
Introduction
Con(b = a = κ < s = λ)
The forcing construction

Open Questions

MAD families, splitting families and large
continuum

Vera Fischer
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I con(b = ℵ1 < s = ℵ2)

I In 1984 S. Shelah obtained the above consistency using an
almost ωω- bounding version of Mathias forcing, in which the
pure Mathias condition is supplied with additional structure in
the form of a finite logarithmic measure.

I The countable support iteration of proper almost
ωω-bounding posets is weakly bounding, which implies that in
such extensions the ground model reals remain an unbounded
family.
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I A modification of the preceding argument produces the
consistency of b = ℵ1 < a = s = ℵ2.
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I con(b = κ < s = κ+)

I Obtain a ccc suborder of Shalah’s poset, which behaves
sufficiently similarly to the larger forcing notion.
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Theorem (V. F., J. Steprāns)

Let κ be a regular, uncountable cardinal, ∀µ < κ(2µ ≤ κ),
cov(M) = κ and let H be an unbounded directed family of size κ.
Then there is an ultrafilter UH on ω such that the relativized
Mathias poset M(UH), preserves the unboundedness of H.
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I If H is an unbounded family, such that every countable
subfamily of H is dominated by a element of the family, then
in order to preserve the unboundedness of H in finite support
iterated forcing construction, it is sufficient to preserve the
family unbounded at each successor stage of the iteration.

I If H is unbounded and P is a poset of size smaller than the
cardinality of H, then H remains unbounded in V P.
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I Add κ many Hechler reals to a model of GCH to obtain a
directed unbounded family H of size κ.

I Proceed with a finite support iteration of length κ+

alternating Cκ, M(UH) and restricted Hechler forcing.

I An appropriate bookkeeping function will guarantee that in
the final generic extension there are no unbounded families of
size < κ and so H will remain a witness to b = κ.

I Since cofinally often we add reals not split by the ground
model reals, s = κ+ in the final generic extension.
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Theorem (V. F., J. Steprāns)

Let κ be a regular uncountable cardinal. Then there is a ccc
generic extension in which b = κ < s = c = κ+.
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Theorem (J. Brendle)

Let κ be a regular uncountable cardinal. Then there is a ccc
generic extension in which b = κ < a = c = κ+.

The iteration techniques of the last two models can be combined
to produce the consistency of b = κ < s = a = κ+.
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Theorem (V.F., J. Steprāns)

Assume CH. There is a countably closed, ℵ2-c.c. poset P which
adds a Cω2-name for an ultrafilter U such that in V P×Cω2 the
relativized Mathias poset M(U) preserves the unboundedness of all
families of Cohen reals of size ω1.
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I How to iterate (P× C(ω2))×M(U)?

I How to force an entire forcing construction with the desired
properties?
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The method of matrix iteration was introduced by S. Shelah and
A. Blass in their work on the ultrafilter and dominating number.
Using this technique they establish the consistency of
u = κ < d = λ for κ < λ arbitrary regular uncountable cardinals.
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These are systems of finite support iterations
〈〈Pα,ζ : α ≤ κ, ζ ≤ λ〉, 〈Q̇α,ζ : α ≤ κ, ζ < λ〉〉 such that:

I For all α ≤ κ, 〈〈Pα,ζ : ζ ≤ λ〉, 〈Q̇α,ζ : ζ < λ〉〉 is a finite
support iteration of ccc posets.

I For all α1 ≤ α2 and ζ ≤ λ, Pα1,ζ is a complete suborder of
Pα2,ζ .

Thus for all α1 ≤ α2, ζ1 ≤ ζ2 we have Pα1,ζ1<◦ Pα2,ζ2 .
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Theorem (Brendle, F., 2011)

Let κ < λ be arbitrary regular uncountable cardinals. Then there is
a ccc generic extension in which b = a = κ < s = λ.
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General overview
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Theorem (Brenlde, F., 2011)

Let µ be a measurable cardinal, κ < λ regular such that µ < κ.
Then there is a ccc generic extension in which b = κ < s = a = λ.
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For γ an ordinal, Pγ is the poset of all finite partial functions
p : γ × ω → 2 such that dom(p) = Fp × np where Fp ∈ [γ]<ω,
np ∈ ω. The order is given by q ≤ p if p ⊆ q and
|q−1(1) ∩ F p × {i}| ≤ 1 for all i ∈ nq\np .
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Let G be a Pγ-generic filter and for δ ∈ γ let
Aα = {i : ∃p ∈ G (p(α, i) = 1)}. Then

I {Aα : α ∈ γ} is an a.d. family (maximal for γ ≥ ω1),

I if p ∈ Pγ then for all α ∈ Fp(p  Ȧα � np = p � {α} × np),

I for all α, β ∈ Fp(p  Ȧα ∩ Ȧβ ⊆ np).
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Let γ < δ, G a Pγ-generic filter. In V [G ], let P[γ,δ) consist of all
(p,H) such that p ∈ Pδ with Fp ∈ [δ\γ]<ω and H ∈ [γ]<ω. The
order is given by (q,K ) ≤ (p,H) if q ≤Pδ p, H ⊆ K and for all
α ∈ Fp, β ∈ H, i ∈ nq\np if i ∈ Aβ, then q(α, i) = 0.

