THE CONSISTENCY OF $\mathfrak{t} = \omega_1 < \mathfrak{h} = \omega_2$

VERA FISCHER

1. Preliminaries

In this section we systemize some well known definitions which will be used throughout the talk.

Definition 1. Suppose E and F are maximal almost disjoint families. We say that E is a refinement of F if and only if for every $x \in E$ there is $y \in F$ such that $x \subseteq^* y$.

In the following consider the partial order $([\omega]^{\omega}, \subseteq^*)$ consisting of infinite subsets of ω with extension relation almost-inclusion. That is if $A, B \in [\omega]^{\omega}$ then $A \leq B$ if and only if $A \subseteq^* b$. Note that in this setting \mathfrak{t} is the greatest cardinal κ such that $[\omega]^{\omega}$ is κ -closed.

Definition 2. The distributivity cardinal \mathfrak{h} is defined as the least cardinal κ such that forcing with $[\omega]^{\omega}$ adds a new real $h: \kappa \to V$ (where V denotes the ground model as usual). Equivalently, \mathfrak{h} is the least cardinal such that any collection of less than κ -many maximal almost disjoint families have a common refinement.

The above remark implies $\mathfrak{t} \leq \mathfrak{h}$ and so we have the following inequalities

$$\mathfrak{p} \leq \mathfrak{t} \leq \mathfrak{h} \leq \mathfrak{s}.$$

Remark 1. Certainly every tower has the strong finite intersection property and has no pseudo-intersection, which establishes the first inequality. To obtain that $\mathfrak{h} \leq \mathfrak{s}$ consider a splitting family $\mathcal{A} = \{a_{\alpha} : \alpha \in \mathfrak{s}\}$ and let G be a $[\omega]^{\omega}$ -generic filter. Then in V[G] define $f : \mathfrak{s} \to 2$ as follows:

$$f(\alpha) = 1$$
 iff $a_{\alpha} \in G$.

Consider any $a \in [\omega]^{\omega}$ as a condition in the associated partial order. Since the family \mathcal{A} is splitting, there is an $\alpha \in \mathfrak{s}$ such that both

$$a \cap a_{\alpha}$$
 and $a \cap a_s^c$

are infinite. But then a does not decide $f(\alpha)$ and so f is a new function $\mathfrak{s} \to V$. Here \dot{f} is an $[\omega]^{\omega}$ -name for the function f.

Date: July 12, 2007.

Recall also that the following:

Definition 3. The Mathias forcing notion \mathbb{P} consists of all pairs

$$(s,A) \in [\omega]^{<\omega} \times [\omega]^{\omega}$$

where $(t, B) \leq (s, A)$ (that is (t, B) is stronger than (s, A)) if and only if t end-extends $s, B \subseteq A$ and $t - s \subseteq B$.

Lemma 1. There is a two stage iteration Q * R of a countably closed forcing notion Q and a σ -centered forcing notion \dot{R} (that is $1 \Vdash_Q$ " \dot{R} is σ – centered") such that the Mathias partial order \mathbb{P} is densely embedded into $Q * \dot{R}$.

Proof. Let $Q = ([\omega]^{\omega}, \subseteq^*)$ and let G be Q-generic filter. Then in V[G] define R to be the partial order consisting of all pairs (s, A) in the Mathias partial order \mathbb{P} for which the pure part A belongs to G with the extension relation inherited from \mathbb{P} and let \dot{R} be a Q-name for R. Then Q is countably closed, \Vdash_Q " \dot{R} is σ – centered" and the mapping

$$(s, A) \mapsto (A, (s, A))$$

is a dense embedding of \mathbb{P} into $Q * \dot{R}$.

We will refer to the above two-stage iteration as *factored Mathias forcing*.

