NON-LINEAR ITERATIONS AND ALMOST DISJOINTNESS

ÖMER FARUK BAĞ AND VERA FISCHER

ABSTRACT. Let κ be an infinite regular cardinal, let \mathfrak{a}_{κ} , \mathfrak{b}_{κ} , \mathfrak{d}_{κ} be the almost disjointness, bounding, and dominating numbers at κ , respectively, and let $\mathfrak{c}_{\kappa} = 2^{\kappa}$. Using a system of parallel nonlinear iterations, we establish the consistency of $\mathfrak{b}_{\kappa} = \mathfrak{a}_{\kappa} < \mathfrak{d}_{\kappa} < \mathfrak{c}_{\kappa}$ where \mathfrak{b}_{κ} , \mathfrak{d}_{κ} , \mathfrak{c}_{κ} are arbitrary subject to the known ZFC restrictions.

1. INTRODUCTION

The cardinal characteristics of the continuum occupy a central place in the study of the set theoretic properties of the real line, with many interesting research and survey articles, see [1], [9]. In the past decades, there has been an increased interest towards higher Baire spaces analogues of many of those characteristics. In this article we further examine the bounding, dominating and almost-disjointness numbers, denoted $\mathfrak{b}_{\kappa}, \mathfrak{d}_{\kappa}, \mathfrak{a}_{\kappa}$ respectively and show that subject to the known ZFC restrictions between these characteristics, consistently $\kappa^+ < \mathfrak{b}_{\kappa} = \mathfrak{a}_{\kappa} < \mathfrak{d}_{\kappa} < \mathfrak{c}_{\kappa}$ holds for $\kappa = \omega$ (which can be obtained also by other already existing methods) and more significantly for the current work, for κ arbitrary regular uncountable cardinal.

Our result builds upon the methods of non-linear iterations of Cummings and Shelah from [4] and the method of matrix iterations as appearing in [2, 3]. Recall, that the method of matrix iteration was introduced by A. Blass and S. Shelah in 1989 to prove the relative consistency of $\mathbf{u} < \mathbf{d}$, where \mathbf{u} denotes the minimal size of a base for a non-principal ultrafilter on ω . In [3] the method was further developed and systematized to establish the consistency of $\mathbf{b} = \mathbf{a} = \kappa < \mathbf{s} = \lambda$, as well as $\mu < \mathbf{b} = \kappa < \mathbf{a} = \mathbf{s} = \lambda$ above a measurable cardinal μ , where \mathbf{s} denotes the splitting number. Of particular importance for the current work is the method of forcing with restricted Hechler posets along a matrix iteration introduced in the latter work. The method of non-linear iteration was introduced in [4] in order to (among others) simultaneously control the values of the generalized invariants $\mathbf{b}_{\kappa}, \mathbf{d}_{\kappa}$ and \mathbf{c}_{κ} at an arbitrary regular uncountable cardinal κ .

To obtain our main results, we merge the above techniques both in the countable and uncountable settings. The resulting forcing construction can be seen as a system of parallel non-linear iterations, which can be compared to the system of parallel (linear) matrix iterations given in [5]. Our main theorem states the following:

²⁰⁰⁰ Mathematics Subject Classification. 03E35, 03E17.

Key words and phrases. cardinal characteristics; forcing; non-linear iterations; matrix iterations; higher Baire spaces; bounding; dominating; almost disjoitness.

Acknowledgments.: The authors would like to thank the Austrian Science Fund (FWF) for the generous support through Grants Y1012-N35, I4039.

Theorem. Let κ be an infinite regular cardinal. If β, δ, μ are infinite cardinals with $\kappa^+ \leq \beta = \operatorname{cof}(\beta) \leq \operatorname{cof}(\delta) \leq \delta \leq \mu$ and $\operatorname{cof}(\mu) > \kappa$, then there is a cardinal preserving generic extension in which

$$\mathfrak{b}_{\kappa} = \mathfrak{a}_{\kappa} = \beta \leq \mathfrak{d}_{\kappa} = \delta \leq \mathfrak{c}_{\kappa} = \mu$$

In addition, we outline a standard (linear) matrix iteration construction which gives an alternative proof of our main result for the special case in which \mathfrak{d}_{κ} is regular and κ is an arbitrary regular uncountable cardinal. To the best knowledge of the authors this is the first application of the method of matrix iterations in the context of higher Baire spaces. A key feature of our forcing construction is the fact that the iterands along relevant non-linear fragments are well-chosen, as indeed we make use only of suitable restricted Hechler forcings.

The paper is structured as follows: In Section 2 we revisit some basic notions and in Section 3, we introduce and study the properties of a well-founded index poset which plays a crucial role in our main forcing construction. In section 4 we, recursively along a suitable index poset, define the above mentioned forcing notion, establish its properties. In section 5 we study the preservation of a carefully chosen witness to $\mathfrak{a}_{\kappa} = \beta$ along this forcing construction. In Section 6 we complete the proof of the main theorem. In the final, Section 7, we give alternative proofs of the special case of the above theorem in which $\kappa = \omega$, as well as the special case in which κ is regular uncountable and \mathfrak{d}_{κ} is regular. We conclude the article, with some interesting remaining open questions, regarding (among others) the global behaviour or $\mathfrak{a}_{\kappa}, \mathfrak{d}_{\kappa}$ and \mathfrak{c}_{κ} .

2. Preliminaries

Throughout κ is a regular infinite cardinal.

Definition 2.1. Let f and g be functions from κ to κ .

- (1) Then g eventually dominates f, denoted by $f <^* g$, if $\exists n < \kappa \ \forall m > n \ (f(m) < g(m))$.
- (2) A family $\mathcal{F} \subseteq {}^{\kappa}\kappa$, is dominating if $\forall g \in {}^{\kappa}\kappa \exists f \in \mathcal{F} (g < {}^{*}f)$.
- (3) A family $\mathcal{F} \subseteq {}^{\kappa}\kappa$ is unbounded if $\forall g \in {}^{\kappa}\kappa \exists f \in \mathcal{F} \ (f \not\leq {}^{*}g)$.
- (4) \mathfrak{b}_{κ} and \mathfrak{d}_{κ} denote the generalized bounding and dominating numbers respectively:

 $\mathfrak{b}_{\kappa} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq {}^{\kappa}\kappa, \mathcal{F} \text{ is unbounded}\},\\ \mathfrak{d}_{\kappa} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq {}^{\kappa}\kappa, \mathcal{F} \text{ is dominating}\}.$

(5) Finally, $\mathbf{c}_{\kappa} = 2^{\kappa}$.

Definition 2.2. Let $x, y \in [\kappa]^{\kappa}$.

- (1) The sets x and y are almost disjoint if $|x \cap y| < \kappa$.
- (2) A family $\mathcal{A} \subseteq [\kappa]^{\kappa}$ is κ -almost disjoint if any two pairwise distinct elements in \mathcal{A} are almost disjoint. An almost disjoint family is κ -maximal almost disjoint (κ -mad) if it is maximal with respect to inclusion.
- (3) The almost disjointness number \mathfrak{a}_{κ} is the minimal size of a κ -maximal almost disjoint family of cardinality at least κ and is denoted \mathfrak{a}_{κ} .

Some of the well-known relations between the above mentioned invariants are as follows: $\kappa^+ \leq \mathfrak{b}_{\kappa} = \operatorname{cof}(\mathfrak{b}_{\kappa}) \leq \operatorname{cof}(\mathfrak{d}_{\kappa}) \leq \mathfrak{d}_{\kappa} \leq \mathfrak{c}_{\kappa}, \ \mathfrak{b}_{\kappa} \leq \mathfrak{a}_{\kappa}, \ \operatorname{cof}(\mathfrak{c}_{\kappa}) > \kappa$. We will use the following notation: $\mathbb{1} = \{\emptyset\}$ denotes the trivial forcing and for a forcing notion $\mathbb{P}, \ \mathbb{1}_{\mathbb{P}}$ is the largest element of \mathbb{P} .

