Projective maximal families of orthogonal measures with large continuum

Vera Fischer
Sy David Friedman
Asger Törnquist

We study maximal orthogonal families of Borel probability measures on 2^{ω} (abbreviated m.o. families) and show that there are generic extensions of the constructible universe L in which each of the following holds:
(1) There is a Δ_{3}^{1}-definable well order of the reals, there is a Π_{2}^{1}-definable m.o. family, there are no Σ_{2}^{1}-definable m.o. families and $\mathfrak{b}=\mathfrak{c}=\omega_{3}$ (in fact any reasonable value of \mathfrak{c} will do).
(2) There is a Δ_{3}^{1}-definable well order of the reals, there is a Π_{2}^{1}-definable m.o. family, there are no Σ_{2}^{1}-definable m.o. families, $\mathfrak{b}=\omega_{1}$ and $\mathfrak{c}=\omega_{2}$.

03E15, 03E17, 03E35, 03E45

1 Introduction

Let X be a Polish space, and let $P(X)$ denote the Polish space of Borel probability measures on X, in the sense of [9, 17.E]. Recall that if $\mu, \nu \in P(X)$ then μ and ν are said to be orthogonal, written $\mu \perp \nu$, if there is a Borel set $B \subseteq X$ such that $\mu(B)=0$ and $\nu(X \backslash B)=0$. A set of measures $\mathcal{A} \subseteq P(X)$ is said to be orthogonal if whenever $\mu, \nu \in \mathcal{A}$ and $\mu \neq \nu$ then $\mu \perp \nu$. A maximal orthogonal family, or m.o. family, is an orthogonal family $\mathcal{A} \subseteq P(X)$ which is maximal under inclusion.

The present paper is concerned with the study of definable m.o. families. A well-known result to Preiss and Rataj [13] states that there are no analytic m.o. families, and in a recent paper [3] it was shown by Fischer and Törnquist that if all reals are constructible then there is a Π_{1}^{1} m.o. family. The latter paper also raised the question how restrictive the existence of a definable m.o. family is on the structure of the real line, since it was shown that Π_{1}^{1} m.o. families cannot coexist with Cohen reals.

In the present paper we study Π_{2}^{1} m.o. families in the context of $\mathfrak{c} \geq \omega_{2}$, with the additional requirement that there is a Δ_{3}^{1}-definable wellorder of \mathbb{R}. Our main results are:

Theorem 1 It is consistent with $\mathfrak{c}=\mathfrak{b}=\omega_{3}$ that there is a Δ_{3}^{1}-definable wellorder of the reals, a Π_{2}^{1} definable maximal orthogonal family of measures and there are no $\boldsymbol{\Sigma}_{2}^{1}$-definable maximal sets of orthogonal measures.

There is nothing special about $\mathfrak{c}=\omega_{3}$. In fact the same result can be obtained for any reasonable value of \mathfrak{c}.

Theorem 2 It is consistent with $\mathfrak{b}=\omega_{1}, \mathfrak{c}=\omega_{2}$ that there is a Δ_{3}^{1}-definable wellorder of the reals, a Π_{2}^{1} definable maximal orthogonal family of measures and there are no $\boldsymbol{\Sigma}_{2}^{1}$-definable maximal sets of orthogonal measures.

Taken together these theorems indicate that the existence of a Π_{2}^{1} m.o. family does not seem to impose any severe restrictions on the structure of the real line. On the other hand, we show (Proposition 1) that Σ_{2}^{1} m.o. families cannot coexist with either Cohen or random reals, which is why in the models produced to prove Theorems 1 and 2 there are no $\boldsymbol{\Sigma}_{2}^{1}$ m.o. families.

The theorems of this paper belong to a line of results concerning the definability of certain combinatorial objects on the real line and in particular the question of how low in the projective hierarchy such objects exist. In [12] Mathias showed that there is no Σ_{1}^{1}-definable maximal almost disjoint (mad) family in $[\omega]^{\omega}$. Assuming $V=L$, Miller obtained (see [11]) a $\Pi_{1}^{1} \operatorname{mad}$ family in $[\omega]^{\omega}$.

The study of the existence of definable combinatorial objects on \mathbb{R} in the presence of a projective wellorder of the reals and $\mathfrak{c} \geq \omega_{2}$ was initiated in [1], [4] and [2]. The wellorder of \mathbb{R} in all those models has a Δ_{3}^{1}-definition, which is indeed optimal for models of $\mathfrak{c} \geq \omega_{2}$, since by Mansfield's theorem (see [7, Theorem 25.39]) the existence of a Σ_{2}^{1}-definable wellorder of the reals implies that all reals are constructible. The existence of a Π_{2}^{1}-definable ω-mad family in $[\omega]^{\omega}$ in the presence of $\mathfrak{c}=\mathfrak{b}=\omega_{2}$ was established by Friedman and Zdomskyy in [4]. In the same paper, referring to earlier results (see [14] and [8]) they outlined the construction of a model in which $\mathfrak{c}=\omega_{2}$ and there is a Π_{1}^{1}-definable ω-mad family: Start with the constructible universe L, obtain a Π_{1}^{1}-definable $\omega \mathrm{mad}$ family and proceed with a countable support iteration of length ω_{2} of Miller forcing. The techniques were further developed in [2] to establish a model in which there is a Π_{2}^{1}-definable ω mad family and $\mathfrak{c}=\mathfrak{b}=\omega_{3}$. In particular, in the models from [4] and [2], there are no maximal almost disjoint families of size $<\mathfrak{c}$ and so the almost disjointness number has a Π_{2}^{1}-witness.

The present paper combines the encoding techniques of [3] with the techniques of [1, 4, 2] to obtain Theorems 1 and 2 . We note that one significant difference from the situation for mad families is that m.o. families always have size \mathfrak{c} (see [3, Proposition 4.1]).

Acknowledgement. The authors would like to thank the Austrian Science Fund FWF for the generous support through grants no. P 20835-N13 (Fischer, Friedman), and P 19375-N18 (Friedman, Törnquist), as well as a Marie Curie grant from the European Union no. IRG-249167 (Törnquist).

2 Preliminaries

In this section, we briefly recall the coding of probability measures on 2^{ω} and the encoding technique for measures introduced in [3].

Let X be a Polish space. Recall that measures if $\mu, \nu \in P(X)$ then μ is said to be absolutely continuous with respect to ν, written $\mu \ll \nu$, if for all Borel subsets of X we have that $\nu(B)=0$ implies that $\mu(B)=0$. Two measures $\mu, \nu \in P\left(2^{\omega}\right)$ are called absolutely equivalent, written $\mu \approx \nu$, if $\mu \ll \nu$ and $\nu \ll \mu$.

If $s \in 2^{<\omega}$ we let $N_{s}=\left\{x \in 2^{\omega}: s \subseteq x\right\}$ be the basic neighbourhood determined by s. Following [3], we let

$$
p\left(2^{\omega}\right)=\left\{f: 2^{<\omega} \rightarrow[0,1]: f(\emptyset)=1 \wedge\left(\forall s \in 2^{<\omega}\right) f(s)=f\left(s^{\wedge} 0\right)+f\left(s^{\wedge} 1\right)\right\} .
$$

The spaces $p\left(2^{\omega}\right)$ and $P\left(2^{\omega}\right)$ are homeomorphic via the recursively defined isomorphism $f \mapsto \mu_{f}$ where $\mu_{f} \in P\left(2^{\omega}\right)$ is the measure uniquely determined by requiring that $\mu_{f}\left(N_{s}\right)=f(s)$ for all $s \in 2^{<\omega}$. We call the unique real $f \in p\left(2^{\omega}\right)$ such that $\mu=\mu_{f}$ the code for μ. The identification of $P\left(2^{\omega}\right)$ and $p\left(2^{\omega}\right)$ allow us to use the notions of effective descriptive set theory in the space $P\left(2^{\omega}\right)$. For instance, the set $P_{c}\left(2^{\omega}\right)$ of all non-atomic probability measures on 2^{ω} is arithmetical because the set $p_{c}\left(2^{\omega}\right)=\left\{f \in p\left(2^{\omega}\right): \mu_{f}\right.$ is non-atomic $\}$ is easily seen to be arithmetical, as shown in [3].

