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Abstract. We study two ideals which are naturally associated to independent families. The
first of them, denoted JA, is characterized by a diagonalization property which allows along
a cofinal sequence (the order type of which of uncountable cofinality) of stages along a finite
support iteration to adjoin a maximal independent family. The second ideal, denoted id(A),
originates in Shelah’s proof of i < u in [12]. We show that for every independent family A,
id(A) ⊆ JA and define a class of maximal independent families, to which we refer as densely
maximal , for which the two ideals coincide. Building upon the techniques of [12] we characterize
Sacks indestructibility for such families in terms of properties of id(A) and devise a countably
closed poset which adjoins a Sacks indestructible densely maximal independent family.

1. Introduction

The study of various combinatorial sets of reals, among which maximal almost disjoint families,
maximal cofinitary groups and towers, occupy a central place in modern set theory. In this
article we study maximal independent families. The concept of independence first appeared in a
paper of Fichtenholz and Kantorovic titled Sur les opérations linéaries dans l’espace des fonctions
bornées [4] in which they study properties of linear functionals in the space of bounded measurable
functions and define the notion of independence for measurable subsets of the unit interval. The
contemprary teminology is as follows:

Definition 1 (Notation). Let A be a family of infinite subsets of ω:
• We call FF(A) the family of finite partial functions from A to 2.
• Given h ∈ FF(A), Ah =

⋂
{Ah(A) : A ∈ A ∩ dom(h)}, where Ah(A) = A if h(A) = 0 and

Ah(A) = ω \A otherwise.
• We refer to {Ah : h ∈ FF(A)} is the family of boolean combinations of A.

Definition 2. A family A ⊆ [ω]ω is called independent if for for every h ∈ FF(A), the set Ah is
infinite. An independent family A is said to be maximal independent if it is not properly contained
in another independent family.

Fichtenholz and Kantorovic also prove in [4] (Lemma II) that there is an independent family
of size c (see also [8] to find many different examples of such objects). This result was generalized
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by Hausdorff in [10], who showed that for every infinite cardinal κ, there is an independent family
of size 2κ. Clearly, Zorn’s lemma guarantees then the existence of maximal independent families
of size 2κ for all κ. Particular interest has been given to the independence number i, which is
defined as the minimum size of a maximal independent family1. Well-known lower bounds of the
independence number are r, d, the reaping and the dominating numbers respectively (see [2, 9]).
However, there are not known upper bounds, except for the trivial one c. The value of the
independence number has been calculated in many well-known forcing extensions (see [2] for
details), for instance, in generic extensions in which we cofinally add λ-many Cohen reals, we
have that i ≥ λ because Cohen reals split the ground model, forcing the value of r to be ≥ λ. As
consequence, in the Cohen, Hechler, Random (with finite support) and Mathias extensions the
value of i is c. On the other hand, in classical models obtained as countable support iterations
we have the following: In the Miller and the Laver extensions i = c, in the first case this is a
consequence of the fact that Miller functions are unbounded, so d = c and in the second we know
that Laver reals are dominating, so b = c. In the Sacks model, however, the value of i is small
(namely ℵ1), this fact is due to unpublished work of Shelah and Eisworth. In this paper, we
present a proof of this assertion (see Theorem 29).

More generally, in this paper, we study two ideals which are naturally associated to independent
families. The first (see Definition 4) is characterized by a diagonalization property, which allows
along finite support iterations of ccc posets, the length of which is of uncountable cofinality, to
iteratively construct, and so adjoint to the initial ground model, a maximal independent family
of arbitrary size. More precisely, given an independent family A, one can construct an ideal JA
and a ccc poset, to which we will refer as independence diagonalization poset, which adjoins a real
σ with the following two properties:

(1) {σ} ∪ A is independent;
(2) for all x ∈ [ω]ω\A if A ∪ {x} is independent, then A ∪ {x, σ} is not independent.

Analogous weak2 diagonalization properties are well-known for maximal almost disjoint families
(see [11]), maximal cofinitary groups (see [7]), and towers (see [6]). Thus along a finite support
iterations of length λ such that cof(λ) = κ > ω, one can iteratively adjoin a maximal independent
family of size κ. The maximality of the iteratively constructed independent family is provided
by property (2) and the well-known fact that along finite support ccc iterations Cohen reals are
added at stages of countable cofinalities.

Even though, the diagonalization ideals are not unique, they all contain another ideal which
is naturally associated to the independent families, the density independence ideal introduced
in Lemma 11. The study of the density independence ideal originates in Shelah’s proof of the
consistency of i < u in [12]. In fact, building upon the techniques developed in [12], we intro-
duce a countably closed poset (see Definition 13), which naturally adjoins a Sacks indestructible

1For a study of the possible sizes of maximal independent families see [5].
2For mad families, as well as towers, there is a natural strengthening of this property, leading to the preservation

of mad families and towers along appropriate 2D-iterations, see respectively [3] and [6].
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(i.e. indestructible under the countable support iterations of Sacks forcing) maximal independent
family (see Theorem 29).

A careful analysis of the construction and the relevant preservation properties shows that the
Sacks indestructibility of the generic family AG is captured by a combinatorial property, denoted
(?) in the proof of Theorem 29 and the fact that the dual filter of id(A) is Ramsey. Property
(?) expresses in particular the following maximality property of id(A): for all h ∈ FF(A) and all
X ⊆ ω such that X ⊆ Ah, either the set Ah\X is negligible and is in the ideal id(A), or there is
an entire boolean combination contained in it .

In Section 5, we proceed by comparing the ideals of diagonalization and density. We prove
the minimality of the density independence ideal mentioned above. Namely, we show that for
arbitrary independent family A and every diagonalization ideal JA, id(A) ⊆ JA (see Lemma 31).
We point out that the ideals are not necessarily equal (see Lemma 32) and that the density ideal
is not necessarily a diagonalization ideal. However, for the following class of maximal independent
families, these two types of ideals do coincide. We define an independent family A to be densely
maximal (see Definition 33) if for every X ∈ [ω]ω\A and every h ∈ FF(A), there is h′ ∈ FF(A)

for which either X ∩ Ah′ of Ah′\X is finite. That is, a maximal independent family is densely
maximal if examples of maximality occur densely along the tree of boolean combinations. We
show that for infinite independent families, dense maximality is equivalent to property (?) stated
above (see Lemma 34) and that for a densely maximal independent family A, the density ideal
id(A) contains any ideal disjoint from the boolean hull of the family A. The latter fact implies in
particular, that for densely maximal independent families the density and diagonalization ideals
coincide (see Corollary 36). Our proof of Theorem 29 implies that a sufficient conditions for a
densely maximal independent family to be preserved under the countable support iteration of
Sacks forcing, is that the dual ideal of its density ideal is generated by a Ramsey filter and the
co-finite sets.

Finally, we show that for an arbitrary independent family A, neither JA, nor id(A) is maximal
(see Proposition 38). We conclude by pointing out that Sacks indestructible densely maximal
independent families can be inductively constructed under CH, by making some further general
remarks and stating some open questions.

2. Adjoining an independent real

Lemma 3, as well Definition 5 and Lemma 6 can be found in [9].