Definition 2.3. The Hechler forcing notion is defined as the set $\mathbb{H} = \{(s, f) : s \in \kappa^{<\kappa}, f \in \kappa\}$ with extension relation given by: $(t,g) \leq_{\mathbb{H}} (s,f)$ iff $s \subseteq t$, $\forall n \in \kappa (g(n) \geq f(n))$ and $\forall i \in \text{dom}(t) \setminus \text{dom}(s) (t(i) > f(i))$. If $A \subseteq \kappa,$ then $\mathbb{H}(A) = \{(s,f) : s \in \kappa^{<\kappa}, f \in A\}$ equipped with the same extension relation is known as restricted Hechler forcing.

It is straightforward to check, that $\mathbb{H}(A)$ adjoins a κ -real eventually dominating the elements in A. The first coordinate s of a condition $(s, f) \in \mathbb{H}(A)$ is called a stem. The poset given below is the generalization of what is known as the Hechler forcing for adjoining a mad family, see [6]:

Definition 2.4. Let λ be an ordinal. Then \mathbb{H}_{λ} consists of all partial functions $p: \lambda \times \kappa \to 2$, with $\operatorname{dom}(p) = F_p \times n_p$ where $F_p \in [\lambda]^{<\kappa}$, $n_p \in \kappa$ and extension relation is defined as follows: $q \leq p$ iff $p \subseteq q$ and $\forall i \in n_q \setminus n_p | q^{-1} \cap F_p \times \{i\} | \leq 1$.

If G is a \mathbb{H}_{λ} -generic for an ordinal λ , then the family $\mathcal{A}_{\lambda} = \{A_{\alpha} : \alpha < \lambda\}$, where $A_{\alpha} = \{i : \exists p \in G \ p(\alpha, i) = 1\}$ is κ -almost disjoint. Moreover, if $\lambda \geq \kappa^{+}$ then \mathcal{A}_{λ} is κ -maximal almost disjoint. If $\alpha \leq \beta$ are two ordinals, then \mathbb{H}_{β} decomposes as follows: Let G be a \mathbb{H}_{α} -generic. In V[G] let $\mathbb{H}_{[\alpha,\beta]}$ consist of pairs (p,H), where $p:(\beta \setminus \alpha) \times \kappa \to 2$ has domain dom $(p) = F_p \times n_p$, $H \in [\alpha]^{<\kappa}$ with $(p,H) \leq (q,K)$ iff $p \leq_{\mathbb{H}_{\beta}} q$, $K \subseteq H$ and for every $j \in F_q$, $k \in n_p \setminus n_q$ and $i \in K$, if $k \in A_i$, then p(j,k) = 0 holds. Then $\mathbb{H}_{\beta} \simeq \mathbb{H}_{\alpha} * \mathbb{H}_{[\alpha,\beta]}$.

Definition 2.5. If $(\mathbb{Q}, \leq_{\mathbb{Q}}, \mathbb{1}_{\mathbb{Q}})$ and $(\mathbb{P}, \leq_{\mathbb{P}}, \mathbb{1}_{\mathbb{P}})$ are forcing posets, then $i : \mathbb{Q} \to \mathbb{P}$ is called a complete embedding, denoted $\mathbb{Q} \leq \mathbb{P}$, if the following properties hold:

- (1) $i(\mathbb{1}_{\mathbb{Q}}) = \mathbb{1}_{\mathbb{P}},$
- (2) $\forall q, q' \in \mathbb{Q}(q \leq_{\mathbb{Q}} q' \to i(q) \leq_{\mathbb{P}} i(q')),$
- (3) $\forall q, q' \in \mathbb{Q}(q \perp_{\mathbb{Q}} q' \leftrightarrow i(q) \perp_{\mathbb{P}} i(q'))$ and
- (4) if $A \subseteq \mathbb{Q}$ is a maximal antichain in \mathbb{Q} , then i(A) is a maximal antichain in \mathbb{P} .

We will make use of the following, which is a slightly modified version of [3, Lemma 13].

Lemma 2.6. Let \mathbb{P} and \mathbb{Q} be forcing notions with $\mathbb{P} \leq \mathbb{Q}$. Suppose \mathbb{A} (resp. \mathbb{B}) is a \mathbb{P} -name (resp. \mathbb{Q} -name) for a forcing poset, where in $V^{\mathbb{Q}}$ there is an embedding $i: \mathbb{A} \to \mathbb{B}$ with

- $i(\mathbb{1}_{\mathbb{A}}) = \mathbb{1}_{\mathbb{B}},$
- $\forall p, p' \in \mathbb{A} (p \leq p' \rightarrow i(p) \leq i(p')),$
- $\forall p, p' \in \mathbb{A} (p \perp p' \leftrightarrow i(p) \perp i(p'))$ and
- for every maximal antichain A of $\dot{\mathbb{A}}$ in $V^{\mathbb{P}}$, i(A) is a maximal antichain of $\dot{\mathbb{B}}$ in $V^{\mathbb{Q}}$.

Then $\mathbb{P} \star \dot{\mathbb{A}} \leq \mathbb{Q} \star \dot{\mathbb{B}}$.

Proof. Let $j: \mathbb{P} \to \mathbb{Q}$ be a witness for $\mathbb{P} \leq \mathbb{Q}$. Define the following embedding: $k: \mathbb{P} * \dot{\mathbb{A}} \to \mathbb{Q} * \dot{\mathbb{B}}$, $k(p, \dot{q}) = (j(p), i(q))$. Conditions (1), (2), (3) of Definition 2.5 are easily checked. We show property (4) of Definition 2.5. For suppose not and let $W = \{(p_{\alpha}, \dot{a}_{\alpha}) : \alpha < \kappa\}$ be a maximal antichain of $\mathbb{P} \star \dot{\mathbb{A}}$ and $(q, \dot{b}) \in \mathbb{Q} \star \dot{\mathbb{B}}$ be incompatible with every condition in k(W). Let \dot{H} be the canonical \mathbb{P} -name for a \mathbb{P} -generic filter and let \dot{I} be a \mathbb{P} -name with $\Vdash \dot{I} = \{\alpha : p_{\alpha} \in \dot{H}\}$.

We claim that \Vdash "{ $\dot{a}_{\alpha} : \alpha \in I$ } is a maximal antichain of \dot{A} ". Otherwise, we can find a \mathbb{P} -name \dot{a} and $p \in \mathbb{P}$ such that

$$(*) p \Vdash \forall \alpha (\alpha \in I \to \dot{a} \perp \dot{a}_{\alpha})$$

Since $(p, \dot{a}) \in \mathbb{P} * \dot{\mathbb{A}}$ and W is maximal, we can find $\alpha < \kappa$ and (p', \dot{a}) which is a common extension of (p, \dot{a}) and $(p_{\alpha}, \dot{a}_{\alpha})$. Then $p' \Vdash \dot{a}' \leq \dot{a} \wedge \dot{a}' \leq \dot{a}_{\alpha}$ and $p' \Vdash \alpha \in \dot{I}$. Hence $p' \Vdash \alpha \in \dot{I} \wedge \dot{a}' \leq \dot{a} \wedge \dot{a}' \leq \dot{a}_{\alpha}$ which is a contradiction to (*).

Now let G be a Q-generic filter containing q. As $\mathbb{P} \leq \mathbb{Q}$ we can find a P-generic filter H with $V[H] \subseteq V[G]$ (see [7, p. 270]). Let $b = \dot{b}[G]$, $a_{\alpha} = \dot{a}_{\alpha}[G] = \dot{a}_{\alpha}[H]$ and $I = \dot{I}[G] = \{\alpha < \kappa: p_{\alpha} \in H\}$. By the above $\{a_{\alpha} : \alpha \in I\}$ is a maximal antichain of \mathbb{A} in $V[H] \subseteq V[G]$ and by assumption $\{i(a_{\alpha}): \alpha \in I\}$ is a maximal antichain of \mathbb{B} in V[G]. Thus $\exists \alpha \in I$ $b \not = \dot{i}(a_{\alpha})$ and so $\exists q' \leq q, j(p_{\alpha})$ such that $q' \Vdash \alpha \in \dot{I} \land \dot{b} \not = \dot{i}(\dot{a}_{\alpha})$. This further means that there is a Q-name \dot{r} with $q' \Vdash \dot{r} \leq \dot{b}, i(\dot{a}_{\alpha})$, hence (q', \dot{r}) is a common extension of (q, \dot{b}) and $(j(p_{\alpha}), i(\dot{a}_{\alpha}))$, which is a contradiction. \Box

3. The index set

Bounding and dominating can be defined generally for arbitrary posets as follows:

Definition 3.1 ([4]). Let (P, \leq_P) be a partial order.

