
THE CONSISTENCY OF t = ω1 < h = ω2

VERA FISCHER

1. Preliminaries

In this section we systemize some well known definitions which will
be used throughout the talk.

Definition 1. Suppose E and F are maximal almost disjoint families.
We say that E is a refinement of F if and only if for every x ∈ E there
is y ∈ F such that x ⊆∗ y.

In the following consider the partial order ([ω]ω,⊆∗) consisting of
infinite subsets of ω with extension relation almost-inclusion. That is
if A, B ∈ [ω]ω then A ≤ B if and only if A ⊆∗ b. Note that in this
setting t is the greatest cardinal κ such that [ω]ω is κ-closed.

Definition 2. The distributivity cardinal h is defined as the least car-
dinal κ such that forcing with [ω]ω adds a new real h : κ → V (where
V denotes the ground model as usual). Equivalently, h is the least
cardinal such that any collection of less than κ-many maximal almost
disjoint families have a common refinement.

The above remark implies t ≤ h and so we have the following in-
equalities

p ≤ t ≤ h ≤ s.

Remark 1. Certainly every tower has the strong finite intersection prop-
erty and has no pseudo-intersection, which establishes the first inequal-
ity. To obtain that h ≤ s consider a splitting family A = {aα : α ∈ s}
and let G be a [ω]ω-generic filter. Then in V [G] define f : s → 2 as
follows:

f(α) = 1 iff aα ∈ G.

Consider any a ∈ [ω]ω as a condition in the associated partial order.
Since the family A is splitting, there is an α ∈ s such that both

a ∩ aα and a ∩ ac
s

are infinite. But then a does not decide ḟ(α) and so f is a new function

s → V . Here ḟ is an [ω]ω-name for the function f .
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Recall also that the following:

Definition 3. The Mathias forcing notion P consists of all pairs

(s, A) ∈ [ω]<ω × [ω]ω

where (t, B) ≤ (s, A) (that is (t, B) is stronger than (s, A)) if and only
if t end-extends s, B ⊆ A and t− s ⊆ B.

Lemma 1. There is a two stage iteration Q ∗ Ṙ of a countably closed
forcing notion Q and a σ-centered forcing notion Ṙ (that is 1 
Q

”Ṙ is σ − centered”) such that the Mathias partial order P is densely
embedded into Q ∗ Ṙ.

Proof. Let Q = ([ω]ω,⊆∗) and let G be Q-generic filter. Then in V [G]
define R to be the partial order consisting of all pairs (s, A) in the
Mathias partial order P for which the pure part A belongs to G with
the extension relation inherited from P and let Ṙ be a Q-name for R.
Then Q is countably closed, 
Q ”Ṙ is σ − centered” and the mapping

(s, A) 7→ (A, (s, A))

is a dense embedding of P into Q ∗ Ṙ. �

We will refer to the above two-stage iteration as factored Mathias
forcing.

Theorem 1 (CH). Let Pω2 be ω2-stage iteration of Mathias forcing,
or factored Mathias forcing. That is for every α < ω2, we have that
1α 
 ”Qα is Mathias forcing” or respectively for every α < ω2, α-
even 1α 
 ”Qα ∗Qα+1 is factored Mathias forcing”. Suppose that Pω2

satisfies the following conditions:

(1) Pω2 is ℵ2-c.c.
(2) For every p ∈ Pω2 the support of p is bounded
(3) For every α < ω2 V Pα � CH.
(4) Pω2 preserves ω1.

Then V Pω2 � h = ω2.

Proof. Let 〈Eγ : γ ∈ ω1〉 be a collection of ω1 Pω2-names for maximal
almost disjoint families and let p ∈ Pω2 . We can assume that for every
γ < ω1

p 
 |Eγ| = ℵ2

and fix sequences of Pω2-names for infinite subsets of ω such that for
every γ < ω1

p 
 Eγ = 〈xξ,γ : ξ ∈ ω2〉.



THE CONSISTENCY OF t = ω1 < h = ω2 3

We will show that there is a Pω2-name ẋ for an infinite subset of ω such
that for all γ < ω1

p 
 ẋ is almost contained in an element of Eγ.

Claim. For every sentence φ in the forcing language of Pω2 there is an
α < ω2 such that if q ∈ Pω2 and q decides φ then q � α decides φ.

Proof. Fix a maximal antichain of conditions deciding φ. Then since
Pω2 is ℵ2-c.c. |A| ≤ ℵ1. Furthermore the support of every condition is
bounded which implies that there is an α < ω2 such that⋃

{support(a) : a ∈ A} ⊆ α.

