Template iterations and maximal cofinitary groups

Vera Fischer

Kurt Gödel Research Center University of Vienna

Matsue, September 6th, 2013

Cofinitary representations The partial order Complete Embeddings The strong embedding property

- cofin(S_∞) is the set of cofinitary permutations in S_∞, i.e. permutations σ ∈ S_∞ which have finitely many fixed points.
- A mapping $\rho : A \to S_{\infty}$ induces a cofinitary representation of \mathbb{F}_A if the canonical extension of ρ to a homomorphism $\hat{\rho} : \mathbb{F}_A \to S_{\infty}$ is such that $\operatorname{im}(\hat{\rho}) \subseteq \{I\} \cup \operatorname{cofin}(S_{\infty})$.

소리가 소문가 소문가 소문가

Cofinitary representations The partial order Complete Embeddings The strong embedding property

Forcing M.c.g.'s

Let A, X be disjoint non-empty sets and let $\rho : X \to S_{\infty}$ induce a cofinitary representation. Then $\mathbb{Q}_{A,\rho}$ is the poset of all (s, F) where $s \subseteq A \times \omega \times \omega$ is finite, s_a is a finite injection for all a and $F \subseteq \widehat{W}_{A\cup X}$ is finite. Define $(s, F) \leq_{\mathbb{P}_{A,\rho}} (t, E)$ iff

- ▶ $s \supseteq t$, $F \supseteq E$ and,
- ▶ for all $n \in \omega$ and $w \in E$, if $e_w[s, \rho](n) = n$ then already $e_w[t, \rho](n) \downarrow$ and $e_w[t, \rho](n) = n$.

If $X = \emptyset$ then we write \mathbb{Q}_A for $\mathbb{Q}_{A,\rho}$. If A is clear from the context we just write \mathbb{Q} .

소리가 소문가 소문가 소문가

Cofinitary representations The partial order Complete Embeddings The strong embedding property

• $\mathbb{Q}_{A,\rho}$ is Knaster.

Let G be Q_{A,ρ} generic and let ρ_G : A ∪ X → S_∞ be a mapping extending ρ and such that for all a ∈ A

$$\rho_{G}(a) = \bigcup \{ s_{a} : (\exists F \in \widehat{W}_{A\cup X}) \ (s, F) \in G \}.$$

Then ρ_G induces a cofinitary representation of $A \cup X$ extending ρ .

Cofinitary representations The partial order Complete Embeddings The strong embedding property

Lemma: Complete Embeddings

Let $A_0 \cap A_1 = \emptyset$, $A = A_0 \cup A_1$ and let G be $\mathbb{Q}_{A,\rho}$ -generic. Then

- $\mathbb{Q}_{A_0,\rho}$ is a complete suborder of $\mathbb{Q}_{A,\rho}$,
- ► $H = G \cap \mathbb{Q}_{A_0,\rho}$ is $\mathbb{Q}_{A_0,\rho}$ -generic, $K = \{(s \upharpoonright A_1, F) : (s, F) \in G\}$ is \mathbb{Q}_{A_1,ρ_H} -generic over V[H] and $\rho_G = (\rho_H)_K$.

Cofinitary representations The partial order Complete Embeddings The strong embedding property

Theorem

Let $|A| > \aleph_0$ and G be a $\mathbb{Q}_{A,\rho}$ -generic over V. Then $\operatorname{im}(\rho_G)$ is a maximal cofinitary group in V[G].

Proof

Let $z \notin X \cup A$, where $\rho: X \to S_{\infty}$. Suppose there in V[G] there is $\sigma \in \operatorname{cofin}(S_{\infty})$ such that $\rho'_G: A \cup X \cup \{z\} \to S_{\infty}$ defined by $\rho'_G \upharpoonright X \cup A = \rho_G$, $\rho'_G(z) = \sigma$ induces a cofinitary representation. Let $\dot{\sigma}$ be a name for σ . Then there is $A_0 \subseteq A$ countable so that $\dot{\sigma}$ is a $\mathbb{Q}_{A_0,\rho}$ -name and so $\sigma \in V[H]$, where $H = G \cap \mathbb{Q}_{A_0,\rho}$.

Let $a_1 \in A \setminus A_0$ and let K be defined as in the previous Lemma. Note that for every $N \in \omega$

$$\mathcal{D}_{\sigma,N} = \{(s,F) \in \mathbb{Q}_{\mathcal{A}_1,
ho_H} : (\exists n \ge N) s_{a_1}(n) = \sigma(n)\}$$

is dense in \mathbb{Q}_{A_1,ρ_H} and so in V[H][K]

$$\exists^{\infty} n((\rho_H)_{\mathcal{K}}(a_1)(n) = \sigma(n)).$$

However $(\rho_H)_K = \rho_G$, which contradicts that ρ'_G induces a cofinitary representation.