- (1) We call $U \subseteq P$ unbounded if $\forall p \in P \exists q \in U \ (q \not\leq_P p)$.
- (2) $\mathfrak{b}(P) = \min\{|U|: U \subseteq P \text{ is unbounded}\}.$
- (3) A subset $D \subseteq P$ is dominating if $\forall p \in P \exists q \in D \ (p \leq_P q)$.
- (4) $\mathfrak{d}(P) = \min\{|D|: D \subseteq P \text{ is dominating}\}.$

Note that \leq^* is not antisymmetric. However the relation $=^*$ is an equivalence relation on κ_{κ} . Let $[f]_{=^*} = \{g \in \kappa_{\kappa}: f =^* g\}$ denote the equivalence class of f. The relation $\leq_{=^*}$ on the equivalence classes, given as $[f] \leq_{=^*} [g]$ iff $f \leq^* g$ is well-defined and a partial order. So $\mathfrak{b}_{\kappa} = \mathfrak{b}(\{[f]_{=^*}: f \in \kappa_{\kappa}\}, \leq_{=^*})$ and $\mathfrak{d}_{\kappa} = \mathfrak{d}(\{[f]_{=^*}: f \in \kappa_{\kappa}\}, \leq_{=^*})$.

Lemma 3.2 ([4]). For any poset P there is a well-founded and dominating subposet P' of P.

Proof. Let $\tau = \langle p_{\alpha} : \alpha < \lambda \rangle$ be a maximal sequence such that $\forall \alpha < \lambda \ \forall \beta < \alpha \ (p_{\alpha} \notin p_{\beta})$. It is not difficult to check that P' is dominating, as if not for any $p \in P$ such that $\forall \alpha < \lambda (p \notin p_{\alpha})$, the sequence $\langle p_{\alpha} : \alpha \leq \lambda \rangle$ contradicts the maximality of τ , where $p_{\lambda} = p$. Take $P' = \{p_{\alpha} : \alpha < \lambda\}$. \Box

In the above Lemma P' is clearly cofinal in P and so $\mathfrak{d}(P) = \mathfrak{d}(P')$ and $\mathfrak{b}(P) = \mathfrak{b}(P')$.

For the purposes of the next lemma, let $(R, <_R)$ be a well-founded poset such that $|R| = \delta$, $\mathfrak{d}(R) = \delta$ and $\mathfrak{b}(R) = \beta$ for some cardinals β and δ . Further, for each $a \in R$, let $(L_a, <_{L_a})$ be a wellorder of order type δ and let $L_a = \langle l_{a,\gamma} : \gamma < \delta \rangle$ where $l_{a,\gamma} \leq_{L_a} l_{a,\gamma'}$ iff $\gamma \leq \gamma'$. Let Q be the disjoint union $Q = R \cup \bigcup \{L_a : a \in R\}$ and let $<_Q$ be the partial order on Q defined as follows: $<_Q \upharpoonright R \times R = <_R$, $\forall a \in R (<_Q \upharpoonright L_a \times L_a = <_{L_a}), \forall a \in R (a <_Q l_{a,0})$ and $\forall a' \neq a \in R \forall \gamma \in \delta (a' <_R a \to l_{a',\gamma} <_Q l_{a,\gamma})$.

Lemma 3.3. If $(R, <_R)$, $\{L_a : a \in R\}$, and $(Q, <_Q)$ are given as above, then $\mathfrak{d}(Q) = \delta, \mathfrak{b}(Q) = \beta$, $|Q| = \delta, Q$ is well-founded and for each $b \in Q$, $|b \uparrow_Q| = \delta$.

Proof. For any element $q \in Q$, define the trace q^R of q in R to be

$$q^R = \begin{cases} a & q \in L_a \\ q & q \in R \end{cases}$$

and for any subset $A \subseteq Q$, A^R to be $\{a^R : a \in A\}$. Let $b \in Q$. Then $|b \uparrow_Q| = \delta$, as either b = a for an $a \in R$ or $b = l_{a,\gamma}$ for an $a \in R$ and $\gamma < \delta$. In either case $|L_a \cap b \uparrow_Q| \ge \delta$. Also $|Q| = \delta$, because $|R| = \delta$ and $|L_a| = \delta$ for each $a \in R$ and δ is an infinite cardinal. As Q is dominating and $|Q| = \delta$, we have $\mathfrak{d}(Q) \le \delta$.

 $\mathfrak{d}(Q) \geq \delta$: Let $A \subseteq Q$ and $|A| < \delta$. Then also $|A^R| < \delta$ and A^R is not dominating in R. So $\exists b \in R \ \forall a \in A^R \ (b \notin_R a)$. Then b is also unbounded in A.

 $\mathfrak{b}(Q) \geq \beta$: Let $A \subseteq Q$ and $|A| < \beta$. Then also $|A^R| < \beta$ and A^R is not unbounded in R and so $\exists d \in R \ \forall a \in A^R \ (a <_R d)$. For an ordinal $\alpha < \delta$, let $H_\alpha = \{l_{a,\alpha} : a \in R\}$. Let $\alpha' = \sup\{\gamma : A \cap H_\gamma \neq \emptyset\}$. By regularity of β , $\alpha' < \beta$. However $\delta \geq \beta > \alpha'$ and any $l_{d,\gamma}$ where $\alpha' < \gamma < \delta$ domintates A.

 $\mathfrak{b}(Q) \leq \beta$: Let $A \subseteq R$ be unbounded in R with respect to \leq_R and let $|A| = \beta$. Consider an arbitrary $q \in Q$. Note that if $a \in A$ is such that $a \notin_R q^R$, then also $a \notin_Q q$. Thus A is an unbounded family of Q with respect to \leq_Q .

Finally, to show that Q is well-founded consider an arbitrary, non-empty $A \subseteq Q$. If $A \cap R \neq \emptyset$, then a minimal element of $A \cap R$ is also a minimal element of A. Otherwise let $m \in R$ be a minimal element of A^R . Let $\alpha' = \min\{\gamma: A \cap H_{\gamma} \neq \emptyset\}$. Then $l_{m,\alpha'}$ is a minimal element of A.

We will make use of the following notation: Whenever $(X, <_X)$ is a well-founded poset, then for an arbitrary y in X, let $X_y = \{x \in X : x <_X y\}$ and $y \uparrow_X = \{x \in X : y <_X x\}$.

Corollary 3.4. (GCH) Let κ be a regular infinite cardinal and let β, δ be cardinals such that $\kappa^+ \leq \beta = \operatorname{cof}(\beta) \leq \operatorname{cof}(\delta)$. There is a well-founded (index) partial order $(W, <_W)$ of cardinality δ , which has a least and largest elements, denoted c and m respectively and such that for $Q = W \setminus \{m, c\}, <_Q = Q \times Q \cap <_W$ the following holds

$$\mathfrak{b}(Q) = \beta, \mathfrak{d}(Q) = \delta, \text{ and } \forall b \in Q \ (|b \uparrow_Q| \ge \delta).$$

Proof. Let $(Q, <_Q)$ be a well-founded suborder of $([\delta]^{<\beta}, \subseteq)$ having the same generalized bounding and dominating numbers as $([\delta]^{<\beta}, \subseteq)$ such that $\forall b \in Q$ $(|b \uparrow_Q| \ge \delta)$. By Lemmas 3.2 and 3.3, such a $(Q, <_Q)$ exists. Now, let $W = \{c\} \cup Q \cup \{m\}$ be a disjoint union and let $<_W$ be defined as follows:

- (1) for each $a \in Q$, $c <_W a$
- (2) $<_W \upharpoonright Q \times Q = <_Q$,
- (3) for each $a \in \{c\} \stackrel{.}{\cup} Q$, $a <_W m$.

Then $(W, <_W)$ is a well-founded poset with the desired properties.

