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Abstract. Our goal is to study the pseudo-intersection and tower numbers on
uncountable regular cardinals, whether these two cardinal characteristics are nec-
essarily equal, and related problems on the existence of gaps. First, we prove that
either p(κ) = t(κ) or there is a (p(κ), λ)-gap of club-supported slaloms for some
λ < p(κ). While the existence of such gaps is unclear, this is a promising step to
lift Malliaris and Shelah’s proof of p = t to uncountable cardinals. We do analyze
gaps of slaloms and, in particular, show that p(κ) is always regular; the latter
extends results of Garti. Finally, we turn to club variants of p(κ) and present
a new model for the inequality p(κ) = κ+ < pcl(κ) = 2κ. In contrast to earlier
arguments by Shelah and Spasojevic, we achieve this by adding κ-Cohen reals
and then successively diagonalising the club-filter; the latter is shown to preserve
a Cohen witness to p(κ) = κ+.

1. Introduction

The classical tower and pseudo-intersection numbers (t and p, respectively) have
played a significant role in the study of cardinal characteristics of the continuum
and special subsets of the reals. The cardinal t is the minimum size of a tower of
subsets of ω i.e., a ⊆∗-decreasing sequence of subsets of ω with no infinite pseudo-
intersection, and p is the minimum size of a base for a filter on ω with no infinite
pseudo-intersection.

It was unknown for a long time whether these two cardinals coincide. Rothberger
proved in [Rot39] and [Rot48] that p ≤ t and also that if p = ℵ1 then t = ℵ1 as
well. Results from the years after Rothberger’s paper suggest that the consistency of
p < t seemed plausible to many set-theorists working in the area. Hence, the ground-
breaking result of Malliaris and Shelah [MS16] came with considerable surprise: the
cardinals t and p are provably equal.

Meanwhile, recent years have seen an increased interest in the study of the com-
binatorics of the generalized Baire spaces κκ, when κ is an uncountable regular
cardinal. This fruitful new area of research provided extensions of classical results
from the κ = ω case often requiring the development of completely new machinery
to do so. Striking new inequalities were proved as well between cardinal invariants of
κκ which are known to fail in the classical setting. Thus a natural question becomes:
Does Malliaris and Shelah’s result mentioned above lift to the uncountable?
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The goal of the current paper is the study of the higher analogues of the tower
and pseudo-intersection numbers. We start with some basic definitions.

Definition 1.1. Let κ be a regular uncountable cardinal.
(1) Let F be a family of subsets of κ. We say that F has the strong intersec-

tion property (in short, SIP) if for any subfamily F ′ ⊆ F of size < κ, the
intersection

⋂
F ′ has size κ.

(2) We say that A ⊆ κ is a pseudo-intersection of F if A ⊆∗ F for all F ∈ F .1
(3) A tower T is a ⊆∗-well-ordered family of subsets of κ with the SIP that has

no pseudo-intersection of size κ.

In the countable case, any ⊆∗-well-ordered family of infinite sets has the SIP.
However, for uncountable κ, the SIP requirement is necessary as there are countable
⊆∗-decreasing families of subsets of κ with no pseudo-intersection of size κ.2

Definition 1.2 (The pseudo-intersection and tower number).
(1) The pseudo-intersection number for κ, denoted by p(κ), is defined as the mini-

mal size of a family F ⊂ [κ]κ which has the SIP but no pseudo-
intersection of size κ.

(2) The tower number for κ, denoted by t(κ), is defined as the minimal size of a
tower T ⊂ [κ]κ of subsets of κ.

(3) pcl(κ) is the minimal size of a family F of club subsets of κ with no pseudo-
intersection of size κ.

(4) tcl(κ) the minimal size of a tower T of club subsets of κ.

Note that in the definition of pcl(κ) and tcl(κ), there is no need to assume the SIP
as any family of clubs has the strong intersection property. For higher analogues of
p and t which do not require the SIP property see Section 6.1 of our Appendix.

The study of the above cardinal invariants was initiated by Garti [Gar11] and one
of the results which motivated the work on this project is the following:

Theorem 1.3. [Gar11] Let κ be an uncountable cardinal such that κ<κ = κ.
(1) If p(κ) = κ+, then t(κ) = κ+.
(2) If cf(2κ) ∈ {κ+, κ++}, then p(κ) = t(κ).
(3) cf(p(κ)) 6= κ.

Related consistency results also appear in the very recent paper of Ben-Neria and
Garti [BG19].

Structure of the paper: The current paper is structured as follows. In Section 2 we
introduce a natural higher analogue of the notion of a gap which gives an interesting
analogue of a theorem of Malliaris-Shelah, which is central to the proof of p = t.

1As usual, A ⊆∗ F means that A \ F has size < κ.
2E.g., consider a partition of κ into sets {Xn : n < ω} and look at T = {

⋃
m≥nXm : n ∈ ω}.
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More precisely, we work with club-supported gaps of slaloms3 (see Definition 2.5)
and prove:

Theorem 1.4. Let κ be a regular cardinal such that κ<κ = κ. Either p(κ) = t(κ) or
there is a λ < p(κ) and club-supported (p(κ), λ)-gap of slaloms.

In Section 3, we study the possible sizes of gaps of slaloms which leads in particular
to the following result (see Corollary 3.4):

Theorem 1.5. For any uncountable, regular κ, p(κ) is regular.

Additionally, we consider a higher analogue of Martin’s Axiom (see Definition 3.11)
and its effect on certain club-supported gaps of slaloms (see Theorem 3.12). In
Section 4, we look at the relation of p(κ) and its restriction to the club filter, pcl(κ).
Apart from showing that pcl(κ) = tcl(κ) = b(κ) (see Observation 4.2), we prove:

Theorem 1.6. (GCH) For any regular uncountable κ < λ, where κ = κ<κ, there is
a κ-closed, κ+-cc forcing extension in which p(κ) = κ+ < pcl(κ) = λ = 2κ.

Moreover, we extend the above result to a certain class of κ-complete filters on
κ (see Theorem 4.10). The consistency of p(κ) < b(κ)(= pcl(κ)) is originally due
to Shelah and Spasojević [SS02], however our techniques significantly differ from
theirs: We add κ-Cohen reals and then successively diagonalise the club-filter while
preserving a Cohen witness to p(κ) = κ+. We conclude the paper with a list of
interesting remaining open questions and a short appendix containing proofs and
related results that did not quite fit in earlier sections.

1.1. Notation, terminology and preliminaries. We aimed our paper to be self
contained. For a function f ∈ κκ, we say that C ⊂ κ is f -closed if for any ξ ∈ C and
ζ < ξ, f(ζ) < ξ. Note that for any f , there are f -closed clubs (since κ is regular).
For a club C ⊆ κ, we let succC denote the function

succC(ζ) = minC \ (ζ + 1).

In forcing arguments, smaller conditions are stronger.
One of the main tools in the study of p has been Bell’s theorem: for any σ-centered

poset P and for any collection D of < p-many dense subsets of P, there is a filter
G ⊂ P that meets each element of D. A higher analogue of Bell’s theorem has been
given by Schilhan in [Sch17].

Definition 1.7 (Directed and κ-specially centered posets).
• A subset C ⊆ P is called κ-directed, if given D ∈ [C]<κ, there is a condition
q ∈ P such that q ≤ p for every p ∈ D.
• A poset P is κ-centered if there exists a sequence {Cγ : γ < κ} of κ-directed
subsets of P so that P =

⋃
γ<κCγ .

3Note that there are no real gaps of function in κκ. Indeed, there is no infinite <∗-decreasing
sequence of functions in κκ when κ ≥ cf(κ) > ω.



4 V. FISCHER, D. C. MONTOYA, J. SCHILHAN, AND D.T. SOUKUP

• Assume P is <κ-closed and κ-centered, say P =
⋃
γ<κCγ where all Cγ are

κ-directed. Say that P is κ-centered with canonical lower bounds if there is a
function f = fP : κ<κ → κ such that whenever λ < κ and (pα : α < λ) is a
decreasing sequence with pα ∈ Cγα , then there is p ∈ Cγ with p ≤ pα for all
α < λ and γ = f(γα : α < λ).