We will use the method of coding a real $z \in 2^{\omega}$ into a measure $\mu \in P_{c}\left(2^{\omega}\right)$ introduced in [3]. For convenience we repeat the construction in minimal detail. Given $\mu \in P_{c}\left(2^{\omega}\right)$ and $s \in 2^{<\omega}$ we let $t(s, \mu)$ be the lexicographically least $t \in 2^{<\omega}$ such that $s \subseteq t, \mu\left(N_{t^{\wedge} 0}\right)>0$ and $\mu\left(N_{t \sim 1}\right)>0$, if it exists and otherwise we let $t(s, \mu)=\emptyset$. Define recursively $t_{n}^{\mu} \in 2^{<\omega}$ by letting $t_{0}^{\mu}=\emptyset$ and $t_{n+1}^{\mu}=t\left(t_{n}^{\mu \wedge} 0, \mu\right)$. Since μ is non-atomic, we have $\operatorname{lh}\left(t_{n+1}^{\mu}\right)>\operatorname{lh}\left(t_{n}^{\mu}\right)$. Let $t_{\infty}^{\mu}=\bigcup_{n=0}^{\infty} t_{n}^{\mu}$. For $f \in p_{c}\left(2^{\omega}\right)$ and $n \in \omega \cup\{\infty\}$ we will write t_{n}^{f} for $t_{n}^{\mu_{f}}$. Clearly the sequence $\left(t_{n}^{f}: n \in \omega\right)$ is recursive in f.

Define the relation $R \subseteq p_{c}\left(2^{\omega}\right) \times 2^{\omega}$ as follows:

$$
\begin{aligned}
R(f, z) \Longleftrightarrow(\forall n \in \omega)(z(n) & \left.=1 \longleftrightarrow\left(f\left(t_{n}^{f \frown} 0\right)=\frac{2}{3} f\left(t_{n}^{f}\right) \wedge f\left(t_{n}^{\wedge} 1\right)=\frac{1}{3} f\left(t_{n}\right)\right)\right) \\
\wedge(z(n) & \left.=0 \longleftrightarrow f\left(t_{n}^{f \cap} 0\right)=\frac{1}{3} f\left(t_{n}^{f}\right) \wedge f\left(t_{n}^{f \frown} 1\right)=\frac{2}{3} f\left(t_{n}^{f}\right)\right)
\end{aligned}
$$

Whenever $(f, z) \in R$ we say that f codes z. Note that $\operatorname{dom}(R)=\left\{f \in p_{c}\left(2^{\omega}\right):(\exists z) R(f, z)\right\}$ is Π_{1}^{0} and so the function $r: \operatorname{dom}(R) \rightarrow 2^{\omega}$, where $r(f)=z$ if and only if $(f, z) \in R$, is also Π_{1}^{0}. If ν is a measure such that $\nu=\mu_{f}$ for some code f, then let $r(\nu)=r(f)$. The key properties of this construction is contained in the following Lemma (see [3, Coding Lemma]):

Lemma 1 There is a recursive function $G: p_{c}\left(2^{\omega}\right) \times 2^{\omega} \rightarrow p_{c}\left(2^{\omega}\right)$ such that $\mu_{G(f, z)} \approx \mu_{f}$ and $R(G(f, z), z)$ for all $f \in p_{c}\left(2^{\omega}\right)$ and $z \in 2^{\omega}$.

The proofs of Theorems 1 and 2 use the following result, which we now prove.
Proposition 1 Let $a \in \mathbb{R}$ and suppose that there either is a Cohen real over $L[a]$ or there is a random real over $L[a]$. Then there is no $\Sigma_{2}^{1}(a)$ m.o. family.

We first need a preparatory Lemma. In 2^{ω}, consider the equivalence E_{I} defined by

$$
x E_{I} y \Longleftrightarrow \sum_{n=0}^{\infty} \frac{|x(n)-y(n)|}{n+1}<\infty
$$

We identify 2^{ω} with \mathbb{Z}_{2}^{ω} and equip it with the Haar measure μ.
Lemma 2 Let $A \subseteq 2^{\omega}$ be a Borel set such that $\mu(A)>0$. Then $E_{I} \leq{ }_{B} E_{I} \upharpoonright A$, where $E_{I} \upharpoonright A$ is the restriction of E_{I} to A.

Notation: The constant 0 sequence of length $n \in \omega \cup\{\infty\}$ is denoted 0^{n}. If $A \subseteq 2^{\omega}$ and $s \in 2^{<\omega}$ let

$$
A_{(s)}=\left\{x \in 2^{\omega}: s^{\frown} x \in A\right\},
$$

the localization of A at s.

Proof of Lemma 2 Without loss of generality assume that $A \subseteq 2^{\omega}$ is closed. We will define $q_{n} \in \omega, s_{n, i}, s_{t} \in 2^{<\omega}$ recursively for all $n \in \omega, i \in\{0,1\}$ and $t \in 2^{<\omega}$ satisfying
(1) $q_{0}=0$ and $q_{n+1}=q_{n}+\operatorname{lh}\left(s_{n, 0}\right)$.
(2) $s_{0, i}=\emptyset$ and $\operatorname{lh}\left(s_{n, i}\right)=\operatorname{lh}\left(s_{n, 1-i}\right)>0$ when $n>0$.
(3) $s_{\emptyset}=\emptyset$ and $s_{t \smile i}=s_{t} \frown s_{\operatorname{lh}(t)+1, i}$ for all $t \in 2^{<\omega}, i \in\{0,1\}$.
(4) $\frac{1}{n+1} \leq \sum_{k=0}^{\operatorname{lh}\left(s_{n+1,0}\right)} \frac{\left|s_{n+1,0}(k)-s_{n+1,1}(k)\right|}{q_{n}+k+1} \leq \frac{2}{n+1}$.
(5) $N_{s_{t}} \subseteq A$.
(6) If $t \in 2^{n}$ then $\mu\left(A_{\left(s_{t}\right)}\right)>1-2^{-n}$.

Suppose this can be done. We claim that the map $2^{\omega} \rightarrow A: x \mapsto a_{x}$ defined by

$$
a_{x}=\bigcup_{n \in \omega} s_{x \mid n}
$$

is a Borel (in fact, continuous) reduction of E_{I} to $E_{I} \upharpoonright A$. To see this, fix $x, y \in 2^{\omega}$ and note that by (4) we have that
$\sum_{n=0}^{\infty} \frac{|x(n)-y(n)|}{n+1} \leq \sum_{n=0}^{\infty} \sum_{k=0}^{\operatorname{lh}\left(s_{n+1,0)}\right.} \frac{\left|s_{n+1, x(i)}(k)-s_{n+1, y(i)}(k)\right|}{q_{n}+k+1}=\sum_{n=0}^{\infty} \frac{\left|a_{x}(n)-a_{y}(n)\right|}{n+1} \leq 2 \sum_{n=0}^{\infty} \frac{|x(n)-y(n)|}{n+1}$ so that $x E_{I} y$ if and only if $a_{x} E_{I} a_{y}$.