Lemma 3. Let A be an independent family. Then there is an ideal JA on ω with the following
properties:

(1) JA ∩ {Ah : h ∈ FF(A)} = ∅.
(2) For every X ∈ [ω]ω there is h ∈ FF(A) such that either X ∩Ah or Ah \X belongs to JA.

Proof. Let {Xα}α∈c be an enumeration of [ω]ω. Inductively, construct an increasing sequence
of ideals J̄ = 〈Jα : α ∈ c〉 as follows. Let J0 = [ω]<ω and suppose Jα has been constructed.
Consider Xα. If there is h ∈ FF(A) and Y ∈ Jα such that Ah ⊆ Xα ∪ Y , then take Jα+1 = Jα.
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Otherwise, define Jα+1 to be the ideal generated by Jα∪{Xα}. Finally, if α < c is a limit ordinal,
put Jα =

⋃
β<α Jβ . Once this inductive construction finishes we define JA as JA =

⋃
α∈c Jα.

To verify property (1) above, suppose by way of contradiction that there is h0 ∈ FF(A) such
that Ah0 ∈ JA. Since Ah0 is infinite, JA 6= J0. Take β > 0 minimal such that Ah0 ∈ Jβ . Then
β = α + 1 is a successor, Ah0 /∈ Jα and since Ah0 ∈ Jα+1 we must have Jα 6= Jα+1. Then,
by construction of Jα+1, for all h ∈ FF(A)∀Y ∈ Jα, Ah 6⊆ Y ∪ Xα. On the other hand, since
Ah0 ∈ (Jα+1 = 〈Jα ∪ {Xα}〉)\Jα, there must be Y0 ∈ Jα such that Ah0 ⊆ Y0 ∪ Xα, which is
clearly a contradiction.

To verify property (2), consider any X ∈ [ω]ω. Again X = Xα for some minimal α < c.
If Jα = Jα+1 then there are h′ ∈ FF(A) and Y ∈ Jα such that Ah′ ⊆ Xα ∪ Y . But then,
Ah′\Xα ⊆ Y , which implies that Ah′\Xα ∈ JA. Otherwise, Xα ∈ Jα+1 and so property (2)

trivially holds, since for each h ∈ FF(A), Xα ∩ Ah ⊆ Xα ∈ JA and so, clearly it belongs to
JA. �

Definition 4. Whenever A be an independent family and JA is an ideal satisfying properties (1)
and (2) of Lemma 3, we say that JA is an independence diagonalization ideal associated to A.

More properties of these ideals will be presented in the upcoming sections.

Note: The ideal JA constructed above is not unique and depends on the chosen enumeration
of P(ω). Suppose for instance that A is not maximal and take X0 to be a subset of ω such that,
for all boolean combinations h ∈ FF(A) the sets Ah ∩X and Ah \X are infinite.

Now consider the enumeration π0 in which π0(0) = X0, then by the definition of the corre-
sponding ideal J 0

A we get X0 /∈ (J 0
A)1 (the first step in the inductive construction relative to π0)

because Ah * X0 ∪ Y for all h ∈ FF(A) and Y ∈ (J 0
A)0 = [ω]<ω. In other words Ah *∗ X0 for

all h ∈ FF(A).
On the other hand, if π1 is another enumeration such that π1(0) = Ag \X0 for some g ∈ FF(A)

then we get Ag \X0 ∈ (J 1
A)1. Given h ∈ FF(A), Ah \ (Ag \X) = (Ah ∩ (ω \Ag))∪ (Ah ∩X) and

the latter set Ah ∩X0 is always infinite. But then, this implies that X0 /∈ J 1
A, because otherwise

(Ag \X0) ∪X0 would and this contradicts that Ag /∈ J 1
A.

The poset below adjoins a new real to a given independent family, and furthermore weakly
diagonalizes the ground model with respect to the independent family A as described in Lemma 6.

Definition 5. Let A be an independent family and let JA be an independence diagonalization
ideal associated to it. The poset B(JA) consists of all pairs (s, E) where s ∈ [ω]<ω, E ∈ [JA]<ω

with extension relation defined as follows: (t, F ) ≤ (s, E) if and only if t ⊇ s, F ⊇ E and
(t\s) ∩

⋃
E = ∅.

Throughout the paper, unless otherwise specified, V denotes the ground model. Note that
the poset B(JA) is σ-centered, so it preserves cardinals. Additionally it has the following weakly
diagonalization property :
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Lemma 6. Let G be a B(JA) generic filter. Then xG :=
⋃
{s : ∃F (s, F ) ∈ G} is an infinite

subset of ω such that in V [G], A ∪ {xG} is independent, while for every Y ∈ ([ω]ω\A) ∩ V , the
family A ∪ {xG, Y } is not independent.

Proof. First, to see that A ∪ {xG} is independent notice that given a condition (s, F ) ∈ B(JA),
h ∈ FF(A) and n ∈ ω, we can extend the condition (s, F ) to (t, G) such that both t ∩ Ah and⋃
G ∩ Ah have size greater than n because Ah is an infinite set for which Ah \

⋃
F is infinite.

Second, let Y ∈ ([ω]ω\A)∩ V . Without loss of generality assume that A∪ {Y } is independent
and consider an arbitrary (s, E) ∈ B(JA). By definition of JA there is h′ ∈ FF(A) such that
either Y ∩Ah′ or Y \Ah′ is in JA. In the former case note that (s, E ∪{Y ∩Ah′}) is an extension
of (s, E) forcing that xG ∩ Y ⊆ s, while in the second case (s, E ∪ {Y \Ah′}) is an extension of
(s, E) forcing that xG ∩ Y \Ah

′ ⊆ s. �

As a corollary we obtain:

Theorem 7. (GCH) Let κ < λ be regular uncountable cardinals. There is a ccc generic extension
in which i = d = κ < c = λ.

Proof. Let γ be the ordinal product λ · κ. Then |γ| = λ and cof(γ) = κ. Let E be a cofinal
subset of γ of cardinality κ consisting of successor ordinals. Define a finite support iteration
〈Pα, Q̇β : α ≤ γ, β < γ〉 as follows. Suppose we have defined Pβ for each β < α, as well as an
increasing sequence of {Aβ}β<α of independent families, where Aβ ∈ V Pβ . If α is a limit, define
Pα to be the finite support iteration of 〈Pβ : β < α〉 and Aα =

⋃
β<αAβ . Now, suppose α is a

successor, α = ξ + 1.
If α ∈ E, in V Pξ fix an independence diagonalization ideal Jξ = JAξ associated to the inde-

pendent family Aξ and take Q̇ξ to be a Pξ-name for B(Jξ). Let xξ be the generic adjoined by Qξ

over V Pξ and define Aα = Aξ ∪ {xξ}. If α /∈ E, let Q̇α be a Pα name for the Cohen poset C,
Aα = Aξ. With this the inductive definition of Pγ is complete.

Recall that the iteration defined above is ccc. Also, since cof(γ) = κ, the Cohen reals added
along a cofinal in γ sequence of length κ form an unbounded family in V Pγ and so V Pγ � κ ≤ d.