Theorem 1 (CH). Let \mathbb{P}_{ω_2} be ω_2 -stage iteration of Mathias forcing, or factored Mathias forcing. That is for every $\alpha < \omega_2$, we have that $\mathbb{1}_{\alpha} \Vdash "Q_{\alpha}$ is Mathias forcing" or respectively for every $\alpha < \omega_2$, α even $\mathbb{1}_{\alpha} \Vdash "Q_{\alpha} * Q_{\alpha+1}$ is factored Mathias forcing". Suppose that \mathbb{P}_{ω_2} satisfies the following conditions:

- (1) \mathbb{P}_{ω_2} is \aleph_2 -c.c.
- (2) For every $p \in \mathbb{P}_{\omega_2}$ the support of p is bounded
- (3) For every $\alpha < \omega_2 V^{\mathbb{P}_{\alpha}} \vDash CH$.
- (4) \mathbb{P}_{ω_2} preserves ω_1 .

Then $V^{\mathbb{P}_{\omega_2}} \models \mathfrak{h} = \omega_2$.

Proof. Let $\langle E_{\gamma} : \gamma \in \omega_1 \rangle$ be a collection of $\omega_1 \mathbb{P}_{\omega_2}$ -names for maximal almost disjoint families and let $p \in \mathbb{P}_{\omega_2}$. We can assume that for every $\gamma < \omega_1$

$$p \Vdash |E_{\gamma}| = \aleph_2$$

and fix sequences of \mathbb{P}_{ω_2} -names for infinite subsets of ω such that for every $\gamma < \omega_1$

$$p \Vdash E_{\gamma} = \langle x_{\xi,\gamma} : \xi \in \omega_2 \rangle.$$

 $\mathbf{2}$

We will show that there is a \mathbb{P}_{ω_2} -name \dot{x} for an infinite subset of ω such that for all $\gamma < \omega_1$

$$p \Vdash \dot{x}$$
 is almost contained in an element of E_{γ} .

Claim. For every sentence ϕ in the forcing language of \mathbb{P}_{ω_2} there is an $\alpha < \omega_2$ such that if $q \in \mathbb{P}_{\omega_2}$ and q decides ϕ then $q \upharpoonright \alpha$ decides ϕ .

Proof. Fix a maximal antichain of conditions deciding ϕ . Then since \mathbb{P}_{ω_2} is \aleph_2 -c.c. $|A| \leq \aleph_1$. Furthermore the support of every condition is bounded which implies that there is an $\alpha < \omega_2$ such that

$$\bigcup \{ \text{support}(a) : a \in A \} \subseteq \alpha.$$

Then certainly, for every q which decides ϕ , $q \upharpoonright \alpha$ decides ϕ .

Claim. If $p \Vdash \dot{x} \subseteq \omega$ then there is $\alpha = \alpha(\dot{x}) < \omega_2$ such that $p \Vdash \dot{x} \in V[G_{\alpha(\dot{x})}]$.

Proof. For every $n \in \omega$ fix a maximal antichain A_n below p of conditions deciding " $\check{n} \in \dot{x}$ " and let $\alpha_n(\dot{x}) < \omega_2$ be such that

$$\bigcup \{ \text{support}(a) : a \in A_n \} \subseteq \alpha_n.$$

Let $\alpha = \alpha(\dot{x}) = \sup_{n \in \omega} \alpha_n(\dot{x}).$

Claim. There is a function $f: \omega_2 \to \omega_2$ such that for every $\beta < \omega_2$ and every $\gamma < \omega_1$ we have

$$p \Vdash \langle \dot{x}_{\xi\gamma} : \xi < \beta \rangle \in V[G_{f(\beta)}].$$

Proof. For every $\beta < \omega_2$ let

$$f(\beta) = \sup\{\alpha(x_{\xi\gamma}) : \xi < \beta, \gamma < \omega_1\},\$$

where $\alpha(\dot{x}_{\xi\gamma})$ is defined as above.