For convenience of the reader, we state the higher analogue of Bells theorem
mentioned above, as it appears an important tool in the analysis of p(κ) and t(κ).

Theorem 1.8. Let κ<κ = κ. Assume P is a κ-centered poset with canonical lower
bounds and below every p ∈ P, there is a κ-sized antichain. Then for any collection
D of < p(κ)-many dense subsets of P, there is a filter G ⊂ P that meets each element
of D.

1.2. Acknowledgments. The authors would like to thank the Austrian Science
Fund (FWF) for the generous support through START Grant Y1012-N35 (Fischer,
Montoya and Schilhan ), Grant I4039 (Fischer) and Grant I1921 (Soukup). The last
author was also supported by NKFIH OTKA-113047.

2. On p(κ), t(κ) and gaps

In their seminal work, Malliaris and Shelah [MS16] proved that the classical car-
dinal invariants p and t coincide, answering a longstanding open problem. By now,
various interpretations of their proof surfaced (see [Roc14; Fre16; CM17; Sch17;
Ulr18]) and we shall outline an argument for p = t to motivate our results presented
here.

First, we need two notions of gaps. Let ȳ = (yα : α < λ), x̄ = (xβ : β < κ)
be sequences from ωω. We say that (ȳ, x̄) is a pre-gap if for every γ < α < λ and
δ < β < κ,

yγ <
∗ yα <

∗ xβ <
∗ xδ.

Definition 2.1 (Tight gaps). We call (ȳ, x̄) a (λ, κ)-tight gap if it is a pre-gap and
for any z ∈ ωω:

if for all α < λ, yα ≤∗ z then there is β < κ such that xβ ≤∗ z.

Definition 2.2 (Peculiar gaps). A pre-gap (ȳ, x̄) is a (λ, κ)-peculiar gap if for all
A ∈ [ω]ω and z ∈ ωA,

if for all α < λ, yα � A ≤∗ z then there is β < κ such that xβ � A ≤∗ z.

In other words, a peculiar gap is a pre-gap which is tight everywhere.

We give a short outline of the proof of p = t. We shall inductively aim to build a
tower from a witness to p using the following notion.

Definition 2.3. Let A be a family of subsets of ω with the SIP and let B be an
⊆∗-decreasing sequence of subsets of ω, such that every element of B has infinite
intersection with all A ∈ A (write B ‖ A). We say that B is a pseudo-parallel of A
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if there is a pseudo-intersection of B that has infinite intersection with all elements
of A.

Lemma 2.4.

(1) (Malliaris, Shelah [MS16]) If A = {Aα : α < κ} is not a pseudo-parallel of
B = {Bβ : β < p} for κ < p, then there exists either a tower of length p or a
(p, κ)-peculiar gap.

(2) (Shelah [She09]) If there is a (p, κ)-peculiar gap, then there is a tower of
length p.

Let (Aα)α<p be a family of subsets of ω witnessing p that is additionally closed
under finite intersections. Define a sequence of sets Bα as follows. Let B0 = A0 and
suppose we have constructed Bβ = {Bα : α < β} for some β < p such that Bβ ‖ A.
If β is a successor ordinal η + 1 put Bβ = Bη ∩ Aβ . Then Bβ+1 ‖ A. If β is a limit
ordinal and Bβ is a pseudo-parallel of A, take B be a witness for this property and
put Bβ = B ∩Aβ .

Then, we have the following cases: either it is possible to carry the construction
along p-many steps, in which case the family {Bα : α < p} is a tower of length p; or
there is some ordinal β < p (which we can assume is regular) such that the family
Bβ = {Bα : α < β} is not a pseudo-parallel of A. Then, by Lemma 2.4, there is a
tower of size p, which finishes the proof.

The following results are motivated by the question whether p(κ) = t(κ) holds for
an uncountable cardinal κ. Theorem 2.7 below is a generalized version of Lemma
2.4 (1) for uncountable cardinals.

Definition 2.5 (Slaloms).
(1) Suppose that D ⊂ [κ]κ is a < κ-closed filter. A D-supported slalom is a map

u : X → [κ]<κ \{∅} so that X ∈ D. We also say that u is an X-based slalom.
(2) If u is a D-supported slalom, then let set(u) =

⋃
ξ∈dom(u) u(ξ).

(3) Whenever u, v are D-supported slaloms and for all but < κ many ξ ∈ domu∩
dom v, u(ξ) ⊆ v(ξ), we write u ⊆∗ v.

Definition 2.6. (Gaps of D-supported slaloms) A D-supported (µ, λ)-gap of slaloms
is a pair of two sequences (uγ)γ<µ and (vα)α<λ of D-supported slaloms so that

(1) for any γ < γ′ < µ and α < α′ < λ,

uγ ⊆∗ uγ′ ⊆∗ vα′ ⊆∗ vα,

(2) there is no D-supported slalom w so that for all γ < µ and α < λ,

uγ ⊆∗ w ⊆∗ vα.

With this, we are ready to state our main theorem.

Theorem 2.7. Let κ be a regular cardinal such that κ<κ = κ. Either p(κ) = t(κ) or
there is a λ < p(κ) and club-supported (p(κ), λ)-gap of slaloms.



6 V. FISCHER, D. C. MONTOYA, J. SCHILHAN, AND D.T. SOUKUP

Proof. Suppose that (Aα)α<p(κ) is a family with the SIP but no pseudo-intersection.
Let Eγ denote a pseudo-intersection for (Aα)α≤γ for γ < p(κ). Further, suppose that
p(κ) < t(κ).

Claim 2.8. There is a club X ⊂ κ so that for all γ < p(κ) and almost all ξ ∈ κ,
Eγ ∩ [ξ, sX(ξ)) 6= ∅.

Proof. For each γ, let Xγ be the set of accumulation points of Eγ . Then Xγ is a
club in κ and for all ξ ∈ κ, Eγ ∩ [ξ, sXγ (ξ)) 6= ∅. Since p(κ) < t(κ) ≤ tcl(κ) = pcl(κ)
(see Observation 4.2), we can find a single club X that is a pseudo-intersection of
(Xγ)γ<p(κ). �

Let us try and build sequences {Bα}α<p(κ), {Yα}α<p(κ) so that for each β < p(κ),
(1) Yβ is a club,
(2) Bβ ⊂∗ Bα and Yβ ⊂∗ Yα for all α < β,
(3) Bβ ⊂∗ Aβ , and
(4) for all γ < p(κ) such that β ≤ γ,⋃

ξ∈Yβ

Eγ ∩ [ξ, sX(ξ)) ⊂∗ Bβ.

We could not succeed in constructing such a sequence of length p(κ), as otherwise
{Bα}α<p(κ) would be a tower of length p(κ) < t(κ) without pseudo-intersection.
First, note that the SIP is still preserved at any intermediate stage.

Claim 2.9. The sequence {Bα}α<λ has the SIP.

Proof. Suppose that I ∈ [λ]<κ. Then Y =
⋂
ρ∈I Yρ is a club and for any γ ∈

p(κ) \ sup I, the set
⋃
ξ∈Y Eγ ∩ [ξ, sX(ξ)) has size κ and is a pseudo-intersection to

{Bρ}ρ∈I . �

Moreover, we can only fail at some limit step β < p(κ) along the construction.
Indeed, if β < p(κ) and both Bβ and Yβ have been already constructed we can put
Bβ+1 = Bβ ∩Aβ+1 and Yβ+1 = Yβ .

Fix this β where the induction must fail and lets try to approximate Bβ and
see what goes wrong. First, take some pseudo-intersection club Z to the sequence
{Yα}α<β .

Lemma 2.10. There is a ⊆∗-increasing sequence of slaloms

{uρ}β≤ρ<p(κ) ⊆
∏
ξ∈Z
P([ξ, sX(ξ)))

so that domuρ = Zρ is a club such that for all ρ and all α < β⋃
ξ∈Zρ

Eρ ∩ [ξ, sX(ξ)) ⊆∗ set(uρ) ⊆∗ Bα ∩Aβ.

