∩ Df . But, by definition of
the set FG, we have that A ∈ FG, see also Remark 17, and by the same remark A ∈ fil<ω,κ(AG).
Since (A, A) ∈ Df , we obtain that f(a(i)) < a(i+ 1). □

6. Dense Maximality

The notion of densely maximal independent families on ω appears for the first time in [16].
Moreover, the maximal independent family constructed in [23] which becomes a witness to i = ℵ1

in the model of [23, Theorem 3.1] is densely maximal. A similar notion will play a vital role for
our considerations:

Definition 24. An independent family A is said to be densely maximal if for every X ∈ [κ]κ\A
and every h ∈ FF<ω,κ(A) there is h′ ∈ FF<ω,κ(A) extending h such that either Ah′ ∩X = ∅ or
Ah′ ∩ (κ\X) = ∅.

The following characterization of dense maximality on ω appears implicitly in the proof of [23,
Theorem 3.1]. This characterization will be the main tool in showing that a specially designed
normal measure supported κ-maximal independent family preserves its maximality after forcing
with a large product of κ-Sacks forcing.

Lemma 25. Let A be an independent family. Then A is densely maximal if and only if

(∗) ∀h ∈ FF<ω,κ(A)∀X ⊆ Ah either there is B ∈ id<ω,κ(A) such that Ah\X ⊆ B, or there is
h′ ∈ FF<ω,κ(A) such that h′ ⊇ h and Ah′ ⊆ Ah\X.

Proof. Suppose A satisfies property (∗). Let X ∈ [κ]κ, h ∈ FF<ω,κ(A) and consider Y = X ∩Ah.
Apply property (∗). If there is B ∈ id<ω,κ(A) such that Ah\X ⊆ B, then Ah\X ∈ id<ω,κ(A).
Then there is h′ ⊇ h such that Ah′ ∩ (Ah\X) = Ah′\X = ∅. If there is h′ ⊇ h such that
Ah′ ⊆ Ah\X, then Ah′ ∩X = ∅. Thus A is densely maximal.

Now suppose A is densely maximal. Fix h ∈ FF<ω,κ(A) such that X ⊆ Ah. We will show
that A satisfies property (∗). Suppose, there is no B ∈ id<ω,κ(A) such that Ah\X ⊆ B. Thus
in particular Ah\X /∈ id<ω,κ(A) and so there is h′ ∈ FF<ω,κ(A) such that for all h′′ ⊇ h′

the set Ah′′ ∩ (Ah\X) ̸= ∅. If h and h′ are incompatible as conditions in FF<ω,κ(A), then
Ah′ ∩ (Ah\X) = ∅, which is a contradiction. Therefore h and h′ are compatible. Without loss of
generality, h′ ⊇ h (otherwise pass to a common extension of h and h′). Thus h has an extension,
namely h′, such that for all h′′ ⊇ h′ the set Ah′′\X is non-empty. Apply the fact that A is
densely maximal to Ah′ and X. Thus, there is h′′ ⊇ h′ such that Ah′′ ∩ X = ∅. Therefore
Ah′′ ⊆ Ah′\X ⊆ Ah\X, which completes the proof of property (∗). □
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Lemma 26. Let G be PU -generic. Then in V0 = V [G] the family AG :=
⋃
{A : ∃A(A, A) ∈ G}

is densely maximal.

Proof. It is sufficient to show that AG satisfies property (∗) from Lemma 25. Thus, fix h and X as
in (∗). Suppose there is no B ∈ id<ω,κ(AG) such that Ah

G\X ⊆ B. Then, in particular Ah
G\X /∈

id<ω,κ(AG) and so there is h0 ∈ FF<ω,κ(AG) such that for all h1 ⊇ h0 the set Ah1 ∩ (Ah\X) ̸= ∅
(by definition of the density ideal). Consider the partition

E = {Ah\X,κ\(Ah\X)}

and the set Ah0 . By Corollary 19 there is h1 ∈ FF<ω,κ(AG) extending h0 such that Ah1 is
contained in one element of E . However, if Ah1 ⊆ κ\(Ah\X), then Ah1 ∩ (Ah\X) = ∅, which is
a contradiction to the choice of h0. Thus Ah1 ⊆ Ah\X and so Ah1 ∩X = ∅. □

7. Preprocessed Conditions and Outer hulls

In this section we introduce the notions of preprocessed conditions and outer hulls for the
special case of κ-Sacks forcing and its products. Note that both of these notions play a key role in
Shelah’s proof of i < u from [23]: preprocessed conditions appear in [23, Claim 1.11], while outer
hulls appear in proof of [23, Theorem 3.1] (page 440 of the article). Throughout this section we
work under the assumption of GCH (at least 2κ = κ+ and 2<κ = κ) and κ measurable. Thus in
particular κ is strongly inaccessible. We will work with the generalization of Sacks forcing and
its products to the uncountable, both of which were first studied by Kanamori [19].

Recall that p ⊆ 2<κ is a tree if it is closed under initial segments. That is, u ∈ p and v ⊆ u

imply v ∈ p. Whenever p is a tree, t, r ∈ p and t is a proper initial segment or equal to r, we
write t⊴ r and r ⊵ t. A node u ∈ p splits in p if both u⌢0 and u⌢1 belong to p. Given a tree p,
we denote by split(p) the set of splitting nodes of p.

Definition 27. For a strongly inaccessible κ, the κ-Sacks forcing, denoted Sκ, is the poset con-
sisting of sub-trees p of 2<κ such that:

(1) for each u ∈ p there is t ∈ p such that u ⊴ t and t splits in p (t is said to be a splitting
extension of u);

(2) for any α < κ, if (uβ : β < α) is a sequence of nodes in p such that β < γ < α → uβ ⊆ uγ ,
then

⋃
{uβ : β < α} ∈ p;

(3) if δ < κ is a limit ordinal, u ∈ 2δ and for arbitrarily large β < δ the node u ↾ β splits in
p, then u splits in p.

The extension relation on Sκ is defined by p ≤ q if and only if p ⊆ q.

As in the countable case we define the stem(p) where p is a condition in Sκ as the unique
splitting node that is comparable with all elements in p. By recursion on κ define:

Definition 28 (The α-th splitting level of p). Given p ∈ Sκ let
• split0(p) = stem(p),
• splitα+1(p) = {stem(pu⌢i) : u ∈ splitα(p) and i ∈ 2},
• for δ < κ is a limit ordinal, splitδ(p) = {s ∈ p : s is a limit of nodes in

⋃
α<δ splitα(p)}.
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We refer to splitα(p) as the α-th splitting level of p. Moreover for t ∈ split(p), let sl(t, p) = α

where t ∈ splitα(p).