The family A = Aγ is clearly independent, as the increasing union of independent families.
Suppose there is Y ∈ V Pγ ∩ [ω]ω, which is not in A, yet A ∪ {Y } is independent. There is
α = ξ + 1 ∈ E such that Y ∈ V Pξ . Then V Pξ � Aξ ∪ {Y } is independent and so by Lemma 6
V Pα � Aα ∪ {Y } is not independent, which is a contradiction. Thus V Pγ � A is maximal and so
V Pγ � κ ≤ d ≤ i ≤ κ. �

The following lemma shows that the increasing enumeration function of the generic real added
by B(JA) is unbounded over the ground model reals.

Lemma 8. Let G be B(JA) generic filter and let σG be the enumerating increasing function of
xG. Then for all g ∈ ωω ∩ V , V [G] � ∃∞n(g(n) < σG(n)).

Proof. It is sufficient to show that for each n ∈ ω and each g ∈ ωω ∩ V the set

Dn = {(s, F ) : ∃m > n((s, F )  σG(m) > g(m))}
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is dense. Fix n ∈ ω, (s, F ) ∈ B(JA). Let K := ω\(
⋃
F ∪ s). Consider K with its increasing

enumeration and take an initial segment ∆0 of K such that s ∪∆0 is an initial segment of K ∪ s
and |s∪∆0| = m for some m > n. Note that (s∪∆0, F ) forces that the enumerating function of
s∪∆0 is equal to σG � m. Now, take ∆1 = (K\∆0)∩ (g(m) + 1) and let k∗ = minK\(∆0 ∪∆1).
Then q := (s∪∆0∪{k∗}, F ∪∆1) extends (s∪∆0, F ) and forces σG(m) = k∗. Thus in particular,
q ≤ (s, F ) and q  σG(m) > g(m). �

A natural question to ask is whether the diagonalization poset also adds a dominating real.
Below, we present a sufficient condition for B(JA) to adjoin a dominating real and in Sections 5
and 6, we will point out the existence of maximal independent families, for which these conditions
are satisfied.

Lemma 9. Let A be an independent family in V and let JA be an independence diagonalization
ideal associated to it. Suppose there is a family {Xg : g ∈ ωω∩V and g is increasing} ⊆ V ∩P(ω)

such that for each g:
(1) Xg ⊆ [g(0), ω);
(2) ω \Xg ∈ JA;
(3) for all but finitely many n, |Xg ∩ [g(n), g(n+ 1))|≤ 1.

Let G be B(JA) generic over V and let σG be the increasing enumerating of xG. Then σG
dominates ωω ∩ V .

Proof. Let g ∈ ωω ∩ V , (s, F ) ∈ B(JA) and m minimal such that for all n ≥ m,

|Xg ∩ [g(n), g(n+ 1))|≤ 1 and n ≥ max(s).

Fix ∆0 ⊆ K = ω \ (
⋃
F ∪ s) so that s ∪∆0 is an initial segment of K ∪ s and |s ∪∆0|= m. Let

u be the increasing enumeration of ∆0 ∪ s.
Thus (s∪∆0, F )  u = σ̇G � m and putting H = F ∪ {ω \Xg, [0, g(m))} (which by hypothesis

is a finite subset of JA), we obtain (s∪∆0, H) ≤ (s∪∆0, F ) and (s∪∆0, H)  ∀n ≥ m(σ̇G(n) /∈
F ∪ {ω \ Xg, [0, g(m))}). In particular, (s ∪ ∆0, H)  ∀n ≥ m(σ̇G(n) ∈ Xg ∩ [g(m), ω)), which
implies (s ∪∆0, H)  ∀n ≥ m(σ̇G(n) ≥ g(n)). �

Definition 10. A filter F on ω is a Ramsey, if for every partition {An : n ∈ ω} such that
ω \An ∈ F , there is a sequence {kn : n ∈ ω} ∈ F with kn ∈ An, for all n ∈ ω.

The lemma above suggests that ideals of the form JA such that the corresponding filters
FA = P(ω) \ JA are Ramsey are good candidates for domination. In Section 5, we will see that
independent families the diagonalization ideal of which has the above property do exists.

3. A Generic Maximal Independent Family

In [12] Shelah constructs a maximal independent family, which remains a witness to i = ℵ1 in a
model of u = ℵ2. We show that, over a model of GCH for example, his construction naturally gives
rise to the existence of a countably closed, ℵ2-cc poset P, which generically adjoins a maximal
independent family, which as shown in the next section is Sacks indestructible.
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Lemma 11. LetA be an independent family and letD(X) to be the set of all functions h ∈ FF(A)

for which X ∩ Ah is finite, then:
(1)

id(A) = {X ⊆ ω : ∀h ∈ FF(A)∃h′ ⊇ h(Ah′ ∩X) is finite}
= {X ⊆ ω : D(X) is dense in FF(A)}

is an ideal on ω, to which we refer as the independence density ideal associated to A. Here
when we say “dense” in FF(A), we mean dense respect to the inclusion relation.

(2) If A0, A1 are independent families such that A0 ⊆ A1 then id(A0) ⊆ id(A1).

Proof. Straightforward. �

Remark 12. If A is an infinite independent family, X ⊆ ω and h ∈ FF(A) is such that Ah ∩X
is finite, then there is h1 ∈ FF(A) such that h1 ⊇ h and Ah1 ∩X = ∅.

Definition 13. Let P be the poset of all pairs (A, A) where A is a countable independent family,
A ∈ [ω]ω such that for all h ∈ FF(A) the set Ah ∩ A is infinite. The extension relation on P is
given by: (B, B) ≤ (A, A) if and only if B ⊇ A and B ⊆∗ A.

The following shows that the sets in id(A) are indeed negligible sets.

Lemma 14. Let (A, A) ∈ P and let X ∈ id(A). Then (A, A\X) ∈ P.

Proof. Sufficient to show that for each h ∈ FF(A), the set Ah∩ (A\X) is infinite. Fix h ∈ FF(A).
Since X ∈ id(A), there is h′ ⊇ h, h′ ∈ FF(A) such that Ah′ ∩X = ∅, which implies Ah′ ⊆ ω\X.
Then Ah′∩(A\X) = Ah′∩A, and so Ah′∩(A\X) is infinite. However Ah′∩(A\X) ⊆ Ah∩(A\X),
which implies that Ah ∩ (A\X) is also infinite. Thus (A, A\X) is indeed a condition. �

Another straightforward observation following the above Lemma is that for each X ∈ id(A),
the set of conditions (B, B) in P such that X ∩B = ∅ is dense below (A, A). The poset P has the
following properties (see also [12, Claim 2.2]).

Proposition 15. The poset P is σ-closed. Furthermore, if CH holds and 2ℵ1 = ℵ2, then P is
ℵ2-cc.

Proof. To verify that P is σ-closed, consider a decreasing chain of conditions, {(An, An) : n ∈ ω}.
Without loss of generality, we can assume that for all n ∈ ω, An+1 ⊆ An. Let A =

⋃
n∈ωAn.

