ITERATIONS WITH MIXED SUPPORT

VERA FISCHER

ABSTRACT. In this talk we will consider three properties of iterations with mixed (finite/countable) supports: iterations of arbitrary length preserve ω_1 , iterations of length $\leq \omega_2$ over a model of CH have the \aleph_2 -chain condition and iterations of length $< \omega_2$ over a model of CH do not increase the size of the continuum.

Definition 1. Let \mathbb{P}_{κ} be an iterated forcing construction of length κ , with iterands $\langle \dot{\mathbb{Q}}_{\alpha} : \alpha < \kappa \rangle$ such that for every $\alpha < \kappa$

 $\Vdash_{\alpha} "\dot{\mathbb{Q}}_{\alpha}$ is σ -centered" or $\Vdash_{\alpha} "\dot{\mathbb{Q}}_{\alpha}$ is countably closed".

Then \mathbb{P}_{κ} is *finite/countable iteration* if and only if for every $p \in \mathbb{P}_{\kappa}$, support $(p) = \{\alpha < \kappa : p(\alpha) \neq \mathbf{1}_{\alpha}\}$ is countable and Fsupport $(p) = \{\alpha : \Vdash Q_{\alpha} \text{ is } \sigma\text{-centered}^{*}, p(\alpha) \neq \mathbf{1}_{\alpha}\}$ is finite.

Remark 1. In the context of the above definition, whenever

 $\Vdash_{\alpha} "\dot{\mathbb{Q}}_{\alpha} \text{ is } \sigma\text{-centered"}$

we will say that α is a σ -centered stage and correspondingly, whenever

 \Vdash " \mathbb{Q}_{α} is countably closed"

we will say that α is a countably closed stage.

From now on \mathbb{P}_{κ} is a finite/countable iteration of length κ .

Definition 2. Let $p,q \in \mathbb{P}_{\kappa}$. We say than $p \leq_D q$ if and only if $p \leq q$ and for every σ -centered stage $\alpha < \kappa$, $p \upharpoonright \alpha \Vdash p(\alpha) = q(\alpha)$. Similarly $p \leq_C q$ if and only if for every countably closed stage α , $p \upharpoonright \alpha \Vdash p(\alpha) = q(\alpha)$.

Claim. Both \leq_D and \leq_C are transitive relations.

Lemma 1. Let $\langle p_n \rangle_{n \in \omega}$ be a sequence in \mathbb{P}_{κ} such that for every $n \in \omega$, $p_{n+1} \leq_D p_n$. Then there is a condition $p \in \mathbb{P}_{\kappa}$ such that for every $n \in \omega, p \leq_D p_n$.

Date: August 2, 2007.

Proof. Define p inductively. It is sufficient to define p for successor stages α . Suppose we have defined $p \upharpoonright \alpha$ so that for every $n \in \omega$, $p \upharpoonright \alpha \leq_D p_n \upharpoonright \alpha$. If α is σ -centered then

$$p \upharpoonright \alpha \Vdash p_0(\alpha) = p_1(\alpha) = \dots$$

and so we can define $p(\alpha) = p_0(\alpha)$. If α is countably closed stage, then

$$p \upharpoonright \alpha \Vdash p_0(\alpha) \ge p_1(\alpha) \ge \dots$$

and since $\Vdash_{\alpha} "\mathbb{Q}_{\alpha}$ is countably closed" there is a \mathbb{P}_{α} -name $p(\alpha)$ such that $p \upharpoonright \alpha \Vdash p(\alpha) \leq p_n(\alpha)$ for every $n \in \omega$.

Lemma 2. Let $p, q \in \mathbb{P}_{\kappa}$ be such that $p \leq q$. Then there is a condition $r \in \mathbb{P}_{\kappa}$ such that $p \leq_C r \leq_D q$.