I That is for all α ∈ Fp, β ∈ H, p  Ȧα ∩ Ǎβ ⊆ np.

I Pδ is forcing equivalent to Pγ ∗ P[γ,δ).
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Property ?

Let M ⊆ N, B = {Bα}α<γ ⊆ [ω]ω ∩M, A ∈ N ∩ [ω]ω. Then

(?M,N
B,A ) holds if for every h : ω × [γ]<ω → ω, h ∈ M and m ∈ ω

there are n ≥ m, F ∈ [γ]<ω such that [n, h(n,F ))\
⋃
α∈F Bα ⊆ A.
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Lemma A
If Gγ+1 is Pγ+1-generic, Gγ = Gγ+1 ∩ Pγ , Aγ = {Aα}α<γ , where

Aα = {i : ∃p ∈ G (p(α, i) = 1)}. Then (?
V [Gγ ],V [Gγ+1]
Aγ ,Aγ ) holds.
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Lemma B
Let (?M,N

B,A ) hold, where B = {Bα}α<γ , let I(B) be the ideal
generated by B and the finite sets and let B ∈ M ∩ [ω]ω,
B /∈ I(B). Then |A ∩ B| = ℵ0.
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Lemma
Let P,Q be partial orders, such that P is completely embedded
into Q. Let Ȧ be a P-name for a forcing notion, Ḃ a Q-name for a
forcing notion such that Q Ȧ ⊆ Ḃ, and every maximal antichain of
Ȧ in V P is a maximal antichain of Ḃ in V Q. Then P ∗ Ȧ<◦ Q ∗ Ḃ.
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Lemma C
Let M ⊆ N, B = {Bα}α<γ ⊆ M ∩ [ω]ω, A ∈ N ∩ [ω]ω such that

(?M,N
B,A ). Let U be an ultrafilter in M. Then there is an ultrafilter
V ⊇ U in N such that

1. every maximal antichain of MU which belongs to M is a
maximal antichain of MV in N,

2. (?
M[G ],N[G ]
B,A ) holds where G is MV -generic over N (and thus,

by (1), MU -generic over M).
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Lemma D
Let M ⊆ N, P ∈ M a poset such that P ⊆ M, G a P-generic filter
over M,N. Let B = {Bα}α∈γ ⊆ M ∩ [ω]ω, A ∈ N ∩ [ω]ω such that

(?M,N
B,A ) holds. Then (?

M[G ],N[G ]
B,A ) holds.
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Lemma E
Let 〈P`,n, Q̇`,n : n ∈ ω〉, ` ∈ {0, 1} be finite support iterations such
that P0,n is a complete suborder of P1,n for all n. Let V`,n = V P`,n .

Let B = {Aγ}γ<α ⊆ V0,0 ∩ [ω]ω, A ∈ V1,0 ∩ [ω]ω. If (?
V0,n,V1,n

B,A )

holds for all n ∈ ω, then (?
V0,ω ,V1,ω

B,A ) holds.
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Let f : {η < λ : η ≡ 1 mod 2} → κ be an onto mapping, such that
for all α < κ, f −1(α) is cofinal in λ. Recursively define a system of
finite support iterations

〈〈Pα,ζ : α ≤ κ, ζ ≤ λ〉, 〈Q̇α,ζ : α ≤ κ, ζ < λ〉〉

as follows. For all α, ζ let Vα,ζ = V Pα,ζ .
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(1) If ζ = 0, then for all α ≤ κ, Pα,0 is Hechler’s poset for adding
an a.d. family Aα = {Aβ}β<α,

(2) If ζ = η + 1, ζ ≡ 1 mod 2, then Pα,η Q̇α,η = MU̇α,η where

U̇α,η is a Pα,η-name for an ultrafilter and for all α < β ≤ κ,
Pβ,η U̇α,η ⊆ U̇β,η,

(3) If ζ = η + 1, ζ ≡ 0 mod 2, then if α ≤ f (η), Q̇α,η is a
Pα,η-name for the trivial forcing notion; if α > f (η) then Q̇α,η

is a Pα,η-name for DVf (η),η .

(4) If ζ is a limit, then for all α ≤ κ, Pα,ζ is the finite support
iteration of 〈Pα,η, Q̇α,η : η < ζ〉.
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Furthermore the construction will satisfy the following two
properties:

(a) ∀ζ ≤ λ∀α < β ≤ κ, Pα,ζ is a complete suborder of Pβ,ζ ,

(b) ∀ζ ≤ λ∀α < κ (?
Vα,ζ ,Vα+1,ζ

Aα,Aα ) holds.
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Proceed by recursion on ζ. For ζ = 0, α ≤ κ let Pα,0 = Pα. Then
clearly properties (a) and (b) above hold. Let ζ = η + 1 be a
successor ordinal and suppose ∀α ≤ κ, Pα,η has been defined.
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If ζ ≡ 1 mod 2 define Q̇α,η by induction on α ≤ κ as follows.

