THE CONSISTENCY OF t=w; <h=uw,

VERA FISCHER

1. PRELIMINARIES

In this section we systemize some well known definitions which will
be used throughout the talk.

Definition 1. Suppose E and F' are maximal almost disjoint families.
We say that F is a refinement of F' if and only if for every x € E there
is y € F' such that x C* y.

In the following consider the partial order ([w]“,C*) consisting of
infinite subsets of w with extension relation almost-inclusion. That is
if A,B € [w]¥ then A < B if and only if A C* b. Note that in this
setting t is the greatest cardinal x such that [w]¥ is k-closed.

Definition 2. The distributivity cardinal b is defined as the least car-
dinal x such that forcing with [w]* adds a new real h: kK — V (where
V' denotes the ground model as usual). Equivalently, b is the least
cardinal such that any collection of less than k-many maximal almost
disjoint families have a common refinement.

The above remark implies t < b and so we have the following in-
equalities
p<t<bh<s.

Remark 1. Certainly every tower has the strong finite intersection prop-
erty and has no pseudo-intersection, which establishes the first inequal-
ity. To obtain that h < s consider a splitting family A = {a, : a € s}
and let G be a [w]”-generic filter. Then in V[G] define f: s — 2 as
follows:
fla)=1iffa, € G.

Consider any a € [w]“ as a condition in the associated partial order.
Since the family A is splitting, there is an o € s such that both

w

aNa, and aNag

are infinite. But then a does not decide f(a) and so f is a new function
s — V. Here f is an [w]“-name for the function f.
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Recall also that the following:

Definition 3. The Mathias forcing notion P consists of all pairs
(s, A) € [w]™ x [w]”

where (¢, B) < (s, A) (that is (¢, B) is stronger than (s, A)) if and only
if ¢t end-extends s, B C Aandt— s C B.

Lemma 1. There is a two stage iteration Q x R of a countably closed
forcing notion Q and a o-centered forcing notion R (that is 1 I
"R is 0 — centered’ ) such that the Mathias partial order P is densely
embedded into Q * R.

Proof. Let Q = ([w]*, C*) and let G be Q-generic filter. Then in V[G]
define R to be the partial order consisting of all pairs (s, A) in the
Mathias partial order P for which the pure part A belongs to G with
the extension relation inherited from P and let R be a Q-name for R.
Then @ is countably closed, Ik "R is o — centered” and the mapping

(s, A) = (4, (s, 4))
is a dense embedding of P into @ * R. U

We will refer to the above two-stage iteration as factored Mathias
forcing.

Theorem 1 (CH). Let P,, be wy-stage iteration of Mathias forcing,
or factored Mathias forcing. That is for every a < ws, we have that
1, IF 7@, is Mathias forcing” or respectively for every a < wsy, a-
even 1, IF7Q, * Qq41 is factored Mathias forcing”. Suppose that P,,
satisfies the following conditions:

(1) P, is Ny-c.c.

(2) For every p € P,,, the support of p is bounded

(3) For every a < wy VP CH.

(4) P,, preserves w;.

Then VP E h = w,.

Proof. Let (E., : v € wy) be a collection of wy P,,-names for maximal
almost disjoint families and let p € P,,. We can assume that for every
¥ < wi

plIF B =R,

and fix sequences of P, -names for infinite subsets of w such that for
every v < wy

plFE, = (z¢,: € € wo).
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We will show that there is a P,,,-name & for an infinite subset of w such
that for all v < wy

p IF & is almost contained in an element of E,.

Claim. For every sentence ¢ in the forcing language of P,,, there is an
a < wq such that if ¢ € P, and ¢ decides ¢ then ¢ | a decides ¢.

Proof. Fix a maximal antichain of conditions deciding ¢. Then since
P,, is No-c.c. |A| < N;. Furthermore the support of every condition is
bounded which implies that there is an o < w9 such that

U{support(a) ra€ A} Ca.
Then certainly, for every ¢ which decides ¢, ¢ | a decides ¢. O

Claim. If p IF & C w then there is a = a(#) < wy such that p I+ & €
V{Gaa)-

Proof. For every n € w fix a maximal antichain A,, below p of conditions
deciding "n € #” and let a, (&) < wq be such that

U{support(a) ra € Ayt Cap.
Let a = a(d) = sup, e, (). O

Claim. There is a function f: ws — we such that for every < w, and
every v < wy; we have

plF {iey 1 € < B) € V[Gya)l.
Proof. For every (3 < ws let

f(B) = sup{a(ze,) : £ < B,y <wi},

where a(Z¢,) is defined as above. O

Claim. There is a function g: ws — wo such that for every g < wo,
every v < wy and every Pg-name such that p |-y € [w]¥, we have

Proof. Let § < w,. Fix any v < wy. Then p IF"E, is mad”. Let y be
a Pg-term such that p I- g € [w]*. Then

plF 36 <wa(ly Nigy| = No).