The intuition is that each slalom uγ gives an approximation for Bβ by set(uγ)
which satisfies condition (4) with this fixed γ.
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Proof. The sequence is constructed inductively. Suppose we have defined {Zρ}β≤ρ<γ
and {uρ}β≤ρ<γ for some γ ∈ p(κ) \ β. We will try to force to find the next slalom
uγ .

Let Z−γ be a club, which is a pseudointersection of {Zρ}β≤ρ<γ and consider the
poset Pγ consisting of all triples (ν,Y, n) such that

(1) dom(ν) ∈ [Z−γ ]<κ is closed and n ∈ κ,
(2) ∀ξ ∈ dom(ν)

Eγ ∩ [ξ, sX(ξ)) ⊆ ν(ξ) ⊆ Aβ ∩ [ξ, sX(ξ)),

(3) Y = Y0 ∪ Y1 ∈ [γ]<κ where Y0 ⊆ [β, γ) and Y1 ⊆ β, and
(4) if ξ ∈ Z−γ \ n then

(2.1)
⋃
ρ∈Y0

uρ(ξ) ⊆
⋂
ρ∈Y1

Bρ ∩Aβ ∩ [ξ, sX(ξ))

and

(2.2) Eγ ∩ [ξ, sX(ξ)) ⊆
⋂
ρ∈Y1

Bρ ∩Aβ ∩ [ξ, sX(ξ)).

The extension relation is defined as follows: (µ,X ,m) ≤ (ν,Y, n) iff µ ⊇ ν, X ⊇ Y,
m ≥ n and for all ξ ∈ dom(µ) \ dom(ν):

ξ > n and
⋃
ρ∈Y0

uρ(ξ) ⊆ µ(ξ) ⊆
⋂
ρ∈Y1

Bρ.

Observation 2.11. For any pair (ν,Y) which satisfies condition (1)-(3) above and
almost all n ∈ κ, (ν,Y, n) ∈ Pγ.

Proof. Using the facts that |Y0|< κ, |Y1|< κ and uρ(ξ) ⊆ [ξ, sX(ξ)) we can find
n(Y0,Y1) ∈ κ such that for each ξ ∈ Z−γ \ n(Y0,Y1),⋃

ρ∈Y0

uρ(ξ) ⊆
⋂
ρ∈Y1

Bρ ∩Aβ ∩ [ξ, sX(ξ)).

Moreover, by the hypothesis on {Bα}α<β for each ρ ∈ Y1,
⋃
ξ∈Yρ Eγ ∩ [ξ, sX(ξ)) ⊆∗

Bρ. However Z−γ ⊆∗ Yρ for each ρ ∈ Y1 and Eγ ⊆∗ Aβ . Thus we can find m(Y1) ∈ κ
such that for each ξ ∈ Z−γ \m(Y1) we have

Eγ ∩ [ξ, sX(ξ)) ⊆
⋂
ρ∈Y1

Bρ ∩Aβ ∩ [ξ, sX(ξ)).

Now, any n > max{η,m(Y1), n(Y0,Y1),max dom(ν)} works. �

Claim 2.12. The poset Pγ is κ-specially centered.

Proof. Indeed, by κ<κ = κ, κ-centerdness holds if < κ-many conditions with the
same first coordinate are compatible. In the latter case, we can apply the above
observation to see that such conditions do have common lower bounds. �

Claim 2.13. The poset Pγ is < κ-closed with canonical lower bounds.
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Proof. If {pi}i<j is a decreasing sequence of conditions, where j < κ and pi =
(νi,Yi, ni) then let ν− =

⋃
i<j νi,Y =

⋃
i<j Yi and n = supi<j ni. Now extend ν− to

ν by defining
ν(ξ) = (Eγ ∩ [ξ, sX(ξ))) ∪

⋃
ρ∈Y0

uρ(ξ).

This triple (ν,Y, n) is in Pγ and defines the canonical lower bound. �

For each ρ ∈ γ the set Dρ = {(ν,Y, n) ∈ Pγ : ρ ∈ Y} is dense. Indeed, given ρ and
(ν,Y, n) ∈ Pγ we can find a large enough n∗ above n so that (ν,Y ∪{ρ}, n∗) extends
(ν,Y, n). Furthermore:

Claim 2.14. For each η ∈ κ the set Dη = {(ν,Y, n) ∈ Pγ : ∃ζ > η(ζ ∈ dom(ν))} is
dense in Pγ.

Proof. For any ζ > max(η, n), we can define µ ⊃ ν on the set dom ν ∪ {ζ} by

µ(ζ) = (Eγ ∩ [ζ, sX(ζ))) ∪
⋃
ρ∈Y0

uρ(ζ).

Then (µ,Y, n) belongs to Dη and extends (ν,Y, n). �

By the generalized Bell’s theorem, there is a filter G ⊆ Pγ intersecting all the
above dense sets. Thus, we can finally define

uγ =
⋃
{ν : ∃Y such that (ν,Y) ∈ G}.

Observe that Zγ = domuγ is a club subset of Z−γ and hence a pseudo-intersection
of all the other Zβ for β < γ.

�

Note how set(uγ) is a reasonable candidate for Bβ (with Zγ playing the role of
Yβ):

Observation 2.15. set(uγ) is almost contained in Aβ and all Bα for α < β, and
also satisfies condition (4) for a particular γ.

Finally, let us take a pseudo-intersection club for (Zγ)β≤γ<p(κ) which we shall call
Z again to ease notation. Now, we define

vα(ξ) = Bα ∩Aβ ∩ [ξ, sX(ξ))

for α < β and ξ ∈ Z. In turn, for all γ < γ′, α < α′ and almost all ξ ∈ Z,
uγ(ξ) ⊂ uγ′(ξ) ⊂ vα′(ξ) ⊂ vα(ξ).

Finally, if there is a club Yβ ⊂ Z and w(ξ) ⊂ [ξ, sX(ξ)) for ξ ∈ Yβ so that for all
γ, α and almost all ξ ∈ Yβ ,

uγ(ξ) ⊂ w(ξ) ⊂ vα(ξ),

then Bβ = set(w) would extend {Bα}α<β . Since this is impossible (the construction
of the B-sets failed at step β), we must have produced a (p(κ), β)-gap of club-
supported slaloms. �
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3. On the sizes of gaps of slaloms

Naturally, Theorem 2.7 prompts us to study the existence of (λ1, λ2)-peculiar gaps
more closely. In fact, to prove p(κ) = t(κ), it would suffice to show that there are
no D-supported (p(κ), λ)-gaps of slaloms supported for some filter D. We could not
prove this yet, however, building on [She09], we shall present some weaker statements.

Propositions 3.1 together with Theorem 2.7 show that p(κ) is regular. The results
in this section show that in a certain sense there are no club-supported gaps of
slaloms which are small on both sides. However in Proposition 3.6 we show that
there are short decreasing sequences of slaloms with no lower bound. Finally, in
Theorem 3.13, we see how generalized forms of MA effect the existence of gaps.

Proposition 3.1. Suppose κ = κ<κ ≤ λ1, λ2 are regular cardinals and that there is
a club-supported (λ1, λ2)-gap of slaloms. Then p(κ) ≤ max{λ1, λ2}.

Proof. Let (uα : α < λ1) and (vβ : β < λ2) be a club-supported (λ1, λ2)-gap of
slaloms and assume λ2 < p(κ). We can assume all the slaloms are defined on a
common club C (by taking a pseudo-intersection for all the domains). We shall find
a single w that fills the gap on a club set using the generalized version of Bell’s
theorem (see Theorem 1.8).

We define a κ-specially centered poset Q as follows. Conditions in Q are triples
q = (sq, σq1, σ

q
2) where

(1) sq is a partial slalom defined some closed, bounded subset of C,
(2) σqi ∈ [λi]

<κ for i = 1, 2, and
(3) for any α ∈ σq1, β ∈ σ

q
2 and η > max dom s, uα(η) ⊆ vβ(η).

The order on Q is defined as follows: We say p ≤ q if and only if sp w sq, σpi ⊇ σ
q
i

and for all η ∈ dom(sp) \ dom(sq),⋃
α∈σq1

uα(η) ⊆ sp(η) ⊆
⋂
α∈σq2

vβ(η).

