THE CONSISTENCY OF $\mathfrak{t}=\omega_{1}<\mathfrak{h}=\omega_{2}$

VERA FISCHER

1. Preliminaries

In this section we systemize some well known definitions which will be used throughout the talk.

Definition 1. Suppose E and F are maximal almost disjoint families. We say that E is a refinement of F if and only if for every $x \in E$ there is $y \in F$ such that $x \subseteq^{*} y$.

In the following consider the partial order $\left([\omega]^{\omega}, \subseteq^{*}\right)$ consisting of infinite subsets of ω with extension relation almost-inclusion. That is if $A, B \in[\omega]^{\omega}$ then $A \leq B$ if and only if $A \subseteq^{*} b$. Note that in this setting \mathfrak{t} is the greatest cardinal κ such that $[\omega]^{\omega}$ is κ-closed.

Definition 2. The distributivity cardinal \mathfrak{h} is defined as the least cardinal κ such that forcing with $[\omega]^{\omega}$ adds a new real $h: \kappa \rightarrow V$ (where V denotes the ground model as usual). Equivalently, \mathfrak{h} is the least cardinal such that any collection of less than κ-many maximal almost disjoint families have a common refinement.

The above remark implies $\mathfrak{t} \leq \mathfrak{h}$ and so we have the following inequalities

$$
\mathfrak{p} \leq \mathfrak{t} \leq \mathfrak{h} \leq \mathfrak{s} .
$$

Remark 1. Certainly every tower has the strong finite intersection property and has no pseudo-intersection, which establishes the first inequality. To obtain that $\mathfrak{h} \leq \mathfrak{s}$ consider a splitting family $\mathcal{A}=\left\{a_{\alpha}: \alpha \in \mathfrak{s}\right\}$ and let G be a $[\omega]^{\omega}$-generic filter. Then in $V[G]$ define $f: \mathfrak{s} \rightarrow 2$ as follows:

$$
f(\alpha)=1 \text { iff } a_{\alpha} \in G .
$$

Consider any $a \in[\omega]^{\omega}$ as a condition in the associated partial order. Since the family \mathcal{A} is splitting, there is an $\alpha \in \mathfrak{s}$ such that both

$$
a \cap a_{\alpha} \text { and } a \cap a_{s}^{c}
$$

are infinite. But then a does not decide $\dot{f}(\alpha)$ and so f is a new function $\mathfrak{s} \rightarrow V$. Here \dot{f} is an $[\omega]^{\omega}$-name for the function f.

Date: July 12, 2007.

Recall also that the following:
Definition 3. The Mathias forcing notion \mathbb{P} consists of all pairs

$$
(s, A) \in[\omega]^{<\omega} \times[\omega]^{\omega}
$$

where $(t, B) \leq(s, A)$ (that is (t, B) is stronger than $(s, A))$ if and only if t end-extends $s, B \subseteq A$ and $t-s \subseteq B$.
Lemma 1. There is a two stage iteration $Q * \dot{R}$ of a countably closed forcing notion Q and a σ-centered forcing notion \dot{R} (that is $\mathbb{1} \Vdash_{Q}$ " \dot{R} is σ - centered") such that the Mathias partial order \mathbb{P} is densely embedded into $Q * \dot{R}$.

Proof. Let $Q=\left([\omega]^{\omega}, \subseteq^{*}\right)$ and let G be Q-generic filter. Then in $V[G]$ define R to be the partial order consisting of all pairs (s, A) in the Mathias partial order \mathbb{P} for which the pure part A belongs to G with the extension relation inherited from \mathbb{P} and let \dot{R} be a Q-name for R. Then Q is countably closed, $\Vdash_{Q} " \dot{R}$ is σ - centered" and the mapping

$$
(s, A) \mapsto(A,(s, A))
$$

is a dense embedding of \mathbb{P} into $Q * \dot{R}$.
We will refer to the above two-stage iteration as factored Mathias forcing.

Theorem $1(\mathrm{CH})$. Let $\mathbb{P}_{\omega_{2}}$ be ω_{2}-stage iteration of Mathias forcing, or factored Mathias forcing. That is for every $\alpha<\omega_{2}$, we have that $\mathbb{1}_{\alpha} \Vdash$ " Q_{α} is Mathias forcing" or respectively for every $\alpha<\omega_{2}, \alpha$ even $\mathbb{1}_{\alpha} \Vdash " Q_{\alpha} * Q_{\alpha+1}$ is factored Mathias forcing". Suppose that $\mathbb{P}_{\omega_{2}}$ satisfies the following conditions:
(1) $\mathbb{P}_{\omega_{2}}$ is \aleph_{2}-c.c.
(2) For every $p \in \mathbb{P}_{\omega_{2}}$ the support of p is bounded
(3) For every $\alpha<\omega_{2} V^{\mathbb{P}_{\alpha}} \vDash C H$.
(4) $\mathbb{P}_{\omega_{2}}$ preserves ω_{1}.