Claim. There is a function $g: \omega_2 \to \omega_2$ such that for every $\beta < \omega_2$, every $\gamma < \omega_1$ and every \mathbb{P}_{β} -name such that $p \Vdash \dot{y} \in [\omega]^{\omega}$, we have

$$p \Vdash (\exists \xi < g(\beta) | \dot{y} \cap \dot{x}_{\xi\gamma} | = \aleph_0.$$

Proof. Let $\beta < \omega_2$. Fix any $\gamma < \omega_1$. Then $p \Vdash "E_{\gamma}$ is mad". Let \dot{y} be a \mathbb{P}_{β} -term such that $p \Vdash \dot{y} \in [\omega]^{\omega}$. Then

$$p \Vdash \exists \xi < \omega_2(|\dot{y} \cap \dot{x}_{\xi\gamma}| = \aleph_0).$$

Fix a maximal antichain $A_{\gamma}(\dot{y})$ below p such that for every $q \in A_{\gamma}(\dot{y})$ there is $\xi_q \in \omega_2$ such that

$$q \Vdash |\dot{y} \cap \dot{x}_{\xi\gamma}| = \aleph_0.$$

Then $|A_{\gamma}(\dot{y})| \leq \aleph_1$ and so there is $\alpha_{\gamma}(\dot{y}) < \omega_2$ such that

$$\bigcup \{ \text{support}(a) : a \in A_{\gamma}(\dot{y}) \} \subseteq \alpha_{\gamma}(\dot{y}).$$

Then $\alpha(\dot{y}) = \sup_{\gamma \in \omega_1} \alpha_{\gamma}(\dot{y})$ is also smaller than ω_2 . However $V^{\mathbb{P}_{\beta}} \vDash CH$ and so we can define

$$g(\beta) = \sup\{\alpha_{\gamma}(\dot{y}) : \dot{y} \text{ is } \mathbb{P}_{\beta} - \text{name s.t. } p \Vdash_{\beta} \dot{y} \in [\omega]^{\omega}\}.$$

Let $\alpha < \omega_2$ be such that $\operatorname{cof}(\alpha) = \omega_1$ and $\forall \beta < \alpha$, $f(\beta) < \alpha$ and $g(\beta) < \alpha$. Then the definition of f implies that for every $\gamma < \omega_1$

$$p \Vdash \langle x_{\xi\gamma} : \xi < \alpha \rangle \in V[G_\alpha]$$

and furthermore the definition of g implies that

$$V[G_{\alpha}] \vDash \forall \gamma < \omega_1(\langle \dot{x}_{\xi\gamma} : \xi < \alpha \rangle \text{ is mad})$$

since every real in $V[G_{\alpha}]$ appears in some $V[G_{\beta}]$ for $\beta < \alpha$. Really, suppose \dot{x} is a \mathbb{P}_{α} -name for an infinite subset of ω , which does not appear in $V[G_{\beta}]$ for any $\beta < \alpha$. Then in $V[G_{\alpha}]$ we can define a cofinal function $f: \omega \to \alpha$ as follows:

$$f(n) = \gamma \text{ iff } \exists q \in G \upharpoonright \gamma(q \text{ decides "}\check{n} \in \dot{x}),$$

which is a contradiction since $V[G_{\alpha}]$ preserves ω_1 .

However, the Mathias generic real is almost contained in a member of every maximal almost disjoint family from the ground model and so if g_{α} is the α -th Mathias real, then

$$V[G] \vDash \forall \gamma < \omega_1 \exists \xi_{\gamma} < \alpha(\operatorname{range}(g_{\alpha}) \subseteq \dot{x}_{\xi\gamma}).$$

The following theorem is due to Baumgartner.

Theorem 2. Let \mathbb{P} be the Mathias partial order and let $\langle x_{\alpha} : \alpha < \kappa \rangle$ be a tower in $[\omega]^{\omega}$. Then $\langle x_{\alpha} : \alpha < \kappa \rangle$ remains a tower in $V^{\mathbb{P}}$.

Proof. Suppose not. Then there is a \mathbb{P} -generic extension V[G] such that

$$V[G] \vDash \exists x \in [\omega]^{\omega} \forall \alpha < \kappa(x \subseteq^* x_{\alpha}).$$

Then there is a \mathbb{P} -name for an infinite subset of ω and a condition $p = (s_0, A_0) \in G$ such that for every $\alpha < \kappa$

$$(s_0, A_0) \Vdash \dot{x} \subseteq^* x_{\alpha}$$

We can assume that the condition (s_0, A_0) is pre-processed for \dot{x} . That is for every $k \in \omega$ and $t \leq (s_0, A_0)$ (that is t end-extends s_0 and $t - s_0 \subseteq A_0$) if there is $C \subseteq A_0$ such that $(t, C) \Vdash \check{k} \in \dot{x}$ then there is

some $m \in \omega$ such that $(t, A_0 - m) \Vdash \check{k} \in \dot{x}$. Then we can define for every $s \leq (s_0, A_0)$ the set

$$F_s = \{k : \exists C \subseteq A_0((s,C) \Vdash \check{k} \in \dot{x})\} = \{k : (\exists m)(s,A_0 - m) \Vdash \check{k} \in \dot{x}\}.$$

Claim. There is $(s, A) \leq (s_0, A_0)$ such that for every $t \leq (s, A)$ the set F_s is finite.