Proof. Again we will define r inductively. Suppose we have defined $r \upharpoonright \alpha$ so that $p \upharpoonright \alpha \leq_C r \upharpoonright \alpha \leq_D q \upharpoonright \alpha$. Then if α is a σ -centered stage, let $r(\alpha) = q(\alpha)$. If α is a countably closed stage, define $r(\alpha)$ to be a \mathbb{P}_{α} -term such that: if $\bar{r} \leq p \upharpoonright \alpha$ then $\bar{r} \Vdash_{\alpha} r(\alpha) = p(\alpha)$, if \bar{r} is incompatible with $p \upharpoonright \alpha$ then $\bar{r} \Vdash_{\alpha} r(\alpha) = q(\alpha)$.

To verify $p \leq_C r$ note that if α is a σ -centered stage then $p \upharpoonright \alpha \Vdash p(\alpha) \leq q(\alpha) = r(\alpha)$. If α is a countably closed stage, then $p \upharpoonright \alpha \Vdash p(\alpha) = r(\alpha)$.

To see that $r \leq_D q$ note that if α is a σ -centered stage then by definition $r \upharpoonright \alpha \Vdash r(\alpha) = q(\alpha)$. If α is countably closed stage, it is sufficient to show that $\mathbb{1} \Vdash_{\alpha} r(\alpha) \leq q(\alpha)$. Let $\bar{r} \in \mathbb{P}_{\alpha}$. If $\bar{r} \not\perp p \upharpoonright \alpha$ fix a common extension t. Then $t \Vdash p(\alpha) = r(\alpha) \land p(\alpha) \leq q(\alpha)$ and so $t \Vdash r(\alpha) \leq q(\alpha)$. If \bar{r} is incompatible with $p \upharpoonright \alpha$ then by definition $\bar{r} \Vdash r(\alpha) = q(\alpha)$.

Definition 3. Let α be a σ -centered stage and let \dot{s}_{α} be a \mathbb{P}_{α} -name such that $\Vdash_{\alpha} (\dot{s}_{\alpha} : \dot{\mathbb{Q}}_{\alpha} \to \omega) \land [\forall p, q \in \dot{\mathbb{Q}}_{\alpha} (\dot{s}_{\alpha}(p) = \dot{s}_{\alpha}(q) \to p \not\perp q)].$ Condition $p \in \mathbb{P}_{\kappa}$ is *determined* if and only if for every $\alpha \in \text{Fsupport}(p)$ there is $n \in \omega$ such that $p \upharpoonright \alpha \Vdash \dot{s}_{\alpha}(p(\alpha)) = \check{n}$.

Claim. The set of determined conditions in \mathbb{P}_{κ} is dense.

Proof. Proceed by induction on the length of the iteration κ . It is sufficient to consider successor stages. Let $\alpha = \beta + 1$ and $p \in \mathbb{P}_{\alpha}$. We can assume that β is a σ -centered stage. By inductive hypothesis there is a determined condition $\bar{r} \leq p \upharpoonright \beta$ such that $\bar{r} \Vdash \dot{s}_{\beta}(p(\beta)) = \check{n}$ for some $n \in \omega$. If $r \in \mathbb{P}_{\alpha}$ is such that $r \upharpoonright \beta = \bar{r}$ and $r(\beta) = p(\beta)$, then ris determined and $r \leq p$. \Box

Lemma 3. Let q_1, q_2 be (determined) conditions in \mathbb{P}_{κ} such that

 $Fsupport(q_1) = Fsupport(q_2) = F$

and for every $\alpha \in F$ there is $n \in \omega$ such that

 $q_1 \upharpoonright \alpha \Vdash \dot{s}_{\alpha}(q_1(\alpha)) = \check{n} \text{ and } q_2 \upharpoonright \alpha \Vdash \dot{s}_{\alpha}(q_2(\alpha)) = \check{n}.$

Furthermore, let $p \in \mathbb{P}_{\kappa}$ such that $q_1 \leq_C p$ and $q_2 \leq p$. Then q_1 and q_2 are compatible.