イロン イヨン イヨン イヨン

 $\begin{array}{c} \mbox{Maximal Cofinitary Groups} \\ \mbox{Good, } \sigma\mbox{-Suslin posets} \\ \mbox{Template Iterations} \end{array} \\ \begin{array}{c} \mbox{Cofinitary representations} \\ \mbox{The partial order} \\ \mbox{Complete Embeddings} \\ \mbox{The strong embedding property} \end{array}$

Lemma: Strong Embedding

Let $B, C \subseteq D$, $B \cap C = A$ be given set and $p \in \mathbb{Q}_{B,\rho}$. Then there is a condition $p_0 \in \mathbb{Q}_{A,\rho}$ such that whenever $q_0 \leq_{\mathbb{Q}_{C,\rho}} p_0$, then q_0 is compatible in $\mathbb{Q}_{D,\rho}$ with p.

- We say that Q_{B,ρ} has the strong embedding property and q₀ is called a strong reduction of p.
- If C = A, B = D then the above gives in particular that Q_{A,ρ} is a complete suborder of Q_{B,ρ}.

・ロト ・回ト ・ヨト ・ヨト

Localization Good σ -Suslin posets

Definition: \mathbb{L}

L consists of pairs (σ, ϕ) such that $\sigma \in {}^{<\omega}({}^{<\omega}[\omega]), \phi \in {}^{\omega}({}^{<\omega}[\omega])$ such that $\sigma \subseteq \phi, \forall i < |\sigma|(|\sigma(i)| = i)$ and $\forall i \in \omega(|\phi(i)| \le |\sigma|)$. The extension relation is defined as follows: $(\sigma, \phi) \le (\tau, \psi)$ if and only if σ end-extends τ and $\forall i \in \omega$ $(\psi(i) \subseteq \phi(i))$.

- A slalom is a function φ : ω → [ω]^{<ω} such that ∀n ∈ ω(|φ(n)| ≤ n). A slalom localizes a real f ∈ ^ωω if there is m ∈ ω such that ∀n ≥ m(f(n) ∈ φ(n)).
- \blacktriangleright \mathbbm{L} adds a slalom which localizes all ground model reals.

- ► add(N) is the least cardinality of a family F ⊆ ω^ω such that no slalom localizes all members of F
- cof(N) is the least cardinality of a family Φ of slaloms such that every real is localized by some φ ∈ Φ.
- $\mathfrak{a}_g \geq \operatorname{non}(\mathcal{M}).$

In our intended forcing construction cofinally often we will force with the partial order \mathbb{L} , which using the above characterization will provide a lower bound for \mathfrak{a}_g .

Localization Good σ -Suslin posets

Definition: σ -Suslin

Let $(\mathbb{S}, \leq_{\mathbb{S}})$ be a Suslin forcing notion, whose conditions can be written in the form (s, f) where $s \in {}^{<\omega}\omega$ and $f \in {}^{\omega}\omega$. We will say that \mathbb{S} is *n*-Suslin if whenever $(s, f) \leq_{\mathbb{S}} (t, g)$ and (t, h) is a condition in \mathbb{S} such that

$$h{\upharpoonright}n\cdot|s|=g{\upharpoonright}n\cdot|s|$$

then (s, f) and (t, h) are compatible. A forcing notion is called σ -Suslin, if it is *n*-Suslin for some *n*.

- ▶ If S is *n*-Suslin and $m \ge n$, than S is also *m*-Suslin.
- Every σ-Suslin forcing notion is σ-linked and so has the Knaster property.
- ▶ Hechler forcing \mathbb{H} is 1-Suslin, localization \mathbb{L} is 2-Suslin.

(ロ) (同) (E) (E) (E)

Definition: Nice name for a real

Let \mathbb{B} be a partial order and $y \in \mathbb{B}$. For each $n \ge 1$ let \mathcal{B}_n be a maximal antichain below y. We will say that the set $\{(b, s(b))\}_{b \in \mathcal{B}_n, n \ge 1}$ is a nice name for a real below y if

- 1. whenever $n\geq 1$, $b\in \mathcal{B}_n$ then $s(b)\in {}^n\omega$
- 2. whenever $m > n \ge 1$, $b \in \mathcal{B}_n$, $b' \in \mathcal{B}_m$ and b, b' are compatible, then s(b) is an initial segment of s(b').