Then certainly, for every q which decides φ, q � α decides φ. �

Claim. If p 
 ẋ ⊆ ω then there is α = α(ẋ) < ω2 such that p 
 ẋ ∈
V [Gα(ẋ)].

Proof. For every n ∈ ω fix a maximal antichain An below p of conditions
deciding ”ň ∈ ẋ” and let αn(ẋ) < ω2 be such that⋃

{support(a) : a ∈ An} ⊆ αn.

Let α = α(ẋ) = supn∈ω αn(ẋ). �

Claim. There is a function f : ω2 → ω2 such that for every β < ω2 and
every γ < ω1 we have

p 
 〈ẋξγ : ξ < β〉 ∈ V [Gf(β)].

Proof. For every β < ω2 let

f(β) = sup{α(xξγ) : ξ < β, γ < ω1},

where α(ẋξγ) is defined as above. �

Claim. There is a function g : ω2 → ω2 such that for every β < ω2,
every γ < ω1 and every Pβ-name such that p 
 ẏ ∈ [ω]ω, we have

p 
 (∃ξ < g(β)|ẏ ∩ ẋξγ| = ℵ0.

Proof. Let β < ω2. Fix any γ < ω1. Then p 
 ”Eγ is mad”. Let ẏ be
a Pβ-term such that p 
 ẏ ∈ [ω]ω. Then

p 
 ∃ξ < ω2(|ẏ ∩ ẋξγ| = ℵ0).

Fix a maximal antichain Aγ(ẏ) below p such that for every q ∈ Aγ(ẏ)
there is ξq ∈ ω2 such that

q 
 |ẏ ∩ ẋξγ| = ℵ0.
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Then |Aγ(ẏ)| ≤ ℵ1 and so there is αγ(ẏ) < ω2 such that⋃
{support(a) : a ∈ Aγ(ẏ)} ⊆ αγ(ẏ).

Then α(ẏ) = supγ∈ω1
αγ(ẏ) is also smaller than ω2. However V Pβ � CH

and so we can define

g(β) = sup{αγ(ẏ) : ẏ is Pβ − name s.t. p 
β ẏ ∈ [ω]ω}.
�

Let α < ω2 be such that cof(α) = ω1 and ∀β < α, f(β) < α and
g(β) < α. Then the definition of f implies that for every γ < ω1

p 
 〈xξγ : ξ < α〉 ∈ V [Gα]

and furthermore the definition of g implies that

V [Gα] � ∀γ < ω1(〈ẋξγ : ξ < α〉 is mad)

since every real in V [Gα] appears in some V [Gβ] for β < α. Really,
suppose ẋ is a Pα-name for an infinite subset of ω, which does not
appear in V [Gβ] for any β < α. Then in V [Gα] we can define a cofinal
function f : ω → α as follows:

f(n) = γ iff ∃q ∈ G � γ(q decides ”ň ∈ ẋ),

which is a contradiction since V [Gα] preserves ω1.
However, the Mathias generic real is almost contained in a member

of every maximal almost disjoint family from the ground model and so
if gα is the α-th Mathias real, then

V [G] � ∀γ < ω1∃ξγ < α(range(gα) ⊆ ẋξγ).

�

The following theorem is due to Baumgartner.

Theorem 2. Let P be the Mathias partial order and let 〈xα : α < κ〉
be a tower in [ω]ω. Then 〈xα : α < κ〉 remains a tower in V P.

Proof. Suppose not. Then there is a P-generic extension V [G] such
that

V [G] � ∃x ∈ [ω]ω∀α < κ(x ⊆∗ xα).

Then there is a P-name for an infinite subset of ω and a condition
p = (s0, A0) ∈ G such that for every α < κ

(s0, A0) 
 ẋ ⊆∗ xα.

We can assume that the condition (s0, A0) is pre-processed for ẋ. That
is for every k ∈ ω and t ≤ (s0, A0) (that is t end-extends s0 and
t − s0 ⊆ A0) if there is C ⊆ A0 such that (t, C) 
 ǩ ∈ ẋ then there is
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some m ∈ ω such that (t, A0 − m) 
 ǩ ∈ ẋ. Then we can define for
every s ≤ (s0, A0) the set

Fs = {k : ∃C ⊆ A0((s, C) 
 ǩ ∈ ẋ)} = {k : (∃m)(s, A0 −m) 
 ǩ ∈ ẋ}.

Claim. There is (s, A) ≤ (s0, A0) such that for every t ≤ (s, A) the set
Fs is finite.