Using this splitting levels we define the fusion orderings ≤α on Sκ: Given q and p in Sκ let
q ≤α p if and only if q ≤ p and splitα(p) = splitα(q).

Definition 29. A fusion sequence (pα : α < κ) ⊆ Sκ is sequence of conditions in Sκ such that
pα+1 ≤α pα for all α < κ and whenever δ < κ is a limit, then pδ ≤α pα for all α < δ.

For any regular uncountable cardinal λ we denote by Sλκ the κ-support product of λ many
copies of Sκ. Moreover:

Definition 30 (Product fusion, Definition 1.7 in [19]).

• If (pα : α < β) ⊆ Sλκ, we define a condition p =
∧

α<β pα with dom(p) =
⋃

α<β dom(pα)

and for every γ ∈ dom(p), p(γ) =
⋂
{pα(γ) : γ ∈ dom(pα)}. Note that in the case

p ↾ γ /∈ Sγκ for γ ∈ dom(p) or |dom(p)|> κ then p is left undefined.
• If p, q ∈ Sλκ, α < κ and F ⊆ dom(q) with |F |≤ κ, we say p ≤F,α q if and only if p ≤ q and

for every β ∈ F , p(β) ≤α q(β).

Lemma 31 (Generalized fusion [19]). Suppose (pα : α < κ) ⊆ Sλκ and Fα ⊆ λ have the following
properties:

(1) pα+1 ≤Fα,α pα and pδ =
∧

α<δ pα when δ is a limit ordinal <κ.
(2) |Fα|< κ, Fα ⊆ Fα+1, Fδ =

⋃
α<δ Fα for limit δ < κ and

⋃
α<κ Fα =

⋃
α<κ dom(pα).

Then p =
∧

α<κ pα ∈ Sλκ and we refer to (pα, Fα : α < κ) as a generalized fusion sequence.

In the following, we fix some notation:

Definition 32.

• Given a condition p ∈ Sλκ, α < κ and F ⊆ supp(p) so that |F |< κ let ΛF
α (p) =∏

i∈F splitα(p(i)). That is

ΛF
α (p) = {σ̄ = (σi)i∈F : σi ∈ splitα(p(i))}.

• For all σ̄ ∈ ΛF
α (p) let pσ̄ ≤ p be defined as follows: supp(p) = supp(pσ̄) and

pσ̄(i) =

{
(p(i))σi if i ∈ F

p(i) otherwise

• Given h ∈ F 2 and σ̄ ∈ ΛF
α (p), let phσ̄ be defined as follows: supp(phσ̄) = supp(p) and

phσ̄(i) =

{
(p(i))

σ⌢
i h(i)

if i ∈ F

p(i) otherwise
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7.1. Preprocessed conditions. The following notion of begin preprocessed for a condition can
be seen for example in [23, Lemma 1.11]. Given a name for a real τ and a condition p in an
appropriate partial order, in particular the poset QI from [23], Sacks forcing, or Miller partition
forcing (see for definition for example [17]), the notion provides a sufficiently good ground model
approximation of τ realized by a condition q stronger than p.

We adapt the notion in the context of κ-Sacks forcing and its products.

Definition 33.
(1) Let Ẋ be a Sκ-name for a subset of κ. We say that p ∈ Sκ is preprocessed for Ẋ if for all

α ∈ κ and all t ∈ splitα(p) there is xt ∈ α2 such that pt ⊩ χẊ ↾ α = x̌t.
(2) (a) Let Ẋ be a Sλκ name for a subset of κ, p ∈ Sλκ and F ⊆ supp(p) with |F |< κ. We

say that p ∈ Sλκ is preprocessed for the pair (F, Ẋ) if for all α < κ and all σ̄ ∈ ΛF
α (p)

there are F ′ ⊇ F , such that F ′ ⊆ dom(p) and |F ′|< κ, τ̄σ̄ ∈ ΛF ′
α (p) and xσ̄ ∈ α2 such

that σ̄ ⊑ τ̄σ̄ and pτ̄σ̄ ⊩ χẊ ↾ α = x̌σ̄.7

(b) We say that a condition p ∈ Sλκ is preprocessed for the name Ẋ if for all F ⊆ dom(p)

such that |F |< κ, p is preprocessed for (Ẋ, F ).

Remark 34.
(1) Note that if p ∈ Sκ is preprocessed for Ẋ, then for each α ∈ κ there is Yα ⊆ α2 such that

p ⊩ χẊ ↾ α ∈ Y̌α. Indeed, take Yα =
⋃
{xt : t ∈ splitα(p)} where xt is defined as in the

definition above.
(2) Similarly, if p ∈ Sλκ is preprocessed for (F, Ẋ) (F like above), then for each α < κ there

is Yα ⊆ α2 such that p ⊩ χẊ ↾ α ∈ Y̌α. Just take Yα =
⋃
{xσ̄ : σ̄ ∈ ΛF

α (p)} where xσ̄ is
defined as above.

Lemma 35.
(1) Let p ∈ Sκ and let Ẋ be a Sκ-name for a subset of κ. Then there is q ≤ p such that q is

preprocessed for Ẋ.
(2) Let p ∈ Sλκ and let Ẋ be a Sλκ-name for a subset of κ. Then, for all F ⊆ supp(p) with

|F |< κ and γ < κ there is q ≤F,γ p such that q is preprocessed for (F, Ẋ).

Proof. (1) We build a fusion sequence ⟨qα : α < κ⟩ below p such that for all α > 0 and all
t ∈ splitα(qα) there is xt ∈ α2 such that (qα)t ⊩ χẊ ↾ α = x̌t. Start with q0 = p. Consider
t ∈ split0(p), i.e. t = stem(p). For each i ∈ {0, 1} there is wt,i ≤ pt⌢i and x(t, i) ∈ {0, 1} such
that wt,i ⊩ χẊ(0) = x̌(t, i). Note that stem(wt,i) ⊵ stem(pt⌢i) ⊵ t⌢i. Define q1 = w0

t,0 ∪ w0
t,1.

Then q1 ≤0 q0 and for all s ∈ split1(q1) there is xs ∈ 12 such that (q1)s ⊩ χẊ ↾ 1 = x̌s. Indeed,
if s ∈ split1(q1) then s ⊵ t⌢i for i ∈ {0, 1} and so (q1)s = wt,i. Thus (q1)s ⊩ χẊ ↾ 1 = xs where
xs = (0, x(s, i)).