We now show that we can construct a scheme satisfying (1)-(6) above. Suppose $q_{k}, s_{k, i}$ and s_{t} have been defined for all $k \leq n$ and $t \in 2^{\leq n}$. It is enough to define $s_{n+1, i}$ satisfying (4)-(6). Define

$$
f_{q_{n}}: 2^{\omega} \rightarrow[0, \infty]: f_{q_{n}}(x)=\sum_{k=0}^{\infty} \frac{x(k)}{q_{n}+k+1} .
$$

It is clear that $f_{q_{n}}\left(N_{0^{k}}\right)$ is dense in $[0, \infty]$ for all $k \in \omega$. Let

$$
A^{\prime}=\left\{x \in A: \lim _{k \rightarrow \infty} \mu\left(A_{(x \mid k)}\right) \rightarrow 1\right\},
$$

i.e, the set of points in A of density 1. By the Lebesgue density theorem [9, 17.9] we have $\mu\left(A \backslash A^{\prime}\right)=$ 0 . Let $A^{\prime \prime}=\bigcap_{t \in 2^{n}} A_{\left(s_{t}\right)}^{\prime}$ and note that by (6) we have $\mu\left(A^{\prime \prime}\right)>0$. Thus the set of differences $A^{\prime \prime}-A^{\prime \prime}$ contains a neighborhood of 0^{∞} by $[9,17.13]$. It follows that there are $x_{0}, x_{1} \in A^{\prime \prime}$ such that

$$
\frac{1}{n+2} \leq \sum_{k=0}^{\infty} \frac{\left|x_{0}(k)-x_{1}(k)\right|}{q_{n}+k+1} \leq \frac{2}{n+2} .
$$

Since all points in $A_{\left(s_{t}\right)}^{\prime}$ have density 1 in $A_{\left(s_{t}\right)}^{\prime}$ there is some $k_{0} \in \omega$ such that

$$
\mu\left(A_{\left(s_{t} x_{i} \backslash k_{0}\right)}^{\prime}\right)>1-2^{-n-1}
$$

for all $t \in 2^{n}$. Defining $s_{n+1, i}=x_{i} \upharpoonright k_{0}$, it is then clear that (4)-(6) holds.
Proof of Proposition 1 As the proof easily relativizes, assume that $a=0$. We proceed exactly as in [3, Proposition 4.2]. Suppose $A \subseteq P\left(2^{\omega}\right)$ is a Σ_{2}^{1} m.o. family. Recall from [10] and [3, p. 1406] that there is a Borel function $2^{\omega} \rightarrow P\left(2^{\omega}\right): x \mapsto \mu^{x}$ such that

$$
x E_{I} y \Longrightarrow \mu^{x} \approx \mu^{y}
$$

and

$$
x \not \nabla_{I} y \Longrightarrow \mu^{x} \perp \mu^{y}
$$

Define as in [3, Proposition 4.2] a relation $Q \subseteq 2^{\omega} \times P\left(2^{\omega}\right)^{\omega}$ by

$$
Q\left(x,\left(\nu_{n}\right)\right) \Longleftrightarrow(\forall n)\left(\nu_{n} \in A \wedge \nu_{n} \not \perp \mu^{x}\right) \wedge(\forall \mu)\left(\mu \not \perp \mu^{x} \longrightarrow(\exists n) \nu_{n} \not \perp \mu\right)
$$

and note that this is Σ_{2}^{1} when A is. Note that $Q\left(x,\left(\nu_{n}\right)\right)$ precisely when $\left(\nu_{n}\right)$ enumerates the measures in A not orthogonal to μ^{x} (this set is always countable, see [10, Theorem 3.1].) Since A is maximal, each section Q_{x} is non-empty, and so we can uniformize Q with a (total) function $f: 2^{\omega} \rightarrow p\left(2^{\omega}\right)^{\omega}$ having a Δ_{2}^{1} graph. Note that assignment

$$
x \mapsto A(x)=\left\{f(x)_{n}: n \in \mathcal{N}\right\}
$$

is invariant on the E_{I} classes.
If there is a Cohen real over L it follows from [6] that f is Baire measurable. Since E_{I} is a turbulent equivalence relation (in the sense of Hjorth, see e.g. [10]) the map $x \mapsto A(x)$ must be constant on a comeagre set. But this contradicts that all E_{I} classes are meagre.

If on the other hand there is a random real over L, then f is Lebesgue measurable by [6]. Let $F \subseteq 2^{\omega}$ be a closed set with positive measure on which f is continuous, and let $g: 2^{\omega} \rightarrow F$ be a Borel reduction of E_{I} to $E_{I} \upharpoonright F$. Note that $x \mapsto A(g(x))$ is then an E_{I}-invariant Borel assignment of countable subsets of $p\left(2^{\omega}\right)$, and so since E_{I} is turbulent the function $f \circ g$ must be constant on a comeagre set. This again contradicts that all E_{I} classes are meagre.

$3 \Delta_{3}^{1}$ w.o. of the reals, Π_{2}^{1} m.o. family, no Σ_{2}^{1} m.o. families with $\mathfrak{b}=\mathfrak{c}=\omega_{3}$

We proceed with the proof of Theorem 1. We will use a modification of the model constructed in [2]. The preliminary stage $\mathbb{P}_{0}=\mathbb{P}^{0} * \mathbb{P}^{1} * \mathbb{P}^{2}$ of the iteration will coincide almost identically with the preliminary stage \mathbb{P}_{0} of [2] (see Step 0 through Step 2). For convenience of the reader we outline its construction. We work over the constructible universe L.

Recall that a transitive $Z F^{-}$model is suitable if $\omega_{3}^{\mathcal{M}}$ exists and $\omega_{3}^{\mathcal{M}}=\omega_{3}^{L^{\mathcal{M}}}$. If \mathcal{M} is suitable then also $\omega_{1}^{\mathcal{M}}=\omega_{1}^{L^{\mathcal{M}}}$ and $\omega_{2}^{\mathcal{M}}=\omega_{2}^{L^{\mathcal{M}}}$.

Fix a $\diamond_{\omega_{2}}\left(\operatorname{cof}\left(\omega_{1}\right)\right)$ sequence $\left\langle G_{\xi}: \xi \in \omega_{2} \cap \operatorname{cof}\left(\omega_{1}\right)\right\rangle$ which is Σ_{1}-definable over $L_{\omega_{2}}$. For $\alpha<\omega_{3}$, let W_{α} be the L-least subset of ω_{2} coding α and let $S_{\alpha}=\left\{\xi \in \omega_{2} \cap \operatorname{cof}\left(\omega_{1}\right): G_{\xi}=W_{\alpha} \cap \xi \neq \emptyset\right\}$. Then $\vec{S}=\left\langle S_{\alpha}: 1<\alpha<\omega_{3}\right\rangle$ is a sequence of stationary subsets of $\omega_{2} \cap \operatorname{cof}\left(\omega_{1}\right)$, which are mutually almost disjoint.

For every α such that $\omega \leq \alpha<\omega_{3}$ shoot a club C_{α} disjoint from S_{α} via the poset \mathbb{P}_{α}^{0}, consisting of all closed subsets of ω_{2} which are disjoint from S_{α} with the extension relation being end-extension, and let $\mathbb{P}^{0}=\prod_{\alpha<\omega_{3}} \mathbb{P}_{\alpha}^{0}$ be the direct product of the \mathbb{P}_{α}^{0} 's with supports of size ω_{1}, where for $\alpha \in \omega$, \mathbb{P}_{α}^{0} is the trivial poset. Then \mathbb{P}^{0} is countably closed, ω_{2}-distributive and ω_{3}-c.c.