Then $V^{\mathbb{P} \omega_{2}} \vDash \mathfrak{h}=\omega_{2}$.
Proof. Let $\left\langle E_{\gamma}: \gamma \in \omega_{1}\right\rangle$ be a collection of $\omega_{1} \mathbb{P}_{\omega_{2}}$-names for maximal almost disjoint families and let $p \in \mathbb{P}_{\omega_{2}}$. We can assume that for every $\gamma<\omega_{1}$

$$
p \Vdash\left|E_{\gamma}\right|=\aleph_{2}
$$

and fix sequences of $\mathbb{P}_{\omega_{2}}$-names for infinite subsets of ω such that for every $\gamma<\omega_{1}$

$$
p \Vdash E_{\gamma}=\left\langle x_{\xi, \gamma}: \xi \in \omega_{2}\right\rangle .
$$

We will show that there is a $\mathbb{P}_{\omega_{2}}$-name \dot{x} for an infinite subset of ω such that for all $\gamma<\omega_{1}$
$p \Vdash \dot{x}$ is almost contained in an element of E_{γ}.
Claim. For every sentence ϕ in the forcing language of $\mathbb{P}_{\omega_{2}}$ there is an $\alpha<\omega_{2}$ such that if $q \in \mathbb{P}_{\omega_{2}}$ and q decides ϕ then $q \upharpoonright \alpha$ decides ϕ.

Proof. Fix a maximal antichain of conditions deciding ϕ. Then since $\mathbb{P}_{\omega_{2}}$ is \aleph_{2}-c.c. $|A| \leq \aleph_{1}$. Furthermore the support of every condition is bounded which implies that there is an $\alpha<\omega_{2}$ such that

$$
\bigcup\{\operatorname{support}(a): a \in A\} \subseteq \alpha
$$

Then certainly, for every q which decides $\phi, q \upharpoonright \alpha$ decides ϕ.
Claim. If $p \Vdash \dot{x} \subseteq \omega$ then there is $\alpha=\alpha(\dot{x})<\omega_{2}$ such that $p \Vdash \dot{x} \in$ $V\left[G_{\alpha(\dot{x})}\right]$.

Proof. For every $n \in \omega$ fix a maximal antichain A_{n} below p of conditions deciding " $\check{n} \in \dot{x}$ " and let $\alpha_{n}(\dot{x})<\omega_{2}$ be such that

$$
\bigcup\left\{\operatorname{support}(a): a \in A_{n}\right\} \subseteq \alpha_{n} .
$$

Let $\alpha=\alpha(\dot{x})=\sup _{n \in \omega} \alpha_{n}(\dot{x})$.
Claim. There is a function $f: \omega_{2} \rightarrow \omega_{2}$ such that for every $\beta<\omega_{2}$ and every $\gamma<\omega_{1}$ we have

$$
p \Vdash\left\langle\dot{x}_{\xi \gamma}: \xi<\beta\right\rangle \in V\left[G_{f(\beta)}\right] .
$$

Proof. For every $\beta<\omega_{2}$ let

$$
f(\beta)=\sup \left\{\alpha\left(x_{\xi \gamma}\right): \xi<\beta, \gamma<\omega_{1}\right\}
$$

where $\alpha\left(\dot{x}_{\xi \gamma}\right)$ is defined as above.
Claim. There is a function $g: \omega_{2} \rightarrow \omega_{2}$ such that for every $\beta<\omega_{2}$, every $\gamma<\omega_{1}$ and every \mathbb{P}_{β}-name such that $p \Vdash \dot{y} \in[\omega]^{\omega}$, we have

$$
p \Vdash\left(\exists \xi<g(\beta)\left|\dot{y} \cap \dot{x}_{\xi \gamma}\right|=\aleph_{0} .\right.
$$

Proof. Let $\beta<\omega_{2}$. Fix any $\gamma<\omega_{1}$. Then $p \Vdash " E_{\gamma}$ is $\operatorname{mad} "$. Let \dot{y} be a \mathbb{P}_{β}-term such that $p \Vdash \dot{y} \in[\omega]^{\omega}$. Then

$$
p \Vdash \exists \xi<\omega_{2}\left(\left|\dot{y} \cap \dot{x}_{\xi \gamma}\right|=\aleph_{0}\right) .
$$