4. The iteration and its properties

Now we are ready to construct our iteration, which is a slight modification of the non-linear iteration of Hechler forcing for adjoining a dominating real $D(\omega, Q)$ from [4]. From now on assume GCH in the ground model V and we fix κ a regular cardinal, β, δ infinite cardinals with

 $\kappa^+ \leq \beta = \operatorname{cof}(\beta) \leq \operatorname{cof}(\delta)$. Let $(W, <_W)$ and $(Q, <_Q)$ be the well-founded index posets defined in Corollary 3.4. Moreover, let $Q' = Q \cup \{m\}, <_{Q'} = Q' \times Q' \cap <_W$.

Fix a surjective book-keeping function $F: Q \to \beta$ such that for all $\alpha \in \beta$, $F^{-1}(\alpha)$ is cofinal in Q. That is $\forall \alpha < \beta \ \forall b \in Q \ (b \uparrow_Q \cap F^{-1}(\alpha) \neq \emptyset)$. Such a F exists, since $|Q| = \delta \ge \beta$ and $\forall b \in Q \ (|b \uparrow_Q| \ge \delta)$. In addition, for each $\gamma \le \beta$, let $J^{\gamma} = \{a \in Q: F(a) \ge \gamma\}$.

In the following, we consider $(\beta + 1) \times W$ with the inherited lexicographic order \langle_{lex} and the product order \langle where $(\alpha_0, a_0) < (\alpha_1, a_1)$ iff $\alpha_0 \in \alpha_1$ and $a_0 <_W a_1$, or $\alpha_0 = \alpha_1$ and $a_0 <_W a_1$.

Definition 4.1. For each (α, a) in $(\beta + 1) \times W$ we will define recursively on $<_{lex}$ a forcing notion $P_{\alpha,a}$ and take $V_{\alpha,a} = V^{P_{\alpha,a}}$. For each $\alpha \leq \beta$ let $P_{\alpha,c} = \mathbb{H}_{\alpha}$. Let $(\alpha, a) \in (\beta + 1) \times Q'$ and suppose:

- (1) for each $(\gamma, b) <_{lex} (\alpha, a)$ the poset $P_{\gamma, b}$ has been defined;
- (2) in case $b \neq c$, also a $P_{\gamma,c}$ -name $T_{\gamma,b}$ for a forcing notion is given so that $P_{\gamma,b} = P_{\gamma,c} * T_{\gamma,b}$;
- (3) whenever $(\alpha_0, a_0) < (\alpha_1, a_1) < (\alpha, a), c \neq a_0$ then $\Vdash_{P_{\alpha_1, c}} T_{\alpha_0, a_0} \leq T_{\alpha_1, a_1}$.

Then, in particular, for each $(\alpha_0, a_0) < (\alpha_1, a_1) \le (\alpha, a)$, $P_{\alpha_0, a_0} \le P_{\alpha_1, a_1}$ (see Lemma 4.3).

We proceed to define $P_{\alpha,a}$. Since for each $b \in Q'_a \setminus J^{\alpha}$, $F(b) < \alpha$ and so $(F(b), b) < (\alpha, b)$, in $V_{\alpha,c}$ we can fix a $T_{\alpha,b}$ -name \dot{H}^{α}_b for $V^{F(b),b} \cap {}^{\kappa}\kappa$. Now, in $V_{\alpha,c}$ let $T_{\alpha,a}$ be the poset of all functions psuch that dom $(p) = Q'_a$ and

- (1) for each $b \in Q'_a \cap J^{\alpha}$, p(b) is a $T_{\alpha,b}$ -name for an element in the trivial poset;
- (2) for each $b \in Q'_a \setminus J^\alpha$, $\Vdash_{T_{\alpha,b}} p(b) \in \mathbb{H}(\dot{H}^\alpha_b)$;
- (3) for supp $(p) = \{b \in Q'_a \setminus J^{\alpha} : \Vdash_{T_{\alpha,b}} p(b) \neq \mathbb{1}_{\mathbb{H}(\dot{H}^{\alpha}_{h})}\}$ we have $|\operatorname{supp}(p)| < \kappa$.

The extension relation of $T_{\alpha,a}$ is defined as follows: $p \leq q$ iff $\operatorname{supp}(q) \subseteq \operatorname{supp}(p)$ and for each $b \in \operatorname{supp}(q)$, if $b \in Q'_a \setminus J^\alpha$ then $p \upharpoonright b \Vdash_{T_{\alpha,b}} p(b) \leq_{\mathbb{H}(\dot{H}^\alpha_b)} q(b)$, where $p \upharpoonright b$ abbreviates $p \upharpoonright Q'_b$. For $b \in Q'_a \setminus J^\alpha$, w.l.o.g. we assume that $p(b) = (s^p_b, \dot{f}^p_b)$ where the stem s^p_b is in the ground model and \dot{f}^p_b is a nice $T_{\alpha,b}$ -name for a κ -real in $V^{P_{F(b),b}} \cap {}^{\kappa}\kappa$. Let $P_{\alpha,a} = P_{\alpha,c} * \dot{T}_{\alpha,a}$.

Lemma 4.2. For any $\alpha \leq \alpha' \leq \beta$ and $a \in Q'$, $V_{\alpha',c} \models T_{\alpha,a} \leq T_{\alpha',a}$.

Proof. Consider in $V_{\alpha',c}$ the mapping $i: T_{\alpha,a} \to T_{\alpha',a}$ where $\operatorname{supp}(i(p)) = \operatorname{supp}(p)$ and for each $b \in \operatorname{supp}(i(p))$, $\Vdash_{T_{\alpha',b}} i(p)(b) = (s_b^{i(p)}, \dot{f}_b^{i(p)})$, where $s_b^{i(p)} = s_b^p$ and $\dot{f}_b^{i(p)}$ is a $T_{\alpha',b}$ -name for the κ -real named by \dot{f}_b^p . The mapping i witnesses that $T_{\alpha,a} < T_{\alpha',a}$ in $V_{\alpha',c}$, by making crucial use of $J^{\alpha'} \subseteq J^{\alpha}$. If $b \in \operatorname{supp}(p) \subseteq Q'_a \setminus J^{\alpha}$, then (by $J^{\alpha'} \subseteq J^{\alpha}$) $b \in \operatorname{supp}(i(p)) \subseteq Q'_a \setminus J^{\alpha'}$. In this case, $F(b) < \alpha$ and \dot{H}_b^{α} is a $T_{\alpha,b}$ -name for $V^{P_{F(b),b}} \cap {}^{\kappa}\kappa$. But $F(b) < \alpha'$ holds also and $\dot{H}_b^{\alpha'}$ is a $T_{\alpha',b}$ -name for $V^{P_{F(b),b}} \cap {}^{\kappa}\kappa$ as well. As the second coordinates refer to the same set of κ -reals, compatibility and incompatibility depends on the stems at $\operatorname{supp}(p)$.

Lemma 4.3. $\forall b \in W \ \forall \alpha < \alpha' \leq \beta \ (P_{\alpha,b} \leq P_{\alpha',b}).$

Proof. Proceed inductively on W. If b = c and $\alpha \leq \beta$, then the Lemma holds by the product-like property of the forcing in Definition 2.4. For $b \in Q'$ the claim holds by Lemmas 4.2 and 2.6. \Box

Remark 4.4. All together we have $\forall \alpha, \alpha' \leq \beta \ \forall a, b \in W \ (\alpha \leq \alpha' \land a \leq W \ b \rightarrow P_{\alpha,a} \leq P_{\alpha',b}).$

Remark 4.5. Note that $J^0 = Q$, so at the bottom "plane" we iterate with trivial forcing only. Also $J^\beta = \emptyset$, so at the top "plane" we have no trivial forcings, but only restricted Hechlers. **Example 4.6.** Working in $V_{\alpha,c}$ observe the following: Let $p, q \in T_{\alpha,a}$ for some $a \in Q'$ be such that for each $b \in \operatorname{supp}(q) \cap \operatorname{supp}(p), s_b^p \subseteq s_b^q \vee s_b^p \supseteq s_b^q$. Then p, q are compatible, with a common extension $r \in T_{\alpha,a}$ defined as follows: $\operatorname{supp}(r) = \operatorname{supp}(p) \cup \operatorname{supp}(q)$ and

- $\Vdash_{T_{\alpha,b}} r(b) = p(b)$ if $b \in \operatorname{supp}(p) \setminus \operatorname{supp}(q)$
- $\Vdash_{T_{\alpha,b}} r(b) = q(b)$ if $b \in \operatorname{supp}(q) \setminus \operatorname{supp}(p)$
- $\Vdash_{T_{\alpha,b}} r(b) = (s_b^r, \dot{f}_b^r)$ if $b \in \text{supp}(p) \cap \text{supp}(q)$, where $s_b^r = s_b^p \cup s_b^q$ and \dot{f}_b^r is a $T_{\alpha,b}$ -name for the pointwise maximum of \dot{f}_b^q and \dot{f}_b^p .