Proof. Suppose the claim is not true. That is for every $(s, A) \leq (s_0, A_0)$ there is $t \leq (s, A)$ such that F_t is infinite. However there are only countably many F_t 's and so there is some $\alpha < \kappa$ such that for every $t \leq (s, A)$ such that F_t is infinite, $F_t \not\subseteq^* x_\alpha$. Otherwise, for every $\beta < \kappa$ there is an infinite F_t such that $F_t \subseteq x_\beta$. However if F is an infinite subset of ω such that $F \subseteq^* F_t$ for every infinite F_t , then Fis a pseudo-intersection of $\langle x_\alpha : \alpha < \kappa \rangle$ which belongs to the ground model which is a contradiction to $\langle x_\alpha : \alpha < \kappa \rangle$ being a tower. Since $(s_0, A_0) \Vdash \dot{x} \subseteq^* x_\alpha$, there is an extension $(s, A) \in G$ and $j \in \omega$ such that

$$(s,A) \Vdash \dot{x} - j \subseteq x_{\alpha}.$$

By assumption there is $t \leq (s, A)$ such that F_t is infinite. But then there is $k \in F_t - x_\alpha - j$ and so by definition of F_t there is some $m \in \omega$ such that $(t, A_0 - m) \Vdash \check{k} \in \dot{x}$. However (t, A - m) extends both (s, A)and $(t, A_0 - m)$ and so

$$(t, A - m) \Vdash (\dot{k} \in \dot{x} - j) \land (\dot{x} - j \subseteq x_{\alpha})$$

which is a contradiction since $k \notin x_{\alpha}$.

Furthermore we have the following property.

Claim. Suppose (s_0, A_0) is a condition in \mathbb{P} such that for every $s \leq (s_0, A_0)$ F_s is finite. Then there is $B \subseteq A_0$ such that for every $t \leq (s_0, B)$

$$(s_0, B) \Vdash F_t \subseteq \dot{x}.$$

Proof. We will construct the set B inductively. Suppose we have defined $b_0 < b_1 < \cdots < b_{n-1}$ and a set $B_n \subseteq A_0$ such that $b_0 > \max s_0$, $b_{n-1} < \min B_n$ and such that for evert t which end-extends s_0 and such that $t \setminus s_0 \subseteq \{b_0, \ldots, b_{n-1}\}$, $(t, B_n) \Vdash F_t \subseteq \dot{x}$. Let $b_n = \min B_n$. Consider any t which end-extends s_0 such that $t \setminus s_0 \subseteq \{b_i\}_{i \leq n-1}$. Then $F_{t \frown b_n}$ is finite and for every $k \in T_{t \frown b_n}$ there is $n_t^k \in \omega$ such that

$$(t^{\frown}b_n, A_0 - n_t^k) \Vdash \dot{k} \in \dot{x}$$

and since $B_n \subseteq A$ this implies that

$$(t^{\frown}b_n, B_n - n_t^k) \Vdash k \in \dot{x}.$$

Let $n_t = \max\{n_t^k : k \in F_{t \frown b_n}\}$. Then if m is the maximum of all such n_t 's the set $B_n - m$ has the property that for every t which end-extends s_0 and such that $t \setminus s_0 \subseteq \{b_i\}_{i \le n}$

$$(t^{\frown}b_n, B_n - m) \Vdash \check{F}_{t^{\frown}b_n} \subseteq \dot{x}.$$

Let $B_{n+1} = B_n - m$. With this the inductive construction is complete. The set $B = \bigcap \{\{b_0, \ldots, b_{n-1}\} \cup B_n\} = \{b_i\}_{i \in \omega}$ has the desired properties.