Fix a maximal antichain A,(y) below p such that for every ¢ € A,(y)
there is §, € wy such that

qIF |y Nie,| =N
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Then |A,(y)] <Xy and so there is o, () < wy such that
| fsupport(a) : a € 4,(3)} € o, (7).

Then a(y) = sup, ¢, a,(y) is also smaller than w,. However V' = CH
and so we can define

g(8) = sup{a,(y) : yis Pg —name s.t. p kg g € [w]“}.
J

Let a < wy be such that cof(a) = wy and V3 < a, f(5) < a and
g(B) < a.. Then the definition of f implies that for every v < w;
plF (zey 1 € < ) € V]G]
and furthermore the definition of g implies that
VIGa] EVy <wi((Zey 1 € < ) is mad)

since every real in V[G,] appears in some V[Gg| for § < a. Really,
suppose 7 is a P,-name for an infinite subset of w, which does not
appear in V[Gpg| for any § < . Then in V[G,] we can define a cofinal
function f: w — « as follows:

f(n) =~iff 3¢ € G | v(q decides "7 € ),

which is a contradiction since V[G,] preserves wy.

However, the Mathias generic real is almost contained in a member
of every maximal almost disjoint family from the ground model and so
if g, is the a-th Mathias real, then

VIG] EVy < w13¢, < a(range(ga) C dey).

The following theorem is due to Baumgartner.

Theorem 2. Let P be the Mathias partial order and let (z, : a < k)
be a tower in [w]*. Then (z, : a < k) remains a tower in VF.

Proof. Suppose not. Then there is a P-generic extension V|G| such
that

VIG] E Jz € [w]*Va < k(x C z,).
Then there is a P-name for an infinite subset of w and a condition
p = (S0, Ag) € G such that for every a < k

(So,Ao) -z Q* Tq-

We can assume that the condition (sg, Ag) is pre-processed for z. That
is for every k € w and t < (sg,Ap) (that is ¢ end-extends sy and
t —sg C Ap) if there is C' C Ay such that (¢,C) I+ k € & then there is
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some m € w such that (¢, Ay — m) IF k € #. Then we can define for
every s < (sg, Ap) the set

F,={k:3C C Ay((5,C) Ik € &)} = {k: (3m)(s, Ag —m) |- k € &}.

Claim. There is (s, A) < (sg, Ao) such that for every ¢t < (s, A) the set
F, is finite.

Proof. Suppose the claim is not true. That is for every (s, A) < (so, Ag)
there is t < (s, A) such that F; is infinite. However there are only
countably many F;’s and so there is some o < k such that for every
t < (s,A) such that F; is infinite, F;, Z* x,. Otherwise, for every
B < k there is an infinite F} such that F; C z3. However if F'is an
infinite subset of w such that F© C* F} for every infinite F}, then F
is a pseudo-intersection of (x, : @ < k) which belongs to the ground
model which is a contradiction to (z, : @ < k) being a tower. Since
(S0, Ao) IF & C* x,, there is an extension (s, A) € G and j € w such
that
(s,A)IF & —j C z,.

By assumption there is ¢ < (s, A) such that F; is infinite. But then
there is k € F; — x, — j and so by definition of F; there is some m € w
such that (¢, Ag—m) I k € &. However (t, A—m) extends both (s, A)
and (t, Ag —m) and so

t,A=—m)l-(k€i—j)A(E—7Cxy)

O

which is a contradiction since k & x,,.
Furthermore we have the following property.

Claim. Suppose (sg, Ag) is a condition in P such that for every s <
(80, Ag) Fy is finite. Then there is B C A such that for every ¢ <
(307 B) .
(so, B) IF F, C &.

Proof. We will construct the set B inductively. Suppose we have de-
fined by < by < -+ < b,_1 and a set B, C Aj such that by > max s,
b,—1 < min B,, and such that for evert ¢ which end-extends s, and
such that t\sg C {bo,...,by_1}, (t,B,) IF F; C &. Let b, = min B,,.
Consider any t which end-extends sq such that t\sy C {b;}i<,—1. Then
Fi~,, is finite and for every k € Ti~;, there is nf € w such that

(t by, Ag — ) IF k€ i
and since B,, C A this implies that

(t by, B, —nF) IF k€ i



6 VERA FISCHER

Let n; = max{n¥ : k € Fi~,, }. Then if m is the maximum of all such
n;’s the set B,, —m has the property that for every ¢ which end-extends
so and such that t\sy C {b;}i<n

(t"bp, By —m) IF Fyy, C .