Now, for each n, let {hn,l : l ∈ ω} enumerate FF(An). If m ≤ n, then Am ⊆ An and so FF(Am) ⊆
FF(An). Now, for each n ∈ ω pick {kn,m,l : m ≤ n, l ≤ n} such that kn,m,l ∈ An ∩ A

hm,l
n .

Finally, let A = {kn,m,l : n ∈ ω,m ≤ n, l ≤ n}. Note that A\An = {ki,m,l : i < n,m ≤ i, l ≤ i}
is finite and so A is a pseudo-intersection of the An’s meeting each Ah for h ∈ FF(A) on an
infinite set.

Assuming CH given a set of ℵ2-many conditions in P, X = {(Aα, Aα) : α < ℵ2}, we can assume
that Aα = Aβ for all α, β < ℵ2. If 2ℵ1 = ℵ2, then there are just ℵ1-many countable subsets of ℵ1.
So there must be an uncountable set of compatible conditions in X. �
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For convenience, we will introduce some terminology:

Definition 16. Let E be a partition of ω and A ∈ [ω]ω. We will say that χ(E , A) holds, if either
there is E ∈ E such that A ⊆ E, or for each E ∈ E we have |E ∩ A| ≤ 1. Whenever the latter
option holds, we will say that A is a semiselector for E .

Lemma 17. If (A, A) ∈ P, then there is B /∈ A, B ⊆ A such that (A ∪ {B}, A) ≤ (A, A).

Proof. Let {hn : n ∈ ω} be a fixed enumeration of FF(A). Since Ah0 ∩ A is infinite, we can find
distinct k0,0, k0,1 in it. Proceed inductively. Suppose we have defined {ki,j : i ∈ n, j ∈ 2} all
distinct. Since Ahn∩A is infinite, we can find distinct kn,0 and kn,1 in Ahn∩A\{ki,j : i ∈ n, j ∈ 2}.
Finally, take B = {ki,0 : i ∈ ω}. Clearly, B ⊆ A. To see that A ∪ {B} is independent, consider
an arbitrary h ∈ FF(A). Note that ∃∞m(h ⊆ hm). But then for infinitely many m, we have
km,0 ∈ Ahm ∩ B ⊆ Ah ∩ B and km,1 ∈ Ahm\B ⊆ Ah\B, which implies that both Ah ∩ B and
Ah\B are infinite. �

Lemma 18. If (A, A) ∈ P, E is a partition of ω and h0 ∈ FF(A), then there exist h1 ⊇ h0, B ⊆ A
such that (A, B) ≤ (A, A) and χ(E ,Ah1 ∩B).3

Proof. Let {hn : n ∈ ω} enumerate {h ∈ FF(A) : h0 ⊆ h}, where h0 is the given finite function
h0. Suppose we can inductively construct a sequence {kn : n ∈ ω} such that for each n, kn ∈
(Ahn ∩ A)\(

⋃
{E(kl) : l < n}), where E(kl) is the unique E ∈ E such that kl ∈ E. Then, take

B = {kn : n ∈ ω} ∪ (A\Ah0) and notice that B ⊆ A; we claim that A ∪ {B} is independent.
Indeed: Fix h ∈ FF(A). If h and h0 are compatible, consider h′ = h ∪ h0. Then for infinitely
many m, we have km ∈ Ahm ⊆ Ah

′ and so Ah ∩ B is infinite. If h and h0 are incompatible,
then there is C ∈ dom(h)∩ dom(h0) such that h(C) 6= h0(C). Without loss of generality, assume
h(C) = 0. Then Ah = Ah′ ∩ C, where h′ = h � dom(h)\{C}. On the other hand, Ah0 ⊆ ω\C
and so A\Ah0 ⊇ A ∩ C. Therefore

Ah ∩B ⊇ (Ah′ ∩ C) ∩A ∩ C ⊇ Ah ∩A.

However (A, A) is a condition and so Ah ∩A is infinite. Thus Ah ∩B is also infinite.
Otherwise, we can finite a finite sequence {kl : l < n} such that for each l < n, kl ∈ (Ahl ∩

A)\
⋃
{E(kj) : j < l}, but Ahn ∩ A ⊆

⋃
{E(kl) : l < n}. By induction on l ≤ n, try to find

hn,l ∈ FF(A) such that hn,0 = hn, hn,l ⊆ hn,l′ for l < l′ and A ∩ Ahn,l+1 ∩ E(kl) is finite. If
we succeed to do this for each l < n, then Ahn,n ∩ A will be covered by a finite set, which is a
contradiction. Therefore there is l such that 0 ≤ l < n and for each h ⊇ hn,l the set Ah∩A∩E(kl)

is infinite. Take h1 = hn,l, B = (A ∩ Ah1 ∩ E(kl)) ∪ A\Ah
1 . Then clearly Ah1 ∩ B ⊆ E(kl). It

remains to show that A ∩ {B} is independent. Fix h ∈ FF(A). If h is compatible with h1, then
h′ = h1 ∪ h extends h1 and so by the choice of hn,l, Ah

′ ∩ B = Ah′ ∩ A ∩ E(kl) is infinite. If h
and h1 are incompatible, then there is C ∈ dom(h)∩ dom(h1) such that h(C) 6= h1(C). Without
loss of generality, h(C) = 0. Then Ah ∩ B ⊇ A ∩ C, since A\Ah1 ⊇ A ∩ C, and so Ah ∩ B is
infinite. �

3If |E| < ω for each E ∈ E , then Ah
1

∩B is a semiselector for E .
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Corollary 19. Let E be a partition of ω.

(1) The set of (A, A) ∈ P such that for all h ∈ FF(A)∃h′ ∈ FF(A) such that χ(E ,Ah′) is
dense in P.

(2) If E is a partition into finite sets, then the set of (A, A) ∈ P such that A is a semiselector
for E is dense in P.

Proof. (1) Given (A, A) and an h0 ∈ FF(A), by Lemma 18 we can find h1 ⊇ h0, B ⊆ A

such that (A, B) ≤ (A, A) and χ(E ,Ah1 ∩ B). Now, by Lemma 17, there is B′ ⊆ B such that
(A∪{B′}, B) ≤ (A, B) and so h2 = h1∪{(B′, 0)} extends h0, and χ(E ,Ah21 ) where A1 = A∪{B′}.
Repeat countably many times the above argument, to obtain a countable decreasing sequence of
conditions {(An, An)}n∈ω such that Aω =

⋃
An is closed with respect to the above property and

take Aω to be a pseudointersection of the An’s. Then (Aω, Aω) is as desired.
(2) Let {hn : n ∈ ω} enumerate FF(A). Inductively construct a sequence {kn,i : n ∈ ω, i ∈ 2}
of distinct numbers such that for each n, i, kn,i ∈ (Ahn ∩ A)\(

⋃
{E(kl,i) : l < n, i ∈ 2}), where

E(kl,i) is the unique E ∈ E such that kl,i ∈ E. Then, take B = {kn,0 : n ∈ ω}. Then B ⊆ A and
we claim that A ∪ {B} is independent. Indeed. Fix h ∈ FF(A). Then for infinitely many m, we
have km,i ∈ Ahm ⊆ Ah

′ , and so both Ah ∩B, as well as Ah\B are infinite. �

Corollary 20. Let G be P-generic over V . Then AG =
⋃
{A : ∃A ∈ [ω]ω with (A, A) ∈ G} is a

maximal independent family.