Proof. Suppose the claim is not true. That is for every (s, A) ≤ (s0, A0)
there is t ≤ (s, A) such that Ft is infinite. However there are only
countably many Ft’s and so there is some α < κ such that for every
t ≤ (s, A) such that Ft is infinite, Ft 6⊆∗ xα. Otherwise, for every
β < κ there is an infinite Ft such that Ft ⊆ xβ. However if F is an
infinite subset of ω such that F ⊆∗ Ft for every infinite Ft, then F
is a pseudo-intersection of 〈xα : α < κ〉 which belongs to the ground
model which is a contradiction to 〈xα : α < κ〉 being a tower. Since
(s0, A0) 
 ẋ ⊆∗ xα, there is an extension (s, A) ∈ G and j ∈ ω such
that

(s, A) 
 ẋ− j ⊆ xα.

By assumption there is t ≤ (s, A) such that Ft is infinite. But then
there is k ∈ Ft − xα − j and so by definition of Ft there is some m ∈ ω
such that (t, A0 −m) 
 ǩ ∈ ẋ. However (t, A−m) extends both (s, A)
and (t, A0 −m) and so

(t, A−m) 
 (ǩ ∈ ẋ− j) ∧ (ẋ− j ⊆ xα)

which is a contradiction since k 6∈ xα. �

Furthermore we have the following property.

Claim. Suppose (s0, A0) is a condition in P such that for every s ≤
(s0, A0) Fs is finite. Then there is B ⊆ A0 such that for every t ≤
(s0, B)

(s0, B) 
 F̌t ⊆ ẋ.

Proof. We will construct the set B inductively. Suppose we have de-
fined b0 < b1 < · · · < bn−1 and a set Bn ⊆ A0 such that b0 > max s0,
bn−1 < min Bn and such that for evert t which end-extends s0 and
such that t\s0 ⊆ {b0, . . . , bn−1}, (t, Bn) 
 Ft ⊆ ẋ. Let bn = min Bn.
Consider any t which end-extends s0 such that t\s0 ⊆ {bi}i≤n−1. Then
Ft_bn is finite and for every k ∈ Tt_bn there is nk

t ∈ ω such that

(t_bn, A0 − nk
t ) 
 ǩ ∈ ẋ

and since Bn ⊆ A this implies that

(t_bn, Bn − nk
t ) 
 ǩ ∈ ẋ.
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Let nt = max{nk
t : k ∈ Ft_bn}. Then if m is the maximum of all such

nt’s the set Bn−m has the property that for every t which end-extends
s0 and such that t\s0 ⊆ {bi}i≤n

(t_bn, Bn −m) 
 F̌t_bn ⊆ ẋ.

Let Bn+1 = Bn − m. With this the inductive construction is com-
plete. The set B = ∩{{b0, . . . , bn−1} ∪ Bn} = {bi}i∈ω has the desired
properties. �

Thus we can assume that the chosen condition (s0, A0) has the prop-
erties that for every s ≤ (s0, A0), Fs is finite and there is m ∈ ω such
that (s, A0 − m) 
 Fs ⊆ ẋ. Inductively, we will obtain an infinite
subset A of A0 such that for every s ≤ (s0, A) one of the following two
conditions holds:

(1) ∀a ∈ A− (‖s‖+ 1)Fs_a = Fs.
(2) (∃α < κ)(∀j ∈ ω)(∃mj ∈ ω)(∀a ∈ A−mj)Fs_a − xα − j 6= ∅.

Again, suppose we have defined {a0, . . . , an−1} and An ⊆ A0 such that
for every s which end-extends s0 and such that s − s0 ⊆ {ai}i≤n the
corresponding two conditions above hold (A substituted by An). Let
an = min An. Then successively consider all end-extensions s of s0 such
that s− s0 ⊆ {ai}i≤n and define a set As,n which is contained in As′,n

for every s′ considered prior to s and An as follows.
If B∗ =

⋃
{Fs_a : a ∈ An} is finite, then for every k ∈ B∗ either the

set Bk = {a ∈ An : k ∈ An} is finite or it is infinite. If Bk is finite
than we can remove the corresponding a’s from An (note also that in
this case k does not belong to Fs). If Bk is infinite, then for every
b ∈ Bk (by inductive hypothesis) we have (s_b, Bk) 
 ǩ ∈ ẋ and so
(s, Bk) 
 ǩ ∈ ẋ which implies that k ∈ Fs.