Lemma 4.7. For any $\alpha \leq \beta$ and $a \in W$, the forcing $P_{\alpha,a}$ is κ^+ -c.c. and is κ -closed.

Proof. If a = c, then $P_{\alpha,a}$ equals \mathbb{H}_{α} which has the κ^+ -c.c. and is κ -closed.

If $a \neq c$, then $P_{\alpha,a} = P_{\alpha,c} \star \dot{T}_{\alpha,a}$. Since $P_{\alpha,c} = \mathbb{H}_{\alpha}$ has the κ^+ -c.c., it is sufficient to show that for any \mathbb{H}_{α} -generic G, $V[G] \models "T_{\alpha,a}$ has the κ^+ -c.c.". In V[G], consider any $S = \{p_{\alpha}: \alpha < \kappa^+\}$ a family of conditions in $T_{\alpha,a}$ of size κ^+ . We will show that S is not an antichain. Since the support of each condition is of size less than κ , and $\kappa^{<\kappa} = \kappa$, we can apply the Δ -System-Lemma to $\{\operatorname{supp}(p_{\alpha}): \alpha < \kappa^+\}$ to get a $Y \in [S]^{\kappa^+}$ such that $\{\operatorname{supp}(p_{\alpha}): p_{\alpha} \in Y\}$ forms a Δ -System with root R. Again since $\kappa^{<\kappa} = \kappa$, $|Y| = \kappa^+$ and $|R| < \kappa$, we can assume that if $b \in R$ and $p_{\alpha} \in Y$ then $p_{\alpha}(b) = (t_b, \dot{f}_b^{\alpha})$ where t_b is the same stem for each $p_{\alpha} \in Y$. Now, for $p_{\alpha}, p_{\beta} \in Y$ one can define a common extension q as follows: $\operatorname{supp}(q) = \operatorname{supp}(p_{\alpha}) \cup \operatorname{supp}(p_{\beta})$; if $b \in R$ then $q(b) = (t_b, \dot{f}_b)$ where \dot{f}_b is the pointwise maximum of $\{\dot{f}_b^{\alpha}, \dot{f}_b^{\beta}\}$. If $b \in \operatorname{supp}(p_{\alpha}) \setminus \operatorname{supp}(p_{\beta})$ then $q(b) = p_{\alpha}(b)$ and if $b \in \operatorname{supp}(p_{\beta}) \setminus \operatorname{supp}(p_{\alpha})$ then $q(b) = p_{\beta}(b)$.

Again as $P_{\alpha,c} = \mathbb{H}_{\alpha}$ is κ -closed, it is sufficient to show that for any \mathbb{H}_{α} -generic $G, V[G] \models "T_{\alpha,a}$ is κ -closed". Consider in V[G] a decreasing sequence $(p_{\alpha}: \alpha < \gamma)$ of conditions, where $\gamma < \kappa$. We will define a common extension p, by using the fact that the forcing in Definition 2.3 is κ -closed. Proceed as follows. Let $\operatorname{supp}(p) = \bigcup_{\alpha < \gamma} \operatorname{supp}(p_{\alpha})$. Then $|\operatorname{supp}(p)| < \kappa$ by regularity of κ . If for any $\alpha < \gamma$ and $b \in \operatorname{supp}(p_{\alpha})$ we have $p_{\alpha}(b) = (t_{\alpha}(b), \dot{f}_{\alpha}(b))$, then let $p(b) = (t, \dot{f})$ where $t = \bigcup\{t_{\alpha}(b): b \in \operatorname{supp}(p_{\alpha})\}$ and \dot{f} is a $T_{\alpha,b}$ -name for the pointwise supremum of the second coordinates $\{\dot{f}_{\alpha}(b): b \in \operatorname{supp}(p_{\alpha})\}$. Then p is as desired. \Box

The next Lemma is analogous to Lemma 15 in [3].

Lemma 4.8. Suppose $b \in W$, then the following two properties hold:

(a) Any condition $p \in P_{\beta,b}$ is already in $P_{\alpha,b}$ for some $\alpha < \beta$.

(b) If f is a $P_{\beta,b}$ -name for a κ -real then it is a $P_{\alpha,b}$ -name for some $\alpha < \beta$.

Proof. We show (a) and (b) simultaneously by transfinite induction on $b \in W$, the well-founded poset. Because $P_{\beta,b}$ has the κ^+ -c.c. property and β is such that $\operatorname{cof}(\beta) > \kappa$, we can easily see that (a) implies (b) if we pass over to a nice name of the κ -real at hand.

Now we begin the induction by letting b = c: Properties (a) and (b) for b = c are both true as β is regular, above κ and the domain of a condition in \mathbb{H}_{β} is of size less than κ . Hence this stage does not add new κ -reals.

Let $b \neq c$ and let $p \in P_{\beta,b} = P_{\beta,c} \star T_{\beta,b}$. Then p is of the form (p_0, \dot{p}_1) , where $p_0 \in P_{\beta,c}$ and $\Vdash_{P_{\beta,c}} \dot{p}_1 \in \dot{T}_{\beta,b}$. For $p_0 \in P_{\beta,c}$ the induction hypothesis on (a) holds. So there is a $\alpha_0 < \beta$ such

that $p_0 \in P_{\alpha_0,c}$. Since $\Vdash_{T_{\beta,b}} |\operatorname{supp}(\dot{p}_1)| < \kappa$, \dot{p}_1 involves less than κ -many names for κ -reals (the second coordinate of the restricted Hechler forcing). This gives an object of size at most κ , and we can use the induction hypothesis on (b) in order to find an $\alpha_1 < \beta$ such that \dot{p}_1 is a $P_{\alpha_1,c}$ -name. Then $p = (p_0, \dot{p}_1)$ belongs to $P_{\alpha,b}$, where $\alpha = \max\{\alpha_0, \alpha_1\}$. So (a) is true for stages with $b \neq c$, because a nice name for a κ -real involves at most κ -many conditions and $\operatorname{cof}(\beta) = \beta > \kappa$.

5. Preserving a witness for \mathfrak{a}_{κ}

Recall [3] §2 (Adding a mad family).

Definition 5.1. ([3]) Let $M \subseteq N$ be models of ZFC, $\mathcal{B} = \{B_{\alpha}\}_{\alpha < \gamma} \subseteq M \cap [\kappa]^{\kappa}$ and $A \in N \cap [\kappa]^{\kappa}$. Then we say $\mathcal{K}(M, N, \mathcal{B}, A)$ is true, if for every $h \in M \cap^{\kappa \times [\gamma]^{<\kappa}} \kappa$ and $m \in \kappa$ we can find $n \ge m$, $F \in [\gamma]^{<\kappa}$ satisfying $[n, h(n, F)) \setminus \bigcup_{\alpha \in F} B_{\alpha} \subseteq A$.

Lemma 5.2. ([3]) Suppose $\mathcal{K}(M, N, \mathcal{B}, A)$ is true and let $I(\mathcal{B})$ be the κ -complete ideal generated by \mathcal{B} and the sets of size less than κ . Then for $B \in M \cap [\kappa]^{\kappa}$, $B \notin I(\mathcal{B})$ we have $|A \cap B| = \kappa$.

