NON-LINEAR ITERATIONS AND ALMOST DISJOINTNESS

ÖMER FARUK BAĞ AND VERA FISCHER

Abstract

Let κ be an infinite regular cardinal, let $\mathfrak{a}_{\kappa}, \mathfrak{b}_{\kappa}, \mathfrak{d}_{\kappa}$ be the almost disjointness, bounding, and dominating numbers at κ, respectively, and let $\mathfrak{c}_{\kappa}=2^{\kappa}$. Using a system of parallel nonlinear iterations, we establish the consistency of $\mathfrak{b}_{\kappa}=\mathfrak{a}_{\kappa}<\mathfrak{d}_{\kappa}<\mathfrak{c}_{\kappa}$ where $\mathfrak{b}_{\kappa}, \mathfrak{d}_{\kappa}, \mathfrak{c}_{\kappa}$ are arbitrary subject to the known ZFC restrictions.

1. Introduction

The cardinal characteristics of the continuum occupy a central place in the study of the set theoretic properties of the real line, with many interesting research and survey articles, see [1], [9]. In the past decades, there has been an increased interest towards higher Baire spaces analogues of many of those characteristics. In this article we further examine the bounding, dominating and almost-disjointness numbers, denoted $\mathfrak{b}_{\kappa}, \mathfrak{d}_{\kappa}, \mathfrak{a}_{\kappa}$ respectively and show that subject to the known ZFC restrictions between these characteristics, consistently $\kappa^{+}<\mathfrak{b}_{\kappa}=\mathfrak{a}_{\kappa}<\mathfrak{d}_{\kappa}<\mathfrak{c}_{\kappa}$ holds for $\kappa=\omega$ (which can be obtained also by other already existing methods) and more significantly for the current work, for κ arbitrary regular uncountable cardinal.

Our result builds upon the methods of non-linear iterations of Cummings and Shelah from [4] and the method of matrix iterations as appearing in $[2,3]$. Recall, that the method of matrix iteration was introduced by A. Blass and S. Shelah in 1989 to prove the relative consistency of $\mathfrak{u}<\mathfrak{d}$, where \mathfrak{u} denotes the minimal size of a base for a non-principal ultrafilter on ω. In [3] the method was further developed and systematized to establish the consistency of $\mathfrak{b}=\mathfrak{a}=\kappa<\mathfrak{s}=\lambda$, as well as $\mu<\mathfrak{b}=\kappa<\mathfrak{a}=\mathfrak{s}=\lambda$ above a measurable cardinal μ, where \mathfrak{s} denotes the spliting number. Of particular importance for the current work is the method of forcing with restricted Hechler posets along a matrix iteration introduced in the latter work. The method of non-linear iteration was introduced in [4] in order to (among others) simultaneously control the values of the generalized invariants $\mathfrak{b}_{\kappa}, \boldsymbol{d}_{\kappa}$ and \mathfrak{c}_{κ} at an arbitrary regular uncountable cardinal κ.

To obtain our main results, we merge the above techniques both in the countable and uncountable settings. The resulting forcing construction can be seen as a system of parallel non-linear iterations, which can be compared to the system of parallel (linear) matrix iterations given in [5]. Our main theorem states the following:

[^0]Theorem. Let κ be an infinite regular cardinal. If β, δ, μ are infinite cardinals with $\kappa^{+} \leq \beta=$ $\operatorname{cof}(\beta) \leq \operatorname{cof}(\delta) \leq \delta \leq \mu$ and $\operatorname{cof}(\mu)>\kappa$, then there is a cardinal preserving generic extension in which

$$
\mathfrak{b}_{\kappa}=\mathfrak{a}_{\kappa}=\beta \leq \mathfrak{d}_{\kappa}=\delta \leq \mathfrak{c}_{\kappa}=\mu
$$

In addition, we outline a standard (linear) matrix iteration construction which gives an alternative proof of our main result for the special case in which \mathfrak{d}_{κ} is regular and κ is an arbitrary regular uncountable cardinal. To the best knowledge of the authors this is the first application of the method of matrix iterations in the context of higher Baire spaces. A key feature of our forcing construction is the fact that the iterands along relevant non-linear fragments are well-chosen, as indeed we make use only of suitable restricted Hechler forcings.