Proof. The common extension r of q_1 and q_2 will be defined inductively. Suppose we have defined $r \upharpoonright \alpha$ for some $\alpha < \kappa$ such that $r \upharpoonright \alpha \leq q_1 \upharpoonright \alpha$ and $r \upharpoonright \alpha \leq q_2 \upharpoonright \alpha$. If α is a σ -centered stage, then there is $n \in \omega$ such that $r \upharpoonright \alpha \Vdash \dot{s}_{\alpha}(q_1(\alpha)) = \dot{s}_{\alpha}(q_2(\alpha)) = \check{n}$ and so there is a \mathbb{P}_{α} -name $r(\alpha)$ for a condition in $\dot{\mathbb{Q}}_{\alpha}$ such that $r \upharpoonright \alpha \Vdash r(\alpha) \leq q_1(\alpha) \wedge r(\alpha) \leq q_2(\alpha)$. If α is countably closed then $r \upharpoonright \alpha \Vdash q_1(\alpha) = p(\alpha) \wedge q_2(\alpha) \leq p(\alpha)$. Thus we can define $r(\alpha) = q_2(\alpha)$.

Definition 4. An antichain $\langle q_{\xi} : \xi < \eta \rangle$ of determined conditions is *concentrated* with *witnesses* $\langle p_{\xi} : \xi < \eta \rangle$ if and only if $\forall \xi < \eta(q_{\xi} \leq_C p_{\xi})$ and $\forall \zeta < \xi(p_{\xi} \leq_D p_{\zeta})$.

Lemma 4. There are no uncountable concentrated antichains.

Proof. Suppose to the contrary that $\langle q_{\xi} : \xi < \omega_1 \rangle$ is a concentrated antichain with witnesses $\langle p_{\xi} : \xi < \omega_1 \rangle$. For every $\xi < \omega_1$ let $F_{\xi} =$ Fsupport (q_{ξ}) . Since a subset of a concentrated antichain is a concentrated antichain, we can assume that $\langle F_{\xi} : \xi < \omega_1 \rangle$ form a Δ -system with root F such that for some $\alpha < \kappa$, $F \subseteq \alpha < \min F_{\xi} \backslash F$ for every $\xi < \omega_1$.

Claim. $\langle q_{\xi} \upharpoonright \alpha : \xi < \omega_1 \rangle$ is a concentrated antichain in \mathbb{P}_{α} .

Proof. Suppose to the contrary that there are $\zeta < \xi$ such that for some $\bar{r} \in \mathbb{P}_{\alpha}, \ \bar{r} \leq q_{\zeta} \upharpoonright \alpha$ and $\bar{r} \leq q_{\xi} \upharpoonright \alpha$. Then for every $\gamma \geq \alpha$, define $r(\gamma)$ as follows: if $\gamma \in F_{\zeta}$ let $r(\gamma) = q_{\zeta}(\gamma)$, otherwise let $r(\gamma) = q_{\xi}(\gamma)$. Inductively we will show that r is a common extension of q_{ζ} and q_{ξ} . It is sufficient to show that for all countably closed stages γ if $r \upharpoonright \gamma \leq q_{\xi} \upharpoonright \gamma$ and $r \upharpoonright \gamma \leq q_{\zeta} \upharpoonright \gamma$, then $r \upharpoonright \gamma \Vdash r(\gamma) \leq q_{\zeta}(\gamma) \land r(\gamma) \leq q_{\xi}(\gamma)$. Note that

$$r \upharpoonright \gamma \Vdash (q_{\xi}(\gamma) = p_{\xi}(\gamma)) \land (p_{\xi}(\gamma) \le p_{\xi}(\gamma)) \land (q_{\xi}(\gamma) = p_{\xi}(\gamma))$$

and so $r \upharpoonright \gamma \Vdash r(\gamma) = q_{\xi}(\gamma) \le q_{\zeta}(\gamma)$.