Claim 3.2. Q is a κ-closed, κ-specially centered forcing notion of size λ2.

Proof. For a fixed closed and bounded s ⊂ C, any subset of Qs = {q ∈ Q : sq = s}
has a canonical lower bound. So the partition

Q =
⋃
{Qs : s ∈ [C]<κ, s club}

witnesses the claim. �

Claim 3.3. For each η < κ, α < λ1 and β < λ2 the following sets are dense in Q:
(1) Dη = {q ∈ Q : η < max dom sq}, and
(2) Eα,β = {q ∈ Q : α ∈ σq1, β ∈ σ

q
2}.

Proof. Fix q ∈ Q, η < κ and α < λ1, β < λ2. Let q′ = (s′, σq1∪{α}, σ
q
2∪{β}) so that

dom s′ = dom s ∪ {µ} and for any α′ ∈ σq1 ∪ {α} and β′ ∈ σq2 ∪ {β}, if η > µ then
uα′(η) ⊆ vβ′(η). Moreover, pick µ to be above η and define s′(µ) =

⋃
α∈σq1

uα(µ).
Then q′ is a condition extending q and q′ ∈ Dη ∩ Eα,β , as desired. �
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By Theorem 1.8, we can take a filter G ⊆ Q which intersects all the dense sets
{Dη}η<κ ∪ {Eα,β}(α,β)∈λ1×λ2 . Then D =

⋃
{dom sq : q ∈ G} is a club and

w =
⋃
{sq : q ∈ G}

is a slalom with domain D. Fix any (α, β) ∈ (λ1, λ2) and pick q ∈ Eα,β ∩ G. Then
for any η > max dom sq, we have uα(η) ⊆∗ w(η) ⊆∗ vβ(η) and so

uα ⊆∗ w ⊆∗ vβ,
which finishes the proof. �

Corollary 3.4. p(κ) is regular.

Proof. This follows immediately from Theorem 2.7 and Proposition 3.1. Indeed,
if p(κ) = t(κ) then we are done since the latter is regular. Otherwise, there is a
(p(κ), λ1)-gap of slaloms with λ1 < p(κ). If p(κ) is singular of cofinality λ0 then we
can shrink the left-hand side of the original (p(κ), λ1)-gap and get a (λ0, λ1)-gap of
slaloms. This however, contradicts Proposition 3.1. �

Yet another bound on the sizes of gaps is the following.

Proposition 3.5. Suppose that κ is a regular, uncountable cardinal. If λ < b(κ)
then there is no club-supported (κ, λ)-gap of slaloms on κ.

Proof. Let λ < b(κ). Suppose that ū = (uα : α < κ) and v̄ = (vξ : ξ < λ)
are sequences of club-supported slaloms on κ, ū is increasing, v̄ is decreasing and
uα ⊆∗ vξ for all α < κ, ξ < λ.

Let Cα = domuα. For any club C which is a subset of the diagonal intersection
∆α<κCα, we can define a slalom wC on C by

wC(β) =
⋃
α<β

uα(β).

It is clear that uα ⊆∗ wC for any α < κ.
Given a fixed ξ < λ, there is a club Dξ so that β ∈ Dξ and α < β implies that

uα(β) ⊆ vξ(β). The family {Dξ : ξ < λ} must have a pseudo-intersection D since
λ < b(κ) = pcl(κ).

Finally, let w = wC where C = D ∩ ∆α<κCα. Now, for any α < κ and ξ < λ,
uα ⊆∗ w ⊆∗ vξ and so ū, v̄ is not a gap. �

In particular, we proved that any κ-sequence of club-supported slaloms on κ has an
upper bound. There is an interesting asymmetry here, as there are short decreasing
sequences of slaloms without lower bounds.

Proposition 3.6. Suppose that κ = κ<κ is a regular, uncountable cardinal.
(1) There is a ⊆∗-decreasing, κ-sequence of club-supported slaloms on κ that has

no lower bound supported on a stationary set.
(2) For any regular κ ≤ λ, there is κ-specially centered poset P which introduces

a decreasing λ-sequence of club-supported slaloms on κ with no lower bound
supported on a club.
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Proof. (1) The case λ = κ will be instructive to understand the more general argu-
ment of (2). We define the decreasing sequence of slaloms v̄ = (vβ : β < κ) with the
following properties

(1) vα : κ→ [κ]<κ \ {∅},
(2) for any α < β < κ and η > β, vα(η) ⊇ vβ(η),
(3) for any limit β ∈ κ,

⋂
α<β vα(β) = ∅.

The construction is done in κ steps: at step β, we define vα(β) for α < β and
vβ � β + 1. If β is a limit ordinal, then we make sure that the sequence of sets
{vα(β) : α < β} is strictly decreasing with empty intersection. We can pick vβ � β+1
arbitrarily, for example, vβ(η) = {0} for all η ≤ β.

If β = α+ 1 then again we make sure that {vα′(β) : α′ ≤ α} is strictly decreasing
and we can pick vβ(η) = {0} for all η ≤ β.

Finally, given such a sequence v̄, assume that w : S → [κ]<κ \{∅} and w ⊆∗ vα for
all α < κ. If S is stationary then we can find a limit β ∈ S so that α < β implies that
w(β) ⊆ vα(β). In turn,

⋂
α<β vα(β) 6= ∅ and this contradiction finishes the proof.

(2) For a general λ < p(κ), we will force as follows. Define P to be the set of
conditions of the form p = (spα)α∈σp so that σp ∈ [λ]<κ and there is some µp < κ
such that spα : µp → [κ]<κ \ ∅.

Extension in P works as follows: p ≤ q if
(1) σp ⊇ σq,
(2) for any α ∈ σq, spα ⊇ sqα, and
(3) for any α < β ∈ σq and η ∈ µp \ µq,

spβ(η) ⊆ spα(η).

The following should be straightforward to check:
(a) P is κ-specially centered;
(b) Dη = {p ∈ P : η ≤ µp} is dense in P;
(c) Eα = {p ∈ P : α ∈ σp} is dense in P.
So, we can take a generic filter G ⊂ P and define

vα =
⋃
{spα : p ∈ P}.

Observe that if α < β < λ and α, β ∈ σp for some p ∈ G then for any η ≥ µp,
vβ(η) ⊆ vα(η). So, (vα)α<λ is a decreasing sequence of slaloms.

Now, suppose that ẇ is a P-name for a slalom defined on a club and p
ẇ ⊆∗ vα
for all α < λ. Take an elementary submodel M ≺ H(θ) of size κ0 < κ with all
relevant parameters in M . Also, assume that M<κ0 ⊂M .

Construct a decreasing sequence of conditions (pξ)ξ<κ0 in M , so that
(1) for any ξ < M ∩ κ, there is ζ < κ0 and δζ ∈ M ∩ κ \ ξ with pζ
δζ ∈ dom ẇ

and µpζ ≥ ξ too,
(2) there is some ξ0 < ξ1 < . . . with ηn ∈ M ∩ κ so that pξn
 for all η ≥ ηn,

ẇ(η) ⊂ vn(η).
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So, we arranged that supξ<κ0 η
pξ = M ∩ κ and any lower bound q for the sequence

(pξ)ξ<κ0 will force that δ = M∩κ ∈ dom ẇ and ẇ(δ) ⊂ vn(δ) for all n < ω. However,
we can find a lower bound q such that q


⋂
n<ω vn(δ) = ∅. This contradiction finishes

the proof. �

We wonder if (2) above can be proved without forcing but using λ < p(κ). We
now define another kind of gap notion for slaloms:

Definition 3.7. Let (uα : α < λ) and (vβ : β < µ) be two sequences of slaloms
based on the same club set C ⊆ κ. We say that {(uα : α < λ), (vβ : β < µ)} is a
(λ, µ)-tight gap of slaloms if the following hold:

(1) For all α < α′ < λ, β < β′ < µ and almost all ξ in C,

uα(ξ) ⊂ uα′(ξ) ⊂ vβ′(ξ) ⊂ vβ(ξ),

(2) If w is a C-supported slalom such that ∀β < µ(w ⊆∗ vβ), then there is α < λ
such that w ⊆∗ uα.