For every α such that $\omega \leq \alpha<\omega_{3}$ let $D_{\alpha} \subseteq \omega_{3}$ be a set coding the triple $\left\langle C_{\alpha}, W_{\alpha}, W_{\gamma}\right\rangle$ where γ is the largest limit ordinal $\leq \alpha$. Let

$$
E_{\alpha}=\left\{\mathcal{M} \cap \omega_{2}: \mathcal{M} \prec L_{\alpha+\omega_{2}+1}\left[D_{\alpha}\right], \omega_{1} \cup\left\{D_{\alpha}\right\} \subseteq \mathcal{M}\right\} .
$$

Then E_{α} is a club on ω_{2}. Choose $Z_{\alpha} \subseteq \omega_{2}$ such that $\operatorname{Even}\left(Z_{\alpha}\right)=D_{\alpha}$, where $\operatorname{Even}\left(Z_{\alpha}\right)=\{\beta$: $\left.2 \cdot \beta \in Z_{\alpha}\right\}$, and if $\beta<\omega_{2}$ is the $\omega_{2}^{\mathcal{M}}$ for some suitable model \mathcal{M} such that $Z_{\alpha} \cap \beta \in \mathcal{M}$, then $\beta \in E_{\alpha}$. Then we have:
$(*)_{\alpha}$: If $\beta<\omega_{2}, \mathcal{M}$ is a suitable model such that $\omega_{1} \subset \mathcal{M}, \omega_{2}^{\mathcal{M}}=\beta$, and $Z_{\alpha} \cap \beta \in \mathcal{M}$, then $\mathcal{M} \vDash \psi\left(\omega_{2}, Z_{\alpha} \cap \beta\right)$, where $\psi\left(\omega_{2}, X\right)$ is the formula " $\operatorname{Even}(X)$ codes a triple $\langle\bar{C}, \bar{W}, \overline{\bar{W}}\rangle$, where \bar{W} and $\overline{\bar{W}}$ are the L-least codes of ordinals $\bar{\alpha}, \overline{\bar{\alpha}}<\omega_{3}$ such that $\overline{\bar{\alpha}}$ is the largest limit ordinal not exceeding $\bar{\alpha}$, and \bar{C} is a club in ω_{2} disjoint from $S_{\bar{\alpha}}$ ".

Similarly to \vec{S} define a sequence $\vec{A}=\left\langle A_{\xi}: \xi<\omega_{2}\right\rangle$ of stationary subsets of ω_{1} using the "standard" \diamond-sequence. Code Z_{α} by a subset X_{α} of ω_{1} with the poset \mathbb{P}_{α}^{1} consisting of all pairs $\left\langle s_{0}, s_{1}\right\rangle \in$ $\left[\omega_{1}\right]^{<\omega_{1}} \times\left[Z_{\alpha}\right]^{<\omega_{1}}$ where $\left\langle t_{0}, t_{1}\right\rangle \leq\left\langle s_{0}, s_{1}\right\rangle$ iff s_{0} is an initial segment of $t_{0}, s_{1} \subseteq t_{1}$ and $t_{0} \backslash s_{0} \cap A_{\xi}=\emptyset$ for all $\xi \in s_{1}$. Then X_{α} satisfies the following condition:
$(* *)_{\alpha}$: If $\omega_{1}<\beta \leq \omega_{2}$ and \mathcal{M} is a suitable model such that $\omega_{2}^{\mathcal{M}}=\beta$ and $\left\{X_{\alpha}\right\} \cup \omega_{1} \subset \mathcal{M}$, then $\mathcal{M} \vDash \phi\left(\omega_{1}, \omega_{2}, X_{\alpha}\right)$, where $\phi\left(\omega_{1}, \omega_{2}, X\right)$ is the formula: "Using the sequence \vec{A}, X almost disjointly codes a subset \bar{Z} of ω_{2}, such that $\operatorname{Even}(\bar{Z})$ codes a triple $\langle\bar{C}, \bar{W}, \overline{\bar{W}}\rangle$, where \bar{W} and $\overline{\bar{W}}$ are the L-least codes of ordinals $\bar{\alpha}, \overline{\bar{\alpha}}<\omega_{3}$ such that $\overline{\bar{\alpha}}$ is the largest limit ordinal not exceeding $\bar{\alpha}$, and \bar{C} is a club in ω_{2} disjoint from $S_{\bar{\alpha}}$ ".

Let $\mathbb{P}^{1}=\prod_{\alpha<\omega_{3}} \mathbb{P}_{\alpha}^{1}$, where \mathbb{P}_{α}^{1} is the trivial poset for all $\alpha \in \omega$, with countable support. Then \mathbb{P}^{1} is countably closed and has the ω_{2}-c.c.

Finally we force a localization of the X_{α} 's. Fix ϕ as in $(* *)_{\alpha}$ and let $\mathcal{L}\left(X, X^{\prime}\right)$ be the poset defined in [2, Definition 1], where $X, X^{\prime} \subset \omega_{1}$ are such that $\phi\left(\omega_{1}, \omega_{2}, X\right)$ and $\phi\left(\omega_{1}, \omega_{2}, X^{\prime}\right)$ hold in any suitable model \mathcal{M} with $\omega_{1}^{\mathcal{M}}=\omega_{1}^{L}$ containing X and X^{\prime}, respectively. That is $\mathcal{L}\left(X, X^{\prime}\right)$ consists of all functions $r:|r| \rightarrow 2$, where the domain $|r|$ of r is a countable limit ordinal such that:
(1) if $\gamma<|r|$ then $\gamma \in X$ iff $r(3 \gamma)=1$
(2) if $\gamma<|r|$ then $\gamma \in X^{\prime}$ iff $r(3 \gamma+1)=1$
(3) if $\gamma \leq|r|, \mathcal{M}$ is a countable suitable model containing $r \upharpoonright \gamma$ as an element and $\gamma=\omega_{1}^{\mathcal{M}}$, then $\mathcal{M} \vDash \phi\left(\omega_{1}, \omega_{2}, X \cap \gamma\right) \wedge \phi\left(\omega_{1}, \omega_{2}, X^{\prime} \cap \gamma\right)$.

The extension relation is end-extension. Then let $\mathbb{P}_{\alpha+m}^{2}=\mathcal{L}\left(X_{\alpha+m}, X_{\alpha}\right)$ for every $\alpha \in \operatorname{Lim}\left(\omega_{3}\right) \backslash\{0\}$ and $m \in \omega$. Let $\mathbb{P}_{\alpha+m}^{2}$ be the trivial poset for $\alpha=0, m \in \omega$ and let

$$
\mathbb{P}^{2}=\prod_{\alpha \in \operatorname{Lim}\left(\omega_{3}\right)} \prod_{m \in \omega} \mathbb{P}_{\alpha+m}^{2}
$$

with countable supports. Note that the poset $\mathbb{P}_{\alpha+m}^{2}$, where $\alpha>0$, produces a generic function in ${ }^{\omega_{1}} 2$ (of $L^{\mathbb{P}^{0} * \mathbb{P}^{1}}$), which is the characteristic function of a subset $Y_{\alpha+m}$ of ω_{1} with the following property:
$(* * *)_{\alpha}$: For every $\beta<\omega_{1}$ and any suitable \mathcal{M} such that $\omega_{1}^{\mathcal{M}}=\beta$ and $Y_{\alpha+m} \cap \beta$ belongs to \mathcal{M}, we have $\mathcal{M} \vDash \phi\left(\omega_{1}, \omega_{2}, X_{\alpha+m} \cap \beta\right) \wedge \phi\left(\omega_{1}, \omega_{2}, X_{\alpha} \cap \beta\right)$.