Fix a maximal antichain $A_{\gamma}(\dot{y})$ below p such that for every $q \in A_{\gamma}(\dot{y})$ there is $\xi_{q} \in \omega_{2}$ such that

$$
q \Vdash\left|\dot{y} \cap \dot{x}_{\xi \gamma}\right|=\aleph_{0} .
$$

Then $\left|A_{\gamma}(\dot{y})\right| \leq \aleph_{1}$ and so there is $\alpha_{\gamma}(\dot{y})<\omega_{2}$ such that

$$
\bigcup\left\{\operatorname{support}(a): a \in A_{\gamma}(\dot{y})\right\} \subseteq \alpha_{\gamma}(\dot{y})
$$

Then $\alpha(\dot{y})=\sup _{\gamma \in \omega_{1}} \alpha_{\gamma}(\dot{y})$ is also smaller than ω_{2}. However $V^{\mathbb{P}_{\beta}} \vDash C H$ and so we can define

$$
g(\beta)=\sup \left\{\alpha_{\gamma}(\dot{y}): \dot{y} \text { is } \mathbb{P}_{\beta}-\text { name s.t. } p \Vdash_{\beta} \dot{y} \in[\omega]^{\omega}\right\} .
$$

Let $\alpha<\omega_{2}$ be such that $\operatorname{cof}(\alpha)=\omega_{1}$ and $\forall \beta<\alpha, f(\beta)<\alpha$ and $g(\beta)<\alpha$. Then the definition of f implies that for every $\gamma<\omega_{1}$

$$
p \Vdash\left\langle x_{\xi \gamma}: \xi<\alpha\right\rangle \in V\left[G_{\alpha}\right]
$$

and furthermore the definition of g implies that

$$
V\left[G_{\alpha}\right] \vDash \forall \gamma<\omega_{1}\left(\left\langle\dot{x}_{\xi \gamma}: \xi<\alpha\right\rangle \text { is } \operatorname{mad}\right)
$$

since every real in $V\left[G_{\alpha}\right]$ appears in some $V\left[G_{\beta}\right]$ for $\beta<\alpha$. Really, suppose \dot{x} is a \mathbb{P}_{α}-name for an infinite subset of ω, which does not appear in $V\left[G_{\beta}\right]$ for any $\beta<\alpha$. Then in $V\left[G_{\alpha}\right]$ we can define a cofinal function $f: \omega \rightarrow \alpha$ as follows:

$$
f(n)=\gamma \text { iff } \exists q \in G \upharpoonright \gamma(q \text { decides } " \check{n} \in \dot{x}),
$$

which is a contradiction since $V\left[G_{\alpha}\right]$ preserves ω_{1}.
However, the Mathias generic real is almost contained in a member of every maximal almost disjoint family from the ground model and so if g_{α} is the α-th Mathias real, then

$$
V[G] \vDash \forall \gamma<\omega_{1} \exists \xi_{\gamma}<\alpha\left(\text { range }\left(g_{\alpha}\right) \subseteq \dot{x}_{\xi \gamma}\right) .
$$

The following theorem is due to Baumgartner.
Theorem 2. Let \mathbb{P} be the Mathias partial order and let $\left\langle x_{\alpha}: \alpha<\kappa\right\rangle$ be a tower in $[\omega]^{\omega}$. Then $\left\langle x_{\alpha}: \alpha<\kappa\right\rangle$ remains a tower in $V^{\mathbb{P}}$.
Proof. Suppose not. Then there is a \mathbb{P}-generic extension $V[G]$ such that

$$
V[G] \vDash \exists x \in[\omega]^{\omega} \forall \alpha<\kappa\left(x \subseteq^{*} x_{\alpha}\right) .
$$

Then there is a \mathbb{P}-name for an infinite subset of ω and a condition $p=\left(s_{0}, A_{0}\right) \in G$ such that for every $\alpha<\kappa$

$$
\left(s_{0}, A_{0}\right) \Vdash \dot{x} \subseteq^{*} x_{\alpha} .
$$

We can assume that the condition $\left(s_{0}, A_{0}\right)$ is pre-processed for \dot{x}. That is for every $k \in \omega$ and $t \leq\left(s_{0}, A_{0}\right)$ (that is t end-extends s_{0} and $\left.t-s_{0} \subseteq A_{0}\right)$ if there is $C \subseteq A_{0}$ such that $(t, C) \Vdash \check{k} \in \dot{x}$ then there is
some $m \in \omega$ such that $\left(t, A_{0}-m\right) \Vdash \check{k} \in \dot{x}$. Then we can define for every $s \leq\left(s_{0}, A_{0}\right)$ the set
$F_{s}=\left\{k: \exists C \subseteq A_{0}((s, C) \Vdash \check{k} \in \dot{x})\right\}=\left\{k:(\exists m)\left(s, A_{0}-m\right) \Vdash \check{k} \in \dot{x}\right\}$.
Claim. There is $(s, A) \leq\left(s_{0}, A_{0}\right)$ such that for every $t \leq(s, A)$ the set F_{s} is finite.