The paper is structured as follows: In Section 2 we revisit some basic notions and in Section 3, we introduce and study the properties of a well-founded index poset which plays a crucial role in our main forcing construction. In section 4 we , recursively along a suitable index poset, define the above mentioned forcing notion, establish its properties. In section 5 we study the preservation of a carefully chosen witness to $\mathfrak{a}_{\kappa}=\beta$ along this forcing construction. In Section 6 we complete the proof of the main theorem. In the final, Section 7, we give alternative proofs of the special case of the above theorem in which $\kappa=\omega$, as well as the special case in which κ is regular uncountable and \mathfrak{d}_{κ} is regular. We conclude the article, with some interesting remaining open questions, regarding (among others) the global behaviour or $\mathfrak{a}_{\kappa}, \mathfrak{b}_{\kappa}, \mathfrak{d}_{\kappa}$ and \mathfrak{c}_{κ}.

2. Preliminaries

Throughout κ is a regular infinite cardinal.
Definition 2.1. Let f and g be functions from κ to κ.
(1) Then g eventually dominates f, denoted by $f<^{*} g$, if $\exists n<\kappa \forall m>n(f(m)<g(m))$.
(2) A family $\mathcal{F} \subseteq{ }^{\kappa} \kappa$, is dominating if $\forall g \in{ }^{\kappa} \kappa \exists f \in \mathcal{F}\left(g<^{*} f\right)$.
(3) A family $\mathcal{F} \subseteq{ }^{\kappa} \kappa$ is unbounded if $\forall g \in{ }^{\kappa} \kappa \exists f \in \mathcal{F}\left(f \not^{*} g\right)$.
(4) \mathfrak{b}_{κ} and \mathfrak{d}_{κ} denote the generalized bounding and dominating numbers respectively:

$$
\begin{aligned}
\mathfrak{b}_{\kappa} & =\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq{ }^{\kappa} \kappa, \mathcal{F} \text { is unbounded }\right\} \\
\mathfrak{d}_{\kappa} & =\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq{ }^{\kappa} \kappa, \mathcal{F} \text { is dominating }\right\} .
\end{aligned}
$$

(5) Finally, $\mathfrak{c}_{\kappa}=2^{\kappa}$.

Definition 2.2. Let $x, y \in[\kappa]^{\kappa}$.
(1) The sets x and y are almost disjoint if $|x \cap y|<\kappa$.
(2) A family $\mathcal{A} \subseteq[\kappa]^{\kappa}$ is κ-almost disjoint if any two pairwise distinct elements in \mathcal{A} are almost disjoint. An almost disjoint family is κ-maximal almost disjoint (κ-mad) if it is maximal with respect to inclusion.
(3) The almost disjointness number \mathfrak{a}_{κ} is the minimal size of a κ-maximal almost disjoint family of cardinality at least κ and is denoted \mathfrak{a}_{κ}.

Some of the well-known relations between the above mentioned invariants are as follows: $\kappa^{+} \leq$ $\mathfrak{b}_{\kappa}=\operatorname{cof}\left(\mathfrak{b}_{\kappa}\right) \leq \operatorname{cof}\left(\mathfrak{d}_{\kappa}\right) \leq \mathfrak{d}_{\kappa} \leq \mathfrak{c}_{\kappa}, \mathfrak{b}_{\kappa} \leq \mathfrak{a}_{\kappa}, \operatorname{cof}\left(\mathfrak{c}_{\kappa}\right)>\kappa$. We will use the following notation: $\mathbb{1}=\{\varnothing\}$ denotes the trivial forcing and for a forcing notion $\mathbb{P}, \mathbb{1}_{\mathbb{P}}$ is the largest element of \mathbb{P}.

Definition 2.3. The Hechler forcing notion is defined as the set $\mathbb{H}=\left\{(s, f): s \in \kappa^{<\kappa}, f \in{ }^{\kappa} \kappa\right\}$ with extension relation given by: $(t, g) \leq_{\mathbb{H}}(s, f)$ iff $s \subseteq t, \forall n \in \kappa(g(n) \geq f(n))$ and $\forall i \in$ $\operatorname{dom}(t) \backslash \operatorname{dom}(s)(t(i)>f(i))$. If $A \subseteq{ }^{\kappa} \kappa$, then $\mathbb{H}(A)=\left\{(s, f): s \in \kappa^{<\kappa}, f \in A\right\}$ equipped with the same extension relation is known as restricted Hechler forcing.

It is straightforward to check, that $\mathbb{H}(A)$ adjoins a κ-real eventually dominating the elements in A. The first coordinate s of a condition $(s, f) \in \mathbb{H}(A)$ is called a stem. The poset given below is the generalization of what is known as the Hechler forcing for adjoining a mad family, see [6]:

Definition 2.4. Let λ be an ordinal. Then \mathbb{H}_{λ} consists of all partial functions $p: \lambda \times \kappa \rightarrow 2$, with $\operatorname{dom}(p)=F_{p} \times n_{p}$ where $F_{p} \in[\lambda]^{<\kappa}, n_{p} \in \kappa$ and extension relation is defined as follows: $q \leq p$ iff $p \subseteq q$ and $\forall i \in n_{q} \backslash n_{p}\left|q^{-1} \cap F_{p} \times\{i\}\right| \leq 1$.