Now, suppose qα has been defined and ∀t ∈ splitα(qα) there is xt ∈ α2 such that (qα)t ⊩
χẊ ↾ α = x̌t. For each t ∈ splitα(qα) and each i ∈ {0, 1} find wt,i ≤ (qα)t⌢i and x(t, i) ∈ {0, 1}
such that wα

t,i ⊩ χẊ(α) = x̌(t, i). Then, take qα+1 =
⋃
{wt,i : t ∈ splitα(qα), i ∈ {0, 1}}.

7Here σ̄ ⊑ τ̄σ̄ means for all i ∈ F σi = τi.
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Then splitα(qα+1) = splitα(qα) and so qα+1 ≤α qα. Moreover, for all t ∈ splitα+1(qα+1) there
is xt ∈ α+12 such that (qα+1)t ⊩ χẊ ↾ α + 1 = x̌t. Indeed. Fix t ∈ splitα+1(qα+1). Thus
r⌢i ⊴ t for some r ∈ splitα(qα+1) = splitα(qα) for some i ∈ {0, 1}. By Inductive Hypothesis
(qα)r ⊩ χẊ ↾ α = x̌r for some xr ∈ α2. However t⊵ r⌢i and so (qα+1)t = wr,i ≤ (qα)r⌢i ≤ (qα)r.
Thus, (qα+1)t ⊩ χẊ ↾ α = x̌r and χẊ(α) = x̌(r, i). That is (qα+1)t ⊩ χẊ ↾ α + 1 = x̌t where
xt = xr ∪ {(α, x(r, i))}.

It remains to consider the limit case. Suppose ⟨qβ : β < α⟩ have been defined and for all β < α

and all t ∈ splitβ(qβ) there is xt ∈ β2 such that (qβ)t ⊩ χẊ ↾ β = x̌t. Then take qα = ∧β<αqβ .
Note that if t ∈ splitα(qα) then there is {ηξ : ξ < α} unbounded in α such that t ↾ ηξ ∈ splitξ(qξ)

and so by inductive hypothesis for some xt↾ηξ ∈ ξ2 we have (qξ)t↾ηξ ⊩ χẊ ↾ ξ = x̌t↾ηξ . Then for
xt =

⋃
{xt↾ηξ : ξ < α} we have (qα)t ⊩ χẊ ↾ α = x̌t.

(2) The argument for the product runs similarly as the above case: Let p ∈ Sλκ, γ < κ and
F ⊆ supp(p) so that |F |< κ. We shall define a fusion sequence ⟨qα, Fα : α < κ⟩ ⊆ Sλκ below p,
ordinals (ηα : α < κ) and bijections gα : Fα → ηα such that for all α < κ:

(1) qα+1 ≤Fα,γ+α qα,
(2) ηα ≥ α,
(3) For all α < α′ < κ, gα ⊆ gα′ and for limit ordinals δ < κ gδ =

⋃
α<δ gα,

(4) For all σ̄ ∈ ΛFα
γ+α(qα) there is xσ̄ ∈ α2 such that (qα+1)σ̄ ⊩ χẊ ↾ α = x̌σ̄.

Since similar arguments will be used in the upcoming results we give the proof in full detail.
Start with q0 = p and F0 = F , in order to arrange that qα+1 ≤Fα,γ+α qα start the following
construction at some indecomposable ordinal α > γ (otherwise for all ordinals β < α, β + α = α

and so, at α we would just get qα+1 ≤Fα,α qα) and letting qβ = p for all β < α. At limit
stages δ < κ the construction of qδ and Fδ is determined by the conditions in Definition 30. Let
ηδ = supα<δ ηα and gδ as above.

Finally for the successor case, suppose qα, ηα, gα and Fα have been defined. Fix an enumeration
{γl = (σ̄l, hl) : l < ρ} of all pairs of the form (σ̄, h) such that σ̄ ∈ ΛFα

σ (qα) and h ∈ Fα2. Note
that the ordinals ρ is < κ.

Inductively, we will construct a sequence {rαl : l < ρ} of conditions below qα satisfying:
(1) rα0 = qα,
(2) rαl+1 ≤Fα,γ+α rαl ,
(3) (rαl+1)

hl
σ̄l

forces a value x̌(α, l) for χẊ ↾ α,
(4) For l limit ordinal rαl =

∧
k<l r

α
k .

It is enough to explain how the successor step is built: Suppose that we have constructed rαl
satisfying the conditions above and consider the pair γl = (σ̄, h), then find a condition wl ≤ (rl)

h
σ̄

forcing a value x(σ̄, l) for χẊ ↾ α. Note that wl is clearly not a condition that satisfies (2), so we
build rαl+1 as follows: supp(rαl+1) = supp(wl) and

rαl+1(i) =

{
(wl(i)) ∪ {(qα(i))τ⌢j : τ ∈ splitα(rl(i)) \ σi or j = 1− h(i)} if i ∈ Fα

wl(i) otherwise
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Note that this is now a condition satisfying the properties above. Put qα+1 =
∧

l<ρ r
α
l Fα+1 =

Fα ∪ {min(supp(qα+1)\Fα)}, ηα+1 = ηα + 1 and gα+1 = gα ∪ {(min(supp(qα+1)\Fα), ηα)}.

In order to finish the proof, we check that the condition q is indeed preprocessed for (F, Ẋ).
Fix α < κ and σ̄ ∈ ΛF

α (q). First, extend σ̄ to a sequence σ̄′ = σ̄⌢ρ̄0 in ΛFα
α (q) by adding a fix tail

ρ̄0 of splitting nodes in q(i) at level α for each i ∈ Fα\F .
Since q ≤α,Fα qα we get that ΛFα

α (q) = ΛFα
α (qα) and so σ̄′ ∈ ΛFα

α (qα) and we can use the fusion
properties to get that there is a xσ̄′ ∈ α2 such that (qα+1)σ̄′ ⊩ χẊ ↾ (α) = x̌σ̄′ , so we finally use
that the condition qσ̄′ ≤ (qα+1)σ̄′ to get that (q)σ̄′ ⊩ χẊ ↾ (α) = x̌σ̄′ as we wanted.

□

Corollary 36. Let p ∈ Sλκ and let Ẋ be a Sλκ-name for a subset of κ, then we can find q ≤ p such
that q is preprocessed for Ẋ.

Proof. Recall first that there are κ-many sets G ⊆ dom(p) so that |G|< κ, so let (Gβ : β < κ) be
an enumeration of them. We can use build a fusion sequence (qα, Fα) below p such that for all
α < κ, qα+1 is preprocessed for (Ẋ,Gα).