For every $\xi < \omega_1$ let $f_{\xi} : F \to \omega$ be such that $f_{\xi}(\gamma) = n$ if and only if $q_{\xi} \upharpoonright \gamma \Vdash \dot{s}_{\gamma}(q_{\xi}(\gamma)) = \check{n}$. Since there are only countably many such functions, there are $\zeta < \xi$ such that $f_{\zeta} = f_{\xi}$. Then $q_{\zeta} \upharpoonright \alpha$, $q_{\xi} \upharpoonright \alpha$ and $p_{\zeta} \upharpoonright \alpha$ satisfy the hypothesis of Lemma 3 and so $q_{\zeta} \upharpoonright \alpha$ and $q_{\xi} \upharpoonright \alpha$ are compatible, which is a contradiction. \Box

VERA FISCHER

Lemma 5. Let $p \in \mathbb{P}_{\kappa}$ and let \dot{x} be a \mathbb{P}_{κ} -name such that $p \Vdash \dot{x} \in V$. Then there is $q \leq_D p$ and a ground model countable set X such that $q \Vdash \dot{x} \in \check{X}$.

Proof. Inductively construct concentrated antichain $\langle q_{\xi} : \xi < \eta < \omega_1 \rangle$ with witnesses $\langle p_{\xi} : \xi < \eta < \omega_1 \rangle$ such that for all $\xi < \eta$, $q_{\xi} \leq p$, $p_{\xi} \leq_D p$ and $\exists x_{\xi} \in V$, $q_{\xi} \Vdash \dot{x} = \check{x}_{\xi}$. Furthermore we will have that if $\xi \neq \zeta$, then $x_{\xi} \neq x_{\zeta}$. Suppose $\langle q_{\xi} : \xi < \eta \rangle$ and $\langle p_{\xi} : \xi < \eta \rangle$ have been defined. Since η is countable, by Lemma 1 there is condition p' such that $\forall \xi < \eta(p' \leq_D p_{\xi})$. Case 1. If $p' \Vdash \dot{x} \in \{x_{\xi} : \xi < \eta\}$, then let q = p'and $X = \{x_{\xi} : \xi < \eta\}$. Case 2. Otherwise, there is $q_{\eta} \leq p', x_{\eta} \in V$ such that $x_{\eta} \notin \{x_{\xi} : \xi < \eta\}$ and $q_{\eta} \Vdash \dot{x} = \check{x}_{\eta}$. By Lemma 2 there is p_{η} such that $q_{\eta} \leq_C p_{\eta} \leq_D p'$. This extends the concentrated antichain and so completes the inductive step. Since there are no uncountable concentrated antichains at some countable stage of the construction Case 1 must occur.

Corollary 1. Let p be a condition in \mathbb{P}_{κ} and let \dot{f} be a \mathbb{P}_{κ} -name such that $p \Vdash \dot{f} : \omega \to V$. Then there is $q \leq_D p$ and $X \in V$, X countable such that $q \Vdash \dot{f}^{"}\omega \subseteq \check{X}$. Therefore \mathbb{P}_{κ} preserves ω_1 .

Proof. Inductively define a sequence of conditions $\langle p_n \rangle_{n \in \omega}$ in \mathbb{P}_{κ} , where $p_{-1} = p$ and a sequence of countable sets $\{X_n\}_{n \in \omega} \subseteq V$ such that for every n, $p_{n+1} \leq_D p_n$ and $p_n \Vdash \dot{f}(n) \in \check{X}_n$. Let $q \in \mathbb{P}_{\kappa}$ be such that $q \leq_D p_n$ for every n and let $X = \bigcup_{n \in \omega} X_n$. Then X is a countable ground model set, $q \leq_D p$ and $q \Vdash \dot{f}^* \omega \subseteq \check{X}$. \Box

Theorem 1 (*CH*). Let \mathbb{P}_{ω_2} be a finite/countable support iteration with iterands $\langle \dot{\mathbb{Q}}_{\alpha} : \alpha < \omega_2 \rangle$ such that $\forall \alpha < \omega_2, \Vdash_{\alpha} |\dot{\mathbb{Q}}_{\alpha}| = \aleph_1$. Then \mathbb{P}_{ω_2} is \aleph_2 -c.c.