Proof. Suppose the claim is not true. That is for every $(s, A) \leq\left(s_{0}, A_{0}\right)$ there is $t \leq(s, A)$ such that F_{t} is infinite. However there are only countably many F_{t} 's and so there is some $\alpha<\kappa$ such that for every $t \leq(s, A)$ such that F_{t} is infinite, $F_{t} \not \mathbb{Z}^{*} x_{\alpha}$. Otherwise, for every $\beta<\kappa$ there is an infinite F_{t} such that $F_{t} \subseteq x_{\beta}$. However if F is an infinite subset of ω such that $F \subseteq^{*} F_{t}$ for every infinite F_{t}, then F is a pseudo-intersection of $\left\langle x_{\alpha}: \alpha<\kappa\right\rangle$ which belongs to the ground model which is a contradiction to $\left\langle x_{\alpha}: \alpha<\kappa\right\rangle$ being a tower. Since $\left(s_{0}, A_{0}\right) \Vdash \dot{x} \subseteq^{*} x_{\alpha}$, there is an extension $(s, A) \in G$ and $j \in \omega$ such that

$$
(s, A) \Vdash \dot{x}-j \subseteq x_{\alpha} .
$$

By assumption there is $t \leq(s, A)$ such that F_{t} is infinite. But then there is $k \in F_{t}-x_{\alpha}-j$ and so by definition of F_{t} there is some $m \in \omega$ such that $\left(t, A_{0}-m\right) \Vdash \check{k} \in \dot{x}$. However $(t, A-m)$ extends both (s, A) and $\left(t, A_{0}-m\right)$ and so

$$
(t, A-m) \Vdash(\check{k} \in \dot{x}-j) \wedge\left(\dot{x}-j \subseteq x_{\alpha}\right)
$$

which is a contradiction since $k \notin x_{\alpha}$.
Furthermore we have the following property.
Claim. Suppose $\left(s_{0}, A_{0}\right)$ is a condition in \mathbb{P} such that for every $s \leq$ $\left(s_{0}, A_{0}\right) F_{s}$ is finite. Then there is $B \subseteq A_{0}$ such that for every $t \leq$ $\left(s_{0}, B\right)$

$$
\left(s_{0}, B\right) \Vdash \check{F}_{t} \subseteq \dot{x} .
$$

Proof. We will construct the set B inductively. Suppose we have defined $b_{0}<b_{1}<\cdots<b_{n-1}$ and a set $B_{n} \subseteq A_{0}$ such that $b_{0}>\max s_{0}$, $b_{n-1}<\min B_{n}$ and such that for evert t which end-extends s_{0} and such that $t \backslash s_{0} \subseteq\left\{b_{0}, \ldots, b_{n-1}\right\},\left(t, B_{n}\right) \Vdash F_{t} \subseteq \dot{x}$. Let $b_{n}=\min B_{n}$. Consider any t which end-extends s_{0} such that $t \backslash s_{0} \subseteq\left\{b_{i}\right\}_{i \leq n-1}$. Then $F_{t \leftharpoondown b_{n}}$ is finite and for every $k \in T_{t \leftharpoondown b_{n}}$ there is $n_{t}^{k} \in \omega$ such that

$$
\left(t^{\smile} b_{n}, A_{0}-n_{t}^{k}\right) \Vdash \check{k} \in \dot{x}
$$

and since $B_{n} \subseteq A$ this implies that

$$
\left(t^{\circ} b_{n}, B_{n}-n_{t}^{k}\right) \Vdash \check{k} \in \dot{x} .
$$

Let $n_{t}=\max \left\{n_{t}^{k}: k \in F_{t-b_{n}}\right\}$. Then if m is the maximum of all such n_{t} 's the set $B_{n}-m$ has the property that for every t which end-extends s_{0} and such that $t \backslash s_{0} \subseteq\left\{b_{i}\right\}_{i \leq n}$

$$
\left(t \subset b_{n}, B_{n}-m\right) \Vdash \check{F}_{t \prec b_{n}} \subseteq \dot{x} .
$$

Let $B_{n+1}=B_{n}-m$. With this the inductive construction is complete. The set $B=\cap\left\{\left\{b_{0}, \ldots, b_{n-1}\right\} \cup B_{n}\right\}=\left\{b_{i}\right\}_{i \in \omega}$ has the desired properties.