Thus we can assume that the chosen condition (s_0, A_0) has the properties that for every $s \leq (s_0, A_0)$, F_s is finite and there is $m \in \omega$ such that $(s, A_0 - m) \Vdash F_s \subseteq \dot{x}$. Inductively, we will obtain an infinite subset A of A_0 such that for every $s \leq (s_0, A)$ one of the following two conditions holds:

(1) $\forall a \in A - (||s|| + 1)F_{s \frown a} = F_s.$

(2)
$$(\exists \alpha < \kappa) (\forall j \in \omega) (\exists m_j \in \omega) (\forall a \in A - m_j) F_{s \frown a} - x_\alpha - j \neq \emptyset.$$

Again, suppose we have defined $\{a_0, \ldots, a_{n-1}\}$ and $A_n \subseteq A_0$ such that for every s which end-extends s_0 and such that $s - s_0 \subseteq \{a_i\}_{i \leq n}$ the corresponding two conditions above hold (A substituted by A_n). Let $a_n = \min A_n$. Then successively consider all end-extensions s of s_0 such that $s - s_0 \subseteq \{a_i\}_{i \leq n}$ and define a set $A_{s,n}$ which is contained in $A_{s',n}$ for every s' considered prior to s and A_n as follows.

If $B^* = \bigcup \{F_{s \frown a} : a \in A_n\}$ is finite, then for every $k \in B^*$ either the set $B_k = \{a \in A_n : k \in A_n\}$ is finite or it is infinite. If B_k is finite than we can remove the corresponding a's from A_n (note also that in this case k does not belong to F_s). If B_k is infinite, then for every $b \in B_k$ (by inductive hypothesis) we have $(s \frown b, B_k) \Vdash \check{k} \in \dot{x}$ and so $(s, B_k) \Vdash \check{k} \in \dot{x}$ which implies that $k \in F_s$.

If $B^* = \bigcup \{F_{s \frown a} : a \in A_n\}$ is infinite, then let $\alpha < \kappa$ be such that $B^* \not\subseteq x_{\alpha}$. Define $A_{s,n}$ so that if a is the j-th element of $A_{s,n}$ then there is $k \ge j$ such that $k \in F_{s \frown a} - x_{\alpha} - j$.

Then define A_{n+1} to be the intersection of all such $A_{s,n}$'s. Finally, let $A = \{a_n\}_{n \in \omega}$. Then $A \subseteq A_0$ and for every $s \leq (s_0, A)$ one to the two conditions above hold. Again since there are only countably many $s \leq (s_0, A)$ we can choose an $\alpha < \kappa$ such that α is greater than all β 's associated to finite sequences $s \leq (s_0, A)$ by part (*ii*) of the above two conditions. Than since (s_0, A) extends (s, A)

$$(s_0, A) \Vdash \dot{x} \subseteq x_\alpha$$

and so there is some $(s, B) \leq (s_0, A)$ and $j \in \omega$ such that

$$(s,B) \Vdash \dot{x} - j \subseteq x_{\alpha}.$$

If for every $b \in B$, $F_{s \frown b} = F_s$, then $(s, B) \Vdash \dot{x} \subseteq \dot{F}_s$ which is a contradiction, since F_s is finite. Otherwise, we can find $b \in B$ such that there is $k \in F_{s \frown b} - x_{\alpha} - j$. Then there is some $m \in \omega$ such that

$$(s^{\frown}b, B-m) \Vdash k \in \dot{x}$$

which is a contradiction since $(s \frown b, B-m)$ is an extension of (s, B) and so we would obtain $(s \frown b, B-m) \Vdash \check{k} \in x_{\alpha}$, which is not possible. \Box

2. MIXED-SUPPORT ITERATION OF FACTORED MATHIAS FORCING

We will begin with a well known definition of iterated forcing:

Definition 4. A partial order \mathbb{P}_{κ} is a κ -stage iteration if and only if \mathbb{P}_{κ} is a set of κ -sequences and there is a sequence $\langle Q_{\alpha} : \alpha < \kappa \rangle$ such that of $\mathbb{P}_{\alpha} = \{p \upharpoonright \alpha : p \in \mathbb{P}_{\kappa}\}$ for all $\alpha < \kappa$, the following holds:

- (1) $(\forall \alpha < \kappa) \mathbb{P}_{\alpha}$ is an α -stage iteration, with stages $\langle Q_{\beta} : \beta < \alpha \rangle$. Let \Vdash_{α} denote forcing with \mathbb{P}_{α} .
- (2) $(\forall \alpha < \kappa) \Vdash_{\alpha} "Q_{\alpha}$ is a partial order".
- (3) $(\forall p \in \mathbb{P}_{\kappa}) \ (\forall \alpha < \kappa) \Vdash_{\alpha} p_{\alpha} \in Q_{\alpha}$ and there is $r \in \mathbb{P}_{\alpha+1}$ where $r \upharpoonright \alpha = p \upharpoonright \alpha$ and $r(\alpha) = \dot{q}$.
- (4) $\forall p, q \in \mathbb{P}_{\kappa} \ (p \leq q) \text{ if and only is } (\forall \alpha < \kappa) \ p \upharpoonright \alpha \Vdash_{\alpha} p(\alpha) \leq q(\alpha).$
- (5) $(\forall \beta < \alpha \le \kappa) \ (\forall p \in \mathbb{P}_{\alpha}, q \in \mathbb{P}_{\beta})$ if $q \le p \upharpoonright \beta$ then $q \land p \in \mathbb{P}_{\alpha}$, where $q \land p(\gamma) = q(\gamma)$ for all $\gamma < \beta$ and $q \land p(\gamma) = p(\gamma)$ for $\gamma \ge \beta$.
- (6) The trivial condition $\mathbb{1} \in \mathbb{P}_{\kappa}$, where for every $\alpha < \kappa$, $\mathbb{1}(\alpha)$ is forced to be the trivial condition in Q_{α} .

For limit $\alpha \leq \kappa$ we have to specify how \mathbb{P}_{α} is constructed from

$$\{p : \operatorname{dom}(p) = \alpha \text{ and } (\forall \beta < \alpha) p \upharpoonright \beta \in \mathbb{P}_{\beta} \}.$$

Usually we require \mathbb{P}_{α} to consists of all conditions for which

$$support(p) = \{\beta \in dom(p) : p(\beta) \neq 1\}$$

is finite or countable. Then we refer to the iteration \mathbb{P}_{κ} as finite respectively countable support iteration.

In particular, we will be interested in mixed support iteration:

Definition 5. For κ any ordinal, let \mathbb{P}_{κ} be an iterated forcing construction such that for every $\alpha < \kappa$ either $\Vdash_{\alpha} "Q_{\alpha}$ is σ – centered" or $\Vdash_{\alpha} "Q_{\alpha}$ is countably closed". We thus speak about σ -centered stages and countably closed stages. For $p \in \mathbb{P}_{\kappa}$ let

Fsupport(p) = { $\alpha < \kappa : \alpha$ is a σ centered stage}.

Then \mathbb{P}_{κ} is the finite/countable support iteration of the Q_{α} is for every $p \in \mathbb{P}_{\kappa}$, support(p) is countable, Fsupport(p) is finite and $(\forall \alpha < \kappa) \Vdash_{\kappa} p(\alpha) \in Q_{\alpha}$.

Definition 6. We say that p is a direct extension of q, denoted $p \leq_D q$ if $p \leq q$ and for all σ -centered stages $\alpha < \kappa$, $p \upharpoonright \alpha \Vdash_{\alpha} p(\alpha) = q(\alpha)$. Similarly, we say p is a C-extension of q, denoted $p \leq_C q$ if $p \leq q$ and for all countably closed stages $\alpha < \kappa, p \upharpoonright \alpha \Vdash_{\alpha} p(\alpha) = q(\alpha)$.

Remark 2. Both of the relations \leq_D and \leq_C are transitive.

Lemma 2. Let $\{p_n\}_{n\in\omega}$ be a sequence in \mathbb{P}_{κ} such that for every n $p_{n+1} \leq_D p_n$. Then there is a condition $p \in \mathbb{P}_{\kappa}$ such that $p \leq_D p_n$ for all n.