Proof. For suppose not and let $A \cap B \subseteq n \in \kappa$. Let $m' \geq n$, $F' \in [\gamma]^{<\kappa}$. Since $Y \subseteq^* X \in I(\mathcal{B})$ implies $Y \in I(\mathcal{B})$ and $\bigcup_{\alpha \in F'} B_{\alpha} \in I(\mathcal{B})$ and $B \notin I(\mathcal{B})$, we must have $B \notin^* \bigcup_{\alpha \in F'} B_{\alpha}$. So there is $k_{m'}^{F'}$ such that $m' < k_{m'}^{F'} \in B \setminus \bigcup_{\alpha \in F'} B_{\alpha}$. Now for all $m \geq n$ and $F \in [\gamma]^{<\kappa}$ we define $h(m, F) = k_m^F + 1$ and h(m, F) = 0 if m < n. As h is defined in M and $[m, h(m, F)) \setminus \bigcup_{\alpha \in F} B_{\alpha} \notin A$ for all $m \geq n, F \in [\gamma]^{<\kappa}$, we contradict $\swarrow(M, N, \mathcal{B}, A)$.

The family \mathcal{A}_{γ} added by \mathbb{H}_{γ} (Definition 2.4) satisfies the \mathcal{L} -property in the following sense.

Lemma 5.3. ([3]) If $G_{\gamma+1}$ is $\mathbb{H}_{\gamma+1}$ -generic, $G_{\gamma} = G_{\gamma+1} \cap \mathbb{H}_{\gamma}$ and $\mathcal{A}_{\gamma} = \{A_{\alpha}\}_{\alpha < \gamma}$ where as above $A_{\alpha} = \{i : \exists p \in G_{\gamma+1} \ p(\alpha, i) = 1\}$ for each $\alpha \leq \gamma$, then we have $\swarrow (V[G_{\gamma}], V[G_{\gamma+1}], \mathcal{A}_{\gamma}, \mathcal{A}_{\gamma})$.

Proof. Let $h \in V[G_{\gamma}] \cap \kappa (\gamma)^{\kappa} \kappa$, $(p, H) \in \mathbb{H}_{[\gamma, \gamma+1)}$ and $m \in \kappa$ be arbitrary. By the definition of $\mathbb{H}_{[\gamma, \gamma+1)}$ we have dom $(p) = \{\gamma\} \times n_p$ for some $n_p \in \kappa$. Now we define the following extension (q, K) of (p, H). Let $n \in \kappa$ be above n_p and m, and let $n_q = h(n, H)$. Define dom(q) to be $\{\gamma\} \times n_q$. Let K = H and

$$q(\gamma, i) = \begin{cases} p(\gamma, i) & \text{if } i < n_p \\ 0 & \text{if } i \in [n_p, n) \\ 1 & \text{if } i \in [n, n_q) \land i \notin \bigcup_{\alpha \in H} A_\alpha \\ 0 & \text{if } i \in [n, n_q) \land i \in \bigcup_{\alpha \in H} A_\alpha \end{cases}$$

Then (q, K) extends (p, H) and $(q, K) \Vdash [n, h(n, H)) \setminus \bigcup_{\alpha \in H} A_{\alpha} \subseteq A_{\gamma}$ and we are done. \Box

Lemma 5.4. ([3]) Let $M \subseteq N$ be models of ZFC, $P \in M$ a forcing poset such that $P \subseteq M$, G a P-generic filter over N (hence also P-generic over M). Then the following holds: If $\mathcal{B} = \{B_{\alpha}\}_{\alpha < \gamma} \subseteq M \cap [\kappa]^{\kappa}$ and $A \in N \cap [\kappa]^{\kappa}$ and $\mathcal{L}(M, N, \mathcal{B}, A)$ holds, then $\mathcal{L}(M[G], N[G], \mathcal{B}, A)$.

Proof. For suppose not and let $h \in M[G] \cap^{\kappa \times [\gamma]^{<\kappa}} \kappa$, $m \in \kappa$ be such that $\forall n \ge m \ \forall F \in [\gamma]^{<\kappa} N[G] \models [n, h(n, F)) \setminus \bigcup_{\alpha \in F} B_{\alpha} \notin A$. Then there are $p \in G$, a *P*-name $\dot{h} \in M$ for *h* and $m \in \kappa$ with $p \Vdash_N \forall n \ge m \ \forall F \in [\gamma]^{<\kappa} [n, h(n, F)) \setminus \bigcup_{\alpha \in F} B_{\alpha} \notin A$.

Now in M, for \dot{h} let $p_n^F \in G$ be a condition extending p and deciding the value of h at point (n, F), i.e. $p_n^F \Vdash \dot{h}(n, F) = k_n^F$. Then $p_n^F \Vdash_N [n, k_n^F) \setminus \bigcup_{\alpha \in F} B_\alpha \notin A$, so $N \models [n, k_n^F) \setminus \bigcup_{\alpha \in F} B_\alpha \notin A$. However, the function

$$h'(n,F) = \begin{cases} 0 & \text{if } n < m \\ k_n^F & \text{else} \end{cases}$$

is in M and contradicts $\preceq(M, N, \mathcal{B}, A)$.

Lemma 5.5. $\forall b \in W \ \forall \alpha < \beta \ (\bigwedge_{\alpha,b}, V_{\alpha+1,b}, \mathcal{A}_{\alpha}, A_{\alpha})).$

Proof. Proceed inductively on W. If b = c and $\alpha \leq \beta$, then the statement $\swarrow (V_{\alpha,c}, V_{\alpha+1,c}, \mathcal{A}_{\alpha}, A_{\alpha})$ holds by Lemma 5.3. Suppose next that $b \in Q'$. Note that $\bigstar (V_{\alpha,c}, V_{\alpha+1,c}, \mathcal{A}_{\alpha}, A_{\alpha})$ holds, $T_{\alpha,b} \in V_{\alpha,c} \subseteq V_{\alpha',c}$ and $V_{\alpha',c} \models T_{\alpha,b} \leq T_{\alpha',b}$ (Lemma 4.2). So any $V_{\alpha',c}$ -generic subset of $T_{\alpha',b}$ is also $V_{\alpha',c}$ -generic subset of $T_{\alpha,b}$. Consequently, by Lemma 5.4, $\bigstar (V_{\alpha,b}, V_{\alpha+1,b}, \mathcal{A}_{\alpha}, A_{\alpha})$.

6. The result

The next theorem gives us the consistency result.

Theorem 6.1. $V_{\beta,m} \models \mathfrak{b}_{\kappa} = \mathfrak{a}_{\kappa} = \beta \leq \mathfrak{d}_{\kappa} = \delta$.

Proof. $\mathfrak{a}_{\kappa} \leq \beta$: The family $\mathcal{A}_{\beta} = \{A_{\alpha}: \alpha < \beta\}$ added in the first column is a κ -mad family in the model $V_{\beta,m}$. If this was not the case, then $\exists x \in V_{\beta,m} \cap [\kappa]^{\kappa} \forall A_{\alpha} \in \mathcal{A}_{\beta} (|x \cap A_{\alpha}| < \kappa)$. By Lemma 4.8, we have $\exists \alpha < \beta \ (x \in V_{\alpha,m} \cap [\kappa]^{\kappa})$. However by Lemma 5.4, $\bigstar (V_{\alpha,m}, V_{\alpha+1,m}, \mathcal{A}_{\alpha}, A_{\alpha})$ holds and so $|A_{\alpha} \cap x| = \kappa$ by Lemma 5.2.

 $\mathfrak{b}_{\kappa} \geq \beta$: Let $B \subseteq V_{\beta,m} \cap {}^{\kappa}\kappa$ be such that $|B| < \beta$. By $\mathfrak{b}(Q) = \beta$ and by Lemma 4.8, we have $\exists b \in Q \ \exists \alpha < \beta \ (B \subseteq V_{\alpha,b} \cap {}^{\kappa}\kappa)$. As $\forall \gamma < \beta \ \forall c \in Q \ (c \uparrow_Q \cap F^{-1}(\gamma) \neq \emptyset)$ we can find an element $b' \in Q$ with b < b' and $F(b') = \alpha$. Then the poset $P_{\alpha+1,b'}$ adds, among other things, a dominating κ -real over $V_{\alpha,b'} \cap {}^{\kappa}\kappa \supseteq V_{\alpha,b} \cap {}^{\kappa}\kappa$, hence B is not unbounded.