Start with q0 = p and F0 = G0. The limit step is built as usual and it is left to explain how
the successor case is constructed: Suppose we have already defined qα and Fα, then we use the
Lemma above for Ẋ, qα and Fα to get a condition r ≤α,Fα qα that is preprocessed for (Ẋ,Gα).
Define then qα+1 = r and Fα+1 = Fα ∪Gα.

We claim that the fusion q of the sequence defined above is preprocessed for all Gα’s: Indeed,
if α is fixed we know that qα+1 is preprocessed for (Ẋ,Gα), then it is enough to notice that since
q ≤α+1,Fα+1 qα+1, then q is also preprocessed for (Ẋ,Gα). □

7.2. Outer hull. Below, we introduce the notion of an outer hull, making explicit some well-
known techniques. In the consistency proof of i < u from [23], outer hulls appear on page 440.
Other more recent applications of the notion can be found for example in [17].

Definition 37.

• Let p ∈ Sκ and let Ẋ be a Sκ-name for a subset of κ. For each t ∈ splitα(p), we refer to
the set Yt = {β ∈ κ : pt ̸⊩ β̌ /∈ Ẋ}, as the outer hull of Ẋ below pt. Moreover, if qt,β ≤ pt
and qt,β ⊩ β̌ ∈ Ẋ, we say that qt,β is a witness for β ∈ Yt.

• Let p ∈ Sλκ and let Ẋ be a Sλκ-name for a subset of κ. For all α < κ, F ⊆ supp(p) such
that |F |< κ and σ̄ ∈ ΛF

α (p) we refer to the set Yσ̄ = {β ∈ κ : pσ̄ ̸⊩ β̌ /∈ Ẋ}, as the outer
hull of Ẋ below pσ̄. Moreover, if qσ̄,β ≤ pσ̄ and qσ̄,β ⊩ β̌ ∈ Ẋ, we say that qσ̄,β is a witness
for β ∈ Yσ̄.

Remark 38. Let Ẋ be a Sκ-name for a subset of κ. Suppose Yt is the outer hull of Ẋ below pt.
If pt ⊩ β̌ ∈ Ẋ, then pt is a witness to β ∈ Yt and so pt ⊩ Ẋ ⊆ Y̌t. Analogously for Sλκ and Yσ̄.

We proceed with the following lemma.

Lemma 39.
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(1) Let p ∈ Sκ be preprocessed for Ẋ and for each t ∈ split(p) let Yt be the outer hull of Ẋ
below pt. Then for each α < κ, t ∈ splitα(p) and β ∈ Yt there is a r(t, β) ∈ p such that
t is an initial segment of r(t, β) and pr(t,β) ⊩ β̌ ∈ Ẋ. Moreover, for each t ∈ split(p) and
each β ∈ Yt there is r = r(t, β) ∈ splitβ(p) such that pr ⊩ β̌ ∈ Ẋ.

(2) Let p ∈ Sλκ be preprocessed for (Ẋ, F ) (where F ⊆ supp(p) and |F |< κ) and for each
σ̄ ∈ ΛF

α (p) let Yσ̄ be the outer hull of Ẋ below pσ̄. Then for each α < κ, σ̄ ∈ ΛF
α (p), β ∈ Yσ̄

and i ∈ F there are F ′ ⊇ F , |F ′|< κ and τ̄ ′ ∈ ΛF ′
α (p) such that if τ̄ ′ = (ri(σ̄, β) : i ∈ F ′)

then ri(σ̄, β) ∈ p(i) such that σi is an initial segment of ri(σ̄, β) for all i ∈ F and
pτ̄ ′ ⊩ β̌ ∈ Ẋ. Moreover, for each σ̄ ∈ ΛF

α (p), β ∈ Yσ̄ and i ∈ F there are F ′ ⊇ F ,
|F ′|< κ, τ̄ ′ ∈ ΛF ′

α (p) such that if τ̄ = (ri(σ̄, β) : i ∈ F ′) where ri = ri(σ̄, β) ∈ splitβ(p)(i)
for all i ∈ F , then pτ̄ ′ ⊩ β̌ ∈ Ẋ.

Proof. (1) Fix α, t and β ∈ Yt. Then there is q ≤ pt such that q ⊩ β ∈ Ẋ. Take any r = r(t, β) ∈
splitβ(q). Note that t⊴r and there is β′ ≥ β such that r ∈ splitβ′(p). On the other hand, because
p is preprocessed we can use Lemma 35 to find xr ⊆ α′

2 such that pr ⊩ χẊ ↾ β′ = x̌r. Since
qr ≤ pr we must have that x̌t(β) = 1. Thus pr ⊩ β ∈ Ẋ.

Moreover, if r∗ ⊴ r and r∗ ∈ splitβ+1(p) then already pr∗ ⊩ β̌ ∈ Ẋ. Indeed, since p is
preprocessed there is an xr∗ ∈ β2 so that pr∗ ⊩ χẊ ↾β+1∈ x̌r∗ , thus pr forces a value for χẊ(β)

which has to be one because qr ≤ q, pr and so pr ⊩ β̌ ∈ Ẋ. In particular, if β ≤ sl(t, p) then in
fact pt ⊩ β̌ ∈ Ẋ.

(2) In the same way, fix now α, F and σ̄ ∈ ΛF
α (p). Then there is q ≤ pσ̄ such that q ⊩ β ∈ Ẋ. For

all i ∈ F take any ri = ri(σ̄, β) ∈ splitβ(q(i)). Note that σi ⊴ ri for all i ∈ F . We can find β′ ≥ β

such that ri ∈ splitβ′(p(i)) uniformly for all i ∈ F . Hence if τ̄ = (ri(σ̄, β) : i ∈ F ), by Lemma 35
there are F ′ ⊇ F , τ̄ ′ ∈ ΛF ′

α (p) and xτ̄ ′ ∈ β′
2 such that pτ̄ ′ ⊩ χẊ ↾ β′ = x̌τ̄ . Let y = χẊ ↾ β′. Since

qτ̄ ′ ≤ pτ̄ ′ we must have that y(β) = 1. Thus pτ̄ ′ ⊩ β ∈ Ẋ. The argument for the moreover part
is the same as for part (1). □

Definition 40. For p ∈ Sλκ and F ∈ [supp(p)]<κ, let Λ(F ) =
⋃

α<κ Λ
F
α . For σ̄ and τ̄ in Λ(F ) we

say that τ̄ ⊴ σ̄ if and only if for each i ∈ F (τ̄(i)⊴ σ̄(i)).

