The consistency of $\mathfrak{b} = \kappa < \mathfrak{s} = \kappa^+$

Vera Fischer

29th August, 2008

Vera Fischer The consistency of $\mathfrak{b} = \kappa < \mathfrak{s} = \kappa^+$

 $\begin{array}{l} \mbox{Cardinal Characteristics} \\ \mbox{Logarithmic Measures} \\ \mbox{Centered Families} \\ \mbox{$\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^+$} \end{array}$

Bounding and Splitting Numbers

Definition

A family $\mathcal{H} \subseteq {}^{\omega}\omega$ is unbounded, if there is no $g \in {}^{\omega}\omega$ which dominates all elements of \mathcal{H} . The bounding number \mathfrak{b} is the minimal cardinality of an unbounded family.

Definition

A family $S \subseteq [\omega]^{\omega}$ is splitting, if for every $A \in [\omega]^{\omega}$ there is $B \in S$ such that both $A \cap B$ and $A \cap B^c$ are infinite. The splitting number \mathfrak{s} is the minimal size of a splitting family.

(日) (同) (E) (E) (E)

 $\begin{array}{l} \mbox{Cardinal Characteristics} \\ \mbox{Logarithmic Measures} \\ \mbox{Centered Families} \\ \mbox{$\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^+$} \end{array}$

Mathias forcing Logarithmic Measures Induced Logarithmic Measure Sufficient Condition for High Values Shelah's partial order

$\mathfrak{b}=\omega_1<\mathfrak{s}=\omega_2$

In 1984 S. Shelah showed the consistency of $\mathfrak{b} = \omega_1 < \mathfrak{s} = \omega_2$ using a proper, almost ${}^{\omega}\omega$ bounding forcing notion of size continuum, which adds a real not split by the ground model reals.

$\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^+$

Given an unbounded <*-directed family \mathcal{H} of size κ we obtain a σ -centered suborder $\mathbb{P}_{\mathcal{H}}$ of Shelah's poset, which preserves \mathcal{H} unbounded and adds a real not split by $V \cap [\omega]^{\omega}$.

Mathias forcing Logarithmic Measures Induced Logarithmic Measure Sufficient Condition for High Values Shelah's partial order

${\mathbb M}$ adds a real not split by the ground model reals

If G is \mathbb{M} -generic, then $U_G = \bigcup \{ u : \exists A(u, A) \in G \}$ is an infinite set such that $\forall A \in V \cap [\omega]^{\omega}$, $U_G \subseteq^* A$ or $U_G \subseteq^* A^c$.

${\mathbb M}$ adds a dominating real

However, if F_G is the enumerating function of U_G , then F_G dominates all ground model reals.

Mathias forcing Logarithmic Measures Induced Logarithmic Measure Sufficient Condition for High Values Shelah's partial order

Definition

- Let s ⊆ ω. Then h: [s]^{<ω} → ω is called a *logarithmic measure* if ∀A ∈ [s]^{<ω}, ∀A₀, A₁ such that A = A₀ ∪ A₁, h(A_i) ≥ h(A) − 1 for i = 0, or i = 1 unless h(A) = 0.
- ► If s is finite, the pair x = (s, h) is called a finite logarithmic measure. The value h(s) = ||x|| is called the level of x and int(x) denotes s.

 $\begin{array}{l} \mbox{Cardinal Characteristics}\\ \mbox{Logarithmic Measures}\\ \mbox{Centered Families}\\ \mbox{$\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^+$} \end{array}$

Mathias forcing Logarithmic Measures Induced Logarithmic Measure Sufficient Condition for High Values Shelah's partial order

Definition

Let $P \subseteq [\omega]^{<\omega}$ be upwards closed family, which does not contain singletons. Then P induces a logarithmic measure on $[\omega]^{<\omega}$ defined inductively as follows:

1.
$$h(e) \geq 0$$
 for every $e \in [\omega]^{<\omega}$

2.
$$h(e) > 0$$
 iff $e \in P$

3. for $\ell \geq 1$, $h(e) \geq \ell + 1$ iff whenever $e_0, e_1 \subseteq e$ are such that $e = e_0 \cup e_1$, then $h(e_0) \geq \ell$ or $h(e_1) \geq \ell$.