Proof. Construct p inductively. If α is a limit and $p \upharpoonright \beta$ is defined for every $\beta < \alpha$, then $p \upharpoonright \alpha$ is clear. At successor stage $\alpha + 1$ there are two cases. If α is a countably closed stage and

$$p \upharpoonright \alpha \Vdash p_0(\alpha) \ge p_1(\alpha) \ge \cdots \ge p_n(\alpha) \dots$$

then since Q_{α} is countably closed we can choose $p(\alpha)$ to be a \mathbb{P}_{α} -name for an element of Q_{α} such that $p \upharpoonright \alpha \Vdash p(\alpha) \leq p_n(\alpha)$ for every n. If α is a σ -centered stage and

$$p \upharpoonright \alpha \Vdash p_0(\alpha) = p_1(\alpha) = \dots = p_n(\alpha) = \dots$$

then we can simply define $p(\alpha) = p_0(\alpha)$.

Lemma 3. Let $p \leq q$ in \mathbb{P}_{κ} . Then there is $r \in \mathbb{P}_{\kappa}$ such that $p \leq_C r \leq_D q$.

Proof. The condition r is defined by induction on α . If α is a limit and $r \upharpoonright \beta$ is defined for every $\beta < \alpha$ then $r \upharpoonright \alpha$ is clear. So, consider successor stages $\alpha + 1$. If α is a σ -centered stage, then define $r(\alpha) = q(\alpha)$. If α is a countably closed stage we define $r(\alpha)$ to be a \mathbb{P}_{α} -term as follows:

- (1) if $\bar{r} \leq p \upharpoonright \alpha$, then $\bar{r} \Vdash r(\alpha) = p(\alpha)$
- (2) if $\bar{r} \perp p \upharpoonright \alpha$, then $\bar{r} \Vdash r(\alpha) = q(\alpha)$.

With this the inductive construction is defined. It remains to verify that $p \leq_C r$ and $r \leq_D q$.

By induction on α verify that $p \upharpoonright \alpha \leq r \upharpoonright \alpha$ and for countably closed stages $p \upharpoonright \alpha \Vdash p(\alpha) = r(\alpha)$ (holds by definition of $r(\alpha)$), and for σ centered stages $p \upharpoonright \alpha \Vdash p(\alpha) \leq q(\alpha) = r(\alpha)$ (again by definition of $r(\alpha)$).

Similarly, by induction on α verify that $r \upharpoonright \alpha \leq q \upharpoonright \alpha$ and for countably closed stages $r \upharpoonright \alpha \Vdash r(\alpha) \leq q(\alpha)$, and for σ -centered stages

 $r \upharpoonright \alpha \Vdash r(\alpha) = q(\alpha)$. The latter holds by definition of $r(\alpha)$, so it remains to verify the former. Consider any $\bar{r} \leq r \upharpoonright \alpha$. If $\bar{r} \leq p \upharpoonright \alpha$, then

$$\bar{r} \Vdash r(\alpha) = p(\alpha) \land p(\alpha) \le q(\alpha)$$

If $\bar{r} \perp p \upharpoonright \alpha$, then again by definition of $r(alpha) \ \bar{r} \Vdash r(\alpha) = q(\alpha)$. Therefore every extension of $r \upharpoonright \alpha$ forces that " $r(\alpha) \leq q(\alpha)$ and so $r \upharpoonright \alpha \Vdash r(\alpha) \leq q(\alpha)$.

Definition 7. Suppose α is a σ -centered stage. Then in $V^{\mathbb{P}_{\alpha}}$ define a function $s: Q_{\alpha} \to \omega$ so that

$$\Vdash_{\alpha} (\forall p, q \in Q_{\alpha})(s(p) = s(q) \implies p \not\perp q).$$

Remark 3. Abusing notation we will identify s with its \mathbb{P}_{α} -name \dot{s} .