Proof. Suppose X ∈ [ω]ω\AG and AG ∪ {X} is independent. Pick (A, A) ∈ G such that

(A, A)  “AG ∪ {X} is independent and X /∈ AG”.

Consider (A, A). If for each h ∈ FF(A), |Ah ∩X ∩A| = |Ah ∩A∩Xc| = ω, then (A∪{X}, A) ≤
(A, A) and (A ∪ {X}, A)  “X ∈ AG”, which is a contradiction. Otherwise, there is h ∈ FF(A)

such that |Ah ∩ A ∩X| < ω or |A ∩ A ∩Xc| < ω. However, by Lemma 17 there is B /∈ A such
that B ⊆ A and (A ∪ {B}, A) ≤ (A, A). But then,

(A ∪ {B}, A)  “∃h ∈ FF(AG) such that AhG ∩X or AhG\X is finite”.

Therefore (A ∪ {B}, A)  “AG ∪ {X} is not independent”, which is a contradiction. �

Thus, forcing with P over a model of CH and 2ℵ1 = ℵ2, adjoins a maximal independent family
which is necessarily of size ℵ1 as the poset does not add any new reals.

Lemma 21. P id(AG) =
⋃
{id(A) : ∃A(A, A) ∈ G}.

Proof. The property follows from the countable closure of P. Indeed. Suppose there is p =

(A, A) ∈ P and X ∈ [ω]ω ∩ V such that

p  X ∈ id(AG)\(
⋃
{id(A) : ∃A(A, A) ∈ G}).

Consider(A, A), X and let h ∈ FF(A). Then

p  ∃h′ ∈ FF(AG)(h ⊆ h′ and Ah′ ∩X = ∅).
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Thus, there is (A′, A′) ∈ G extending (A, A) such that h′ ∈ FF(A′), h′ ⊇ h and Ah′ ∩ X = ∅.
Proceed inductively to construct a decreasing sequence {(An, An)} of conditions below p, such
that if Aω =

⋃
n∈ωAn, then for all h ∈ FF(Aω) there is h′ ∈ FF(Aω) such that h′ ⊇ h and

Ah′ ∩ X = ∅. Thus X ∈ id(Aω). Take Aω to be any pseudointersection of {An}n∈ω and let
p′ := (Aω, Aω). Then p′ ≤ p and

p′  X ∈
⋃
{id(A) : ∃A(A, A) ∈ G},

which is a contradiction. �

Corollary 22. Let G be a P-generic filter. Then in V [G] the density independence ideal id(AG)

is generated by {ω\A : ∃A(A, A) ∈ G}. That is P id(AG) = 〈{ω\A : ∃A(A, A) ∈ G}〉.

Proof. Let G be a P generic filter. The lemma above gives us that in the generic extension V [G],
id(AG) =

⋃
{id(A) : ∃A(A, A) ∈ G}, also let IG to be the ideal generated by {ω\A : ∃A(A, A) ∈

G} in the extension. First we show that id(AG) ⊆ IG. Let X ∈ id(AG). Thus there is (A, A) ∈ G
such that X ∈ id(A). However DX = {(B, B) : X ∩B = ∅} is dense below (A, A) and so there is
(B, B) ∈ G such that X ∩B = ∅. That is, X ⊆ ω\B and so X ∈ IG.

To show that IG ⊆ id(AG), consider any X ∈ IG. Then there is a finite set of conditions
{(Ai, Ai)}i∈n in G such that X ⊆

⋃
i∈n ω\Ai = ω\

⋂
i∈nAi. Note that (B, B) ∈ G, where

(B, B) = (
⋃
i∈nAi,

⋂
i∈nAi). Thus X ⊆ ω\B. Fix any h ∈ FF(AG). Then, there is (C, C) ∈ G

such that h ∈ FF(C). Without loss of generality (C, C) ≤ (B, B). Since the set DB = {(C′, C ′) :

∃Y ∈ C(Y ⊆ B)} is dense below (B, B), there is (C′, C ′) ∈ G such that for some Y ∈ C′, Y ⊆ B.
Then h′ = h ∪ {(Y, 0)} ∈ FF(AG) and Ah′G ∩X = ∅. Thus X ∈ id(AG). �

Definition 23. (1) We say that a family F ⊆ [ω]ω is a Q-set if for every partition E of ω
into finite sets, there is A ∈ F such that A is a semiselector for E .

(2) A filter F on ω is said to be a P -set, if every countable subfamily of F has a common
pseudointersection in F .4

(3) A filter F on ω is a Ramsey, if for every partition {An : n ∈ ω} such that ω \ An ∈ F ,
there is a sequence {kn : n ∈ ω} ∈ F with kn ∈ An, for all n ∈ ω.

Lemma 24. Let G be P-generic, let F0
G = {A : ∃A(A,A) ∈ G}. Then F0

G is a Q-set and the
filter FG generated by F0

G and the co-finite sets is a P -set. Thus, in particular FG is Ramsey.

Proof. By Corollary 18 F0
G is a Q-set. Indeed, if E be a partition of ω into finite sets in V [G], then

E is a ground model set and so there is (A, A) ∈ G such that A is a semiselector for E . Clearly
A ∈ F0

G.
To see that FG is closed under finite intersections, consider arbitrary compatible conditions

(A1, A1) and (A2, A2) in P. Let (C, C) be their common extension in G. Then C ⊇ A1 ∪ A2 and
C ⊆∗ A1 ∩A2. Thus there is a finite K such that C\K ⊆ A1 ∩A2. Thus if A1, A2 are from F0

G,
then one can find C ∈ FG as above, and a finite K such that A1 ∩A2 is a superset of C\K, and
so A1 ∩A2 ∈ FG.

4The names of P -set and Q-set come from the usual terminology for P -points and Q-points.
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It remains to show that every countable subfamily of FG has a common pseudointersection
in FG. Note that it is sufficient to show that  (F0

G is a P -set). Suppose not. Then there is a
condition p ∈ P such that

p  ∃H′ ∈ [F0
G]ω s.t. ∀F ∈ F0

G∃H ∈ H′(F 6⊆∗ H).

Fix G a P-generic filter such that p ∈ G. Since P is countably closed, we can find H′ ∈ V

witnessing the above property. Thus H′ = {(An, An)} where each (An, An) ∈ G. Without loss of
generality (A0, A0) extends p and (An+1, An+1) ≤ (An, An) for each n. Take q = (Aω, Aω) to be
a common extension of the elements in H′. Then q ≤ p and q forces that Aω ∈ F0

G is a common
pseudointersection of the sets in H′, which is a contradiction. �

Corollary 25. Let G be P-generic. Then the dual filter fil(A) of the density independence ideal
id(AG) is generated by F0

G and the co-finite sets, and so fil(AG) = FG.