(3) If w is a C-supported slalom such that ∀α < λ(uα ⊆∗ w), then there is β < µ
such that vβ ⊆∗ w.

Question 3.8. Clearly, if {(uα : α < λ), (vβ : β < µ)} is a (µ, λ)-tight gap of
slaloms, then it is a gap. Do these notions coincide?

For the following result, we will use a higher analogue of Martin’s axiom relativized
to a certain class of posets. In order to do this, we will use the following definitions
and results of S. Shelah (see Section 2.2 in [BGS18]).

Definition 3.9. Let κ be an uncountable cardinal and Q be a forcing notion. We
say that Q is stationary κ+-Knaster if for every {pi : i < κ+} ⊆ Q there exists a
club E ⊆ κ+ and a regressive function f on E∩Sκ+κ such that for any i, j ∈ E∩Sκ+κ ,
if f(i) = f(j) then pi and pj are compatible.

Note that if a poset is stationary κ+-Knaster then it is κ+-cc.

Definition 3.10. Let κ be an uncountable cardinal. A forcing notion Q satisfies the
(∗κ)-property, and we say it is κ-good-Knaster, if the following conditions hold:

(1) Q is stationary κ+-Knaster.
(2) Any countable decreasing sequence of conditions in Q has a greatest lower

bound.
(3) Any two compatible conditions in Q have a greatest lower bound.
(4) Q is < κ-closed.4

Finally, we can define our forcing axiom.

Definition 3.11. Let κ be an uncountable cardinal. We say that MA(κ-good-Knaster)
holds if and only if for all posets Q in the class κ-good-Knaster and every collection
D of dense sets of Q of size < 2κ there is a filter on Q intersecting all the sets in D.

4In the original definition of Shelah, the requirement is somewhat weaker, i.e. that Q is κ-
strategically closed.
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In the following, we will exploit the consistency of MA(κ-good-Knaster) stated
below.

Theorem 3.12. Assume GCH. Let κ be a regular cardinal such that κ<κ = κ and
λ > κ such that λ<κ = λ. Then, there is a cardinal preserving generic extension in
which 2κ = λ and MA(κ-good-Knaster) holds.

The proof is presented in the Appendix.

We now prove that MA(κ-good-Knaster) implies the non-existence of certain kinds
of tight gaps of slaloms.

Theorem 3.13. Suppose that λ is a cardinal so that cf(λ) > κ, λ<κ = λ and that
MA(κ-good-Knaster) holds. Then there is no tight (λ, κ+)-gap of slaloms based on a
fixed club set C ⊆ κ.

Proof. Suppose towards a contradiction that there is a (λ, κ+)-tight gap of slaloms
{(uα : α < λ), (vβ : β < κ+)} based on (without loss of generality) κ and define the
following forcing notion Q. Conditions in Q are pairs p = (s̄, σ) where:

• σ ⊆ κ+ and |σ|< κ.
• s̄ = (si)i∈σ is a sequence of partial slaloms with common domain, a fixed
ordinal ηp < κ.
• If i ∈ σ, ξ ∈ ηp, then si(ξ) ⊆ vi(ξ).
• If i∗ = sup(σ), then i∗ > |σ|.

A condition q = (t̄, τ) is said to extend the condition p = (s̄, σ) if:
• τ ⊇ σ.
• For all i ∈ σ, ti w si.
• For all i < i′ ∈ σ and ξ ∈ ηq \ ηp, ti(ξ) ⊂ ti′(ξ).
• For all j ∈ τ \ σ and i ∈ σ such that j < i, there is ξ ∈ ηq \ ηp such that
vi(ξ) ⊂ tj(ξ).

We want to use our assumption of MA(κ-good-Knaster) for this poset and some
(to define) collection of dense sets.

Claim 3.14. Q is stationary κ+-Knaster and < κ-closed.

Proof. Suppose X = {pα : α < κ+} is a sequence of conditions in Q. We want to
show that there is a club E ⊆ κ+ and a regressive function f : E ∩ Sκ+κ → X such
that, if f(i) = f(j) then pi and pj are compatible.

First, we use the pigeonhole principle and the ∆-system lemma in order to assume,
without loss of generality that for all γ < κ+ the following hold:

• ηp = η < κ.
• |σγ |= λ∗ < κ.
• σγ ∩ σγ′ = ε.
• If σγ = {iγ,l : l < λ∗} (increasingly ordered), then sγl = s∗γ for all l < λ∗.
Here and throughout the proof sγl denotes siγ,l .
• The sequence iγ,l is strictly increasing in the first coordinate, for l /∈ ε.
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Given γ < γ′ < κ+, we now claim that pγ = (σγ , s̄γ) and pγ′ = (σγ′ , s̄γ′) are
compatible. If true, we can then define E = κ+ and f : Sκ

+

κ → κ+ to be the
constant function with value 0 and we get the stationary κ+-Knaster condition.

To prove the claim, choose an ordinal ζ ≥ η such that, for each ξ ≥ ζ:
{viρ,l(ξ) : ρ ∈ {γ, γ′} ∧ l < λ∗}

is ⊂-decreasing (this is possible because the iγ,l are increasing and the way the v’s
are arranged).

Moreover, we can choose ζ so that for all ξ ≥ ζ, |viγ′,λ∗ (ξ)|+λ
∗ > |viγ,λ∗ (ξ)|.

Define a condition q = (t̄, τ) as follows: τ = σγ ∪ σγ′ and t̄ = (tj)j∈τ . Put
ζ = dom(ti) for all i and recall the enumeration of σγ and σγ′ we have fixed above.

We consider the following cases:
• If j ∈ ε, i.e j = iγ,l for l < |ε|, then define partial slalom tj as follows:

tj(ξ) =

{
sγj (ξ) if ξ < η

vj(ξ) if η ≤ ξ < ζ

• If j = iγ,l, for |ε|≤ l < λ∗, then define partial slalom tj as follows:

tj(ξ) =

{
sγj (ξ) if ξ < η

viγ′,l′ (ξ) if η ≤ ξ < ζ and l′ < l is the supremum so that viγ′,l′ ⊆
∗ vj

• If j = iγ′,l, for |ε|≤ l < λ∗, define analogously as in the item above, i.e.

tj(ξ) =


sγ
′

j (ξ) if ξ < η

viγ,l′ (ξ) if η ≤ ξ < ζ and l′ < l is the supremum so that viγ,l′ ⊆
∗ vj

vj(ξ) if η ≤ ξ < ζ and {l′ < l : viγ,l′ ⊆
∗ vj} = ∅

Then q ≤ pγ and q ≤ pγ′ . �

It remains to prove that the poset Q has properties (2), (3) and (4) from Definition
3.10. Note Let {pα}α<γ be a <-decreasing sequence of conditions in Q, where pα =
(s̄α, σα). Then there is a canonical lower bound p = (s̄, σ) where σ =

⋃
α<γ σα

(which is still a set of size < κ+) and s̄ is defined as follows: s̄ is a sequence of partial
slaloms (si)i∈σ with domain η = supα<γ ηα < κ such that si(ξ) =

⋃
α<γ s

α
i (ξ) when

sαi (ξ) is defined (i.e. when i ∈ σα). This implies that properties (2) and (4) hold.
Property (3) hods, as if p = (s̄, σ) and q = (t̄, τ) are compatible, then a canonical
lower bound r = (ū, ν) has the form ν = σ∪ τ , while the third and fourth conditions
in the definition of our poset determine how r must be defined.

Since by hypothesis MA(κ-good-Knaster) holds, there is a generic G ⊆ Q inter-
secting the following dense sets. Let i ∈ κ+ and η < κ.

Di,η = {p ∈ Q : σp * i ∧ ∀q ∈ Q (q ≤ p→ σq ⊆ i) ∧ ηp ≥ η}

The generic G adds, first of all an unbounded subset of κ+, given by ΣG =
⋃
{σp :

p ∈ G}. Also, it generically adds κ+-many slaloms {wiG : i ∈ ΣG}, where wiG =
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{spi : p ∈ G and (s̄p)i = spi }. These slaloms satisfy that for all i < j ∈ ΣG and for

almost all ξ ∈ κ wiG(ξ) ⊂ wjG(ξ).
Moreover, we have that for all i < j ∈ ΣG and for almost all ξ ∈ κ

wiG(ξ) ⊂ wjG(ξ) ⊂ vj(ξ) ⊂ vi(ξ).