Proof. It is sufficient to show that for every $\alpha < \omega_2$ there is a dense subset D_{α} in \mathbb{P}_{α} of cardinality \aleph_1 . Suppose $\langle q_{\xi} : \xi < \omega_2 \rangle$ is an antichain in \mathbb{P}_{ω_2} of size \aleph_2 . We can assume that $\langle F_{\xi} : \xi < \omega_2 \rangle$ where $F_{\xi} =$ Fsupport (q_{ξ}) form a Δ -system with root F such that for some $\alpha < \omega_2$,

$$F \subseteq \alpha < \min F_{\xi} \backslash F$$

for every $\xi < \omega_2$. Then $\langle q_{\xi} \upharpoonright \alpha : \xi < \omega_2 \rangle$ is an antichain in \mathbb{P}_{α} of size \aleph_2 which is not possible. As an additional requirement we will have that for every $p \in \mathbb{P}_{\alpha}$ there is $d \in D_{\alpha}$ such that $d \leq_D p$.

Proceed by induction. Suppose $\alpha = \beta + 1$ and we have defined $D_{\beta} \leq_D$ -dense in \mathbb{P}_{β} of size \aleph_1 . Let $\{\dot{d}_{\xi} : \xi < \omega_1\}$ be a set of \mathbb{P}_{β} -terms such that $\Vdash_{\beta} "\dot{\mathbb{Q}}_{\beta} = \{\dot{d}_{\xi} : \xi < \omega_1\}"$. For every countable antichain $A \subseteq D_{\beta}$ and function $f : A \to \omega_1$ let $\dot{q}(f)$ be a \mathbb{P}_{β} -term such that for

every $p \in \mathbb{P}_{\beta}$ the following holds: if there is $a \in A$ such that $p \leq a$ then $p \Vdash \dot{q}(f) = \dot{d}_{f(a)}$; if p is incompatible with every element of A then $p \Vdash \dot{q}(f) = \dot{\mathbb{1}}_{\beta}$. The collection T of all such names is of size \aleph_1 and so

$$D_{\alpha} = \{ p \in \mathbb{P}_{\alpha} : p \upharpoonright \beta \in D_{\beta} \text{ and } p(\beta) \in T \}$$

is of size \aleph_1 as well. We will show that D_{α} is \leq_D -dense in \mathbb{P}_{α} . Consider arbitrary $p \in \mathbb{P}_{\alpha}$ and let A be a maximal antichain of conditions in D_{β} such that for every $a \in A$ there is $\xi < \omega_1$ such that $a \Vdash p(\beta) = \dot{d}_{\xi}$.

Claim. There is $q \leq_D p \upharpoonright \beta$ s. t. $A' = \{a \in A : a \not\perp q\}$ is countable.

Proof. Fix an enumeration $\langle a_{\xi} : \xi < \omega_1 \rangle$ of A and let $\dot{x} = \{\langle \check{\xi}, a_{\xi} \rangle : \xi < \omega_1 \}$. Then \dot{x} is a \mathbb{P}_{β} -name for an ordinal and so repeating the proof of Lemma 4 we can obtain $X \in V \cap [\omega_1]^{\omega}$ and $q \leq_D p$ such that $q \Vdash \dot{x} \in \check{X}$. Then $q \Vdash \dot{x} \leq \sup \check{X}$ and so $\forall \xi > \sup X(q \perp a_{\xi})$. \Box

Let $f: A' \to \omega_1$ be such that $f(a) = \xi$ if and only if $a \Vdash p(\beta) = d_{\xi}$. Then $q \Vdash \dot{q}(f) = p(\beta)$. By inductive hypothesis, we can assume that $q \in D_{\beta}$ and so if $r \in \mathbb{P}_{\alpha}$ is such that $r \upharpoonright \beta = q$ and $r(\beta) = \dot{q}(f)$ then $r \leq_D p$ and $r \in D_{\alpha}$.