Then $h(e) = \max\{k : h(e) \ge k\}$. The elements of P are called positive sets and h is said to be induced by P.

 $\begin{array}{l} \mbox{Cardinal Characteristics} \\ \mbox{Logarithmic Measures} \\ \mbox{Centered Families} \\ \mbox{b} = \kappa < \mbox{$$s$} = \kappa^+ \end{array}$

Mathias forcing Logarithmic Measures Induced Logarithmic Measure Sufficient Condition for High Values Shelah's partial order

Example

Let $P = \{a \in [\omega]^{<\omega} : |a| \ge 2\}$. Then $h(a) = \min\{j : |a| \le 2^j\}$ is the logarithmic measure induced by P, called *standard measure*.

Lemma

Let $A \subseteq \omega$ does not contain a set of measure $\geq \ell + 1$ for some $\ell \in \omega$. Then there are A_0, A_1 such that $A = A_0 \cup A_1$ and none of A_0, A_1 contain a set of measure $\geq \ell$.

イロン イボン イヨン イヨン 一座

Mathias forcing Logarithmic Measures Induced Logarithmic Measure Sufficient Condition for High Values Shelah's partial order

Lemma

Let $P \subseteq [\omega]^{<\omega}$ be upwards closed family, which does not contain singletons and let h be induced by P. Then if for every $n \in \omega$ and partition $\omega = A_0 \cup \cdots \cup A_{n-1}$ there is $j \in n$ such that A_j contains a positive set, then for every $k \in \omega$, for every $n \in \omega$ and partition $\omega = A_0 \cup \cdots \cup A_{n-1}$ there is $j \in n$ such that A_j contains a set of measure $\geq k$.

 $\begin{array}{ll} \mbox{Cardinal Characteristics} & \mbox{Mathias forcing} \\ \mbox{Logarithmic Measures} \\ \mbox{Centered Families} \\ \mbox{b} = \kappa < \mbox{s} = \kappa^+ \\ \mbox{s} \end{array} \begin{array}{ll} \mbox{Mathias forcing} \\ \mbox{Logarithmic Measures} \\ \mbox{Induced Logarithmic Measure} \\ \mbox{Sufficient Condition for High Values} \\ \mbox{Shelah's partial order} \end{array}$

Definition

Let Q be the set of all pairs (u, T) where u is a finite subset of ω and $T = \langle (s_i, h_i) : i \in \omega \rangle$ is a sequence of logarithmic measures such that

- 1. $\max u < \min s_0$
- 2. max $s_i < \min s_{i+1}$ for all $i \in \omega$

3. $\langle h_i(s_i) : i \in \omega \rangle$ is unbounded.

Also $int(T) = \bigcup \{s_i : i \in \omega\}$. If $u = \emptyset$, then (\emptyset, T) is a pure condition and is denoted by T. Note that if (u, T) is Shelah's condition, then (u, int(T)) is Mathias.

イロン イヨン イヨン イヨン

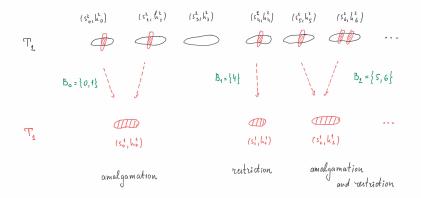
 $\begin{array}{ll} \mbox{Cardinal Characteristics} & \mbox{Mathias forcing} \\ \mbox{Logarithmic Measures} \\ \mbox{Centered Families} \\ \mbox{b} = \kappa < \mbox{s} = \kappa^+ \\ \mbox{s} \end{array} \begin{array}{ll} \mbox{Mathias forcing} \\ \mbox{Logarithmic Measures} \\ \mbox{Induced Logarithmic Measure} \\ \mbox{Sufficient Condition for High Values} \\ \mbox{Shelah's partial order} \end{array}$