We can assume that all names for reals are nice and abusing notation we will write $\dot{f} = \{(b, s(b))\}_{b \in \mathcal{B}_n, n \in \omega}$.

Localization Good σ -Suslin posets

Lemma: Canonical Projection of a name for a real

Let \mathbb{A} be a complete suborder of \mathbb{B} , $y \in \mathbb{B}$ and x a reduction of y to \mathbb{A} . Let $\dot{f} = \{(b, s(b))\}_{b \in \mathcal{B}_n, n \ge 1}$ be a nice name for a real below y. Then there is $\dot{g} = \{(a, s(a))\}_{a \in \mathcal{A}_n, n \ge 1}$, a \mathbb{A} -nice name for a real below x, such that for all $n \ge 1$, for all $a \in \mathcal{A}_n$, there is $b \in \mathcal{B}_n$ such that a is a reduction of b and s(a) = s(b).

Whenever \dot{f} , \dot{g} are as above, we will say that \dot{g} is a canonical projection of \dot{f} below x.

- 4 同 6 4 日 6 4 日 6

Localization Good σ -Suslin posets

Definition: Good Suslin

Let \mathbb{S} be a Suslin forcing notion, whose conditions can be written in the form (s, f) where $s \in {}^{<\omega}\omega$, $f \in {}^{\omega}\omega$. Then \mathbb{S} is said to be good if whenever \mathbb{A} is a complete suborder of \mathbb{B} , $x \in \mathbb{A}$ is a reduction of $y \in \mathbb{B}$ and \dot{f} is a nice name for a real below y such that $y \Vdash_{\mathbb{B}} (\check{s}, \dot{f}) \in \dot{\mathbb{S}}$ for some $s \in {}^{<\omega}\omega$, there is a canonical projection \dot{g} of \dot{f} below x such that $x \Vdash (\check{s}, \dot{g}) \in \dot{\mathbb{S}}$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Localization Good σ -Suslin posets

$\mathbb D$ and $\mathbb L$ are good $\sigma\text{-Suslin}$ forcing notions.

<ロ> (四) (四) (注) (注) (三)

Templates Iteration along a template Isomorphism of names

- ▶ Let (L, \leq) be a linearly ordered set, $x \in L$. Then $L_x := \{y \in L : y < x\}.$
- If L₀ ⊆ L and A ⊆ L, then the L₀-closure of A, cl_{L0}(A), is the smallest set B ⊇ A such that if x ∈ B then L_x ∩ L₀ ⊆ B.

イロト イポト イヨト イヨト

Templates Iteration along a template Isomorphism of names

Definition: Template

A template is a tuple $\mathcal{T} = ((L, \leq), \mathcal{I}, L_0, L_1)$ where $L = L_0 \cup L_1$, $L_0 \cap L_1 = \emptyset$, (L, \leq) is a linear order, $\mathcal{I} \subseteq \mathcal{P}(L)$, such that

- \mathcal{I} is closed under finite intersections and unions, $\emptyset, L \in \mathcal{I}$.
- If $x, y \in L$, $y \in L_1$ and x < y then $\exists A \in \mathcal{I}(A \subseteq L_y \land x \in A)$.
- If $A \in \mathcal{I}$, $x \in L_1 \setminus A$, then $A \cap L_x \in \mathcal{I}$.
- ▶ $\{A \cap L_1 : A \in \mathcal{I}\}$ is well-founded when ordered by inclusion.
- All $A \in \mathcal{I}$ are L_0 -closed.

 Maximal Cofinitary Groups Good, σ-Suslin posets
 Templates

 Template Iterations
 Isomorphism of names

• Define
$$Dp : \mathcal{I} \to \mathbb{ON}$$
 by letting $Dp(A) = 0$ for $A \subseteq L_0$ and

 $Dp(A) = \sup\{Dp(B) + 1 : B \in \mathcal{I} \land B \cap L_1 \subset A \cap L_1\}.$ Let $Rk(\mathcal{T}) = Dp(L).$

For $A \subseteq L$ let

$$\mathcal{T}_{\mathcal{A}} = ((\mathcal{A}, \leq), \mathcal{I} \upharpoonright \mathcal{A}, \mathcal{L}_0 \cap \mathcal{A}, \mathcal{L}_1 \cap \mathcal{A}),$$

where $\mathcal{I} \upharpoonright A = \{A \cap B : B \in \mathcal{I}\}$. If $A \in \mathcal{I}$ then $\mathsf{Rk}(\mathcal{T}_A) = \mathsf{Dp}(A)$.