Now, using the hypothesis that {(uα : α < λ), (vβ : β < κ+)} is a (κ+, λ)-tight
gap of slaloms, given i ∈ ΣG, we can find α(i) < λ such that, for almost all ξ ∈ κ
wiG(ξ) ⊂ uα(i)(ξ).

Let α? = sup{α(i) : i ∈ ΣG}. Then for each i ∈ ΣG we can find ηi < κ such that
for all ξ > ηi:

wiG(ξ) ⊂ uα?(ξ) ⊂ vi(ξ)
Again, using the pigeonhole principle, we can assume without loss of generality that
ηi = η∗. Then we can pick a condition p = (σ, s̄) ∈ G so that j ∈ σ where j ∈ ΣG

and |j ∩ ΣG|≥ κ and ηp > η∗.
Since |σ|< κ, we can choose i ∈ ΣG ∩ (j \ σ) and q = (τ, t̄) ≤ p for which

i ∈ τ . Then, by the definition of the forcing Q, there is ηp ≤ ζ < ηq such that
vi(ζ) ⊂ ti(ζ) = wiG(ζ). But then we get vi(ζ) ⊂ wiG(ζ) ⊂ uα?(ζ) ⊂ vi(ζ) which is a
contradiction. �

4. On p(κ) and pcl(κ)

The definitions of p(κ) and t(κ) invoke all κ-complete filters (resp. towers) on κ,
without giving any additional structural information. Thus it makes sense to first
consider smaller classes of filters that may be better understood. One natural way of
classifying κ-complete filters is to consider larger filters in which they simultaneously
embed. This leads to the following definition:

Definition 4.1. Let F be a κ-complete filter on κ. Then

pF (κ) := min{|B|: B ⊆ F ∧ B has no pseudointersection}

and
tF (κ) := min{|T |: T ⊆ F ∧ T is a tower}

whenever these are defined.

Note that pF (κ) is defined exactly when F has no pseudointersection. One of the
most interesting examples is pcl(κ) = pC(κ) where C is the club filter on κ. Our goal
in this section is to study to study the relationship of p(κ) to pcl(κ). We start by
some straightforward observations.

Observation 4.2. Let F be a κ-complete filter on κ such that pF is defined, then
(1) κ+ ≤ p(κ) ≤ pF ,
(2) whenever tF is defined, pF ≤ tF ≤ t(κ),
(3) pcl(κ) = tcl(κ) = b(κ).
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Proof. (1) and (2) follow immediately from the definitions. (3) has been shown in
[Sch19]. Let us recall the argument. First note that pcl(κ) as well as tcl(κ) are defined.
To see that they are equal, let λ = pcl(κ) and suppose that (Cα : α < λ) is a family
of clubs in κ with no pseudointersection of size κ. Build a sequence (Dα : α < λ) of
clubs so that Dβ is club and a pseudointersection of Eβ = {Dα : α < β} ∪ {Cα : α ≤
β} (note the closure of a pseudointersection is still a pseudointersection). This is
possible, since Eβ is a family of clubs of size < pcl(κ). Now (Dα : α < λ) is a witness
for tcl(κ) = λ. To see that pcl(κ) = b(κ) consider the map the sends a function
f ∈ κκ to Cf = {α < κ : f ′′α ⊆ α} and the map sending a club C to succC . �

The consistency of p(κ) < b(κ) was first shown in [SS02]. The argument for
showing that p(κ) stays small in the generic extension, relies on the following theorem
which is the main result of the mentioned paper.

Theorem 4.3. If κ ≤ µ < t(κ) then 2µ = 2κ.

This theorem mirrors the situation at ω. In order to keep p(κ) smaller than
µ one only needs to ensure that 2µ will be strictly larger than 2κ in the generic
extension. Using counting of names it can be seen that this will usually not be a
problem (starting with an appropriate ground model). Thus starting from GCH,
having regular targets µ < λ for p(κ) and b(κ), we first use Cohen forcing to ensure
that 2µ = λ+ and then we increase b(κ) to λ with Hechler forcing and simultaneously
diagonalize κ-complete filters of size < µ. In this extension 2µ > 2κ and we have
ensured that p(κ) does not blow up.

We will present a more natural approach that amounts to showing that certain
witnesses for p(κ) can be preserved while increasing b(κ). This approach leaves more
freedom for cardinal arithmetic. On the other hand, up until now, we only know how
to apply it for a construction resulting in a model with p(κ) = κ+.

Let us introduce the forcing used to increase b(κ) (i.e. pcl(κ)) or pF (κ) more
generally for certain classes of F . This poset has been used greatly in the past.

Definition 4.4. Let F be a base for a κ-complete filter on κ. The forcing M(F)
consists of conditions (a, F ) where a ∈ [κ]<κ and F ∈ F . The order is defined by
(b, E) ≤ (a, F ) iff E ⊆ F and b \ a ⊆ F .
Fact 4.5. M(F) is κ-closed and κ+-cc (in fact κ-centered with cannonical lower
bounds).

In what follows, C will always refer to the collection of clubs from a specific model,
which should always be clear from context.

Our approach, that we announced earlier, will consist of showing that a < κ
support iteration of M(C) will not add a pseudointersection to a previously added
collection of (more than κ many) Cohen reals. As a warm up and an introduction
to the argument we will first show that this the case when forcing with M(C) once.

Theorem 4.6. Let κ be uncountable regular and κ<κ = κ. Suppose 〈yα : α < κ+〉
is a sequence of Cohen reals added over V and that c is a M(C) generic over V [ȳ].
Then in V [ȳ][c], the filter generated by {yα : α < κ+} has no pseudointersection.
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We write Cκ+ for the < κ-support product of κ+ many copies of 2<κ, the forcing
for adding a κ-Cohen real. Let us first check that,

Lemma 4.7. Whenever 〈yα : α < κ+〉 is a Cκ+ generic sequence, then {yα : α ∈ κ+}
has the SIP in any further extension by κ-closed forcing.

Proof. Let Γ ∈ [κ+]<κ be in any extension of V Cκ by a κ-closed forcing notion. Then
Γ ∈ V . By genericity over V we may show that

⋂
α∈Γ yα is unbounded in κ. More

precisely, let p ∈ Cκ+ and ε ∈ κ be arbitrary. Let δ > supi∈dom p(lth p(i)) and extend
p to q such that q(i)(δ) = 1 for every i ∈ Γ. �

Proof of Theorem 4.6. In V [ȳ] assume ẋ is a M(C) name for an element of [κ]κ.
Consider the set

X = {(a, α) : a ∈ [κ]<κ, α < κ,∃C ∈ C((a,C) 
 α ∈ ẋ)}.

Then X ∈ V [〈yα : α < δ〉] for some δ < κ+. We want to show that ẋ[c] 6⊆∗ yδ. First
recall that yδ is in fact Cohen over V [〈yα : δ 6= α < κ+〉]. Thus for the proof we may
simply assume that X ∈ V and show that ẋ[c] 6⊆∗ y where y is Cohen over V and c
is M(C) generic over V [y].

Suppose in V [y] that (a,C) is an arbitrary condition in M(C). We have that a ∈ V
and there is some name Ċ ∈ V so that 
“Ċ is club” in Cohen forcing and Ċ[y] = C.

Now suppose that s ∈ 2<κ is an arbitrary condition in Cohen forcing. Now let us
define two decreasing sequences {p0

i : i < κ} and {p1
i : i < κ} in Cohen forcing such

that the following holds:
• p0

0 = p1
0 = s,

• if
⋃
p0
i = f0 and

⋃
p1
i = f1 then f−1

0 ({1}) ∩ f−1
1 ({1}) = s−1({1}),

• the sets C̃0 = {α : ∃i(p0
i 
 α ∈ Ċ)} and C̃1 = {α : ∃i(p1

i 
 α ∈ Ċ)} are
clubs.