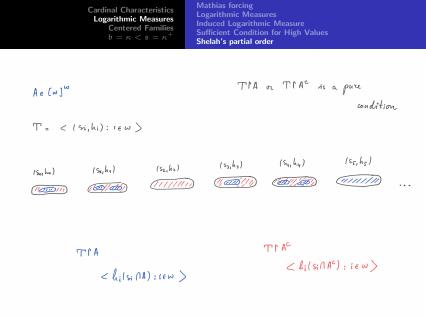
We say $(u_2, T_2) \leq (u_1, T_1)$, where $T_{\ell} = \langle (s_i^{\ell}, h_i^{\ell}) : i \in \omega \rangle$ for $\ell = 1, 2$, if the following conditions hold:

- 1. u_2 is an end-extension of u_1 and $u_2 \setminus u_1 \subseteq int(T_1)$
- int(T₂) ⊆ int(T₁) and furthermore there is an infinite sequence (B_i : i ∈ ω) of finite subsets of ω such that max u₂ < min s^j₁ for j = min B₀, max(B_i) < min(B_{i+1}) and s²_i ⊆ ∪{s¹_j : j ∈ B_i}.
- 3. for every subset e of s_i^2 such that $h_i^2(e) > 0$ there is $j \in B_i$ such that $h_i^1(e \cap s_i^1) > 0$.

If $u_1 = u_2$, then (u_2, T_2) is a pure extension of (u_1, T_1) .

Extensions in
$$Q$$
: $T_1 \leq T_2$





Centered Families of Pure Conditions Generic Extensions of Centered Families

Definition

Let \mathcal{F} be family of pure conditions. Then $Q(\mathcal{F})$ is the suborder of Q of all $(u, T) \in Q$ such that $\exists R \in \mathcal{F}(R \leq T)$.

- If C is centered, then Q(C) is σ -centered.
- Let $p, q \in Q(C)$. Then $p \not\perp_Q q$ iff $p \not\perp_{Q(C)} q$.
- If $C \subseteq Q(C')$ then C' is said to extend C.
- ▶ If $T \not\perp C$ and $\omega = A_0 \cup \cdots \cup A_{n-1}$, then $\exists j \in n$ and $R \leq T(R \not\perp C)$ such that $int(R) \subseteq A_j$.

Centered Families of Pure Conditions Generic Extensions of Centered Families

 $\mathbb{P}_{\mathcal{H}} = Q(C_{\mathcal{H}})$

The forcing notion $\mathbb{P}_{\mathcal{H}}$ is of the form $Q(C_{\mathcal{H}})$. Starting with an arbitrary pure condition T and $C_0 = \{T \setminus v : v \in [\omega]^{<\omega}\}$, we will obtain a sequence $\langle C_{\alpha} : \alpha < \kappa^+ \rangle$ of centered families such that $\forall \alpha < \beta(C_{\alpha} \subseteq Q(C_{\beta}))$ and $C_{\mathcal{H}} = \cup_{\alpha \in \kappa} C_{\alpha}$.

$\mathcal{C}_{lpha}\subseteq \mathcal{Q}(\mathcal{C}_{lpha+1})$

At successor stages, we will use three distinct countable forcing notions each of which adds a single pure condition with desired combinatorial properties.

・ロト ・回ト ・ヨト ・ ヨト

Centered Families of Pure Conditions Generic Extensions of Centered Families

Definition

Let Q_{fin} be the poset of all $\bar{r} = \langle r_0, \ldots, r_n \rangle$ of finite measure such that $\forall i \in n$, $\max \operatorname{int}(r_i) < \min \operatorname{int}(r_{i+1})$ and $||r_i|| < ||r_{i+1}||$ with extension relation end-extension.

Definition

Let $\overline{r} \in Q_{fin}$ and T a pure condition. Then $\overline{r} \leq T$ if there is a pure condition $R \leq T$ such that $\overline{r} \subseteq R$.

イロン イボン イヨン イヨン 一座

Centered Families of Pure Conditions Generic Extensions of Centered Families

Definition

Let T be a pure condition. Then $\mathbb{P}(T)$ is the suborder of Q_{fin} of all finite sequences \bar{r} extending T.