• For $x \in L$ let $\mathcal{I}_x = \{B \in \mathcal{I} : B \subseteq L_x\}.$

イロト イポト イラト イラト 一日

Templates Iteration along a template Isomorphism of names

Definition: Iterating good σ -Suslin posets along a template and adding m.c.g.

Let $\mathbb{Q} = \mathbb{Q}_{L_0}$ the poset adding a m.c.g. with L_0 -generators, \mathbb{S} good σ -Suslin. $\mathbb{P}(\mathcal{T}, \mathbb{Q}, \mathbb{S})$ is defined recursively:

If $\mathsf{Rk}(\mathcal{T}) = 0$, then $\mathbb{P}(\mathcal{T}, \mathbb{Q}, \mathbb{S}) = \mathbb{Q}_{L_0}$. Let $\mathbb{P}(\mathcal{T}, \mathbb{Q}, \mathbb{S})$ be defined for all templates of rank $< \kappa$. Let $\mathsf{Rk}(\mathcal{T}) = \kappa$ and for all $B \in \mathcal{I}(\mathsf{Dp}(B) < \kappa)$ let $\mathbb{P}_B = \mathbb{P}(\mathcal{T}_B, \mathbb{Q}, \mathbb{S})$. Then

▶ $\mathbb{P}(\mathcal{T}, \mathbb{Q}, \mathbb{S})$ consists of all $P = (p, F^p)$ where p is a finite partial function with dom $(p) \subseteq L$, $(p \upharpoonright L_0, F^p) \in \mathbb{Q}$ and if $x_p \stackrel{\text{def}}{=} \max\{ \text{dom}(p) \cap L_1 \}$ is defined then $\exists B \in \mathcal{I}_{x_p}$ such that $P \upharpoonright L_{x_p} = (p \upharpoonright L_{x_p}, F^p) \in \mathbb{P}_B$, $p(x_p) = (\breve{s}_x^p, \breve{f}_x^p)$, where $s_x^p \in {}^{<\omega}\omega$, \breve{f}_x^p is a \mathbb{P}_B name for a real and $(P \upharpoonright L_{x_p}, p(x_p)) \in \mathbb{P}_B * \dot{\mathbb{S}}$.

イロト イポト イヨト イヨト

Define $Q \leq_{\mathbb{P}} P$ iff dom $(p) \subseteq$ dom(q), $(q \upharpoonright L_0, F^q) \leq_{\mathbb{Q}} (p \upharpoonright L_0, F^p)$, and if x_p is defined then either

▶ $x_p < x_q$ and $\exists B \in \mathcal{I}_{x_q}$ such that $P \upharpoonright L_{x_q}, Q \upharpoonright L_{x_q} \in \mathbb{P}_B$ and $Q \upharpoonright L_{x_q} \leq_{\mathbb{P}_B} P \upharpoonright L_{x_q}$, or

▶ $x_p = x_q$ and $\exists B \in \mathcal{I}_{x_q}$ witnessing $P, Q \in \mathbb{P}$, and such that

$$(Q \upharpoonright L_{x_q}, q(x_q)) \leq_{\mathbb{P}_B \ast \dot{\mathbb{S}}} (P \upharpoonright L_{x_p}, p(x_p)).$$

イロト イポト イヨト イヨト

Templates Iteration along a template Isomorphism of names

Completeness of Embeddings Lemma

Let $\mathcal{T} = ((L, \leq), \mathcal{I}, L_0, L_1)$, let $\mathbb{Q} = \mathbb{Q}_{L_0}$ be the poset for adding m.c.g. with L_0 -generators, \mathbb{S} be good σ -Suslin.

Let $B \in \mathcal{I}$, $A \subset B$ be closed. Then \mathbb{P}_B is a poset, $\mathbb{P}_A \subset \mathbb{P}_B$, every $P = (p, F^p) \in \mathbb{P}_B$ has a canonical reduction $P_0 = (p_0, F^{p_0}) \in \mathbb{P}_A$ such that

- $dom(p_0) = dom(p) \cap A$, $F^{p_0} = F^p$,
- $s_x^{p_0} = s_x^p$ for all $x \in \operatorname{dom}(p_0) \cap L_1$

• $(p_0 \upharpoonright L_0, F^{p_0})$ is a strong \mathbb{Q}_A -reduction of $(p \upharpoonright L_0, F^p)$

and whenever $D \in \mathcal{I}$, $B, C \subseteq D$, C is closed, $C \cap B = A$ and $Q_0 \leq_{\mathbb{P}_C} P_0$, then Q_0 and P are compatible in \mathbb{P}_D .