The sequences p̄0 and p̄1 are simply interpreting sequences for Ċ below s. But we
additionally ensure that the sets defined by

⋃
p0
i and

⋃
p1
i are disjoint up to their

common initial part s. Call these sets y0 ⊆ κ and y1 ⊆ κ
Let C̃ = C̃0 ∩ C̃1. Recall that C̃ will still be club in V [y]. Thus there is b ∈ [C̃]<κ

and α > sup dom(s) so that min b > a and (a ∪ b, α) ∈ X. As
⋃
p0
i and

⋃
p1
i define

disjoint sets there is at least one j ∈ 2 so that α is not in yj . Say wlog j = 0. Now
we can extend s to some t = p0

i for some i such that p0
i 
 b ⊆ Ċ, α ∈ dom(t) and

t(α) = 0.
Thus by genericity we shown that back in V [y] we can extend (a,C) to (a∪b, C ′) so

that (a∪b, C ′) 
 α ∈ ẋ but α /∈ y. Now by genericity of c we know that ẋ[c] 6⊆∗ y. �

Now we are going to consider the more general case of iterating M(C) many times
with < κ-support. For an ordinal i we will write M(C)i for the i-length < κ-support
iteration of M(C).

Theorem 4.8. (GCH) For any regular uncountable κ < λ, where κ = κ<κ, there is
a κ-closed, κ+-cc forcing extension in which p(κ) = κ+ < pcl(κ) = λ = 2κ.
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Proof. We are going to first add κ+ many (κ-)Cohen reals 〈yα : α < κ+〉 and then
iteratively diagonalize the club filter for λ many steps. Thus the poset that we are
using is P = Cκ+ ∗ Ṁ(C)λ, where Ṁ(C)λ is a Cκ+ name for the < κ-support iteration
of M(C) of length λ. This forcing notion is κ-closed, has the κ+-cc and forces 2κ = λ
by a counting argument. Also it is clear that V P |= pcl(κ) = λ. Thus we are left
with showing that V P |= p(κ) = κ+.

Let us make some remarks on the notation that we will use.
• We will assume that conditions in M(C)λ always have the form (ā, q), where

– ā = 〈ai : i ∈ I〉, I ∈ [λ]<κ, ai ∈ [κ]<κ,
– q is a function with dom q = I and q(i) is a M(C)i name for a club for

every i ∈ I.
A pair (ā, q) as above is naturally interpreted as the condition 〈ǎi, q(i)〉i∈I .

• Similarly we will assume that conditions in Cκ+ ∗ Ṁ(C)λ have the form
(p, ā, q̇), where
– p ∈ Cκ+
– ā ∈ V ,
– q̇ is a Cκ+ name for an object as above.
It is easy to see, using κ-closure, that conditions of this form are dense in

P.
• A nice M(C)λ-name ẋ for an element of P (κ) has the form⋃

α<κ

Aα × {α̌}

where Aα is an antichain in M(C)λ (thus has size ≤ κ) and for every (ā, q) ∈
Aα and i ∈ dom q, q(i) is a nice M(C)i-name. Thus we define nice M(C)i-
names for subsets of κ inductively on i ∈ λ.
• It is well known that for any M(C)λ-name ẏ for a subset of κ, there is a nice
name ẋ so that 
 ẏ = ẋ.
• By induction on nice names we see that, |trcl(ẋ)|≤ κ. Namely, assume this
is known for nice M(C)i-names for every i < j. Let ẋ be a nice M(C)j-name.
Then ẋ =

⋃
α<κAα ×{α̌} where each Aα is a set of M(C)j conditions of size

at most κ. For each condition (ā, p) ∈ Aα, |dom p|< κ. For each i ∈ dom(p),
p(i) is a nice M(C)i-name which, by assumption, has transitive closure of size
at most κ.

Claim 4.9. {yα : α ∈ κ+} has no pseudointersection after forcing with M(C)λ.

Proof. In V Cκ+ = V [ȳ], let ẋ be a nice M(C)λ name for an element of [κ]κ. Then
there is γ < κ+, such that ẋ ∈ V [〈yα : α ∈ κ, α 6= γ〉]. We will show that ẋ
can not be almost contained in yγ . Without loss of generality we may assume that
ẋ ∈ V and that we are adding a single Cohen real y = yγ over V (by putting
V [〈yα : α ∈ κ, α 6= γ〉] as the new ground model) and then we are forcing with
M(C)λ in V [y].

Now suppose that (p, ā, q̇) 
 ẋ \ ε ⊆ ẏ, where (p, ā, q̇) ∈ C ∗ Ṁ(C)λ and ε ∈ κ.
Let y be C generic over V with p in the generic filter. Define y′ ∈ 2κ so that
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y′(i) = p(i) = y(i) for i ∈ dom p and y′(i) = 1 − y(i) for i ∈ κ \ dom p. It is
well known that y′ is also generic over V with p in it’s generic filter. Moreover
V [y] = V [y′] =: W . But note that q := q̇[y] 6= q̇[y′] =: q′ is very much possible.
Still in W , (ā, q) and (ā, q′) are compatible. Namely we may define r: dom q → W
by putting r(i) a M(C)i name for q(i) ∩ q′(i). By induction we see that for any
i ∈ dom q,

(ā � i, r � i) ≤ (ā � i, q � i), (ā � i, q′ � i)

and that
r � i 
 q(i), q′(i) are clubs.

Thus indeed r(i) is a M(C)i name for a club, so (ā, r) is a condition and (ā, r) ≤
(ā, q), (ā, q′). Now let (b̄, s) ≤ (ā, r) and δ ∈ κ \ ε so that

(b̄, s) 
 δ ∈ ẋ.
Since y ∩ y′ ⊆ ε, δ /∈ y or δ /∈ y′. Say δ /∈ y. Then whenever G is M(C)λ generic

over W with (b̄, s) ∈ G, W [G] |= ẋ[G] \ ε 6⊆ y. At the same time, (p, ā, q̇) is in the
corresponding C ∗M(C)λ generic over V . This gives a contradiction. Similarly when
δ /∈ y′. �

�

Analyzing the proof of the above result, we see that this result can be extended
to a more general class of filters.

Theorem 4.10. (GCH) For any regular uncountable κ < λ, where κ = κ<κ, there
is a κ-closed, κ+-cc forcing extension in which p(κ) = κ+ < pF (κ) = λ = 2κ for any
κ-complete filter F on κ that is ordinal definable over H(κ+).

We say that F is ordinal definable over H(κ+) if there is a formula ϕ in the
language of set theory and finitely many ordinals α0 < · · · < αn−1 < κ+ so that

x ∈ F ↔ H(κ+) |= ϕ(x, ᾱ).

For example, C is ordinal definable over H(κ+).

Proof. Let 〈ϕξ(x, ᾱξ) : ξ ∈ κ+〉 enumerate all formulas in one free variable x and
parameters ᾱ = (α0, . . . , αk) ∈ (κ+)<ω in the language {∈}.

As before we first add κ+ many Cohen reals using Cκ+ . Then in V Cκ+ we define
an iteration 〈Pi, Q̇i : i < λ〉 with Qi =

∏
ξ<κ+ M(Fξ) where

Fξ = {x ∈ [κ]κ : H(κ+)V
Pi |= ϕξ(x, ᾱξ)}

if this defines a κ-complete filter (in V Pi) or

Fξ = {κ}
else.

Again we consider conditions in Pλ, as pairs (ā, q) where dom a ∈ [κ+ · λ]<κ,
aκ+·i+ξ ∈ [κ]<κ and q is a function with domain dom a so that q(κ+ · i + ξ) is a Pi
name for an element of Fξ. Similarly we define the notion of nice names.
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It is crucial to note that Pλ only depends on the model V Cκ+ and not on the
particular set of generic Cohen reals. Then using the same argument as before we
see that p(κ) = κ+ in V Cκ+∗Ṗλ .