If G is a \mathbb{H}_{λ}-generic for an ordinal λ, then the family $\mathcal{A}_{\lambda}=\left\{A_{\alpha}: \alpha<\lambda\right\}$, where $A_{\alpha}=\{i: \exists p \in$ $G p(\alpha, i)=1\}$ is κ-almost disjoint. Moreover, if $\lambda \geq \kappa^{+}$then \mathcal{A}_{λ} is κ-maximal almost disjoint. If $\alpha \leq \beta$ are two ordinals, then \mathbb{H}_{β} decomposes as follows: Let G be a \mathbb{H}_{α}-generic. In $V[G]$ let $\mathbb{H}_{[\alpha, \beta)}$ consist of pairs (p, H), where $p:(\beta \backslash \alpha) \times \kappa \rightarrow 2$ has domain $\operatorname{dom}(p)=F_{p} \times n_{p}, H \in[\alpha]^{<\kappa}$ with $(p, H) \leq(q, K)$ iff $p \leq_{\mathbb{H}_{\beta}} q, K \subseteq H$ and for every $j \in F_{q}, k \in n_{p} \backslash n_{q}$ and $i \in K$, if $k \in A_{i}$, then $p(j, k)=0$ holds. Then $\mathbb{H}_{\beta} \simeq \mathbb{H}_{\alpha} * \dot{\mathbb{H}}_{[\alpha, \beta)}$.
Definition 2.5. If $\left(\mathbb{Q}, \leq \mathbb{Q}, \mathbb{1}_{\mathbb{Q}}\right)$ and $\left(\mathbb{P}, \leq \mathbb{P}, \mathbb{1}_{\mathbb{P}}\right)$ are forcing posets, then $i: \mathbb{Q} \rightarrow \mathbb{P}$ is called a complete embedding, denoted $\mathbb{Q} \leftrightarrows \mathbb{P}$, if the following properties hold:
(1) $i\left(\mathbb{1}_{\mathbb{Q}}\right)=\mathbb{1}_{\mathbb{P}}$,
(2) $\forall q, q^{\prime} \in \mathbb{Q}\left(q \leq \mathbb{Q} q^{\prime} \rightarrow i(q) \leq \mathbb{P} i\left(q^{\prime}\right)\right)$,
(3) $\forall q, q^{\prime} \in \mathbb{Q}\left(q \perp_{\mathbb{Q}} q^{\prime} \leftrightarrow i(q) \perp_{\mathbb{P}} i\left(q^{\prime}\right)\right)$ and
(4) if $A \subseteq \mathbb{Q}$ is a maximal antichain in \mathbb{Q}, then $i(A)$ is a maximal antichain in \mathbb{P}.

We will make use of the following, which is a slightly modified version of [3, Lemma 13].
Lemma 2.6. Let \mathbb{P} and \mathbb{Q} be forcing notions with $\mathbb{P} \leq \mathbb{Q}$. Suppose $\dot{\mathbb{A}}$ (resp. $\dot{\mathbb{B}}$) is a \mathbb{P}-name (resp. \mathbb{Q}-name) for a forcing poset, where in $V^{\mathbb{Q}}$ there is an embedding $i: \mathbb{A} \rightarrow \mathbb{B}$ with

- $i\left(\mathbb{1}_{\mathbb{A}}\right)=\mathbb{1}_{\mathbb{B}}$,
- $\forall p, p^{\prime} \in \mathbb{A}\left(p \leq p^{\prime} \rightarrow i(p) \leq i\left(p^{\prime}\right)\right)$,
- $\forall p, p^{\prime} \in \mathbb{A}\left(p \perp p^{\prime} \leftrightarrow i(p) \perp i\left(p^{\prime}\right)\right)$ and
- for every maximal antichain A of $\dot{\mathbb{A}}$ in $V^{\mathbb{P}}, i(A)$ is a maximal antichain of $\dot{\mathbb{B}}$ in $V^{\mathbb{Q}}$.