Definition 8. Condition $p \in \mathbb{P}_{\kappa}$ is said to be determined if for all $\alpha \in \text{Fsupport}(p)$ there is $n \in \omega$ such that

$$p \restriction \alpha \Vdash s(p(\alpha)) = \check{n}.$$

Lemma 4. The set of determined conditions in \mathbb{P}_{κ} is dense. Suppose determined conditions q_1 and q_2 are given with

 $Fsupport(q_1) = Fsupport(q_2)$

and for all α in this finite support there is $n \in \omega$ such that $q_1 \upharpoonright \alpha \Vdash s(q_1(\alpha)) = \check{n}$ and $q_2 \upharpoonright \alpha \Vdash s(q_2(\alpha)) = \check{n}$. Suppose also that for some $p \in \mathbb{P}_{\kappa}, q_1 \leq p$ and $q_2 \leq_C p$. Then q_1 and q_2 are compatible.

Proof. Proceed by induction on κ . Let $p \in \mathbb{P}_{\kappa}$. If κ is a limit, then there is $\alpha < \kappa$ such that $\operatorname{Fsupport}(p) \subseteq \alpha$. Then by inductive hypothesis there is a determined $\overline{r} \leq p \upharpoonright \alpha$ and so $\overline{r} \wedge p^{\alpha}$ is a determined condition extending p. At successor σ -centered stages $\alpha + 1$, we can find determined $\overline{r} \leq p \upharpoonright \alpha$ such that for some $n \in \omega \ \overline{r} \Vdash s(p(\alpha)) = n$. Then $\overline{r} \wedge r^{\alpha}$ is a determined extension of p.

To obtain the second claim of the Lemma, we will define a common extension r of q_1 and q_2 inductively. Suppose α is a limit and for every $\beta < \alpha$ we have defined $r \upharpoonright \beta$. Then let $r \upharpoonright \alpha = \bigcup_{\beta < \alpha} r \upharpoonright \beta$. At countably closed stages let $r(\alpha) = q_1(\alpha)$. Then

$$r \upharpoonright \alpha \Vdash q_1(\alpha) = r(\alpha) \le p(\alpha) = q_2(\alpha).$$

At σ -centered stages we have $r \upharpoonright \alpha \Vdash s(q_1(\alpha)) = s(q_2(\alpha)) = checkn$ for some *n*. Therefore we can choose $r(\alpha)$ to be a \mathbb{P}_{α} -name for a common extension of $q_1(\alpha)$ and $q_2(\alpha)$ and so

$$r \upharpoonright \alpha \Vdash (r(\alpha) \le q_1(\alpha)) \land (r(\alpha) \le q_2(\alpha)).$$

Lemma 5. Let \mathbb{P}_{α} be a finite/countable support iteration with α a limit ordinal and let $\langle x_{\xi} : \xi < \lambda \rangle$ be a tower in $[\omega]^{\omega}$ for some regular λ . If there is an infinite $x \subseteq \omega$ in $V^{\mathbb{P}_{\alpha}}$ such that for all $\xi < \lambda$, $x \subseteq^* x_{\xi}$, then there is $\beta < \alpha$ and an infinite $y \subseteq \omega$ in $V^{\mathbb{P}_{\beta}}$ such that $\forall \xi < \lambda$, $y \subseteq^* x_{\xi}$.

Theorem 3 (CH). Let \mathbb{P}_{ω_2} be the ω_2 -stage finite/countable factored Mathias iteration. Then, in $V^{\mathbb{P}_{\omega_2}}$ we have $\mathfrak{h} = 2^{\aleph_0} = \aleph_2$ and there are no ω_2 -towers in $[\omega]^{\omega}$.

References

- [1] J. Baumgartner *Iterated forcing*, Surveys in set theory (A.R.D. Mathias, editor), London Mathematical Society Lecture Notes Series, no. 87, Cambridge University Press, Cambridge, 1983, pp. 1-59.
- J. Baumgartner and P. Dordal Adjoining dominating functions, The Journal of Symbolic Logic, Vol. 50(1985), pp.94-101
- [3] P. Dordal, A Model in which the base-matrix tree cannot have cofinal branches, The Journal of Symbolic Logic, Vol. 52, No. 3, 1987, pp. 651-664.

[4] K. Kunen Set Theory, North Holland, Amsterdam, 1980.