Corollary 41.
(1) Let Ẋ be a Sκ-name for an infinite subset of κ. If p ∈ Sκ is preprocessed for Ẋ, t ∈ split(p)

and Yt is the outer hull of Ẋ below pt then

Yt = {β < κ : ∃r ∈ split(p) such that t⊴ r and pr ⊩ β̌ ∈ Ẋ}.

(2) Let Ẋ be a Sλκ-name for an infinite subset of κ. If p ∈ Sλκ is preprocessed for (Ẋ, F ∈
[supp(p)]<κ) and σ̄ ∈ Λ(F ), then

Yσ̄ = {β ∈ κ : ∃τ̄ ∈ Λ(F ′) for F ′ ⊇ F, |F ′|< κ such that σ̄ ⊑ τ̄ and pτ̄ ⊩ β̌ ∈ Ẋ}.

8. κ-Sacks indestructibility

In this section we set out to obtain our main result, namely the relative consistency of i(κ) < 2κ.
For this we start with a measurable cardinal κ and a normal measure U on κ. Using the forcing
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notion PU we adjoin a U-supported κ-maximal independent family, which by Lemma 26 is densely
maximal. A key feature of our proof is Lemma 25 which gives an equivalent characterisation of
dense maximality via the property (∗) of the same Lemma. In fact, to show that A = AG for a
PU -generic filter G remains maximal after forcing with a large product of κ-Sacks forcing, we show
that the property (∗) is preserved. With other words, we show that in the final generic extension
a κ-independent family which we adjoin via forcing at an initial step of the construction satisfies
property (∗). Note that in difference with the original work of Shelah [23], we are only interested
in products of κ-Sacks forcing and not iterations.

Theorem 42. (GCH) Let κ be a measurable cardinal, U a normal measure on κ and let G be
PU -generic filter over the ground model V0. Let A = AG and V = V0[G]. Then

V Sκ ⊨ A is a densely maximal independent family.

Proof. Note that GCH holds in V and κ is inaccessible in V . By Lemma 26 the family A is densely
maximal in V . To prove that (A is densely maximal)V Sκ we will show that in V Sκ , property (∗)
of A from Lemma 25 holds. More precisely, we will show that in V Sκ for each X ⊆ κ and each
h ∈ FF<ω,κ(A) such that X ⊆ Ah property (∗)X,h holds, where

(∗)X,h either ∃B ∈ id<ω,κ(A) such that Ah\X ⊆ B or there is h′ ⊇ h such that Ah′ ⊆ Ah\X.

Suppose not. Thus, there are X ⊆ κ, h ∈ FF<ω,κ(A) such that X ⊆ Ah and ¬(∗)X,h. That is,

V Sκ ⊨ X ⊆ Ah ∧ Ah\X /∈ id<ω,κ(A) ∧ ∀h′ ⊇ h(Ah′ ∩X ̸= ∅).

Let Ẋ be a Sκ-name for X in V and let p ∈ Sκ force the above. By Lemma 35 we can assume
that p is preprocessed for Ẋ and by Corollary 41 that for each t ∈ split(p) for the outer hull Yt of
Ẋ below pt is of the form Yt = {β < κ : ∃r ∈ split(p) such that t⊴ r or r ⊴ t and pr ⊩ β̌ ∈ Ẋ}.

Claim 43. Let t ∈ split(p). Then Yt ⊆ Ah.

Proof. Let m ∈ Yt. Thus there is qt,m ≤ pt such that qt,m ⊩ m̌ ∈ Ẋ. But pt ⊩ Ẋ ⊆ Ah and so m

must be an element of Ah. □

We will make use of the following function H ∈ κκ ∩ V . Given t ∈ split(p) and β ∈ Yt, let
r(t, β) be a witness to β ∈ Yt such that t is comparable with r(t, β) and r(t, β) is of least splitting
level. Then define

H(γ) = sup{γ + 1} ∪ {sl(r(t, β)) : t ∈ splitγ(p), β ≤ γ},

where if r(t, β) is not defined, i.e. β /∈ Yt, then we take sl(r(t, β)) = 0.
Fix t ∈ split(p). Since Yt ⊆ Ah, by the dense maximality of A in V either there is B ∈ id<ω,κ(A)

such that Ah\Yt ⊆ B or there is h′ ⊇ h such that Ah′ ⊆ Ah\Yt. In the latter case, Ah′ ∩ Yt = ∅
and since p ⊩ Ẋ ⊆ Y̌t, we obtain that p ⊩ Ah′ ∩ Ẋ = ∅, contrary to the choice of p. Thus, we
can assume that ∀t ∈ split(p)∃Bt ∈ id<ω,κ(A) such that Ah\Yt ⊆ Bt, Ah\Yt ∈ id<ω,κ(A). But
then Yt ∪ κ\Ah ∈ fil<ω,κ(A). Now, since fil<ω,κ(A) is a κ-p-set, there is C ∈ fil<ω,κ(A) such that
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C ⊆∗ Yt ∪ κ\Ah for each t ∈ split(p). Thus in particular, C ∩Ah ⊆∗ Yt for all t ∈ split(p) and so
we can find a function f ∈ V ∩ κκ such that

∀α ∈ κ ∀t ∈ splitα+1(p) (C ∩ Ah)\Yt ⊆ f(α).

Equivalently, for each α ∈ κ,

(C ∩ Ah)\f(α) ⊆
⋂

t∈splitα+1(p)

Yt.

Moreover, we can assume that H(α) + 1 < f(α) and that f is strictly increasing.
Now, we use Corollary 23 for the strictly increasing function f2 = f ◦ f , i.e. the composition

of f with itself. Then there is a set C∗ ∈ fil<ω,κ(A) such that ∀α ∈ C∗∀γ ∈ α ∩ C∗(f2(γ) < α).
Now, let C ′ = C ∩ C∗ ∩ (f(1), κ). Thus C ′ ∈ fil<ω,κ(A). Let {k(α) : α < κ} be an increasing
enumeration of C ′∩Ah. Since C ′ ∈ fil<ω,κ(A) the latter set is indeed unbounded in κ. Recursively,
we will define a fusion sequence τ = ⟨qα : α ∈ κ⟩ below p such that:

(1) qα+1 ≤α qα,
(2) qα+1 ⊩ k(α) ∈ Ẋ,
(3) If q is the fusion of τ then q ⊩ C ′ ∩ Ah ⊆ Ẋ.

But then, since q ⊩ Ah\Ẋ ⊆ Ah\C ′ and Ah\C ′ ⊆ κ\C ′ ∈ id<ω,κ(A), we obtain that q ⊩
Ah\Ẋ ∈ id<ω,κ(A), which is again a contradiction to the choice of p.