I If α = 0, let U̇0,η be a P0,η-name for an ultrafilter, Q̇0,η a
P0,η-name for MU̇0,η and let P0,ζ = P0,η ∗ Q̇0,η.

I If α = β + 1 and U̇β,η has been defined, by the ind. hyp. and
Lemma C there is a Pα,η-name U̇α,η for an ultrafilter such
that Pα,η U̇β,η ⊆ U̇α,η, every maximal antichain of MU̇β,η in

Vβ,η is a maximal antichain of MU̇α,η and (?
Vβ,ζ ,Vβ+1,ζ

Aβ ,Aβ ).

holds. Let Pβ,ζ = Pβ,η ∗MU̇β,η . In particular Pβ,ζ<◦ Pα,ζ .
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I If α is limit and for all β < α U̇β,η has been defined (and so

Q̇β,η = MU̇β,η) consider the following two cases.

I If cf(α) = ω, find a Pα,η-name U̇α,η for an ultrafilter such that

for all β < α, Pα,η U̇β,η ⊆ U̇α,η and every maximal antichain
of MU̇β,η from Vβ,η is a maximal antichain of MUα,η (in Vα,η)

and the relevant ?-property is preserved.
I If cf(α) > ω, then let U̇α,η be a Pα,η-name for

⋃
β<α Uβ,η. Let

Q̇α,η be a Pα,η-name for MU̇α,η and let Pα,ζ = Pα,η ∗ Q̇α,η.
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If ζ ≡ 0 mod 2, then

I for all α ≤ f (η) let Q̇α,η be a Pα,η-name for the trivial poset

I for α > f (η) let Q̇α,η be a Pα,η-name for DVf (η),η .

Let Pα,ζ = Pα,η ∗ Q̇α,η. Note that for all α, β ≤ κ, Pα,ζ is a

complete suborder of Pβ,ζ and (?
Vα,ζ ,Vα+1,ζ

Aα,Aα ) holds for all α.
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If ζ is a limit and for all η < ζ, Pα,η, Q̇α,η have been defined, let
Pα,ζ be the finite support iteration of 〈Pα,η, Q̇α,η : η < ζ〉. Then

Pα,ζ<◦ Pβ,ζ and by Lemma E (?
Vα,ζ ,Vα+1,ζ

Aα,Aα ) holds.
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Lemma
For ζ ≤ λ:

1. for every p ∈ Pκ,ζ there is α < κ such that p belongs to Pα,ζ ,

2. for every Pκ,ζ-name for a real ḟ there is α < κ such that ḟ is
a Pα,ζ-name.
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Lemma
Vκ,λ � b = a = κ < s = λ.
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{Aα}α∈κ remains mad in Vκ,λ. Otherwise ∃B ∈ Vκ,λ ∩ [ω]ω such
that ∀α < κ(|B ∩ Aα| < ω). However there is α < κ such that

B ∈ Vα,λ ∩ [ω]ω and B /∈ I(Aα). On the other hand (?
Vα,λ,Vα+1,λ

Aα,Aα+1
)

and so |B ∩ Aα+1| = ω (Lemma B) which is a contradiction.
Therefore a ≤ κ.
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Let B ⊆ Vκ,λ ∩ ωω be of size < κ. Then there are α < κ, ζ < λ
such that B ⊆ Vα,ζ . Since {γ : f (γ) = α} is cofinal in λ, there is
ζ ′ > ζ such that f (ζ ′) = α. Then Pα+1,ζ′+1 adds a real
dominating Vα,ζ′ ∩ ωω (and so Vα,ζ ∩ ωω since Vα,ζ ⊆ Vα,ζ′).
Thus B is not unbounded. Therefore Vκ,λ  b ≥ κ.

However b ≤ a and so Vκ,λ  b = a = κ.
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To see that Vκ,λ � s = λ, note that if S ⊆ Vκ,λ ∩ [ω]ω is a family
of cardinality < λ, then there is ζ < λ such that ζ = η + 1,
ζ ≡ 1 mod 2 and S ⊆ Vκ,η. Then MUκ,η adds a real not split by S
and so S is not splitting.
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Theorem (Brendle, F., 2011)

Let κ < λ be arbitrary regular uncountable cardinals. Then there is
a ccc generic extension in which b = a = κ < s = λ.
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Corollary

Let κ < λ be arbitrary regular uncountable cardinals. Then there is
a ccc generic extension in which a = κ < ag = λ.

Proof:
Since s ≤ ag .
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I Is it relatively consistent that b < a < s?

I Is it relatively consistent that b < s < a?

I It is relatively consistent that b = κ < s = a = λ without the
assumption of a measurable?

I How about b = s = ℵ1 < a = ℵ2?
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Thank you!
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