By the previous paragraphs we have $V_{\beta,m} \vDash \mathfrak{b}_{\kappa} = \mathfrak{a}_{\kappa} = \beta$, as $\mathfrak{b}_{\kappa} \leq \mathfrak{a}_{\kappa}$ is provable in ZFC.

 $\delta \geq \mathfrak{d}_{\kappa}$: Let f be a $P_{\beta,m}$ -name for a κ -real. By the previous Lemma 4.8, the property $\mathfrak{b}(Q) = \beta \geq \kappa^+$ and the regularity of β , there is a $b \in Q$ and an $\alpha < \beta$ such that $f \in V_{\alpha,b} \cap {}^{\kappa}\kappa$. Let $D \subseteq Q$ be a dominating family of size δ and let $d \in D$ be such that $b <_Q d$. As $\forall \gamma < \beta \ \forall c \in Q$ ($c \uparrow_Q \cap F^{-1}(\gamma) \neq \emptyset$), we can find an element $d_{\alpha,b} \in Q$ with $d_{\alpha,b} > d$ and $F(d_{\alpha,b}) = \alpha$. Then $P_{\alpha+1,d_{\alpha,b}}$ adds a dominating real over the model $V_{\alpha,d_{\alpha,b}} \supseteq V_{\alpha,b}$, call it $g^{d_{\alpha,b}}$. Hence the arbitrary f is dominated by the set $\{g^{d_{\alpha,b}} : d \in D, \alpha \in \beta\}$ which is of size $\delta \cdot \beta = \delta$.

Now, for each $a \in Q$ and $P_{\beta,m}$ -generic filter G, let $f_G^a = \bigcup \{ t_a : \exists p \in G \ (p(a) = (t_a, \dot{f}_a)) \}$ and let \dot{f}_G^a be a $P_{\beta,m}$ -name for f_G^a .

Claim 6.2. If $g \in V_{F(a),a}$ and $b \notin_Q a$, then $V_{\beta,m} \models f_G^b \notin^* g$.

Proof. Let p be an arbitrary condition in $T_{\beta,m}$ (in $V_{\beta,c}$), $n \in \kappa$ and let \dot{g} be a $T_{\beta,a}$ -name for g. We will find an extension of p which forces $\dot{f}^b_G(k) \ge \dot{g}(k)$ for some $k \ge n$. Let $p(a) = (t, \dot{g}')$ and $p(b) = (s, \dot{h})$. Let \dot{f} be a $T_{\beta,a}$ -name for the pointwise maximum of \dot{g}' and \dot{g} . Now define the condition p_0 as follows: $\operatorname{supp}(p_0) = \operatorname{supp}(p)$ and $p_0(e) = p(e)$ for each $e \ne a$, and $p_0(a) = (t, \dot{f})$.

Clearly $p_0 \leq p$. Now let $k \in \kappa$ be large enough such that $\{\operatorname{dom}(t), \operatorname{dom}(s), n\} \subset k$. Next let $q \in T_{\beta,a}$ extend $p_0 \upharpoonright a$ and q decide the value of \dot{f} up to k. Now define the extension p_1 of p_0 by setting $p_1(e) = p_0(e)$ for each $e \not\in_Q a$ and $p_1(e) = q(e)$ for each $e <_Q a$. So p_1 is an extension of p_0 carrying the information on the values of \dot{f} up to k; and now we do the same for b and p_1 , so we let $r \in T_{\beta,b}$ with $r \leq p_1 \upharpoonright b$ and r decides the values of \dot{h} up to k. We define the extension p_2 as $p_2(e) = p_1(e)$ for each $e \not\leq_Q b$ and $p_2(e) = r(e)$ for each $e <_Q b$. Now $p \geq p_0 \geq p_1 \geq p_2$ and $p_2(a) = p_0(a)$ and $p_2(b) = p(b)$. Now we extend p_2 as desired: First find an end-extension $t' \supseteq t$ such that $\operatorname{dom}(t') = k + 1$ and for $\operatorname{dom}(s) \leq i < \operatorname{dom}(t')$, $t'(i) > \dot{f}(i)$. Then find an end-extension $s' \supseteq s$ such that $\operatorname{dom}(s') = k + 1$ and for $\operatorname{dom}(s) \leq i < k + 1$ $(s'(i) > \max\{\dot{h}(i), t'(i)\})$. Then any further extension p'_2 of p_2 satisfying $s_b^{p'_2} = s'$ forces $\dot{f}_G^b(k) > \dot{f}(k)$ which gives the claim.

 $\delta \leq \mathfrak{d}_{\kappa}$: Let $F \subseteq V_{\beta,m} \cap {}^{\kappa}\kappa$ be a family of size less than δ . As in the previous paragraph we can find for every single $f \in F$ a stage $a_f \in Q$ such that $f \in V_{F(a_f),a_f} \cap {}^{\kappa}\kappa$. Now $|\{a_f : f \in F\}| < \delta$, so $\{a_f : f \in F\}$ is not dominating in Q. Hence $\exists u \in Q \ \forall f \in F \ (u \not\leq_Q a_f)$. Then by Claim 6.2 we have $\forall f \in F \ (f_G^u \not\leq^* f)$. Hence F is not dominating. \Box

Theorem 6.3. If β , δ , μ are infinite cardinals with $\kappa^+ \leq \beta = \operatorname{cof}(\beta) \leq \operatorname{cof}(\delta) \leq \delta \leq \mu$ and $\operatorname{cof}(\mu) > \kappa$, then there is a κ^+ -c.c. and κ -closed generic extension in which $\mathfrak{b}_{\kappa} = \mathfrak{a}_{\kappa} = \beta$, $\mathfrak{d}_{\kappa} = \delta$ and $\mathfrak{c}_{\kappa} = \mu$.

Proof. In the above construction replace the underlying poset $(Q, <_Q)$ by the following poset $(R, <_R)$: R consists of pairs (p, i) such that either $i = 0 \land p \in \mu$ or $i = 1 \land p \in Q$. The order relation is defined as $(p, i) <_R (q, j)$ iff $i = 0 \land j = 1$ or $i = j = 1 \land p <_Q q$ or $i = j = 0 \land p < q$ in μ . Then $\mathfrak{b}(R) = \mathfrak{b}(Q) = \beta$ and $\mathfrak{d}(R) = \mathfrak{d}(Q) = \delta$ as the map $i : Q \to R$ defined as $b \mapsto (1, b)$ is a cofinal embedding from Q into R. The bottom part (μ, ϵ) of R ensures that in the final model $\mathfrak{c}_{\kappa} \geq \mu$ holds. By a standard argument of counting nice names $\mathfrak{c}_{\kappa} \leq \mu$ in $V_{\beta,m}$.

7. FURTHER REMARKS

We also want to point out that the model in [3, §4] is an alternative witness for the constellation we showed here in the case of $\kappa = \omega$, namely $\mathfrak{b} = \mathfrak{a} < \mathfrak{d} < \mathfrak{c}$. Recall the construction in [3] forcing $\mathfrak{b} = \mathfrak{a} = \kappa < \mathfrak{s} = \lambda$: Let $\kappa < \lambda$ be fixed regular uncountable cardinals. First introduce a surjective book-keeping function $f : \{\nu < \lambda : \nu \equiv 1 \mod 2\} \rightarrow \kappa$ where $\forall \alpha < \kappa (f^{-1}(\alpha) \text{ is cofinal in } \lambda)$. The matrix is defined recursively and consists of finite support iterations $\langle \langle P_{\alpha,\xi} : \alpha \leq \kappa, \xi \leq \lambda \rangle, \langle \dot{Q}_{\alpha,\xi} : \alpha \leq \kappa, \xi \leq \lambda \rangle \rangle$ where:

(1) If $\xi = 0$, then for each $\alpha \leq \kappa$, $P_{\alpha,0}$ is Hechler's poset from Definition 2.4 which adds an almost disjoint family $\mathcal{A}_{\alpha} = \{A_{\beta}\}_{\beta < \alpha}$ which is m.a.d. in $V_{\alpha,0}$ if $\alpha \geq \omega_1$.