Here is the construction of τ . Start with q0 = p and at limits take intersections. Consider k(0)
and put r = stem(p). Since

(C ∩ Ah)\f(0) ⊆
⋂

t∈split1(p)
Yt,

for each j ∈ {0, 1} and p is preprocessed for Ẋ there is rj(t, k(0)) ∈ splitH(k(0))(p) such that
prj(t,k(0)) ⊩ ǩ(0) ∈ Ẋ. Let q1 =

⋃
{prj(t,k(0)) : t ∈ split1(p), j ∈ {0, 1}}. Thus q1 ≤0 q0 as we

wanted.
For completeness we present the construction of the next step: take k(1) and t ∈ split1(q1).

Note that split1(q1) = splitδ(p) for some 1 ≤ δ ≤ H(k(0)) ≤ f(k(0)) and since f2(k(0)) < k(1)

and C\Yr ⊆ f(f(k(0))) for all r ∈ splitf(k(0))+1(p), we obtain k(1) ∈ Yr for all r ∈ splitf(k(0))+1(p).
Using the fact that p is preprocessed and repeating the argument above, find for each j ∈ {0, 1}
an extension rj(t, k(1)) ≤ pt⌢j such that rj(t, k(1)) ⊩ k(1) ∈ Ẋ. Let q2 =

⋃
{rj(t, k(1)) : t ∈

split1(q1) ∧ j ∈ {0, 1}}. Then q2 is a condition, q2 ≤1 q1 and q2 ⊩ k(1) ∈ Ẋ.
In general, suppose we have constructed qα and consider k(α), and t ∈ splitα(qα), then there

is δ ≥ α so that t ∈ splitδ(p) and δ ≤ H(k(α)). Again, since f2(k(α)) < k(α + 1) and C\Yr ⊆
f(f(k(α))) for all r ∈ splitf(k(α))+1(p) we get that k(α) ∈ Yt, so again use that p is preprocessed
and repeat the argument above to find conditions rj(t, k(α)) ≤ pt⌢j forcing rj(t, k(α)) ⊩ k(α) ∈ Ẋ

j ∈ {0, 1}. Put qα+1 =
⋃
{rj(t, k(α)) : t ∈ splitα(qα) ∧ j ∈ {0, 1}}. Then qα+1 is a condition,

qα+1 ≤α qα and qα+1 ⊩ k(α) ∈ Ẋ.
□
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Theorem 44. The generic maximal independent family adjoined by PU over a model V0 of GCH
remains maximal after the κ-support product Sλκ.

Proof. The idea for this proof is not much different than the one for the successor step, however
the fusion argument has to be handled more carefully. We give now an outline with the most
important details. As in the case above start with a densely maximal independent family A in
V = V PU . To prove that

(A is densely maximal independent family)V
Sλκ

we will show that in V Sλκ , property (∗) from Lemma 25 holds for the family A. Specifically, we
show that in V Sλκ for each X ⊆ κ and each h ∈ FF<ω,κ(A) such that X ⊆ Ah property (∗)X,h

holds, where (∗)X,h states:

either ∃B ∈ id<ω,κ(A) such that Ah\X ⊆ B or there is h′ ⊇ h such that Ah′ ⊆ Ah\X.

Suppose not. Thus, there are X ⊆ κ, h ∈ FF<ω,κ(A) such that X ⊆ Ah and ¬(∗)X,h. That is,

V Sλκ ⊨ X ⊆ Ah ∧ Ah\X /∈ id<ω,κ(A) ∧ ∀h′ ⊇ h(Ah′ ∩X ̸= ∅).

Let Ẋ be a Sλκ-name for X in V and let p ∈ Sλκ force the above. Passing to a stronger condition if
necessary we can assume that p is preprocessed for Ẋ. Now, for every α < κ and all F ⊆ supp(p)

such that |F |< κ consider the set ΛF
α (p). This is a set of size <κ because |splitα(p(i))|≤ 2|α| and

|F |< κ. Also, {ΛF
α (p) : α < κ ∧ F ⊆ supp(p) ∧ |F |< κ} has size κ and so does its union.

Similarly to Claim 43 we obtain:

Claim 45. For all α < κ and F ⊆ supp(p) such that |F |< κ, if σ̄ ∈ ΛF
α (p) then Yσ̄ ⊆ Ah.

Before proceeding with construction of a fusion sequence, which will lead to the desired con-
tradiction, we need to define one more auxiliary object, namely the function H defined below.
Whenever σ̄ ∈ ΛF

α (p) and β ∈ Yσ̄, let r(σ̄, β) be a witness to β ∈ Yσ̄ such that for each i ∈ F the
stem of the condition r(σ̄, β)(i) is of minimal height. Define H ∈ κκ ∩ V as follows:

H(γ) = sup{γ + 1} ∪ {sl(stem(r(σ̄, β))) : σ̄ ∈ ΛF
γ (p), β ≤ γ, F ⊆ supp(p) ∩ γ and |F |< κ}.

Again, following the argument for the single step, we can assume that for all α < κ and all
σ̄ ∈ ΛF

α (p) there exists Bσ̄ ∈ id<ω,κ(A) such that Ah\Yσ̄ ⊆ Bσ̄, Ah\Yσ̄ ∈ id<ω,κ(A). But then
Yσ̄ ∪ κ\Ah ∈ fil<ω,κ(A). Now, since fil<ω,κ(A) is a κ-p-set, there is C ∈ fil<ω,κ(A) such that
C ⊆∗ Yσ̄ ∪ κ\Ah for each σ̄ ∈ ΛF

α . Thus in particular, C ∩Ah ⊆ Yσ̄ for each σ̄ ∈ ΛF
α (p) and so we

can find a function f ∈ V ∩ κκ such that,

∀α ∈ κ ∀F ⊆ supp(p) ∀σ̄ ∈ ΛF
α+1(p) (|F |< κ → C ∩ (Ah\Yσ̄) ⊆ f(α))

Thus, for each α ∈ κ, σ̄ ∈ ΛF
α+1(p) and β ∈ C ∩ Ah, if β > f(α) then β ∈ Yσ̄. Moreover, we

can assume that f is strictly increasing, that H(α) ≤ f(α) and α+ 2 < f(α) for all α ∈ κ.