If B∗ =
⋃
{Fs_a : a ∈ An} is infinite, then let α < κ be such that

B∗ 6⊆∗ xα. Define As,n so that if a is the j-th element of As,n then there
is k ≥ j such that k ∈ Fs_a − xα − j.

Then define An+1 to be the intersection of all such As,n’s. Finally,
let A = {an}n∈ω. Then A ⊆ A0 and for every s ≤ (s0, A) one to the
two conditions above hold. Again since there are only countably many
s ≤ (s0, A) we can choose an α < κ such that α is greater than all β’s
associated to finite sequences s ≤ (s0, A) by part (ii) of the above two
conditions. Than since (s0, A) extends (s, A)

(s0, A) 
 ẋ ⊆ xα

and so there is some (s, B) ≤ (s0, A) and j ∈ ω such that

(s, B) 
 ẋ− j ⊆ xα.
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If for every b ∈ B, Fs_b = Fs, then (s, B) 
 ẋ ⊆ F̌s which is a
contradiction, since Fs is finite. Otherwise, we can find b ∈ B such
that there is k ∈ Fs_b − xα − j. Then there is some m ∈ ω such that

(s_b, B −m) 
 ǩ ∈ ẋ

which is a contradiction since (s_b, B−m) is an extension of (s, B) and
so we would obtain (s_b, B −m) 
 ǩ ∈ xα, which is not possible. �

2. Mixed-support iteration of factored Mathias forcing

We will begin with a well known definition of iterated forcing:

Definition 4. A partial order Pκ is a κ-stage iteration if and only if
Pκ is a set of κ-sequences and there is a sequence 〈Qα : α < κ〉 such
that of Pα = {p � α : p ∈ Pκ} for all α < κ, the following holds:

(1) (∀α < κ) Pα is an α-stage iteration, with stages 〈Qβ : β < α〉.
Let 
α denote forcing with Pα.

(2) (∀α < κ) 
α ”Qα is a partial order”.
(3) (∀p ∈ Pκ) (∀α < κ) 
α pα ∈ Qα and there is r ∈ Pα+1 where

r � α = p � α and r(α) = q̇.
(4) ∀p, q ∈ Pκ (p ≤ q) if and only is (∀α < κ) p � α 
α p(α) ≤ q(α).
(5) (∀β < α ≤ κ) (∀p ∈ Pα, q ∈ Pβ) if q ≤ p � β then q ∧ p ∈ Pα,

where q ∧ p(γ) = q(γ) for all γ < β and q ∧ p(γ) = p(γ) for
γ ≥ β.

(6) The trivial condition 1 ∈ Pκ, where for every α < κ, 1(α) is
forced to be the trivial condition in Qα.

For limit α ≤ κ we have to specify how Pα is constructed from

{p : dom(p) = α and (∀β < α)p � β ∈ Pβ}.

Usually we require Pα to consists of all conditions for which

support(p) = {β ∈ dom(p) : p(β) 6= 1̇}

is finite or countable. Then we refer to the iteration Pκ as finite re-
spectively countable support iteration.

In particular, we will be interested in mixed support iteration:

Definition 5. For κ any ordinal, let Pκ be an iterated forcing con-
struction such that for every α < κ either 
α ”Qα is σ − centered” or

α ”Qα is countably closed”. We thus speak about σ-centered stages
and countably closed stages. For p ∈ Pκ let

Fsupport(p) = {α < κ : α is a σ centered stage}.
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Then Pκ is the finite/countable support iteration of the Qα is for every
p ∈ Pκ, support(p) is countable, Fsupport(p) is finite and (∀α < κ) 
κ

p(α) ∈ Qα.

Definition 6. We say that p is a direct extension of q, denoted p ≤D q
if p ≤ q and for all σ-centered stages α < κ, p � α 
α p(α) = q(α).
Similarly, we say p is a C-extension of q, denoted p ≤C q if p ≤ q and
for all countably closed stages α < κ,p � α 
α p(α) = q(α).

Remark 2. Both of the relations ≤D and ≤C are transitive.

Lemma 2. Let {pn}n∈ω be a sequence in Pκ such that for every n
pn+1 ≤D pn. Then there is a condition p ∈ Pκ such that p ≤D pn for
all n.