Claim $\mathbb{P}_{0}:=\mathbb{P}^{0} * \mathbb{P}^{1} * \mathbb{P}^{2}$ is ω-distributive.

Proof [2, Lemma 1].

Let $\vec{B}=\left\langle B_{\zeta, m}: \zeta<\omega_{1}, m \in \omega\right\rangle$ be a nicely definable sequence of almost disjoint subsets of ω. We will define a finite support iteration $\left\langle\mathbb{P}_{\alpha}, \mathbb{Q}_{\beta}: \alpha \leq \omega_{3}, \beta<\omega_{3}\right\rangle$ such that $\mathbb{P}_{0}=\mathbb{P}^{0} * \mathbb{P}^{1} * \mathbb{P}^{2}$, for every $\alpha<\omega_{3}, \mathbb{Q}_{\alpha}$ is a \mathbb{P}_{α}-name for a σ-centered poset, in $L^{\mathbb{P}_{\omega_{3}}}$ there is a Δ_{3}^{1}-definable wellorder of the reals, a Π_{2}^{1}-definable maximal family of orthogonal measures and there are no Σ_{2}^{1}-definable maximal families of orthogonal measures. Along the iteration for every $\alpha<\omega_{3}$, we will define in $V^{\mathbb{P}_{\alpha}}$ a set O_{α} of orthogonal measures and for $\alpha \in \operatorname{Lim}(\alpha)$ a subset A_{α} of $[\alpha, \alpha+\omega)$. Every \mathbb{Q}_{α} will add a generic real, whose \mathbb{P}_{α}-name will be denoted u_{α} and similarly to the proof of [2, Lemma 2] one can prove that $L\left[G_{\alpha}\right] \cap^{\omega} \omega=L\left[\left\langle u_{\xi}^{G_{\alpha}}: \xi<\alpha\right\rangle\right] \cap{ }^{\omega} \omega$ for every \mathbb{P}_{α}-generic filter G_{α}. This gives a canonical wellorder of the reals in $L\left[G_{\alpha}\right]$ which depends only on the sequence $\left\langle u_{\xi}: \xi<\alpha\right\rangle$, whose \mathbb{P}_{α}-name will be denoted by $<_{\alpha}$. We can additionally arrange that for $\alpha<\beta,<_{\alpha}$ is an initial segment of $<_{\beta}$, where $<_{\alpha}=<_{\alpha}^{G_{\alpha}}$ and $<_{\beta}=<_{\beta}^{G_{\beta}}$. Then if G is a $\mathbb{P}_{\omega_{3}}$-generic filter over L, then $<^{G}=\bigcup\left\{<_{\alpha}^{G}: \alpha<\omega_{3}\right\}$ will be the desired wellorder of the reals and $O=\bigcup_{\alpha<\omega_{3}} O_{\alpha}$ will be the Π_{2}^{1}-definable maximal family of orthogonal measures.

We proceed with the recursive definition of $\mathbb{P}_{\omega_{3}}$. For every $\nu \in\left[\omega_{2}, \omega_{3}\right)$ let $i_{\nu}: \nu \cup\{\langle\xi, \eta\rangle: \xi<$ $\eta<\nu\} \rightarrow \operatorname{Lim}\left(\omega_{3}\right)$ be a fixed bijection. If G_{α} is a \mathbb{P}_{α}-generic filter over $L,<{ }_{\alpha}=<_{\alpha}^{G_{\alpha}}$ and x, y are reals in $L\left[G_{\alpha}\right]$ such that $x<_{\alpha} y$, let $x * y=\{2 n: n \in x\} \cup\{2 n+1: n \in y\}$ and $\Delta(x * y)=\{2 n+2: n \in x * y\} \cup\{2 n+1: n \notin x * y\}$. Suppose \mathbb{P}_{α} has been defined and fix a \mathbb{P}_{α}-generic filter G_{α}.

If $\alpha=\omega_{2} \cdot \alpha^{\prime}+\xi$, where $\alpha^{\prime}>0, \xi \in \operatorname{Lim}\left(\omega_{2}\right)$, let $\nu=$ o.t. $\left(<_{\omega_{2} \cdot \alpha^{\prime}}^{G_{\alpha}}\right)$ and let $i=i_{\nu}$.
Case 1. If $i^{-1}(\xi)=\left\langle\xi_{0}, \xi_{1}\right\rangle$ for some $\xi_{0}<\xi_{1}<\nu$, let $x_{\xi_{0}}$ and $x_{\xi_{1}}$ be the ξ_{0}-th and ξ_{1}-th reals in $L\left[G_{\omega_{2} \cdot \alpha^{\prime}}\right]$ according to the wellorder $<_{\omega_{2} \cdot \alpha^{\prime}}^{G_{\alpha}}$. In $L^{\mathbb{P}_{\alpha}}$ let

$$
\mathbb{Q}_{\alpha}=\left\{\left\langle s_{0}, s_{1}\right\rangle: s_{0} \in[\omega]^{<\omega}, s_{1} \in\left[\bigcup_{m \in \Delta\left(x_{\xi_{0}} * x_{\xi_{1}}\right)} Y_{\alpha+m} \times\{m\}\right]^{<\omega}\right\},
$$

where $\left\langle t_{0}, t_{1}\right\rangle \leq\left\langle s_{0}, s_{1}\right\rangle$ if and only if $s_{1} \subseteq t_{1}, s_{0}$ is an initial segment of t_{0} and $\left(t_{0} \backslash s_{0}\right) \cap B_{\zeta, m}=\emptyset$ for all $\langle\zeta, m\rangle \in s_{1}$. Let u_{α} be the generic real added by $\mathbb{Q}_{\alpha}, A_{\alpha}=\alpha+\omega \backslash \Delta\left(x_{\xi_{0}} * x_{\xi_{1}}\right)$ and $O_{\alpha}=\emptyset$.
Case 2. Suppose $i^{-1}(\xi)=\zeta \in \nu$. If the ζ-th real according to the wellorder $<_{\omega_{2} \cdot \alpha^{\prime}}^{G_{\alpha}}$ is not the code of a measure orthogonal to $O_{\alpha}^{\prime}=\bigcup_{\gamma<\alpha} O_{\gamma}$, let \mathbb{Q}_{α} be the trivial poset, $A_{\alpha}=\emptyset, O_{\alpha}=\emptyset$. Otherwise, i.e. in case x_{ζ} is a code for a measure orthogonal to O_{α}^{\prime}, let

$$
\mathbb{Q}_{\alpha}=\left\{\left\langle s_{0}, s_{1}\right\rangle: s_{0} \in[\omega]^{<\omega}, s_{1} \in\left[\bigcup_{m \in \Delta\left(x_{\zeta}\right)} Y_{\alpha+m} \times\{m\}\right]^{<\omega}\right\}
$$

where $\left\langle t_{0}, t_{1}\right\rangle \leq\left\langle s_{0}, s_{1}\right\rangle$ if and only if $s_{1} \subseteq t_{1}, s_{0}$ is an initial segment of t_{0} and $\left(t_{0} \backslash s_{0}\right) \cap B_{\zeta, m}=\emptyset$ for all $\langle\zeta, m\rangle \in s_{1}$. Let u_{α} be the generic real added by \mathbb{Q}_{α}. In $L^{\mathbb{P}_{\alpha+1}}=L^{\mathbb{P}_{\alpha} * \mathbb{Q}_{\alpha}}$ let $g_{\alpha}=G\left(x_{\zeta}, u_{\alpha}\right)$ be the code of a measure equivalent to $\mu_{x_{\zeta}}$ which codes u_{α} (see [3, Lemma 3.5]) and let $O_{\alpha}=\left\{\mu_{g_{\alpha}}\right\}$. Let $A_{\alpha}=\alpha+\omega \backslash \Delta\left(u_{\alpha}\right)$.