Thus we can assume that the chosen condition $\left(s_{0}, A_{0}\right)$ has the properties that for every $s \leq\left(s_{0}, A_{0}\right), F_{s}$ is finite and there is $m \in \omega$ such that $\left(s, A_{0}-m\right) \Vdash F_{s} \subseteq \dot{x}$. Inductively, we will obtain an infinite subset A of A_{0} such that for every $s \leq\left(s_{0}, A\right)$ one of the following two conditions holds:
(1) $\forall a \in A-(\|s\|+1) F_{s{ }_{s}}=F_{s}$.
(2) $(\exists \alpha<\kappa)(\forall j \in \omega)\left(\exists m_{j} \in \omega\right)\left(\forall a \in A-m_{j}\right) F_{s \frown a}-x_{\alpha}-j \neq \emptyset$.

Again, suppose we have defined $\left\{a_{0}, \ldots, a_{n-1}\right\}$ and $A_{n} \subseteq A_{0}$ such that for every s which end-extends s_{0} and such that $s-s_{0} \subseteq\left\{a_{i}\right\}_{i \leq n}$ the corresponding two conditions above hold (A substituted by A_{n}). Let $a_{n}=\min A_{n}$. Then successively consider all end-extensions s of s_{0} such that $s-s_{0} \subseteq\left\{a_{i}\right\}_{i \leq n}$ and define a set $A_{s, n}$ which is contained in $A_{s^{\prime}, n}$ for every s^{\prime} considered prior to s and A_{n} as follows.

If $B^{*}=\bigcup\left\{F_{s} \sim_{a}: a \in A_{n}\right\}$ is finite, then for every $k \in B^{*}$ either the set $B_{k}=\left\{a \in A_{n}: k \in A_{n}\right\}$ is finite or it is infinite. If B_{k} is finite than we can remove the corresponding a 's from A_{n} (note also that in this case k does not belong to F_{s}). If B_{k} is infinite, then for every $b \in B_{k}$ (by inductive hypothesis) we have $\left(s \smile b, B_{k}\right) \Vdash \check{k} \in \dot{x}$ and so $\left(s, B_{k}\right) \Vdash \dot{k} \in \dot{x}$ which implies that $k \in F_{s}$.

If $B^{*}=\bigcup\left\{F_{s}{ }_{a}: a \in A_{n}\right\}$ is infinite, then let $\alpha<\kappa$ be such that $B^{*} \not \mathbb{Z}^{*} x_{\alpha}$. Define $A_{s, n}$ so that if a is the j-th element of $A_{s, n}$ then there is $k \geq j$ such that $k \in F_{s{ }_{s}}-x_{\alpha}-j$.

Then define A_{n+1} to be the intersection of all such $A_{s, n}$'s. Finally, let $A=\left\{a_{n}\right\}_{n \in \omega}$. Then $A \subseteq A_{0}$ and for every $s \leq\left(s_{0}, A\right)$ one to the two conditions above hold. Again since there are only countably many $s \leq\left(s_{0}, A\right)$ we can choose an $\alpha<\kappa$ such that α is greater than all β 's associated to finite sequences $s \leq\left(s_{0}, A\right)$ by part (ii) of the above two conditions. Than since $\left(s_{0}, A\right)$ extends (s, A)

$$
\left(s_{0}, A\right) \Vdash \dot{x} \subseteq x_{\alpha}
$$

and so there is some $(s, B) \leq\left(s_{0}, A\right)$ and $j \in \omega$ such that

$$
(s, B) \Vdash \dot{x}-j \subseteq x_{\alpha} .
$$

If for every $b \in B, F_{s\urcorner b}=F_{s}$, then $(s, B) \Vdash \dot{x} \subseteq \check{F}_{s}$ which is a contradiction, since F_{s} is finite. Otherwise, we can find $b \in B$ such that there is $k \in F_{s \neg b}-x_{\alpha}-j$. Then there is some $m \in \omega$ such that

$$
(s \smile b, B-m) \Vdash \check{k} \in \dot{x}
$$

which is a contradiction since $\left(s^{\sim} b, B-m\right)$ is an extension of (s, B) and so we would obtain $\left(s^{\sim} b, B-m\right) \Vdash \breve{k} \in x_{\alpha}$, which is not possible.