Let B,y1 = B, —m. With this the inductive construction is com-
plete. The set B = N{{bo,...,bn—1} U B,} = {bi}ico has the desired
properties. O

Thus we can assume that the chosen condition (s, Ag) has the prop-
erties that for every s < (sg, Ag), Fy is finite and there is m € w such
that (s, A9 — m) IF Fy C #. Inductively, we will obtain an infinite
subset A of Ay such that for every s < (sg, A) one of the following two
conditions holds:

(1) Vae A—(|ls|| + ) Fo-q = Fi.

(2) Ba<kr)(Vjew)(@Em; ew)Vae A—mj)Fs~g — 26 —J # 0.
Again, suppose we have defined {ay,...,a, 1} and A,, C Ay such that
for every s which end-extends sy and such that s — sy C {a;};<, the
corresponding two conditions above hold (A substituted by A,). Let
a, = min A,,. Then successively consider all end-extensions s of sy such
that s — so C {a;}i<, and define a set A;,, which is contained in Ay,
for every s’ considered prior to s and A,, as follows.

If B* = |J{Fs~o:a€ A,} is finite, then for every k € B* either the
set By = {a € A, : k € A,} is finite or it is infinite. If By is finite
than we can remove the corresponding a’s from A, (note also that in
this case k does not belong to Fy). If By is infinite, then for every
b € By, (by inductive hypothesis) we have (s~b, By) I+ k € 4 and so
(s, By) IF k € & which implies that k € F,.

If B* = |U{Fs~a:a € A,} is infinite, then let a < k be such that
B* €* z,. Define A, so that if a is the j-th element of A, then there
is k > j such that k € Fy~y — x4 — J.

Then define A,+1 to be the intersection of all such A,,’s. Finally,
let A = {an}new. Then A C Ay and for every s < (sg, A) one to the
two conditions above hold. Again since there are only countably many
s < (so, A) we can choose an a < k such that « is greater than all 3’s
associated to finite sequences s < (sg, A) by part (iz) of the above two
conditions. Than since (sg, A) extends (s, A)

(s0,A) IF & C z,
and so there is some (s, B) < (89, A) and j € w such that
(s,B)IFi—jCx,.
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If for every b € B, Fy~, = F,, then (s,B) IF & C F, which is a
contradiction, since Fj is finite. Otherwise, we can find b € B such
that there is k € Fs~, — o, — 7. Then there is some m € w such that

(s"b,B—m)IFkei

which is a contradiction since (s7b, B—m) is an extension of (s, B) and
so we would obtain (s~b, B — m) I k € x,, which is not possible. [

2. MIXED-SUPPORT ITERATION OF FACTORED MATHIAS FORCING
We will begin with a well known definition of iterated forcing:

Definition 4. A partial order P, is a k-stage iteration if and only if
P, is a set of k-sequences and there is a sequence (@), : o < k) such
that of P, = {p | a : p € P} for all a < &, the following holds:
(1) (Va < k) P, is an a-stage iteration, with stages (Qs : f < a).
Let I, denote forcing with P,,.
(2) (Va < k) Ik, "Qq is a partial order”.
(3) (Vp € Py) (Vo < k) Ik pa € Qq and there is r € P, where
rla=plaandr(a)=q.
(4) Vp,q € P, (p < ¢)ifand only is (Va < k) p [ a Ik, pla) < gq(a).
(5) (VB <a<k)(Vp€PyqgePs)if g<p|fthengAp e P,,
where ¢ A p(v) = q(7) for all v < 8 and g A p(y) = p(y) for
v =0
(6) The trivial condition 1 € P, where for every a < &, 1(a) is
forced to be the trivial condition in Q.

For limit o« < k we have to specify how P, is constructed from
{p:dom(p) =aand (VB < a)p | § € Pg}.
Usually we require P, to consists of all conditions for which

support(p) = {3 € dom(p) : p(B) # 1}

is finite or countable. Then we refer to the iteration P, as finite re-
spectively countable support iteration.

In particular, we will be interested in mixed support iteration:

Definition 5. For s any ordinal, let P, be an iterated forcing con-
struction such that for every a < k either I, "Q), is ¢ — centered” or
IFo 7@ is countably closed”. We thus speak about o-centered stages
and countably closed stages. For p € P, let

Fsupport(p) = {a < k : @ is a o centered stage}.
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Then P, is the finite/countable support iteration of the @, is for every
p € P,, support(p) is countable, Fsupport(p) is finite and (Vo < k) Ik,

pla) € Qa.