Lemma

Let $T \not\perp X$, $n \in \omega$. Then

$$D_T(X, n) = \{\overline{r} \in \mathbb{P}(T) : \exists r_j \in \overline{r}(r_j \leq X \text{ and } ||r_j|| \geq n)\}$$

is dense in $\mathbb{P}(T)$.

イロン イヨン イヨン イヨン

Corollary

Let $C \not\perp T$, let G be $\mathbb{P}(T)$ -generic filter. Then in V[G]

- $\mathsf{R}_{\mathsf{G}} = \cup \mathsf{G} = \langle \mathsf{r}_i : i \in \omega \rangle \leq \mathsf{T}.$
- ▶ $\exists C'$ such that $C \cup \{R_G\} \subseteq Q(C')$, |C| = |C'|.

Proof.

Since $G \cap D_T(X, n) \neq \emptyset$ for all $X \in C$, $n \in \omega$, the set $I_X = \langle i : r_i \leq X \rangle$ is infinite and so $R_G \wedge X = \langle r_i : i \in I_X \rangle$ is a common extension of R_G and X. If $X \leq Y$ then $I_X \subseteq I_Y$ and so $R_G \wedge X \leq R_G \wedge Y$. Then $C' = \{R_G \wedge X\}_{X \in C}$ is centered.

イロト イポト イヨト イヨト

 $\begin{array}{l} \mbox{Cardinal Characteristics}\\ \mbox{Logarithmic Measures}\\ \mbox{Centered Families}\\ \mbox{$\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^+$} \end{array}$

 $\begin{array}{l} \mbox{Good Extensions} \\ \mbox{Mimicking the almost} \ ^{\omega}\omega\mbox{-bounding property} \\ \mbox{Preservation of Unboundedness} \\ \mbox{$\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^+$} \end{array}$

Lemma

Let $cov(\mathcal{M}) = \kappa$, *C* centered $|C| < \kappa$, *f* a good Q(C)-name for a real. Then there is $T = \langle r_i : i \in \omega \rangle$ of logarithmic measures of strictly increasing levels, such that

- ▶ $\forall X \in C$ the set $J_X = \{i : r_i \leq X\}$ is infinite and
- ▶ $\forall i \forall v \subseteq i \forall s \subseteq int(r_i)$ which is r_i -positive $\exists w \subseteq s \exists p \in A_i(f)$ such that $(v \cup w, T) \leq p$.

 $\begin{array}{l} \mbox{Good Extensions} \\ \mbox{Mimicking the almost} \ \ ^\omega \omega \mbox{-bounding property} \\ \mbox{Preservation of Unboundedness} \\ \mbox{\mathfrak{b}} = \kappa < \mathfrak{s} = \kappa^+ \end{array}$

The proof uses two countable forcing notions, the first of which produces a pure condition which is preprocessed for \dot{f} .

Under $\operatorname{cov}(\mathcal{M}) = \kappa$ certain subfamilies of $[\omega]^{<\omega}$ induce logarithmic measures which take arbitrarily high values. The second forcing notions amalgamates such measures into the pure condition T.

イロン イヨン イヨン イヨン

Theorem

Let $cov(\mathcal{M}) = \kappa, \mathcal{H} \subseteq {}^{\omega}\omega$ unbounded, <*-directed, $|\mathcal{H}| = \kappa, C$ centered, $|C| < \kappa, \dot{f} \text{ good } Q(C)\text{-name for a real. Then}$ $\exists C' \exists h \in \mathcal{H}, \text{ such that } C' \text{ extends } C, |C'| = |C| \text{ and } \forall C''$ extending $C', \Vdash_{Q(C'')} ``\check{h} \not<* \dot{f}''$.

Proof

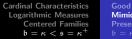
Let $T = \langle r_i : i \in \omega \rangle$ satisfy the preceding Lemma for C and \dot{f} . Then $\forall i \in \omega$ let g(i) be the maximal k such that there are $v \subseteq i$, $w \subseteq int(r_i), \ p \in \mathcal{A}_i(\dot{f})$ with $p \Vdash \check{k} = \dot{f}(i)$ and $(v \cup w, T) \leq p$.