Proof. Note that id(AG) is generated by {ω\A : ∃A(A, A) ∈ G} and the finite sets. �

4. Sacks Indestructibility

In the following, we show that the above generic maximal independent family is Sacks inde-
structible. The existence of a Sacks indestructible maximal independent family is known (see for
example [2]), however to the best knowledge of the authors a proof of its existence prior to the
current work did not appear in the literature. Throughout the Section let V denote the ground
model, while V0 = V P. In addition, we assume that V is a model of CH and 2ℵ1 = ℵ2. Since P is
countably closed, we clearly have V ∩ [ω]ω = V0 ∩ [ω]ω. By A we denote the generic independent
family obtained in the previous section.

Lemma 26. Let S be Sacks forcing. Then for each X ∈ id(A)V
S
0 there exists Y ∈ id(A)V0 such

that X ⊆ Y .

Thus the density independence ideal of A in V S
0 has the same generating set as the density

independence ideal of A in V0.

Proof. Recall first that in Lemma 11, the set D(X) was defined and one can characterize the
density ideal using it. Namely, id(A) = {X ⊆ ω : D(X) is dense in FF(A)}.

We shall then prove that if Ḋ is a S-name for an open dense subset of ω<ω, then there exists
D′ ∈ V0, an open dense subset of ω<ω, such that there is a condition S ∈ S forcing D′ ⊆ Ḋ. Note
that this implies the result because given X ∈ (id(A))V

S
0 we get D(X) is dense in FF(A) ≈ ω<ω

and so, we can find D′ ∈ V0, D′ ⊆ D(X) open dense. Hence Y =
⋂
h∈D′(ω \ Ah) ∈ V0 and

Y ∈ id(A)V0 .
Let T ∈ S be a condition forcing Ḋ ⊆ ω<ω is open dense and (sn : n ∈ ω) be an enumeration

of ω<ω. Inductively, we construct a fusion sequence (Sn : n ∈ ω) ⊆ S and a sequence of sets
(Bn : n ∈ ω) ⊆ ω<ω in V0, satisfying the following:

• For every n ∈ ω, Sn+1 ≤n Sn. Recall this means, Sn+1 ≤ Sn and splitn(Sn+1) =

splitn(Sn).
• Dn+1 ⊆ [sn]. Here [v] = {w ∈ ωω : w ⊇ v}.
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• |Bn|= 2n.

Start with S0 = T and suppose we have already constructed the tree Sn. For each u ∈ splitn(Sn)

and i ∈ {0, 1} look at the condition (Sn)ui . Then there is a condition Un,i ≤ (Sn)ui and tu,i ∈ ω<ω
such that Un,i  tn,i ⊇ sn and [tn,i] ⊆ Ḋ (this is possible because T  Ḋ is open dense).

Put then Sn+1 =
⋃
{Uu,i : u ∈ splitn(Sn) ∧ i ∈ {0, 1}} and Dn+1 = {tn,i : u ∈ splitn(Sn) ∧ i ∈

{0, 1}}. Clearly the conditions are satisfied (|split(Sn)|= 2n).
Finally, let S be the fusion of the sequence (Sn : n ∈ ω) and D′ =

⋃
n∈ωDn. Then S  D′ ⊆ Ḋ

and D′ is dense (without loss of generality open dense) in ω<ω as we wanted. �

Furthermore, we have the following preservation theorem.

Theorem 27 (Shelah [14]). Let 〈Pα, Q̇α : α < ω2〉 be a countable support iteration of Sacks
forcing. Then for every dense open set D ∈ V

Pω2
0 , D ⊆ ω<ω there exists D′ ∈ V0 open dense

subset of ω<ω such that D′ ⊆ D.

Recall also the definition of Sacks property for a partial order:

Definition 28. A forcing notion P has the Sacks Property if for every condition p ∈ P and every
P-name ḟ for an element in ωω there are a condition q ≤ p and a slalom F : ω → [ω]<ω with
|F (n)| ≤ n for all n ∈ ω such that q  ḟ(n) ∈ F (n) for all n ∈ ω.

Note: From now on, we will use (without proof) that Sacks forcing has the Sacks property
and moreover, that the countable support iteration of proper forcings with the Sacks property
also has the Sacks property.

Theorem 29. The generic maximal independent family adjoined by P over a model of CH and
2ℵ0 = ℵ1 remains maximal after the countable support iteration of Sacks forcing S of length ω2.

Proof. Let 〈Pα, Q̇α : α < ω2〉 denote the countable support iteration of S over V0 = V P. We
shall prove that the generic maximal independent family A adjoined by P is still maximal in the
V P∗Pω2 . To do this we will prove the following inductively for all α < ω2:

(?)α: In V P∗Pα , for all h ∈ FF(A) and all X ⊆ ω such that X ⊆ Ah, either ∃B ∈ (id(A))V0 such
that Ah\X ⊆ B, or ∃h′ ∈ FF(A) such that h ⊆ h′ and Ah′ ⊆ Ah\X.

In the following, let fil(A) denote the dual filter of id(A). Note that for h ∈ FF(A) andX ⊆ Ah,
there is B ∈ id(A) such that Ah\X ⊆ B if and only if there is F ∈ fil(A) such that Ah ∩ F ⊆ X.
Note also that fil(A) = {F ⊆ ω : ∀h ∈ FF(A)∃h′ ⊇ h such that Ah′ ⊆∗ F}.

Now, suppose (?)ω2 holds. If A is not maximal in V P∗Pω2 then there is X ∈ V P∗Pω2 ∩ [ω]ω such
that for all h ∈ FF(A), both Ah ∩X and Ah\X are infinite. Fix h and consider Y h = Ah ∩X.
Then Y h ⊆ Ah and so by (?)ω2 either there is B ∈ (id(A))V0 such that Ah\Y h ⊆ B, or there is
h′ ⊇ h such thatAh′ ⊆ Ah\Y h. In the latter case, Ah′∩Y h = Ah′∩X = ∅, which is a contradiction
to the choice of X. In the former case, fix B ∈ (id(A))V0 such that Ah\Y h ⊆ B. Thus there is
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h′ ∈ FF(A) such that h′ ⊇ h and Ah′ ∩ B = ∅, i.e. Ah′ ⊆ ω\B. However Ah\X = Ah\Y h ⊆ B

and so Ah′\X ⊆ Ah\X ∩ ω\B = ∅, which is again a contradiction to the choice of X.

We are left with the task of proving (?)α for all α ≤ ω2. Proceed inductively.

Base case: Fix h and X as in (?)0. If Ah\X /∈ id(A), then there is h0 ∈ FF(A) such that
for all h1 ∈ FF(A) extending h0, the set Ah1 ∩ (Ah\X) is infinite. Consider the partition E =

{Ah\X,ω\(Ah\X)} and the boolean combination Ah0 . By Corollary 19.(1) there is h1 ⊇ h0 such
that χ(E ,Ah1). However if Ah1 ⊆ ω\(Ah\X), then Ah1 ∩ (Ah\X) = ∅, which is a contradiction
to the choice of h0. Thus Ah1 ⊆ Ah\X, and so Ah1 ∩X = ∅.