イロト イポト イラト イラト 一日

Templates Iteration along a template Isomorphism of names

If A = C, D = B then \mathbb{P}_A is a complete suborder of \mathbb{P}_B .

イロン イボン イヨン イヨン 三日

Templates Iteration along a template Isomorphism of names

Lemma

- $\mathbb{P}(\mathcal{T}, \mathbb{Q}, \mathbb{S})$ is Knaster.
- Let x ∈ L₁, A ∈ I_x. Then the two-step iteration P_A * S completely embeds into P.
- For any p ∈ P(T, Q, S) there is countable A ⊆ L such that p ∈ P_{cl(A)}. If τ is a P-name for a real then there is a countable A ⊆ L such that τ is a P_{cl(A)}-name.

소리가 소문가 소문가 소문가

Templates Iteration along a template Isomorphism of names

Lemma

Let $\mathbb{P} = \mathbb{P}(\mathcal{T}, \mathbb{Q}_{L_0}, \mathbb{L})$ and let λ_0 be a regular uncountable cardinal such that $\lambda_0 \subseteq L_1$ (as an order), λ_0 is cofinal in L, and $L_\alpha \in \mathcal{I}$ for all $\alpha < \lambda_0$. Then in $V^{\mathbb{P}}$, non $(\mathcal{M}) = \lambda_0$ and so $\mathfrak{a}_g \geq \lambda_0$.

Templates Iteration along a template Isomorphism of names

Proof

Let G be \mathbb{P} -generic and let ϕ_{α} be the slalom added in coordinate $\alpha < \lambda_0$. Since λ_0 is regular, uncountable and is cofinal in L, the family $\langle \phi_{\alpha} : \alpha < \mu \rangle$ localizes all reals V[G] (indeed any real must appear in some $V[G \cap \mathbb{P}_{L_{\alpha}}]$ for some $\alpha < \lambda_0$.) Thus $cof(\mathcal{N}) \leq \lambda_0$. On the other hand, if $F \subseteq \omega^{\omega}$ is a family of size $< \lambda_0$ in V[G], then there must be some $\alpha < \lambda_0$ such that all reals of F already are in $V[G \cap \mathbb{P}_{L_{\alpha}}]$, and so ϕ_{α} localizes all reals in F. Thus $add(\mathcal{N}) \geq \lambda_0$. Therefore $non(\mathcal{M}) = \lambda_0$ and so $\mathfrak{a}_g \geq \mu$.

Templates Iteration along a template Isomorphism of names

Lemma

Let $\mathbb{P} = \mathbb{P}(\mathcal{T}, \mathbb{Q}_{L_0}, \mathbb{L})$, *L* of uncountable cofinality, L_0 cofinal in *L*. Then \mathbb{P} adds a maximal cofinitary group of size $|L_0|$.

(ロ) (同) (E) (E) (E)

Assume *CH*. Let $\lambda = \bigcup_n \lambda_n$, where λ_n is a regular cardinal, $\{\lambda_n\}_{n \in \omega}$ increasing and $\lambda_0 \geq \aleph_2$. Consider a template $\mathcal{T} = (L, \mathcal{I})$ such that

- $\lambda_0 \subseteq L_1$, λ_0 is cofinal in L, $L_\alpha \in \mathcal{I}$ for all $\alpha < \lambda_0$.
- L has uncountable cofinality, L_0 is cofinal in L.

Then in $V^{\mathbb{P}}$ for $\mathbb{P} = \mathbb{P}(\mathcal{T}, \mathbb{Q}_{L_0}, \mathbb{L})$

- $\lambda_0 = \operatorname{non}(\mathcal{M})$, and so $\lambda_0 \leq \mathfrak{a}_g$
- there is a mcg of size λ and so $\mathfrak{a}_g \leq \lambda$.

Templates Iteration along a template Isomorphism of names

An isomorphism of names argument provides that in $V^{\mathbb{P}}$ there are no mcg of size $< \lambda$ and so $V^{\mathbb{P}} \models \mathfrak{a}_g = \lambda$.

(ロ) (同) (E) (E) (E)

Templates Iteration along a template Isomorphism of names

Theorem (V.F., A. Törnquist)

It is consistent with the usual axioms of set theory that the minimal size of a maximal cofinitary group is of countable cofinality.

イロト イポト イヨト イヨト

Templates Iteration along a template Isomorphism of names

Thank you!

(ロ) (四) (E) (E) (E)