イロン イヨン イヨン イヨン

▶
$$\forall X \in C \ J_X = \{i : r_i \leq X\}$$
 is infinite. Then $\forall n \in \omega$ let $F_X(n) = g(J_X(i+1))$ iff $n \in (J_X(i), J_X(i+1)]$ where $J_X(n)$ is the *n*-th element of J_X . Then $\forall X \in C \exists h_X \in \mathcal{H}(h_X \not\leq^* F_X)$.

▶ Let $h \in \mathcal{H}$ dominate all h_X 's. Then $J = \{i : g(i) < h(i)\}$ and $I_X = J_X \cap J$ are infinite. Let $R = \langle r_i \rangle_{i \in J}$, $R \land X = \langle r_i \rangle_{i \in I_X}$ and $C' = \{R \land X\}_{X \in C}$.

<ロ> (四) (四) (三) (三) (三)



 $\begin{array}{l} \mbox{Good Extensions} \\ \mbox{Mimicking the almost} ~ \ensuremath{\omega_{\omega}}\mbox{-bounding property} \\ \mbox{Preservation of Unboundedness} \\ \mbox{$b=\kappa< s=\kappa^+$} \end{array}$

$$J_{x} = \{ i : \tau_{i} \leq x \}$$

$$J = \{ i : g|i\rangle < h(i) \}$$

$$J^{\infty} i \in J_{x} (F_{x}|i\rangle < h(i))$$

$$OHonwise \ h \leq^{*} F_{x}$$

$$Therefore \ J_{x} = J_{x} \cap J is$$

$$infinite$$

$$J_{x}$$

 $\begin{array}{l} \mbox{Cardinal Characteristics}\\ \mbox{Logarithmic Measures}\\ \mbox{Centered Families}\\ \mbox{$\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^+$} \end{array}$

 $\begin{array}{l} \mbox{Good Extensions} \\ \mbox{Mimicking the almost} ~ {}^\omega \mbox{-bounding property} \\ \mbox{Preservation of Unboundedness} \\ \mbox{$\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^+$} \end{array}$

$\forall C'' \text{ extending } C' \Vdash_{Q(C'')} \check{h} \not<^* \dot{f}$

- Let C" be centered, C' ⊆ Q(C"), a ∈ [ω]^{<ω}, k₀ ∈ ω and let (b, R') ∈ Q(C") be an extension of (a, R). There is i ∈ J, i > k₀ such that b ⊆ i and s = int(R') ∩ int(r_i) is r_i-positive. Then ∃w ⊆ s∃p ∈ A_i(f) such that (b ∪ w, T) ≤ p.
- Therefore (b ∪ w, R') extends (b, R') and p. Let k ∈ ω be such that p ⊨ f(i) = k̃. Then by definition of g, k ≤ g(i) and since i ∈ J, g(i) < h(i). Thus (b ∪ w, R') ⊨_{Q(C'')} "f(i) = k̃ ≤ ğ(i) < h̃(i)".</p>

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\begin{array}{l} \mbox{Good Extensions} \\ \mbox{Mimicking the almost} & \ensuremath{\omega}\mbox{-bounding property} \\ \mbox{Preservation of Unboundedness} \\ \mbox{$\mathfrak{b}\ =\ \kappa\ <\ \mathfrak{s}\ =\ \kappa^+$} \end{array}$

Lemma

Let $cov(\mathcal{M}) = \kappa$, $\mathcal{H} \subseteq {}^{\omega}\omega$ be an unbounded, directed family of cardinality κ and let $\forall \lambda < \kappa(2^{\lambda} \leq \kappa)$. Then there is a centered family C, $|C| = \kappa$ such that Q(C) preserves \mathcal{H} unbounded and adds a real not split by $V \cap [\omega]^{\omega}$.