By Corollary 23, there is C∗ ∈ fil<ω,κ(A) such that ∀α ∈ C∗∀γ ∈ α ∩C∗(f2(γ) < α). Now, let
C ′ = C ∩ C∗ ∩ (f(0), κ). Thus C ′ ∈ fil<ω,κ(A). Let {k(α) : α ∈ κ} be an increasing enumeration
of C ′ ∩ Ah. Since C ′ ∈ fil<ω,κ(A) the latter set is indeed unbounded in κ. Recursively, we will
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define a fusion sequence τ = ⟨qα, Fα : α ∈ κ⟩ ⊆ Sλκ below p, ordinals (ηα : α < κ) and bijections
gα : Fα → ηα such that for all α < κ:

(1) qα+1 ≤Fα,α qα,
(2) ηα ≥ α,
(3) For all α < α′ < κ, gα ⊆ gα′ and for limit ordinals δ < κ gδ =

⋃
α<δ gα,

(4) qα+1 ⊩ k(α) ∈ Ẋ.

Now, if q is the fusion of τ then q ⊩ C ′ ∩ Ah ⊆ Ẋ. But then, since q ⊩ Ah\Ẋ ⊆ Ah\C ′ and
Ah\C ′ ⊆ ω\C ′ ∈ id<ω,κ(A), we obtain that q ⊩ Ah\Ẋ ∈ id<ω,κ(A), contradicting the choice of p.

We proceed with the recursive construction of τ . Start with q0 = p, F0 = min(supp(p)), η0 = 0

and g0 = ∅. At limit stages δ < κ the construction of qδ and Fδ it is already been determined
so that the conditions in Definition 30 are fulfilled. Finally, let ηδ = supα<δ ηα and gδ as above.
Consider k(0) and put σ̄ = ⟨stem(p(min(supp(p))))⟩. Since for all τ̄ ∈ ΛF0

1 (p), C \ Yτ̄ ⊆ f(0),
k(0) ≥ f(0) and p is preprocessed for (Ẋ, F0) we have that k(0) ∈ Yτ̄ for all τ̄ ∈ ΛF0

1 (p) and so, by
Corollary 41 for each h ∈F0 2 there exists a set F ′

0 ⊇ F0, a τ̄ ⊒ σ̄ and condition rh(τ̄h, k(0)) ≤ phτ̄h
such that rh(τ̄h, k(0)) ⊩ k(0) ∈ Ẋ.

For completeness, we give a more detailed proof of the existence of the conditions rh(τ̄h, k(0)).
Recall that phσ̄ is defined as follows:

phσ̄(i) =

{
(p(i))

σ⌢
i h(i)

if i ∈ F

p(i) otherwise

There are sequences σ̄′
h ∈ ΛF0

1 (p) such that σ̄h ⊴ σ̄′
h where σ̄h is such that σh(i) = σ(i)⌢h(i) for

all i ∈ F0. Hence, using that p is preprocessed we can get a set F ′
0 ⊇ F0 such that |F ′

0|< κ and
sequences τ̄h ⊒ σ̄′

h so that pτ̄h ⊩ k(0) ∈ Ẋ. Thus, take rh(τ̄h, k(0)) = pτ̄h .
Then if q1 =

⋃
{rh(σ̄, k(0)) : h ∈ F02, τ̄h ∈ Λ

F ′
0

0 (p)}, F1 = F ′
0∪{min{supp(q1)\F ′

0}}, η1 = η0+1

and g1 = g0∪{(min{supp(q1)\F ′
0, η1)} we have that q1 ≤0,F ′

0
q0 and q1 ⊩ k(0) ∈ Ẋ as we wanted.

In general, suppose we have constructed qα, Fα, ηα and gα as desired. Consider k(α) and the
set ΛFα

α+1(pα). Fix an enumeration {γl = (σ̄l, hl) : l < ρ} of all pairs of the form (σ̄, h) such that
σ̄ ∈ ΛFα

α+1(qα) and h ∈ Fα2. Note that the ordinal ρ is < κ. Inductively, we will construct a
sequence {rαl : l < ρ} of conditions below qα satisfying:

(1) rα0 = qα,
(2) rαl+1 ≤α,Fα rαl ,
(3) (rαl+1)

hl
σ̄l

⊩ ǩ(α) ∈ Ẋ,
(4) For l limit ordinal rαl =

∧
k<l r

α
k .

It is enough to explain how the successor step is built: Suppose then that we have constructed
rαl satisfying the conditions above and consider the pair γl = (σ̄, h). Notice that since |Fα|< κ

for all i ∈ Fα, splitα(qα(i)) ⊆ splitδ(p(i)) for some δ ≤ H(k(α)). Also, since f2(k(α)) < k(α+ 1)

and for all τ̄ ∈ ΛFα

f(α)+1(p) we have that C\Yτ̄ ⊆ f(f(k(α))), we obtain that k(α) ∈ Yτ̄ for all
τ̄ ∈ ΛFα

f(α)+1(p). Thus, again we repeat the argument above using the fact that p is preprocessed for
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(Ẋ, Fα) and find a set F ′
α ⊇ Fα, a sequence τ̄h ∈ Λ

F ′
α

α (p) and conditions wh(τ̄h, k(α)) ≤ phτ̄h forcing
wh(τ̄h, k(α)) ⊩ k(α) ∈ Ẋ. Moreover, we can choose wh(τ̄h, k(α)) so that wh(τ̄h, k(α)) ≤ (qα)

h
τ̄h

.
Note that wh(τ̄h, k(α)) might not yet be a condition satisfying the condition (2). In order to fix
this, we define rαl+1 as follows: supp(rαl+1) = supp(wl) and

rαl+1(i) =

{
(wh(τ̄h, k(α))(i) ∪ {(qα(i))ρ⌢j : ρ ∈ splitα(rl(i)) \ σi or j = 1− h(i)} if i ∈ F ′

α

wh(σ̄, k(α))(i) otherwise

Finally, let qα+1 =
∧

l<ρ r
α
l , ηα+1 = ηα + 1, Fα+1 = F ′

α ∪ {min(supp(qα+1)\F ′
α)} and let

gα+1 = gα ∪ {(min(supp(qα+1)\F ′
α), ηα)}. The construction is now complete. Indeed, to see that

qα+1 ⊩ ǩ(α) ∈ Ẋ notice that for all σ̄ ∈ ΛFα
α (qα+1) and all h ∈ Fα2, (qα+1)

h
σ̄ ⊩ ǩ(α) ∈ Ẋ. □

Remark 46. Note that κ might cease to be measurable in V Sλκ from the above theorem. For a
preparation of the universe, which guarantees that κ remains measurable see [13].

9. Concluding Remarks and Questions

The use of the assumption 2κ = κ+ played a crucial role in our construction of a densely
maximal κ-independent family. Thus one may ask:

Question 47. Does ZFC imply the existence of a densely maximal κ-independent families?