Successor case: Let α = β + 1. Assume V P∗Pβ � (?)β and let G ∗ Ḡ be a P ∗ Pβ-generic over
V filter. Work in Vβ = V [G ∗ Ḡ]. Suppose there are p ∈ Qβ(= Sβ), and a Pβ-name Ẋ for a subset
of ω that is forced over Vβ by p to be a counterexample for (?)α. Without loss of generality p
is also a condition that forces the generic Sacks real added at this step to decide the values of
Ẋ ∩ (n+ 1). Consider the following two cases:
Case 1: Suppose that there is l ∈ ω so that, the set Yl = {m ∈ ω : ∃q ≤l+1 p such that

q 1 m /∈ Ẋ} does not belong to the filter fil(A). Since Yl belongs to V P∗Pβ and V P∗Pβ |= Yl ⊆ Ah
(otherwise, there is m ∈ Yl \Ah and so, we can find a condition r ≤ p for which r  m ∈ Ẋ which
is not possible) we can apply the inductive hypothesis (?)β to it. Then we have the following two
possibilities:

• Either there is Bl ∈ id(A) such that Ah \ Yl ⊆ Bl, and now since Yl /∈ fil(A), there is
g ∈ FF(A) such that for all g′ ⊇ g, Yl \ Ag

′ is infinite. But then we must have that both
h and g are compatible, and so we can find h′ ∈ FF(A) a common extension for which we
will get Ag \ Yl ⊆ Ah is infinite and belongs to id(A), a contradiction.
• Hence, we must have that there exists h′ ⊇ h for which Ah′ ∩ Yl = ∅. This implies that,
given m ∈ Ah′ for all conditions q ≤l+1 p we have q  m /∈ Ẋ and so, p  Ẋ ∩ Ah′ = ∅.
However, this contradicts the assumption that p forces Ẋ to be a counterexample to (?)α.

Case 2: For all l ∈ ω the sets Yl ∈ fil(A). Since fil(A) is a P -set, there is Aj ∈ fil(A) (in fact
Aj ∈ F0

G) such that Aj ⊆∗ Yl. Let f be a real in ωω such that Aj \ Yl ⊆ f(l) for each l ∈ ω. By
the Sacks property, we can assume that f ∈ V .

Refine Aj as follows: Take k0 = min(Aj \ f(0)) and if we have already chosen kn ∈ Aj , let
kn+1 ∈ Aj such that kn+1 > f(l) for all l ≤ n. Let B = {kn}n∈ω. We can see B as an interval
partition E of Aj (which bijectively we can put in correspondence with ω.) Corollary 19.(2)
implies that there is Aδ ∈ F0

G which is a semiselector for E .
Let {mn}n∈ω be an enumeration of Aδ. It is now enough to show that there is a condition

q ≤ p such that q  Aδ ⊆ Ẋ. For this purpose, we construct inductively a fusion sequence
〈qn : n ∈ ω〉 ⊆ Qβ below p such that qn+1  mn ∈ Ẋ, for all n ∈ ω. Then the fusion of such
sequence will force that Ẋ ∈ fil(A), contradicting the choice of p as desired.
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Start with q0 = p, and suppose we have constructed qn satisfying the conditions. To complete
the inductive construction of the sequence, notice that mn+1 ∈ Yn (mn+1 > f(n)), and so we can
choose qn+1 ≤n qn such that qn+1  mn+1 ∈ Ẋ.

Limit case: The limit case follows from Theorem [12, Lemma 3.2] of Shelah cited below.
For convenience we state the theorem immediately after the current proof, as Lemma 30. In
addition, we explain why it can be used to complete the preservation of (?)α, for α limit. Note
that F = F0

G ∪ Fr and H = {ω \ Ah : h ∈ FF(A)} satisfy the conditions of Lemma 30. Note that
by Lemma 24, F is Ramsey.

To see (2) consider any Z ∈ P(ω)\ fil(A). Thus ω\Z /∈ id(A) and so there is h ∈ FF(A) such
that for al h′ ⊇ h, |Ah′ ∩ (ω\Z)| = |Ah′\Z| = ω. Consider the set Y = Ah\Z. Thus Y ⊆ Ah
and so by (?)α either ∃B ∈ (id(A))V0 such that Ah\Y ⊆ B and so Ah\Y ∈ id(A), or ∃h′ ⊇ h

such that Ah′ ⊆ Ah\Y . In the latter case, Ah′ ⊆ Ah\Y = Z ∩ Ah and so Ah′\Z = ∅, which is a
contradiction. Therefore Ah\Y ∈ id(A) and so there is h′ ⊇ h such that Ah′ ∩Ah ∩Z = Ah′ ∩Z
is finite and so Z ⊆∗ ω\Ah′ . Take X = ω\Ah′ . �

Lemma 30 (Shelah, Lemma 3.2 in [12]). Let F and H be families of subsets of ω such that :

(1) F contains all co-infinite sets, every element F is non-empty, F is closed under finite
intersections, every countable G ⊆ F has a pseudointersection in F and F is Ramsey.

(2) H ⊆ P(ω) \ 〈F〉, where 〈F〉 is the filter generated by F and

P(ω)\〈F〉 ⊆ {Z ⊆ ω : there exists X ∈ H with Z ⊆∗ X}.

If 〈Pα, Q̇α : α < δ〉 is a countable support iteration of ωω-bounding proper posets such that for
all α < δ,

Pα (P(ω)\〈F〉) ⊆ {Z ⊆ ω : ∃X ∈ H such that Z ⊆∗ X}

then the same holds for α = δ.

The above proof clearly shows that the generic maximal independent family adjoined by P over
a model of GCH remains also maximal after the countable support product of Sacks forcing.

5. Ideals and independence

Throughout the section, we study the relationship between the independence diagonalization
ideal and the independence density ideals. For convenience, we restate their definitions. Given
an independent family A, an ideal JA ⊆ [ω]≤ω is said to be a diagonalization ideal, if

(1) JA ∩ {Ah : h ∈ FF(A)} = ∅.
(2) For every X ∈ [ω]ω ∩ V there is h ∈ FF(A) such that X ∩ Ah or Ah \X belongs to JA.

On the other hand, given an independent family A, we defined the independence density ideal,
id(A), as the set of all X ⊆ ω such that ∀h ∈ FF(A)∃h′ ⊇ h such that Ah′ ∩X is finite.

Lemma 31. Let A be an independent family. Then id(A) ⊆ JA.
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Proof. Let 〈Jα : α < c〉 be an increasing sequence of ideals associated to a fixed enumeration
{Xα}α∈c of P(ω) andA as in Lemma 3, such that JA =

⋃
α<c Jα. Suppose towards a contradiction

that there is X ∈ id(A) and X /∈ JA. Clearly, X /∈ [ω]<ω. Then for some α, Xα = X and since
X /∈ Jα+1, there must be h0 ∈ FF(A) and Y ∈ Jα such that Ah ⊆ X ∪ Y . Therefore Ah\X ⊆ Y
and so Ah\X ∈ Jα ⊆ JA. By hypothesis, X ∈ id(A) and so there is h′ ⊇ h such that Ah′ ∩X
is finite. However Ah′ ⊆ Ah and so Ah′\X ∈ JA. But then Ah′ = (Ah′\X) ∪ (Ah′ ∩X) ∈ JA,
which is a contradiction. �

Lemma 32. If A is an independent family which is not maximal, then id(A) ( JA.