Let $\mathcal{N} = {\dot{f}_{\alpha}}_{\alpha < \kappa}$ enumerate all Q(C') names for functions in ${}^{\omega}\omega$ where $|C'| < \kappa$. Let $\mathcal{A} = {A_{\alpha+1}}_{\alpha < \kappa}$ enumerate $V \cap [\omega]^{\omega}$. By induction of length κ obtain a sequence $\langle C_{\alpha} : \alpha < \kappa \rangle$ such that $\forall \alpha < \beta C_{\alpha} \subseteq Q(C_{\beta}), |C_{\alpha}| < \kappa$ as follows:

- ▶ Begin with any *T* and $C_0 = \{T \setminus v : v \in [\omega]^{<\omega}\}$
- If α is a limit, let $C_{\alpha} = \bigcup_{\beta < \alpha} C_{\beta}$

If $\alpha = \beta + 1$, let \dot{g}_{α} be the name with least index in $\mathcal{N} \setminus {\{\dot{g}_{\gamma+1}\}_{\gamma < \beta}}$ which is a $Q(C_{\beta})$ -name.

▶ If \dot{g}_{α} is good, let C_{α} extend C_{β} , $|C_{\alpha}| = |C_{\beta}|$ such that

1.
$$\exists h_{\alpha} \in \mathcal{H} \forall C''$$
 extending $C_{\alpha} \Vdash_{Q(C'')} \check{h}_{\alpha} \not\leq^* \dot{g}_{\alpha}$ "

2.
$$\exists T_{\alpha} \in Q(C_{\alpha})(\operatorname{int}(T_{\alpha}) \subseteq A_{\alpha} \text{ or } \operatorname{int}(T_{\alpha}) \subseteq A_{\alpha}^{c}).$$

▶ If \dot{g}_{α} is not good, let C_{α} extend C_{β} , $|C_{\alpha}| = |C_{\beta}|$ such that

1.
$$\dot{g}_{lpha}$$
 is not a $Q(\mathcal{C}_{lpha})$ -name,

2.
$$\exists T_{\alpha} \in Q(C_{\alpha})(\operatorname{int}(T_{\alpha}) \subseteq A_{\alpha} \text{ or int}(T_{\alpha}) \subseteq A_{\alpha}^{c}).$$

Then let $C = \bigcup_{\alpha < \kappa} C_{\alpha}$.

(日) (同) (E) (E) (E)

 $\begin{array}{l} \mbox{Cardinal Characteristics}\\ \mbox{Logarithmic Measures}\\ \mbox{Centered Families}\\ \mbox{$\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^+$} \end{array}$

 $\begin{array}{l} \mbox{Good Extensions} \\ \mbox{Mimicking the almost} ~ \ensuremath{\omega} \mbox{-bounding property} \\ \mbox{Preservation of Unboundedness} \\ \mbox{b} = \kappa < \ensuremath{\mathfrak{s}} = \ensuremath{\kappa}^+ \end{array}$

${\mathcal H}$ is unbounded

If \dot{f} is a Q(C)-name, then $\exists \beta \in \kappa$ such that \dot{f} is a good $Q(C_{\beta})$ -name and is the name with least index in $\mathcal{N} \setminus \{\dot{g}_{\gamma+1}\}_{\gamma < \beta}$ which is a $Q(C_{\beta})$ -name. Then $(\mathcal{H} \text{ is unbounded})^{V^{Q(C)}}$.

\exists a real not split by the ground model reals

Let G be Q(C)-generic. Then for every $A \in V \cap [\omega]^{\omega}$ there is (u, T) in G such that $int(T) \subseteq A$ or $int(T) \subseteq A^c$. Note also that if $U_G = \bigcup \{u : \exists T(u, T) \in G\}$, then $U_G \subseteq^* int(T)$ for all T such that $\exists u(u, T) \in G$.