Definition 6. We say that p is a direct extension of ¢, denoted p <p ¢
if p < ¢ and for all o-centered stages a < k, p [ a Ik, p(a) = q(a).
Similarly, we say p is a C-extension of ¢, denoted p < ¢ if p < ¢ and
for all countably closed stages o < k,p [ a Ik, p(a) = g(@).

Remark 2. Both of the relations <p and <. are transitive.

Lemma 2. Let {p,}neco be a sequence in P, such that for every n
Pni1 <p Pn- Then there is a condition p € P, such that p <p p, for
all n.

Proof. Construct p inductively. If « is a limit and p | 3 is defined for
every # < a, then p | « is clear. At successor stage o+ 1 there are two
cases. If a is a countably closed stage and

plalkpy(a) >pi(a) > >pua)...

then since @), is countably closed we can choose p(«) to be a P,-name
for an element of @, such that p [ « IF p(a) < p,(«) for every n. If «
is a o-centered stage and

plalkpya)=pi(a)="-=pyla)=...
then we can simply define p(a) = po(a). O

Lemma 3. Letp < q inP,. Then there isr € P, such thatp <cr <p
q.

Proof. The condition r is defined by induction on «. If « is a limit
and r [ 3 is defined for every # < « then r | « is clear. So, consider
successor stages a + 1. If v is a o-centered stage, then define r(a) =
q(a). If « is a countably closed stage we define r(«) to be a P,-term
as follows:

(1) if 7 < p [, then 7 IF r(a) = p(a)

(2) if 7Lp [ a, then 7 IF r(a) = g(«).
With this the inductive construction is defined. It remains to verify
that p <¢c rand r <p q.

By induction on « verify that p [ a < r | a and for countably closed
stages p | « IF p(a) = r(«) (holds by definition of r(«)), and for o-
centered stages p [ a Ik p(a) < g(a) = r(a) (again by definition of
r(a)).

Similarly, by induction on « verify that » | a« < ¢ | « and for
countably closed stages r [ a IF r(a) < g(«), and for o-centered stages
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r | alF r(a) = ¢(a). The latter holds by definition of r(«), so it
remains to verify the former. Consider any 7 < r [ a. If 7 < p | a,
then

7k r(a) = pla) Apla) < g(@).
If 7Lp [ «, then again by definition of r(alpha) 7 IF r(a) = q(a).
Therefore every extension of r | « forces that "r(a) < ¢(«) and so
rlalkra) <qla). O

Definition 7. Suppose « is a o-centered stage. Then in VT define a
function s : (), — w so that

ko (Vp,q € Qa)(s(p) = s(q) = p L)
Remark 3. Abusing notation we will identify s with its P,-name s.

Definition 8. Condition p € P, is said to be determined if for all
a € Fsupport(p) there is n € w such that

plalks(pla)) =n.

Lemma 4. The set of determined conditions in P, is dense. Suppose
determined conditions q; and qo are given with

Fsupport(q,) = Fsupport(ga)

and for all o in this finite support there is n € w such that q; | o I+
s(gi(a)) = n and qo | a Ik s(g2(e)) = 1. Suppose also that for some
pEP., 1 <pandqg <cp. Then ¢ and qa are compatible.

Proof. Proceed by induction on k. Let p € P,. If x is a limit, then
there is a < k such that Fsupport(p) C a. Then by inductive hypoth-
esis there is a determined 7 < p | a and so 7 A p® is a determined
condition extending p. At successor o-centered stages a + 1, we can
find determined 7 < p [ « such that for some n € w 7 IF s(p(a)) = n.
Then 7 A r® is a determined extension of p.

To obtain the second claim of the Lemma, we will define a common
extension r of ¢; and ¢, inductively. Suppose « is a limit and for every
B < o we have defined r [ 3. Thenlet r [ o = Ugor | B. At countably
closed stages let r(a) = ¢1 (). Then

rlalkq(a)=r(a) <pla) = g(a).
At o-centered stages we have r | alF s(q1()) = s(g2(v)) = checkn for

some n. Therefore we can choose r(«) to be a P,-name for a common
extension of ¢;(«) and g3(«) and so

rlalk(rla) < q(@) A(r(a) < ¢(a)).
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Lemma 5. Let P, be a finite/countable support iteration with o a limit
ordinal and let (x¢ : & < \) be a tower in [w]¥ for some regular X. If
there is an infinite ¥ C w in V¥ such that for all € < \, x C* ¢, then
there is 3 < a and an infinite y C w in VF6 such that V€ < X, y C* x.

Theorem 3 (CH). Let P, be the wy-stage finite/countable factored

Mathias iteration. Then, in V¥»2 we have h = 2% = R, and there are

no wp-towers in [w]*.
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