Proof. Construct p inductively. If α is a limit and p � β is defined for
every β < α, then p � α is clear. At successor stage α+1 there are two
cases. If α is a countably closed stage and

p � α 
 p0(α) ≥ p1(α) ≥ · · · ≥ pn(α) . . .

then since Qα is countably closed we can choose p(α) to be a Pα-name
for an element of Qα such that p � α 
 p(α) ≤ pn(α) for every n. If α
is a σ-centered stage and

p � α 
 p0(α) = p1(α) = · · · = pn(α) = . . .

then we can simply define p(α) = p0(α). �

Lemma 3. Let p ≤ q in Pκ. Then there is r ∈ Pκ such that p ≤C r ≤D

q.

Proof. The condition r is defined by induction on α. If α is a limit
and r � β is defined for every β < α then r � α is clear. So, consider
successor stages α + 1. If α is a σ-centered stage, then define r(α) =
q(α). If α is a countably closed stage we define r(α) to be a Pα-term
as follows:

(1) if r̄ ≤ p � α, then r̄ 
 r(α) = p(α)
(2) if r̄⊥p � α, then r̄ 
 r(α) = q(α).

With this the inductive construction is defined. It remains to verify
that p ≤C r and r ≤D q.

By induction on α verify that p � α ≤ r � α and for countably closed
stages p � α 
 p(α) = r(α) (holds by definition of r(α)), and for σ-
centered stages p � α 
 p(α) ≤ q(α) = r(α) (again by definition of
r(α)).

Similarly, by induction on α verify that r � α ≤ q � α and for
countably closed stages r � α 
 r(α) ≤ q(α), and for σ-centered stages
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r � α 
 r(α) = q(α). The latter holds by definition of r(α), so it
remains to verify the former. Consider any r̄ ≤ r � α. If r̄ ≤ p � α,
then

r̄ 
 r(α) = p(α) ∧ p(α) ≤ q(α).

If r̄⊥p � α, then again by definition of r(alpha) r̄ 
 r(α) = q(α).
Therefore every extension of r � α forces that ”r(α) ≤ q(α) and so
r � α 
 r(α) ≤ q(α). �

Definition 7. Suppose α is a σ-centered stage. Then in V Pα define a
function s : Qα → ω so that


α (∀p, q ∈ Qα)(s(p) = s(q) =⇒ p 6⊥ q).

Remark 3. Abusing notation we will identify s with its Pα-name ṡ.

Definition 8. Condition p ∈ Pκ is said to be determined if for all
α ∈ Fsupport(p) there is n ∈ ω such that

p � α 
 s(p(α)) = ň.

Lemma 4. The set of determined conditions in Pκ is dense. Suppose
determined conditions q1 and q2 are given with

Fsupport(q1) = Fsupport(q2)

and for all α in this finite support there is n ∈ ω such that q1 � α 

s(q1(α)) = ň and q2 � α 
 s(q2(α)) = ň. Suppose also that for some
p ∈ Pκ, q1 ≤ p and q2 ≤C p. Then q1 and q2 are compatible.

Proof. Proceed by induction on κ. Let p ∈ Pκ. If κ is a limit, then
there is α < κ such that Fsupport(p) ⊆ α. Then by inductive hypoth-
esis there is a determined r̄ ≤ p � α and so r̄ ∧ pα is a determined
condition extending p. At successor σ-centered stages α + 1, we can
find determined r̄ ≤ p � α such that for some n ∈ ω r̄ 
 s(p(α)) = ň.
Then r̄ ∧ rα is a determined extension of p.

To obtain the second claim of the Lemma, we will define a common
extension r of q1 and q2 inductively. Suppose α is a limit and for every
β < α we have defined r � β. Then let r � α = ∪β<αr � β. At countably
closed stages let r(α) = q1(α). Then

r � α 
 q1(α) = r(α) ≤ p(α) = q2(α).

At σ-centered stages we have r � α 
 s(q1(α)) = s(q2(α)) = checkn for
some n. Therefore we can choose r(α) to be a Pα-name for a common
extension of q1(α) and q2(α) and so

r � α 
 (r(α) ≤ q1(α)) ∧ (r(α) ≤ q2(α)).

�
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Lemma 5. Let Pα be a finite/countable support iteration with α a limit
ordinal and let 〈xξ : ξ < λ〉 be a tower in [ω]ω for some regular λ. If
there is an infinite x ⊆ ω in V Pα such that for all ξ < λ, x ⊆∗ xξ, then
there is β < α and an infinite y ⊆ ω in V Pβ such that ∀ξ < λ, y ⊆∗ xξ.

Theorem 3 (CH). Let Pω2 be the ω2-stage finite/countable factored
Mathias iteration. Then, in V Pω2 we have h = 2ℵ0 = ℵ2 and there are
no ω2-towers in [ω]ω.
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