イロン イヨン イヨン イヨン

 $\begin{array}{l} \mbox{Good Extensions} \\ \mbox{Mimicking the almost} \ \ ^\omega \omega \mbox{-bounding property} \\ \mbox{Preservation of Unboundedness} \\ \mbox{b} = \kappa < \mathfrak{s} = \kappa^+ \end{array}$

Theorem

Let $\mathcal{H} \subseteq {}^{\omega}\omega$ be unbounded family such that every countable subfamily of \mathcal{H} is dominated by an element of \mathcal{H} and let $\langle \mathbb{P}_{\gamma} : \gamma \leq \alpha \rangle$ be a finite support iteration of ccc forcing notions of length α , cf(α) = ω such that $\forall \gamma < \alpha$ (\mathcal{H} is unbounded)^{$V^{\mathbb{P}_{\gamma}}$}. Then (\mathcal{H} is unbounded)^{$V^{\mathbb{P}_{\alpha}}$}.

Theorem

Let $\mathcal{H} \subseteq {}^{\omega}\omega$ be unbounded, directed family, $|\mathcal{H}| = \kappa$. Then for every partial order \mathbb{P} of size less than κ , (\mathcal{H} is unbounded)^{$V^{\mathbb{P}}$}.

・ロト ・回ト ・ヨト ・ ヨト

Cardinal Characteristics	Good Extensions
Logarithmic Measures	Mimicking the almost ${}^{\omega}\omega$ -bounding property
Centered Families	Preservation of Unboundedness
$\mathfrak{b} = \kappa < \mathfrak{s} = \kappa^+$	$\mathfrak{h} = \kappa < \mathfrak{s} = \kappa^+$
$\mathbf{v} = \mathbf{v} + \mathbf{v} = \mathbf{v}$	$\mathbf{v} = \mathbf{n} \cdot \mathbf{v} = \mathbf{n}$

Theorem (GCH)

Let κ be a regular uncountable cardinal. Then there is a ccc generic extension in which $\mathfrak{b} = \kappa < \mathfrak{s} = \kappa^+$.

> < 문 > < 문 >

 $\begin{array}{lll} \mbox{Cardinal Characteristics} & \mbox{Good Extensions} & \mbox{Mimicking the almost $\ensuremath{\ensu$

Add κ Hechler reals to obtain a model V of $\mathfrak{b} = \mathfrak{c} = \kappa$. Let $\mathcal{H} = V \cap {}^{\omega}\omega$. Define a finite support iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \kappa^+ \rangle$ such that $\forall \alpha < \kappa^+$

$$\Vdash_{\mathbb{P}_{lpha}}$$
 " $\dot{\mathbb{Q}}_{lpha}$ is *ccc* and $|\dot{\mathbb{Q}}_{lpha}| \leq \mathfrak{c}$ "

as follows. If α is a limit, let \mathbb{P}_{α} be the finite support iteration of $\langle \mathbb{P}_{\beta}, \dot{\mathbb{Q}}_{\beta} : \beta < \alpha \rangle$. If $\alpha = \beta + 1$ is a successor, then

イロン イボン イヨン イヨン 一座

- Let Q
 _β be P_β-name for C(κ) and P_α = P_β * Q_β. ∃C such that Q(C) preserves H unbounded and destroys V^{P_α} ∩ [ω]^ω as a splitting family.
- Let $\dot{\mathbb{Q}}_{\alpha}$ be a \mathbb{P}_{α} name for Q(C) and $\mathbb{P}_{\alpha+1} = \mathbb{P}_{\alpha} * \dot{\mathbb{Q}}_{\alpha}$.
- ▶ Let $\mathcal{A} \subseteq V^{\mathbb{P}_{\alpha+1}} \cap {}^{\omega}\omega$ be unbounded of size less than κ . Then let $\dot{\mathbb{Q}}_{\alpha+1}$ be $\mathbb{P}_{\alpha+1}$ -name for $\mathbb{H}(\mathcal{A})$; $\mathbb{P}_{\alpha+2} = \mathbb{P}_{\alpha+1} * \dot{\mathbb{Q}}_{\alpha+1}$.

Then in $V^{\mathbb{P}_{\kappa^+}} \mathcal{H}$ is unbounded and there are no splitting families of size less than κ^+ . Using a suitable bookkeeping device one can guarantee that there are no unbounded families of size less than κ .

(日) (同) (E) (E) (E)