2. Mixed-Support iteration of factored Mathias forcing

We will begin with a well known definition of iterated forcing:
Definition 4. A partial order \mathbb{P}_{κ} is a κ-stage iteration if and only if \mathbb{P}_{κ} is a set of κ-sequences and there is a sequence $\left\langle Q_{\alpha}: \alpha<\kappa\right\rangle$ such that of $\mathbb{P}_{\alpha}=\left\{p \upharpoonright \alpha: p \in \mathbb{P}_{\kappa}\right\}$ for all $\alpha<\kappa$, the following holds:
(1) $(\forall \alpha<\kappa) \mathbb{P}_{\alpha}$ is an α-stage iteration, with stages $\left\langle Q_{\beta}: \beta<\alpha\right\rangle$. Let \Vdash_{α} denote forcing with \mathbb{P}_{α}.
(2) $(\forall \alpha<\kappa) \Vdash_{\alpha}$ " Q_{α} is a partial order".
(3) $\left(\forall p \in \mathbb{P}_{\kappa}\right)(\forall \alpha<\kappa) \Vdash_{\alpha} p_{\alpha} \in Q_{\alpha}$ and there is $r \in \mathbb{P}_{\alpha+1}$ where $r \upharpoonright \alpha=p \upharpoonright \alpha$ and $r(\alpha)=\dot{q}$.
(4) $\forall p, q \in \mathbb{P}_{\kappa}(p \leq q)$ if and only is $(\forall \alpha<\kappa) p \upharpoonright \alpha \Vdash_{\alpha} p(\alpha) \leq q(\alpha)$.
(5) $(\forall \beta<\alpha \leq \kappa)\left(\forall p \in \mathbb{P}_{\alpha}, q \in \mathbb{P}_{\beta}\right)$ if $q \leq p \upharpoonright \beta$ then $q \wedge p \in \mathbb{P}_{\alpha}$, where $q \wedge p(\gamma)=q(\gamma)$ for all $\gamma<\beta$ and $q \wedge p(\gamma)=p(\gamma)$ for $\gamma \geq \beta$.
(6) The trivial condition $\mathbb{1} \in \mathbb{P}_{\kappa}$, where for every $\alpha<\kappa$, $\mathbb{1}(\alpha)$ is forced to be the trivial condition in Q_{α}.
For limit $\alpha \leq \kappa$ we have to specify how \mathbb{P}_{α} is constructed from

$$
\left\{p: \operatorname{dom}(p)=\alpha \text { and }(\forall \beta<\alpha) p \upharpoonright \beta \in \mathbb{P}_{\beta}\right\} .
$$

Usually we require \mathbb{P}_{α} to consists of all conditions for which

$$
\operatorname{support}(p)=\{\beta \in \operatorname{dom}(p): p(\beta) \neq \dot{\mathbb{1}}\}
$$

is finite or countable. Then we refer to the iteration \mathbb{P}_{κ} as finite respectively countable support iteration.

In particular, we will be interested in mixed support iteration:
Definition 5. For κ any ordinal, let \mathbb{P}_{κ} be an iterated forcing construction such that for every $\alpha<\kappa$ either $\Vdash_{\alpha} " Q_{\alpha}$ is σ - centered" or $\Vdash_{\alpha} " Q_{\alpha}$ is countably closed". We thus speak about σ-centered stages and countably closed stages. For $p \in \mathbb{P}_{\kappa}$ let

$$
\text { Fsupport }(p)=\{\alpha<\kappa: \alpha \text { is a } \sigma \text { centered stage }\} .
$$

Then \mathbb{P}_{κ} is the finite/countable support iteration of the Q_{α} is for every $p \in \mathbb{P}_{\kappa}$, $\operatorname{support}(p)$ is countable, Fsupport (p) is finite and $(\forall \alpha<\kappa) \Vdash_{\kappa}$ $p(\alpha) \in Q_{\alpha}$.
Definition 6. We say that p is a direct extension of q, denoted $p \leq_{D} q$ if $p \leq q$ and for all σ-centered stages $\alpha<\kappa, p \upharpoonright \alpha \Vdash_{\alpha} p(\alpha)=q(\alpha)$. Similarly, we say p is a C-extension of q, denoted $p \leq_{C} q$ if $p \leq q$ and for all countably closed stages $\alpha<\kappa, p \upharpoonright \alpha \Vdash_{\alpha} p(\alpha)=q(\alpha)$.