(2) If $\xi = \mu + 1 \equiv 1 \mod 2$, then for each $\alpha \leq \kappa$, $\Vdash_{P_{\alpha,\mu}} \dot{Q}_{\alpha,\mu} = \mathbb{M}(\dot{U}_{\alpha,\mu})$ while $\dot{U}_{\alpha,\mu}$ is a $P_{\alpha,\mu}$ -name for an ultrafilter with the property that for $\alpha < \beta \leq \kappa$, $\Vdash_{P_{\beta,\mu}} \dot{U}_{\alpha,\mu} \subseteq \dot{U}_{\beta,\mu}$. This helps to evaluate the splitting number in the final model.

(3) If $\xi = \mu + 1$ and $\xi \equiv 0 \mod 2$, then for each $\alpha \leq f(\mu) \dot{Q}_{\alpha,\mu}$ is a $P_{\alpha,\mu}$ -name with $\Vdash_{P_{\alpha,\mu}}$ " $\dot{Q}_{\alpha,\mu}$ is the trivial forcing"; and if $\alpha > f(\mu)$ then $\dot{Q}_{\alpha,\mu}$ is the $P_{\alpha,\mu}$ -name for adding a dominating real over the model $V_{f(\mu),\mu}$.

(4) If ξ is a limit ordinal, then for each $\alpha \leq \kappa$, $P_{\alpha,\xi}$ is the direct limit of the previous $P_{\alpha,\mu}$.

For suitable cardinals κ , λ , μ in the final model $V_{\kappa,\lambda}$ one can witness $\mathfrak{a} = \mathfrak{b} = \kappa < \lambda = \mathfrak{d}(=\mathfrak{s}) < \mathfrak{c} = \mu$: Proceed with a finite support iteration of Cohen forcings of length μ in order to get an intermediate stage (model V_0) where $\mathfrak{c} = \mu$ holds. Over V_0 perform the above described construction. It is not difficult to check that in the resulting model $\mathfrak{a} = \mathfrak{b} = \kappa < \lambda = \mathfrak{s}$. Next, we show that in the model also $\mathfrak{d} = \lambda$:

 $\mathfrak{d} \leq \lambda$: Let $f \in V_{\kappa,\lambda} \cap^{\omega} \omega$ be an arbitrary real. By Lemma [3, Lemma 15] and the regularity of λ we have $\exists \alpha < \kappa, \xi < \lambda$ ($x \in V_{\alpha,\xi} \cap^{\omega} \omega$) such that $\xi = \eta + 1 \equiv 1 \mod 2$. As $\{\gamma: f(\gamma) = \alpha\}$ is cofinal in λ we can find a $\xi < \xi' \equiv 0 \mod 2$ with $f(\xi') = \alpha$. Then the poset $P_{\alpha+1,\xi'+1}$ adds a Hechler real over the model $V_{\alpha,\xi'} \cap^{\omega} \omega \supseteq V_{\alpha,\xi} \cap^{\omega} \omega$, and the λ -many (restricted) Hechler reals in the construction build a dominating family.

 $\mathfrak{d} \geq \lambda$: Let $B \subseteq V_{\kappa,\lambda} \cap \omega \omega$ be such that $|B| < \lambda$. By the regularity of λ we have $\exists \xi < \lambda$ ($x \in V_{\kappa,\xi} \cap \omega \omega$). As the remaining part is a finite support iteration of non-trivial forcings, limit stages with countable cofinality add a Cohen real which is unbounded. Hence B is not dominating.

We further point out that the consistency of $\kappa^+ \leq \mathfrak{b}_{\kappa} = \mathfrak{a}_{\kappa} = \beta \leq \mathfrak{d}_{\kappa} = \mathfrak{c}_{\kappa} = \delta$ can be shown by a (linear) matrix iteration: Assume in the construction of Section 4 additionally that δ is regular and replace Q by the well-order (δ, ϵ) . The final model of this matrix, which is of height β and width δ , satisfies $\kappa^+ \leq \mathfrak{b}_{\kappa} = \mathfrak{a}_{\kappa} = \beta \leq \mathfrak{d}_{\kappa} = \mathfrak{c}_{\kappa} = \delta$. If we additionally want to separate \mathfrak{d}_{κ} and \mathfrak{c}_{κ} , e.g. to force $\mathfrak{c}_{\kappa} = \mu$, we can add μ -many Cohen κ -reals before the above described iteration. However, by arguing with a (linear) matrix iteration, we have to require that δ is regular, leaving the case \mathfrak{d}_{κ} singular unsettled. To force $\kappa^+ \leq \mathfrak{b}_{\kappa} = \mathfrak{a}_{\kappa} = \beta \leq \mathfrak{d}_{\kappa} = \delta \leq \mathfrak{c}_{\kappa} = \mu$ for a singular δ one has to take the more general approach given in Section 4.

Question 7.1. It is open whether four cardinal characteristics (among other natural candidates), namely $\mathfrak{a}, \mathfrak{s}, \mathfrak{r}$ and \mathfrak{u} , can be controlled strictly between \mathfrak{b} and \mathfrak{d} . Is either of the following constellations consistent: $\mathfrak{b} < \mathfrak{a} < \mathfrak{d} < \mathfrak{c}$, $\mathfrak{b} < \mathfrak{s} < \mathfrak{d} < \mathfrak{c}$, $\mathfrak{b} < \mathfrak{r} < \mathfrak{d} < \mathfrak{c}$?

Since $\mathfrak{b}_{\kappa} = \kappa^+$ implies that $\mathfrak{a}_{\kappa} = \kappa^+$ for κ regular uncountable (see [8]), the main result of [4] implies that for a given suitable set C of regular uncountable cardinals, it is consistent that $\mathfrak{b}_{\lambda} = \mathfrak{a}_{\lambda} = \lambda^+ < \mathfrak{d}_{\lambda} = \mathfrak{c}_{\lambda}$ holds simultaneously for all $\lambda \in C$. This naturally leads to the following:

Question 7.2. Given a set C of regular uncountable cardinals is it consistent that

$$\lambda^+ < \mathfrak{b}_\lambda = \mathfrak{a}_\lambda < \mathfrak{d}_\lambda < \mathfrak{c}_\lambda$$

for all $\lambda \in C$ simultaneously?

References

- Blass, Andreas: Combinatorial Cardinal Characteristics of the Continuum; in: M. Foreman/A. Kanamori [Ed.]: Handbook of Set Theory, Springer, Heidelberg/London/New York, 2010, 395-489.
- [2] A. Blass, S. Shelah Ultrafilters with small generating sets, Israel Journal of Mathematics 65, 1984, 259-271.
- [3] J. Brendle, V. Fischer Mad families, splitting families and large continuum, Journal of Symbolic Logic 76(1), 2011, 198-208.
- [4] J. Cummings, S. Shelah: Cardinal invariants above the continuum, Annals of Pure and Applied Logic 75, 1995, 251-268.

- [5] V. Fischer, S. D. Friedman, D. Mejia, D. C. Montoya Coherent systems of finite support iterations, Journal of Symbolic Logic 83(1), 2018, 208-236.
- [6] S. Hechler Short complete nested sequences in βN\N and small maximal almost-disjoint families General Topology and its Applications 2, 1972, 139-149.
- [7] Kunen, Kenneth: Set Theory, College Publications, London, 2013.
- [8] D. Raghavan, S. Shelah: Two results on cardinal invariants at uncountable cardinals; in: Proceedings of the 14th and 15th Asian Logic Conferences (Mumbai, India and Daejeon, South Korea), World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, pages 129-138. World Scientific, 2019.
- [9] van Douwen, Eric K.: The integers and topology. Handbook of set-theoretic topology, North-Holland, Amsterdam/New York, 1984, 111-167.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF VIENNA, KOLINGASSE 14-16, 1090 WIEN, AUSTRIA *Email address:* oemer.bag@univie.ac.at

INSTITUTE OF MATHEMATICS, UNIVERSITY OF VIENNA, KOLINGASSE 14-16, 1090 WIEN, AUSTRIA *Email address:* vera.fischer@univie.ac.at