If α is not of the above form, i.e. α is a successor or $\alpha \in \omega_{2}$, let \mathbb{Q}_{α} be the following poset for adding a dominating real:

$$
\mathbb{Q}_{\alpha}=\left\{\left\langle s_{0}, s_{1}\right\rangle: s_{0} \in \omega^{<\omega}, s_{1} \in\left[\text { o.t. }\left(<_{\alpha}^{G_{\alpha}}\right)\right]^{<\omega}\right\},
$$

where $\left\langle t_{0}, t_{1}\right\rangle \leq\left\langle s_{0}, s_{1}\right\rangle$ if and only if s_{0} is an initial segment of $t_{0}, s_{1} \subseteq t_{1}$, and $t_{0}(n)>x_{\xi}(n)$ for all $n \in \operatorname{dom}\left(t_{0}\right) \backslash \operatorname{dom}\left(s_{0}\right)$ and $\xi \in s_{1}$, where x_{ξ} is the ξ-th real in $L\left[G_{\alpha}\right] \cap \omega^{\omega}$ according to the wellorder $<_{\alpha}^{G_{\alpha}}$. Let $A_{\alpha}=\emptyset, O_{\alpha}=\emptyset$.
With this the definition of $\mathbb{P}_{\omega_{3}}$ is complete. Let $O=\bigcup_{\alpha<\omega_{3}} O_{\alpha}$. In $L^{\mathbb{P}_{\omega_{3}}}$ we have: ν is a measure in the set O if and only if for every countable suitable model \mathcal{M} such that $\nu \in \mathcal{M}$, there is $\bar{\alpha}<\omega_{3}^{\mathcal{M}}$ such that $S_{\bar{\alpha}+m}$ is nonstationary in $(L[r(\nu)])^{\mathcal{M}}$ for every $m \in \Delta(r(\nu))$. Therefore O has indeed a Π_{2}^{1} definition. Furthermore O is maximal in $P_{c}\left(2^{\omega}\right)$. Indeed, suppose in $L^{\mathbb{P} \omega_{3}}$ there is a code x for a measure orthogonal to every measure in the family O. Choose α minimal such that $\alpha=\omega_{2} \cdot \alpha^{\prime}+\xi$ for some $\alpha^{\prime}>0$ and $\xi \in \operatorname{Lim}\left(\omega_{2}\right)$ and $x \in L\left[G_{\omega_{2} \cdot \alpha^{\prime}}\right]$. Let $\nu=$ o.t. $\left(<_{\omega_{2} \cdot \alpha^{\prime}}^{G_{\alpha}}\right)$ and let $i=i_{\nu}$. Then $x=x_{\zeta}$ is the ζ-th real according to the wellorder $<_{\omega_{2} \cdot \alpha^{\prime}}^{G_{\alpha}}$, where $\zeta \in \nu$ and so for some $\xi \in \operatorname{Lim}\left(\omega_{2}\right)$, $i^{-1}(\xi)=\zeta$. But then $x_{\zeta}=x$ is the code of a measure orthogonal to O_{α} and so by construction $O_{\alpha+1}$ contains a measure equivalent to μ_{x}, which is a contradiction. To obtain a Π_{2}^{1}-definable m.o. family in $L \mathbb{P}_{\omega_{3}}$ consider the union of O with the set of all point measures. Just as in [2] one can show that $<$ is indeed a Δ_{3}^{1}-definable wellorder of the reals.

Since $\mathbb{P}_{\omega_{3}}$ is a finite support iteration, we have added Cohen reals along the iteration cofinally often. Thus for every real a in $L^{\mathbb{P}_{3}}$ there is a Cohen real over $L[a]$ and so by Proposition 1 in $L^{\mathbb{P} \omega_{3}}$ there are no $\boldsymbol{\Sigma}_{2}^{1}$ m.o. families. Also note that since cofinally often we have added dominating reals, $L^{\mathbb{P} \omega_{3}} \vDash \mathfrak{b}=\omega_{3}$.

$4 \Delta_{3}^{1}$ w.o. of the reals, a $\Pi_{2}^{1} \mathrm{~m} . o$. family, no Σ_{2}^{1} m.o. families with $\mathfrak{c}=\omega_{2}$

In this section we establish the proof of Theorem 2. The model is obtained as a slight modification of the iteration construction developed in [1]. We restate the definitions of the posets used in this construction. For a more detailed account of their properties see [1]. We work over the constructible universe L.

If $S \subseteq \omega_{1}$ is a stationary, co-stationary set, then by $Q(S)$ denote the poset of all countable closed subsets of $\omega_{1} \backslash S$ with the extension relation being end-extension. Recall that $Q(S)$ is $\omega_{1} \backslash S$-proper, ω-distributive and adds a club disjoint from S (see [1], [5]). For the proof of Theorem 2 we use the form of localization defined in [1, Definition 1]. That is, if $X \subseteq \omega_{1}$ and $\phi\left(\omega_{1}, X\right)$ is a Σ_{1}-sentence with parameters ω_{1}, X which is true in all suitable models containing ω_{1} and X as elements, then $\mathcal{L}(\phi)$ be the poset of all functions $r:|r| \rightarrow 2$, where the domain $|r|$ of r is a countable limit ordinal, such that
(1) if $\gamma<|r|$ then $\gamma \in X$ iff $r(2 \gamma)=1$
(2) if $\gamma \leq|r|, \mathcal{M}$ is a countable, suitable model containing $r \upharpoonright \gamma$ as an element and $\gamma=\omega_{1}^{\mathcal{M}}$, then $\phi(\gamma, X \cap \gamma)$ holds in \mathcal{M}.
The extension relation is end-extension. Recall that $\mathcal{L}(\phi)$ has a countably closed dense subset (see [1, Remark 2]) and that if G is $\mathcal{L}(\phi)$-generic and \mathcal{M} is a countable suitable model containing $(\bigcup G) \upharpoonright \gamma$ as an element, where $\gamma=\omega_{1}^{\mathcal{M}}$, then $\mathcal{M} \vDash \phi(\gamma, X \cap \gamma)$ (see [1, Lemma 2]).

We will use also the coding with perfect trees defined in [1, Definition 2]. Let $Y \subseteq \omega_{1}$ be generic over L such that in $L[Y]$ cofinalities have not been changed and let $\bar{\mu}=\left\{\mu_{i}\right\}_{i \in \omega_{1}}$ be a sequence of L-countable ordinals such that μ_{i} is the least $\mu>\sup _{j<i} \mu_{j}, L_{\mu}[Y \cap i] \vDash Z F^{-}$and $L_{\mu} \vDash$ ω is the largest cardinal. Say that a real R codes Y below i if for all $j<i, j \in Y$ if and only if $L_{\mu_{j}}[Y \cap j, R] \vDash Z F^{-}$. For $T \subseteq 2^{<\omega}$ a perfect tree, let $|T|$ be the least i such that $T \in L_{\mu_{i}}[Y \cap i]$. Then $\mathcal{C}(Y)$ is the poset of all perfect trees T such that R codes Y below $|T|$, whenever R is a branch through T, where for T_{0}, T_{1} conditions in $\mathcal{C}(Y), T_{0} \leq T_{1}$ if and only if T_{0} is a subtree of T_{1}. Recall also that $\mathcal{C}(Y)$ is proper and ${ }^{\omega} \omega$-bounding (see [1, Lemmas 7,8]).