Remark 2. Both of the relations \leq_{D} and \leq_{C} are transitive.
Lemma 2. Let $\left\{p_{n}\right\}_{n \in \omega}$ be a sequence in \mathbb{P}_{κ} such that for every n $p_{n+1} \leq_{D} p_{n}$. Then there is a condition $p \in \mathbb{P}_{\kappa}$ such that $p \leq_{D} p_{n}$ for all n.

Proof. Construct p inductively. If α is a limit and $p \upharpoonright \beta$ is defined for every $\beta<\alpha$, then $p \upharpoonright \alpha$ is clear. At successor stage $\alpha+1$ there are two cases. If α is a countably closed stage and

$$
p \upharpoonright \alpha \Vdash p_{0}(\alpha) \geq p_{1}(\alpha) \geq \cdots \geq p_{n}(\alpha) \ldots
$$

then since Q_{α} is countably closed we can choose $p(\alpha)$ to be a \mathbb{P}_{α}-name for an element of Q_{α} such that $p \upharpoonright \alpha \Vdash p(\alpha) \leq p_{n}(\alpha)$ for every n. If α is a σ-centered stage and

$$
p \upharpoonright \alpha \Vdash p_{0}(\alpha)=p_{1}(\alpha)=\cdots=p_{n}(\alpha)=\ldots
$$

then we can simply define $p(\alpha)=p_{0}(\alpha)$.
Lemma 3. Let $p \leq q$ in \mathbb{P}_{κ}. Then there is $r \in \mathbb{P}_{\kappa}$ such that $p \leq_{C} r \leq_{D}$ q.

Proof. The condition r is defined by induction on α. If α is a limit and $r \upharpoonright \beta$ is defined for every $\beta<\alpha$ then $r \upharpoonright \alpha$ is clear. So, consider successor stages $\alpha+1$. If α is a σ-centered stage, then define $r(\alpha)=$ $q(\alpha)$. If α is a countably closed stage we define $r(\alpha)$ to be a \mathbb{P}_{α}-term as follows:
(1) if $\bar{r} \leq p \upharpoonright \alpha$, then $\bar{r} \Vdash r(\alpha)=p(\alpha)$
(2) if $\bar{r} \perp p \upharpoonright \alpha$, then $\bar{r} \Vdash r(\alpha)=q(\alpha)$.

With this the inductive construction is defined. It remains to verify that $p \leq_{C} r$ and $r \leq_{D} q$.

By induction on α verify that $p \upharpoonright \alpha \leq r \upharpoonright \alpha$ and for countably closed stages $p \upharpoonright \alpha \Vdash p(\alpha)=r(\alpha)$ (holds by definition of $r(\alpha)$), and for σ centered stages $p \upharpoonright \alpha \Vdash p(\alpha) \leq q(\alpha)=r(\alpha)$ (again by definition of $r(\alpha))$.

Similarly, by induction on α verify that $r \upharpoonright \alpha \leq q \upharpoonright \alpha$ and for countably closed stages $r \upharpoonright \alpha \Vdash r(\alpha) \leq q(\alpha)$, and for σ-centered stages
$r \upharpoonright \alpha \Vdash r(\alpha)=q(\alpha)$. The latter holds by definition of $r(\alpha)$, so it remains to verify the former. Consider any $\bar{r} \leq r \upharpoonright \alpha$. If $\bar{r} \leq p \upharpoonright \alpha$, then

$$
\bar{r} \Vdash r(\alpha)=p(\alpha) \wedge p(\alpha) \leq q(\alpha) .
$$

If $\bar{r} \perp p \upharpoonright \alpha$, then again by definition of $r($ alpha) $\bar{r} \Vdash r(\alpha)=q(\alpha)$. Therefore every extension of $r \upharpoonright \alpha$ forces that $" r(\alpha) \leq q(\alpha)$ and so $r \upharpoonright \alpha \Vdash r(\alpha) \leq q(\alpha)$.
Definition 7. Suppose α is a σ-centered stage. Then in $V^{\mathbb{P}_{\alpha}}$ define a function $s: Q_{\alpha} \rightarrow \omega$ so that

$$
\Vdash_{\alpha}\left(\forall p, q \in Q_{\alpha}\right)(s(p)=s(q) \Longrightarrow p \not \perp q) .
$$