Even though we are able to show both that consistently if (κ) = κ+ < 2κ and κ+ < if (κ) = 2κ,
the currently available techniques seem to be insufficient to answer the following:

Question 48. Let κ be a regular uncountable cardinal. Is it consistent that κ+ < i(κ) < 2κ?

The analogous question in the countable can be answered to the positive with the use of the so
called diagonalization filters (see [12]). A natural generalization of the notion of a diagonalization
filter to the uncountable is given below:

Definition 49. Let A be a κ-independent family. A κ-complete filter F is said to be an κ-
diagonalization filter for A if ∀F ∈ F∀h ∈ FF<ω,κ(A)|F ∩Ah| = κ and F is maximal with respect
to the above property.

Moreover, as a straightforward generalization of the countable case (see [12]) one can show
that:

Lemma 50. (see [12, Lemma 2]) Suppose A is a κ-independent family and F is a κ-diagonalization
filter for A. Let Mκ

F be the generalized Mathias forcing relativized to the filter F .8 Let G be
a Mκ

F -generic filter and let xG =
⋃
{a : ∃A(a,A) ∈ G}. Then A ∪ {xG} is κ-independent and

moreover for each Y ∈ ([κ]κ ∩ V )\A such that A∪{Y } is κ-independent, the family A∪{xG, Y }
is not κ-independent.

8That is Mκ
F consists of all pairs (a,A) ∈ [κ]<κ ×F such that sup a < minA.
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Even though an appropriate iteration of posets of the above form would produce a positive
answer to Question 48, the following remains open:

Question 51. Given a κ-independent family A is there a κ-diagonalization filter for A? The co-
bounded filter does satisfy the characterization property in Definition 49, however the requirement
for maximality is not straightforward to satisfy. Is there a large cardinal property which guarantees
the existence of such maximal filter? Note that a diagonalization filter is never an ultrafilter.

Moreover of interest remain the following:

Question 52. Is it consistent that i(κ) < a(κ)?

Clearly, if the above is consistent then in the corresponding model, i(κ) ≥ κ++. One of the
original questions, which motivated the work on this project is the evaluation of i(κ) in the model
from [6]. More precisely, we would like to know:

Question 53. Is it consistent that i(κ) < u(κ)?

The consistency of r < i holds in the Miller model. However, products of the generalized Miller
poset MIUκ , where U is a κ-complete normal ultrafilter on κ add κ-Cohen reals (see [3, Theorem
85]) and so increase r(κ). Even though MIUκ has the generalized Laver property (see [3, Proposition
81]), it is open if the generalized Laver property is preserved under κ-support iterations. This
leaves us with the following:

Question 54. Is it consistent that r(κ) < i(κ)?

10. Appendix: Strong Independence

Another approach towards finding a higher analogues of independence for a given uncountable
cardinal κ is to consider boolean combinations generated by strictly less than κ (not just finitely)
many members of the family. More precisely one can give the following definition:

Definition 55. Let κ be a regular uncountable cardinal, A ⊆ [κ]κ of cardinality at least κ.
(1) Let FF<κ,κ(A) be the set of partial functions h : A → {0, 1} with domain of cardinality

strictly below κ and for h ∈ FF<κ,κ(A) let Ah =
⋂
{Ah(A) : A ∈ dom(h)} where Ah(A) = A

if h(A) = 0 and Ah(A) = κ\A if h(A) = 1.
(2) The family A is said to be strongly-κ-independent if for every h ∈ FF<κ,κ(A) the boolean

combination Ah is unbounded.
(3) The family A is said to be maximal strongly-κ-independent if it is strongly-κ-independent

and is not properly contained in another strongly-κ-independent family.
(4) Suppose κ is a regular uncountable cardinal for which maximal strongly-κ-independent

families exists. With is(κ) we denote the minimal size of a maximal strongly-κ-independent
family.

Note that the increasing union of a countable sequence of strongly-κ-independent families is not
necessarily strongly-κ-independent. Thus one can not apply Zorn’s lemma to claim the existence
of maximal strongly-κ-independent families. What we can say is the following:
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Theorem 56. Let κ be a regular uncountable caridnal.
(1) For κ strongly inaccessible, there is a strongly-κ-independent family of cardinality 2κ.
(2) If A is strongly-κ-independent and |A| < r(κ) then A is not maximal.
(3) Suppose d(κ) is such that for every γ < d(κ), γ<κ < d(κ). If A is strongly-κ-independent

and |A| < d(κ) then A is not maximal.

Proof. We will prove (1). Let C = {(γ,A) : γ < κ,A ⊆ P(γ)}. Given X ⊆ κ define YX =

{(γ,A) ∈ C : X ∩ γ ∈ A}. Then YX : X ⊆ κ} is strongly-κ-independent. Indeed. Consider two
disjoint subfamilies of [κ]κ, each of size strictly smaller than κ, say {Xi}i∈I1 and {Zj}j∈I2 . Note
that (γ,A) ∈ X =

⋂
i∈I1 YXi ∩

⋂
j∈I2(C\YZj ) if for all i ∈ I1, Xi ∩ A ∈ A and for all j ∈ I2,

Zj ∩ γ /∈ A. However, there are unboundedly many γ ∈ κ such that
• Xi ∩ γ ̸= Xi′ ∩ γ for i ̸= i′ both in I1, and
• Zj ∩ γ ̸= Zj′ ∩ γ for j ̸= j′ both in I2, and
• Xi ∩ γ ̸= Zj ∩ γ for all i ∈ I1, j ∈ I2.

It remains to observe that for each such γ, we have (γ,Aγ) ∈ X , where Aγ = {Xi ∩ γ : i ∈ I1}.
To see part (2) note that if |A| < r(κ), then the set {Ah : h ∈ FF<κ,κ(A)} is split by some

X ∈ [κ]κ and so A ∪ {X} is strongly κ-independent which properly contains A.
For a proof of part (3), see [6, Proposition 27]. □

Corollary 57. Thus, if is(κ) is defined, then κ+ ≤ is(κ) ≤ 2κ. Moreover r(κ) ≤ is(κ) and if for
every γ < d(κ), γ<κ < d(κ), then d(κ) ≤ is(κ).

Question 58.
(1) Is there a large cardinal property which implies the existence of a maximal strongly-κ-

independent family?
(2) Given a strongly κ-independent family A, is there a large cardinal property which implies

the existence of a κ-diagonalization filter for A?
(3) Suppose is(κ) is defined. A family which is strongly-κ-independent is κ-independent.

However a maximal strongly independent family is not necessarily maximal independent.
Is there a ZFC relation between is(κ) and i(κ)?
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