Fix a bookkeeping function $F: \omega_{2} \rightarrow L_{\omega_{2}}$ and a sequence $\vec{S}=\left(S_{\beta}: \beta<\omega_{2}\right)$ of almost disjoint stationary subsets of ω_{1}, defined as in [1, Lemma 14]. Thus F and \vec{S} are Σ_{1}-definable over $L_{\omega_{2}}$ with parameter $\omega_{1}, F^{-1}(a)$ is unbounded in ω_{2} for every $a \in L_{\omega_{2}}$ and whenever \mathcal{M}, \mathcal{N} are suitable models such that $\omega_{1}^{\mathcal{M}}=\omega_{1}^{\mathcal{N}}$ then $F^{\mathcal{M}}, \vec{S}^{\mathcal{M}}$ agree with $F^{\mathcal{N}}, \vec{S}^{\mathcal{N}}$ on $\omega_{2}^{\mathcal{M}} \cap \omega_{2}^{\mathcal{N}}$. Also if \mathcal{M} is suitable and $\omega_{1}^{\mathcal{M}}=\omega_{1}$ then $F^{\mathcal{M}}, \bar{S}^{\mathcal{M}}$ equal the restrictions of F, \vec{S} to the ω_{2} of \mathcal{M}. Fix also a stationary subset S of ω_{1} which is almost disjoint from every element of \vec{S}.

Recursively we will define a countable support iteration $\left\langle\mathbb{P}_{\alpha}, \mathbb{Q}_{\beta}: \alpha \leq \omega_{2}, \beta<\omega_{2}\right\rangle$ and a sequence $\left\langle O_{\alpha}: \alpha \in \omega_{2}\right\rangle$, such that in $L^{\mathbb{P}_{\omega_{2}}}$ there is a Δ_{3}^{1}-definable wellorder of the reals and $O=\bigcup_{\alpha<\omega_{2}} O_{\alpha}$ is a maximal family of orthogonal measures. Define the wellorder $<_{\alpha}$ in $L\left[G_{\alpha}\right]$ where G_{α} is \mathbb{P}_{α} generic just as in [1]. We can assume that all names for reals are nice and that for $\alpha<\beta<\omega_{2}$, all \mathbb{P}_{α}-names for reals precede in the canonical wellorder $<_{L}$ of L all \mathbb{P}_{β}-names for reals, which are not \mathbb{P}_{α}-names. For each $\alpha<\omega_{2}$, define a wellorder $<_{\alpha}$ on the reals of $L\left[G_{\alpha}\right]$, where G_{α} is a \mathbb{P}_{α}-generic as follows. If x is a real in $L\left[G_{\alpha}\right]$ let σ_{x}^{α} be the $<_{L}$-least \mathbb{P}_{γ}-name for x, where $\gamma \leq \alpha$ is least so that x has a \mathbb{P}_{γ}-name. For x, y reals in $L\left[G_{\alpha}\right]$ define $x<_{\alpha} y$ if and only if $\sigma_{x}^{\alpha}<_{L} \sigma_{y}^{\alpha}$. Note that whenever $\alpha<\beta$, then $<_{\alpha}$ is an initial segment of $<_{\beta}$.

We proceed with the definition of the poset. Let \mathbb{P}_{0} be the trivial poset. Suppose \mathbb{P}_{α} and $\left\langle O_{\gamma}\right.$: $\gamma<\alpha\rangle$ have been defined. Let $\mathbb{Q}_{\alpha}=\mathbb{Q}_{\alpha}^{0} * \mathbb{Q}_{\alpha}^{1}$ be a \mathbb{P}_{α}-name for a poset where \mathbb{Q}_{α}^{0} is a \mathbb{P}_{α}-name for the random real forcing and \mathbb{Q}_{α}^{1} is defined as follows:
Case 1. If $F(\alpha)=\left\{\sigma_{x}^{\alpha}, \sigma_{y}^{\alpha}\right\}$ for some pair of reals x, y in $L\left[G_{\alpha}\right]$, then define \mathbb{Q}_{α} as in [1]. That is \mathbb{Q}_{α} is a three stage iteration $\mathbb{K}_{\alpha}^{0} * \mathbb{K}_{\alpha}^{1} * \mathbb{K}_{\alpha}^{2}$ where:
(1) In $V^{\mathbb{P}_{\alpha} * \mathbb{Q}_{\alpha}^{0}}, \mathbb{K}_{\alpha}^{0}$ is the direct limit $\left\langle\mathbb{P}_{\alpha, n}^{0}, \mathbb{K}_{\alpha, n}^{0}: n \in \omega\right\rangle$, where $\mathbb{K}_{\alpha, n}^{0}$ is a $\mathbb{P}_{\alpha, n}^{0}$-name for $Q\left(S_{\alpha+2 n}\right)$ for $n \in x_{\alpha} * y_{\alpha}$, and $\mathbb{K}_{\alpha, n}^{0}$ is a $\mathbb{P}_{\alpha, n}^{0}$-name for $Q\left(S_{\alpha+2 n+1}\right)$ for $n \notin x_{\alpha} * y_{\alpha}$.
(2) Let G_{α}^{0} be a $\mathbb{P}_{\alpha} * \mathbb{Q}_{\alpha}^{0}$-generic filter and let H_{α} be a \mathbb{K}_{α}^{0}-generic over $L\left[G_{\alpha}^{0}\right]$. In $L\left[G_{\alpha}^{0} * H_{\alpha}\right]$ let X_{α} be a subset of ω_{1} coding α, coding the pair $\left(x_{\alpha}, y_{\alpha}\right)$, coding a level of L in which α has size at most ω_{1} and coding the generic $G_{\alpha}^{0} * H_{\alpha}$, which we can regard as a subset of an element of $L_{\omega_{2}}$. Let $\mathbb{K}_{\alpha}^{1}=\mathcal{L}\left(\phi_{\alpha}\right)$ where $\phi_{\alpha}=\phi_{\alpha}\left(\omega_{1}, X\right)$ is the Σ_{1}-sentence which holds if and only if X codes an ordinal $\bar{\alpha}<\omega_{2}$ and a pair (x, y) such that $S_{\bar{\alpha}+2 n}$ is nonstationary for $n \in x * y$ and $S_{\bar{\alpha}+2 n+1}$ is nonstationary for $n \notin x * y$. Let X_{α} be a $\mathbb{P}_{\alpha}^{0} * \mathbb{Q}_{\alpha}^{0} * \mathbb{K}_{\alpha}^{0}$-name for X_{α} and let \mathbb{K}_{α}^{1} be a $\mathbb{P}_{\alpha}^{0} * \mathbb{Q}_{\alpha}^{0} * \mathbb{K}_{\alpha}^{0}$-name for \mathbb{K}_{α}^{1}.
(3) Let Y_{α} be \mathbb{K}_{α}^{1}-generic over $L\left[G_{\alpha}^{0} * H_{\alpha}\right]$. Note that the even part of Y_{α}-codes X_{α} and so codes the generic $G_{\alpha}^{0} * H_{\alpha}$. Then in $L\left[Y_{\alpha}\right]=L\left[G_{\alpha}^{0} * H_{\alpha} * Y_{\alpha}\right]$, let $\mathbb{K}_{\alpha}^{2}=\mathcal{C}\left(Y_{\alpha}\right)$. Finally, let \mathbb{K}_{α}^{2} be a $\mathbb{P}_{\alpha} * \mathbb{Q}_{\alpha}^{0} * \mathbb{K}_{\alpha}^{0} * \mathbb{K}_{\alpha}^{1}$-name for \mathbb{K}_{α}^{2}.