Remark 3. Abusing notation we will identify s with its \mathbb{P}_{α}-name \dot{s}.
Definition 8. Condition $p \in \mathbb{P}_{\kappa}$ is said to be determined if for all $\alpha \in$ Fsupport (p) there is $n \in \omega$ such that

$$
p \upharpoonright \alpha \Vdash s(p(\alpha))=\check{n} .
$$

Lemma 4. The set of determined conditions in \mathbb{P}_{κ} is dense. Suppose determined conditions q_{1} and q_{2} are given with

$$
\text { Fsupport }\left(q_{1}\right)=\operatorname{Fsupport}\left(q_{2}\right)
$$

and for all α in this finite support there is $n \in \omega$ such that $q_{1} \upharpoonright \alpha \Vdash$ $s\left(q_{1}(\alpha)\right)=\check{n}$ and $q_{2} \upharpoonright \alpha \Vdash s\left(q_{2}(\alpha)\right)=\check{n}$. Suppose also that for some $p \in \mathbb{P}_{\kappa}, q_{1} \leq p$ and $q_{2} \leq_{C} p$. Then q_{1} and q_{2} are compatible.
Proof. Proceed by induction on κ. Let $p \in \mathbb{P}_{\kappa}$. If κ is a limit, then there is $\alpha<\kappa$ such that $\operatorname{Fsupport}(p) \subseteq \alpha$. Then by inductive hypothesis there is a determined $\bar{r} \leq p \upharpoonright \alpha$ and so $\bar{r} \wedge p^{\alpha}$ is a determined condition extending p. At successor σ-centered stages $\alpha+1$, we can find determined $\bar{r} \leq p \upharpoonright \alpha$ such that for some $n \in \omega \bar{r} \Vdash s(p(\alpha))=\check{n}$. Then $\bar{r} \wedge r^{\alpha}$ is a determined extension of p.

To obtain the second claim of the Lemma, we will define a common extension r of q_{1} and q_{2} inductively. Suppose α is a limit and for every $\beta<\alpha$ we have defined $r \upharpoonright \beta$. Then let $r \upharpoonright \alpha=\cup_{\beta<\alpha} r \upharpoonright \beta$. At countably closed stages let $r(\alpha)=q_{1}(\alpha)$. Then

$$
r \upharpoonright \alpha \Vdash q_{1}(\alpha)=r(\alpha) \leq p(\alpha)=q_{2}(\alpha) .
$$

At σ-centered stages we have $r \upharpoonright \alpha \Vdash s\left(q_{1}(\alpha)\right)=s\left(q_{2}(\alpha)\right)=$ checkn for some n. Therefore we can choose $r(\alpha)$ to be a \mathbb{P}_{α}-name for a common extension of $q_{1}(\alpha)$ and $q_{2}(\alpha)$ and so

$$
r \upharpoonright \alpha \Vdash\left(r(\alpha) \leq q_{1}(\alpha)\right) \wedge\left(r(\alpha) \leq q_{2}(\alpha)\right) .
$$

Lemma 5. Let \mathbb{P}_{α} be a finite/countable support iteration with α a limit ordinal and let $\left\langle x_{\xi}: \xi<\lambda\right\rangle$ be a tower in $[\omega]^{\omega}$ for some regular λ. If there is an infinite $x \subseteq \omega$ in $V^{\mathbb{P}_{\alpha}}$ such that for all $\xi<\lambda, x \subseteq^{*} x_{\xi}$, then there is $\beta<\alpha$ and an infinite $y \subseteq \omega$ in $V^{\mathbb{P}_{\beta}}$ such that $\forall \xi<\lambda, y \subseteq^{*} x_{\xi}$.
Theorem $3(\mathrm{CH})$. Let $\mathbb{P}_{\omega_{2}}$ be the ω_{2}-stage finite/countable factored Mathias iteration. Then, in $V^{\mathbb{P}_{\omega_{2}}}$ we have $\mathfrak{h}=2^{\aleph_{0}}=\aleph_{2}$ and there are no ω_{2}-towers in $[\omega]^{\omega}$.

References

[1] J. Baumgartner Iterated forcing, Surveys in set theory (A.R.D. Mathias, editor), London Mathematical Society Lecture Notes Series, no. 87, Cambridge University Press, Cambridge, 1983, pp. 1-59.
[2] J. Baumgartner and P. Dordal Adjoining dominating functions, The Journal of Symbolic Logic, Vol. 50(1985), pp.94-101
[3] P. Dordal, A Model in which the base-matrix tree cannot have cofinal branches, The Journal of Symbolic Logic, Vol. 52, No. 3, 1987, pp. 651-664.
[4] K. Kunen Set Theory, North Holland, Amsterdam, 1980.