Now suppose F is ordinal definable over H(κ+) in V Cκ+∗Ṗλ and pF (κ) is defined.
Say F is defined by ϕξ. Let B ⊆ F with |B|< λ. Then there is i < λ so that
B ⊆ V Cκ+∗Ṗi . Moreover we find j ≥ i so that (H(κ+)j ,∈) 4 (H(κ+)λ,∈), where
H(κ+)j = {x ∈ H(κ+) : x ∈ V Cκ+∗Ṗj}. To see this just note that |H(κ+)i|< λ for
every i < λ. Thus we can find the < λ many required Skolem-witnesses over H(κ+)i
in H(κ+)S(i) for some S(i) < λ. Applying S recursively κ+ many times, by taking
suprema at limits, yields the desired situation (since no new elements of H(κ+) are
introduced in limits of cofinality κ+). In V Cκ+∗Ṗj , Fξ is a κ-complete filter on κ with
B ⊆ Fξ and Qj adds a pseudointersection to B. �

Theorem 4.11. (p(κ) = 2κ) Let P be a collection of κ+-cc forcing notions, each of
size ≤ 2κ and |P|≤ 2κ. Then there is a tower which is indestructible by any P ∈ P.
Lemma 4.12. Let p(κ) = λ. There is a map ϕ: 2<λ → [κ]κ so that for each f ∈ 2λ,
〈ϕ(f � α) : α < λ〉 is a tower and ϕ(s_0) ∩ ϕ(s_1) = ∅ for every s ∈ 2<λ.

Proof. See the proof of Theorem 7 in [SS02]. �

Proof of Theorem 4.11. Let ϕ be as in Lemma 4.12 and λ = 2κ. Recall that if P is
κ+-cc then we can assume that all P names for elements of [κ]κ are of size at most
κ. Enumerate all triples 〈Pα, pα, ẋα : α < λ〉 where Pα ∈ P, pα ∈ Pα and ẋα is a P
name for an element of [κ]κ. We recursively define f ∈ 2λ as follows:

Given sα ∈ 2α, let y0 = ϕ(s_0) and y1 = ϕ(s_1). As y0 ∩ y1 = ∅ we have that
pα 
 ẋα ⊆∗ y0 ∧ xα ⊆∗ y1 is impossible. Thus for some i ∈ 2 we have that there is
qα ≤ pα so that qα 
 ẋα 6⊆∗ yi. Let sα+1 = s_i. At limits we let sα =

⋃
ξ<α sξ.

Finally f :=
⋃
α<λ sα.

The tower defined by f is as required. Namely given P ∈ P, p ∈ P and ẋ a P-name
for an unbounded subset of κ, say (P, p, ẋ) = (Pα, pα, ẋα), we have that qα ≤ pα
forces that ẋ is not almost contained in ϕ(sα). �

5. Questions and problems

Here, we collect some of the natural open problems that occurred during our
project. Most notably:

Question 5.1. Is p(κ) = t(κ) for any infinite κ?

Maybe something easier would be the following.

Question 5.2. Does p(κ) = t(κ) hold for a measurable or (weakly) compact cardinal
κ?

To approach this problem, one might try to answer the following.

Question 5.3. Suppose that there is a (p(κ), λ)-gap of club-supported slaloms for
some λ < p(κ). Is there a tower of size p(κ) necessarily?
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It also remains open if the notion of gaps and tight gaps are the same for club-
supported slaloms.

In addition to the club filter, one may define pU for any sub-collection U ⊂ [κ]κ.

Question 5.4. Suppose that κ is a measurable cardinal with a < κ-closed, normal
ultrafilter U . Does pU < pcl?

Even for κ = ω, it would be interesting to construct a (large) collection of ultra-
filters (Uξ)ξ∈I so that the corresponding cardinals pUξ are all distinct.

6. Appendix

6.1. Other higher analogues of p and t. Imposing the SIP property ensures that
p(κ) and t(κ) fall into the interval [κ+, 2κ]. Unpublished work Brian and Verner
examines another generalization of the pseudo-intersection and tower numbers to κ.
Consider the cardinals p∗(κ) and t∗(κ) defined below:

• p∗(κ) = min{|F|: F is a family with the finite intersection property and no
pseudo-intersection of size κ}.
• t∗(κ) = min{|T |: T is a well-ordered family of subsets of κ without pseudo-
intersection of size κ}.

Here the finite intersection property refers to the fact that for any finite sub-family
F ′ ⊆ F ,

⋂
F ′ has size κ.

Proposition 6.1 (Brian-Verner).
• If κ is a cardinal with uncountable cofinality, then p∗(κ) = t∗(κ) = ℵ0.
• If κ is an uncountable cardinal with cf(κ) = ω, then t∗(κ) is uncountable.
• If κ is an uncountable cardinal with cf(κ) = ω, then p∗(κ) = ω1.

6.2. Consistency of MA(κ-good-Knaster). Finally, we present the proof of the
generalized Martin’s Axiom for posets with property (∗κ) that we applied in Section
3. The proof is based on the following iteration theorem but otherwise resembles the
classical proof of Martin’s Axiom.

Theorem 6.2. (Shelah, 1976; see [She17]). Let κ be an uncountable cardinal and
(Pα, Q̇α : α < δ) be a < κ-support iteration such that for every α < δ:


Pα Q̇α satisfies property (∗κ)

Then Pδ is stationary κ+-Knaster.

Proof of Theorem 3.13. We define a < κ-support iteration (Pα, Q̇α : α < λ) such
that for all α < λ:

• 
 Q̇α is has the property (∗κ).
• 
 |Q̇α|< λ.
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Since by theorem 6.2 the poset P = Pλ is stationary κ+-Knaster condition and it
is < κ-closed, P preserves cardinals. Also, since λ is regular and λκ = λ, we have
|Pα|≤ λ.

Define Q̇α by induction on α < λ as follows. Fix a bookkeeping function π : λ→
λ × λ such that π(α) = (β, γ) implies β ≤ α. If we have defined Q̇β for all β < α

and π(α) = (β, γ), we can look at the γ-th Pβ-name Q̇ in V Pβ for a poset of size < λ

with the property (∗κ). Define Qα = Q̇.
First, we will show that that V P |= MAκ(κ-good-Knaster<λ) ∧ 2κ = λ, where

MA(κ-good-Knaster<λ) is the restriction of MA(κ-good-Knaster) to posets of cardi-
nality stricly smaller than λ.

Let Ṙ be a P-name for a poset with property (∗κ) such that 
P |Ṙ|< λ and let
Ḋ be a P-name for family of < λ-many dense subsets of R. Then, using the κ+-cc,
we can find β < λ such that both Ṙ and Ḋ belong to V Pβ . We can choose then,
γ < λ so that R is the γ-th name in V Pβ for a poset with property (∗κ). Hence, in
the model V Pπ(β,γ)+1 , the generic for R intersects all dense sets in D.

The argument above is enough to obtain the full MA(κ-good-Knaser) in V P:

Claim 6.3. If R is κ-good-Knaster poset in V P and D is a collection of < λ-many
dense sets in R, then there is R′ ⊆ R of cardinality < λ which is also κ-good-Knaster
such that the sets in D are dense in R′.

Proof. Given a dense set D ∈ D, there exists a maximal antichain AD ⊆ D and using
the stationary κ+-Knaster condition, this antichain has size at most κ. Consider
then, the poset S generated by the set of antichains {AD : D ∈ D} and has size < λ
(because λ<κ = λ). Now, consider the closure of S under properties (2), (3) and (4)
in Definition 3.10 and notice that this process does not increase its size. Call the
resulting poset R′ and note that it has the desired size and it is an element of the
class κ− good-Knaster. Finally, if H ⊆ R′ is a generic intersecting all the dense sets
in D, we can extend it to a filter G ⊇ H, G ⊆ R meeting all sets in D. �

�

There have been other attempts to get higher analogues of Martin’s axiom at
κ = ℵ1. Specifically, let us mention one due to Baumgartner (see also [SS82; She78]):

Definition 6.4 (Baumgartner’s axiom [Bau83]). Let P be a partial order satisfying
the following conditions:

• P is countably closed.
• P is well-met.
• P is ℵ1-linked.

Then if κ < 2ℵ1 and {Dα : α < κ} is a collection of dense sets of P, then there exists
a generic filter G ⊆ P intersecting all sets Dα.

Baumgartner also proved that the former axiom is consistent with 2ℵ0 = ℵ1 and
2ℵ1 = κ, where κ ≥ ℵ1 is regular.
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