Case 2. If $F(\alpha)=\left\{\sigma_{x}^{\alpha}\right\}$ where x is a code for a measure orthogonal to $\bigcup_{\gamma<\alpha} O_{\gamma}$, then let \mathbb{Q}_{α}^{1} be a $\mathbb{P}_{\alpha} * \mathbb{Q}_{\alpha}^{1}$-name for $\mathbb{K}_{\alpha}^{0} * \mathbb{K}_{\alpha}^{1} * \mathbb{K}_{\alpha}^{2}$ where in $L^{\mathbb{P}_{\alpha} * \mathbb{Q}_{\alpha}}, \mathbb{K}_{\alpha}^{0}$ is the direct limit $\left\langle\mathbb{P}_{\alpha, n}^{0}, \mathbb{Q}_{\alpha, n}^{0}: n \in \omega\right\rangle$ where $\mathbb{Q}_{\alpha, n}^{0}$ is a $\mathbb{P}_{\alpha, n}^{0}$-name for $Q\left(S_{\alpha+2 n}\right)$ for every $n \in x$ and a $\mathbb{P}_{\alpha, n}^{0}$-name for $Q\left(S_{\alpha+2 n+1}\right)$ for every $n \notin x$. Define \mathbb{K}_{α}^{1} and \mathbb{K}_{α}^{2} just as in Case 1. In $L^{\mathbb{P}_{\alpha} * \mathbb{Q}_{\alpha}}$ let $g=G\left(x, R_{\alpha}\right)$ be a code for a measure which is equivalent to μ_{x} and codes the real R_{α}. Let $O_{\alpha}=\left\{\mu_{g}\right\}$.

In any other case, let \mathbb{Q}_{α} be a \mathbb{P}_{α}-name for the trivial poset, $O_{\alpha}=\emptyset$. With this the definition of $\mathbb{P}_{\omega_{2}}$ and the family $O=\bigcup_{\gamma<\omega_{2}} O_{\alpha}$ is complete.

Claim $O=\bigcup_{\gamma<\omega_{2}} O_{\gamma}$ is a maximal family of orthogonal measures in $P_{c}\left(2^{\omega}\right)$.
Proof It is clear that O is a family of orthogonal measures. It remains to verify its maximality. Suppose the contrary and let f be a code for a measure in $L[G]$ where G is $\mathbb{P}_{\omega_{3}}$-generic over L, which is orthogonal to all measures in O. Fix α minimal such that f is in $L\left[G_{\alpha}\right]$ and let σ be the $<_{L}$-least name for f. Since $F^{-1}(\sigma)$ is unbounded, there is $\beta \geq \alpha$ such that $F(\beta)=\{\sigma\}$. Therefore \mathbb{Q}_{β} is nontrivial and $O_{\beta}=\left\{\mu_{g}\right\}$ for some measure μ_{g} which is equivalent to μ_{f}, which is a contradiction.

Clearly, $\mu \in O$ if and only if for every countable suitable model \mathcal{M} such that $\mu \in \mathcal{M}$ there is $\alpha<\omega_{2}^{\mathcal{M}}$ such that $S_{\alpha+m}$ is nonstationary in $L[r(\mu)]^{\mathcal{M}}$ for every $m \in \Delta(r(\mu))$. Thus our family O has indeed a Π_{2}^{1} definition. Just as in the proof of Theorem 1, to obtain a Π_{2}^{1}-definable m.o. family in $L^{\mathbb{P} \omega_{3}}$ consider the union of O with the set of all point measures.

Since for every real $a \in L^{\mathbb{P} \omega_{3}}$ there is a random real over L, by Proposition 1 in $L^{\mathbb{P} \omega_{3}}$ there are no $\boldsymbol{\Sigma}_{2}^{1}$ m.o. families. The bounding number \mathfrak{b} remains ω_{1} in $L^{\mathbb{P}} \omega_{3}$, since the countable support iteration of S-proper ${ }^{\omega} \omega$-bounding posets is ${ }^{\omega} \omega$-bounding (see [1, Lemma 18] or [5]).

Remark 4.1 In [3] the following question was raised:

Question 1 If there is a Π_{1}^{1} m.o. family, are all reals constructible?
This is to our knowledge still unsolved. Törnquist has recently shown that the existence of a Σ_{2}^{1} m.o. family implies the existence of a Π_{1}^{1} m.o. family, and that the existence of Σ_{2}^{1} mad family implies the existence of a $\Pi_{1}^{1} \mathrm{mad}$ family.

References

[1] V. Fischer, S. D. Friedman Cardinal characteristics and projective wellorders, Annals of Pure and Applied Logic 161 (2010), 916-922.
[2] V. Fischer, S. D. Friedman, L. Zdomskyy Projective wellorders and mad families with large continuum, to appear, Annals of Pure and Applied Logic.
[3] V. Fischer, A. Törnquist A co-analytic maximal set of orthogonal measures, Journal of Symbolic Logic, 75, 4, 1403-1414.
[4] S. D. Friedman, L. Zdomskyy Projective mad families, Annals of Pure and Applied Logic 161 (2010), 15811587.
[5] M. Goldstern A taste of proper forcing, Set theory (Curaçao, 1995; Barcelona, 1996), 71-82, Kluwer Acad. Publ., Dordrecht, 1998.
[6] J. I. Ihoda, S. Shelah Δ_{2}^{1}-sets of reals, Ann. Pure Appl. Logic, 42 (1989), no. 3, 201-223. MR 998607(90f:03081).
[7] T.Jech Set theory, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
[8] B. Kastermans, J. Steprāns, Y. Zhang Analytic and coanalytic families of almost disjoint functions, Journal of Symbolic Logic 73 (2008), 1158-1172.
[9] A. S. Kechris Classical Descriptive Set Theory Graduate Texts in Mathematics, 156, Springer-Verlag, 1995.
[10] A. Kechris, N. E. Sofronidis A strong ergodic property of unary and self-adjoint operators Ergodic Theory and Dynamical Systems 21 (2001).
[11] A. Miller Infinite combinatorics and definability, Annals of Pure and Applied Logic, vol. 41 (1989), 179-203.
[12] A.R.D. Mathias Happy Families, Annals of Mathematical Logic 12 (1977), 59-111.
[13] D. Preiss, J.Rataj Maximal Sets of Orthogonal Measures are not Analytic Proc. of the Amer. Math. Soc. 93, No. 3 (1985), 471-476.
[14] D. Raghavan Maximal almost disjoint families of functions, Fundamenta Mathematicae 204 (2009), 241-282.

Kurt Gödel Research Center, University of Vienna, Währinger Strasse 25, A-1090 Vienna, Austria Kurt Gödel Research Center, University of Vienna, Währinger Strasse 25, A-1090 Vienna, Austria
Kurt Gödel Research Center, University of Vienna, Währinger Strasse 25, A-1090 Vienna, Austria
vfischer@logic.univie.ac.at, sdf@logic.univie.ac.at, asger@logic.univie.ac.at