Suppose α is a limit and for every $\beta < \alpha$ we have defined a \leq_{D} dense subset D_{β} of \mathbb{P}_{β} of size \aleph_1 . Let \overline{D}_{β} be the image of D_{β} under the canonical embedding of \mathbb{P}_{β} into \mathbb{P}_{α} . Then $\overline{D} = \bigcup_{\beta < \alpha} \overline{D}_{\beta}$ is of size \aleph_1 and furthermore there is a set $D \subseteq \mathbb{P}_{\alpha}$ of size \aleph_1 which contains \overline{D} and such that for every sequence $\langle p_n \rangle_{n \in \omega} \subseteq \overline{D}$ for which $\forall n(p_{n+1} \leq_D p_n)$ there is $p' \in D$ such that $\forall n \in \omega(p' \leq_D p_n)$. We will show that D is \leq_D -dense in \mathbb{P}_{α} .

Let $p \in \mathbb{P}_{\alpha}$. If $\sup(\operatorname{support}(p)) = \beta < \alpha$ then by inductive hypothesis there is $d \in \overline{D}_{\beta}$ such that $d \leq_D p$. Otherwise fix an increasing and cofinal sequence $\langle \alpha_n \rangle_{n \in \omega}$ in α such that $\operatorname{Fsupport}(p) \subseteq \alpha_0$. Inductively define a sequence $\langle d_n \rangle_{n \in \omega}$ such that for all $n, d_n \in \mathbb{P}_{\alpha_n}$ and $d_{n+1} \leq_D$ $d_n \wedge p \upharpoonright \alpha_{n+1}$. If $d \in D$ is such that $\forall n(d \leq_D d_n)$, then $\forall n(d \leq_D p \upharpoonright \alpha_n)$ and so $d \leq_D p$. \Box

Lemma 6 (CH). A forcing notion which preserves ω_1 and has a dense subset of size \aleph_1 does not increase the size of the continuum.

Proof. Suppose \mathbb{P} is a forcing notion which preserves ω_1 and has a dense subset D of size \aleph_1 . Let T be the collection of all pairs $\langle p, \dot{y} \rangle$ where $p \in D$, \dot{y} is a \mathbb{P} -name for a subset of ω and for every $n \in \omega$, there is a countable antichain of conditions in D, deciding " $\check{n} \in \dot{y}$ which is maximal below p. Then $|T| \leq 2^{\aleph_0} = \aleph_1$. We will show that $V^{\mathbb{P}} \models 2^{\aleph_0} \leq |T|$.

VERA FISCHER

Consider any $p \in P$ and $\dot{y} \in \mathbb{P}$ -name for a subset of ω . Then for every $n \in \omega$ let $\langle r_{n,\xi} : \xi < \omega_1 \rangle$ be a maximal antichian of conditions in D deciding " $\check{n} \in \dot{y}$ ". Let \dot{f} be a \mathbb{P} -term such that $\dot{f}(n) = \xi$ iff $r_{n,\xi} \in \dot{G}$. Then $p \Vdash \dot{f} : \omega \to \omega_1$ and since \mathbb{P} preserves ω_1 and D is dense, there is $q \in D$ such that $q \leq p$ and $q \Vdash \dot{f}$ " $\omega \subseteq \check{\beta}$ for some $\beta < \omega_1$. Then $\langle q, \dot{y} \rangle$ is a pair in T. \Box

Corollary 2 (CH). Let \mathbb{P}_{ω_2} be a finite/countable iteration of length ω_2 with iterands $\langle \dot{\mathbb{Q}}_{\alpha} : \alpha < \omega_2 \rangle$ such that $\Vdash_{\alpha} |\dot{\mathbb{Q}}_{\alpha}| \leq 2^{\aleph_0}$. Then for every $\alpha < \omega_2$, $V^{\mathbb{P}_{\alpha}} \models CH$.

Proof. Proceed by induction on α , repeating the proof of Theorem 1 and using Lemma 6.

References

- [1] J. Baumgartner *Iterated forcing*, Surveys in set theory (A.R.D. Mathias, editor), London Mathematical Society Lecture Notes Series, no. 87, Cambridge University Press, Cambridge, 1983, pp. 1-59.
- [2] P. Dordal, A Model in which the base-matrix tree cannot have cofinal branches, The Journal of Symbolic Logic, Vol. 52, No. 3, 1987, pp. 651-664.
- [3] K. Kunen Set Theory, North Holland, Amsterdam, 1980.