Proof. Fix X ∈ [ω]ω\A such that {X}∪A is independent. By definition of JA, there is h ∈ FF(A)

such that X ∩ Ah of Ah\X is in JA. Since neither of them is in id(A), we obtain the desired
claim. �

The above Lemma implies in particular that the density ideal is not necessarily a diagonal-
ization ideal. However, for the following class of maximal independent families, the density and
diagonalization ideals coincide.

Definition 33. An independent family A is said to be densely maximal if for every X ∈ [ω]ω\A
and every h ∈ FF(A), there is h′ ∈ FF(A) for which either X ∩ Ah′ of Ah′\X is finite.

Lemma 34. An infinite independent family A is densely maximal if and only if the following
property holds:

(?) For all h ∈ FF(A) and all X ⊆ ω such that X ⊆ Ah, either ∃B ∈ id(A) such that Ah\X ⊆ B,
or ∃h′ ∈ FF(A) such that h ⊆ h′ and Ah′ ⊆ Ah\X.

Proof. Suppose A satisfies property (?). Let X ∈ [ω]ω, h ∈ FF(A) and consider Y = X ∩ Ah.
Then by (?) either there is B ∈ id(A) such that Ah\Y = Ah\X ⊆ B, in which case Ah\Y belongs
to id(A) itself and so there is h′ ⊇ h such that Ah′ ∩ (Ah\X) = Ah′\X is finite, or there is h′′ ⊇ h
such that Ah′′ ⊆ Ah\Y = Ah\X, which implies Ah′′ ∩X = ∅. Thus, A is densely maximal.

Now, suppose A is densely maximal. Fix h ∈ FF(A) and X ⊆ Ah. We will show that A
satisfies property (?). Suppose, there is no B ∈ id(A) such that Ah\X ⊆ B. Thus in particular
Ah\X /∈ id(A) and so there is h′ ∈ FF(A) such that for all h′′ ⊇ h′, the set Ah′′ ∩ (Ah\X) is
infinite. If h′ and h are incompatible (as conditions in FF(A)), then Ah′ ∩ (Ah\X) = ∅, which is
a contradiction. Therefore h′ and h are compatible. Without loss of generality h′ ⊇ h and so we
have that there is h′ ⊇ h such that for all h′′ ⊇ h′, |Ah′′\X| = ω. Apply the property of B being
densely maximal to Ah′\X and h′. Thus there is h′′ ⊇ h′ such that either Ah′′∩(Ah′\X) = Ah′′\X
or Ah′′\(Ah′\X) = Ah′′ ∩X is finite. Therefore, the latter must hold. But then, there is h′′′ ⊇ h′′
such that Ah′′′ ∩X = ∅. That is, there is h′′′ ⊇ h such that Ah′′′ ⊆ Ah\X and so (?) holds. �

Lemma 35. Let A be a densely maximal independent family and let J be an ideal on ω such
that J ∩ {Ah : h ∈ FF(A)} = ∅. Then J ⊆ id(A).

Proof. Let X ∈ J . Suppose X /∈ id(A). Then there is g ∈ FF(A) such that for all g′ ⊇ g, the
set Ag′ ∩ X is infinite. Applying dense maximality to X and g, we can find g′ ⊇ g such that
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X ∩ Ag′ or Ag′\X is finite. Thus Ag′\X is finite. Since A is infinite, there is g′′ ⊇ g′ such that
Ag′′ ∩ (ω\X) = ∅, i.e. Ag′′ ⊆ X. Thus Ag′′ ∈ J , which is a contradiction. �

Corollary 36. If A is densely maximal independent, then JA ⊆ id(A) and so JA = id(A).

As a corollary to Shelah’s [12, Lemma 3.2], we obtain:

Corollary 37. A densely maximal independent family A such that the dual filter of its diagonal-
ization ideal id(A) is generated by a Ramsey filter and the co-finite sets remains maximal after
the countable support iteration of Sacks forcing, as well as after the countable support product
of Sacks forcing.

Finally, we prove that neither the density, nor the diagonalization ideal is maximal.

Proposition 38. Given an independent family A the ideal JA is not maximal in the following
sense: There is a set X ∈ [ω]ω \ {Ah : h ∈ FF(A)} such that neither X nor ω \X belongs to JA.

Proof. Let g ∈ FF(A), let x0 be a finite, non-empty set disjoint from Ag and let X = Ag ∪ x0.
Given h ∈ FF(A), denote by h⊥ the element in FF(A) with same domain as h, and such that for
all B ∈ dom(h), if h(B) = B then h⊥(B) = ω\B, and if h(B) = ω\B, then h⊥(B) = B.

Note that X /∈ {Ah : h ∈ FF(A)}. Indeed, suppose there is h ∈ FF(A) for which X =

Ag ∪ x0 = Bh. Then h ⊆ g and h 6= g. Let w = dom(g) \ dom(h) and define h′ = h ∪ (g � w)⊥.
But then, Ah′ = Ah ∩ A(g�w)⊥ = (Ag ∪ x0) ∩ A(g�w)⊥ = A(g�w)⊥ ∩ x0 must be infinite, which
is a contradiction. In addition, since JA is an ideal and Ag /∈ JA, X /∈ JA. Finally note that
Ag⊥ ⊆∗ ω \X and since Ag⊥ /∈ JA, the set ω \X does not belong to JA. �

6. Final remarks

Shelah’s proof of i < u from [12] gives the existence, under CH, of a decreasing sequence of
conditions {(Aα, Aα)}α∈ω1 in the countably closed poset P from Section 3, with the property that

• Aω2 =
⋃
α∈ω1

Aα satisfies property (?) and so in our terminology is densely maximal and,
• the filter generated by the tower τ = {Aα}α∈ω is Ramsey.

Furthermore, τ is the dual filter to id(Aω2).5 Thus, in particular, CH implies the existence of a
Sacks indestructible maximal independent family. This approach will be used in a forthcoming
paper to show the existence of a co-analytic Sacks indestructible maximal independent family and
so the consistency of the existence of a co-analytic maximal independent family with arbitrarily
large continuum. Another immediate consequence of Corollary 36 and Lemma 9 that is that CH
implies the existence of a maximal independent family for which the diagonalization partial order
does adjoin a dominating real.

We conclude with some open questions, which naturally follow from the presented theory.

Question 1: If we define id to be the minimal size of a densely maximal independent family, clearly
i ≤ id. However of interest remains the following: Is it consistent that i < id?

5One of the differences between the CH inductive construction and the generic Sacks indestructible maximal
independent family is that the dual filter of the density ideal of the latter is not necessarily generated by a tower.



IDEALS OF INDEPENDENCE 17

Question 2: Both of the constructions of densely maximal independent families, which we dis-
cussed in the paper relay on CH. Thus one may ask: Is is consistent that there are no densely
maximal independent families?

Question 3: Is there a Sacks indestructible independent family which is not densely maximal?
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