Then $\mathbb{P} * \dot{\mathbb{A}} \leq \mathbb{Q} * \dot{\mathbb{B}}$.
Proof. Let $j: \mathbb{P} \rightarrow \mathbb{Q}$ be a witness for $\mathbb{P} \leq \mathbb{Q}$. Define the following embedding: $k: \mathbb{P} * \dot{\mathbb{A}} \rightarrow \mathbb{Q} * \dot{\mathbb{B}}$, $k(p, \dot{q})=(j(p), i(q))$. Conditions (1), (2), (3) of Definition 2.5 are easily checked. We show property (4) of Definition 2.5. For suppose not and let $W=\left\{\left(p_{\alpha}, \dot{a}_{\alpha}\right): \alpha<\kappa\right\}$ be a maximal
antichain of $\mathbb{P} * \dot{\mathbb{A}}$ and $(q, \dot{b}) \in \mathbb{Q} * \dot{\mathbb{B}}$ be incompatible with every condition in $k(W)$. Let \dot{H} be the canonical \mathbb{P}-name for a \mathbb{P}-generic filter and let \dot{I} be a \mathbb{P}-name with $\Vdash \dot{I}=\left\{\alpha: p_{\alpha} \in \dot{H}\right\}$.

We claim that \Vdash " $\left\{\dot{a}_{\alpha}: \alpha \in \dot{I}\right\}$ is a maximal antichain of \dot{A} ". Otherwise, we can find a \mathbb{P}-name \dot{a} and $p \in \mathbb{P}$ such that

$$
(*) p \Vdash \forall \alpha\left(\alpha \in \dot{I} \rightarrow \dot{a} \perp \dot{a}_{\alpha}\right) .
$$

Since $(p, \dot{a}) \in \mathbb{P} * \dot{\mathbb{A}}$ and W is maximal, we can find $\alpha<\kappa$ and (p^{\prime}, \dot{a}) which is a common extension of (p, \dot{a}) and $\left(p_{\alpha}, \dot{a}_{\alpha}\right)$. Then $p^{\prime} \Vdash \dot{a}^{\prime} \leq \dot{a} \wedge \dot{a}^{\prime} \leq \dot{a}_{\alpha}$ and $p^{\prime} \Vdash \alpha \in \dot{I}$. Hence $p^{\prime} \Vdash \alpha \in \dot{I} \wedge \dot{a}^{\prime} \leq \dot{a} \wedge \dot{a}^{\prime} \leq \dot{a}_{\alpha}$ which is a contradiction to $(*)$.

Now let G be a \mathbb{Q}-generic filter containing q. As $\mathbb{P} \leftrightarrows \mathbb{Q}$ we can find a \mathbb{P}-generic filter H with $V[H] \subseteq V[G]$ (see [7, p. 270]). Let $b=\dot{b}[G], a_{\alpha}=\dot{a}_{\alpha}[G]=\dot{a}_{\alpha}[H]$ and $I=\dot{I}[G]=\left\{\alpha<\kappa: p_{\alpha} \in H\right\}$. By the above $\left\{a_{\alpha}: \alpha \in I\right\}$ is a maximal antichain of \mathbb{A} in $V[H] \subseteq V[G]$ and by assumption $\left\{i\left(a_{\alpha}\right): \alpha \in I\right\}$ is a maximal antichain of \mathbb{B} in $V[G]$. Thus $\exists \alpha \in I b \notin i\left(a_{\alpha}\right)$ and so $\exists q^{\prime} \leq q, j\left(p_{\alpha}\right)$ such that $q^{\prime} \Vdash \alpha \in \dot{I} \wedge \dot{b} \notin i\left(\dot{a}_{\alpha}\right)$. This further means that there is a \mathbb{Q}-name \dot{r} with $q^{\prime} \Vdash \dot{r} \leq \dot{b}, i\left(\dot{a}_{\alpha}\right)$, hence $\left(q^{\prime}, \dot{r}\right)$ is a common extension of (q, \dot{b}) and $\left(j\left(p_{\alpha}\right), i\left(\dot{a}_{\alpha}\right)\right)$, which is a contradiction.

3. The index set

Bounding and dominating can be defined generally for arbitrary posets as follows:
Definition 3.1 ([4]). Let $\left(P, \leq_{P}\right)$ be a partial order.
(1) We call $U \subseteq P$ unbounded if $\forall p \in P \exists q \in U\left(q \not \ddagger_{P} p\right)$.
(2) $\mathfrak{b}(P)=\min \{|U|: U \subseteq P$ is unbounded $\}$.
(3) A subset $D \subseteq P$ is dominating if $\forall p \in P \exists q \in D\left(p s_{P} q\right)$.
(4) $\mathfrak{d}(P)=\min \{|D|: D \subseteq P$ is dominating $\}$.

Note that \leq^{*} is not antisymmetric. However the relation $=^{*}$ is an equivalence relation on ${ }^{\kappa} \kappa$. Let $[f]_{=*}=\left\{g \epsilon^{\kappa} \kappa: f=^{*} g\right\}$ denote the equivalence class of f. The relation $\leq_{=*}$ on the equivalence classes, given as $[f] \leq_{=*}[g]$ iff $f \leq^{*} g$ is well-defined and a partial order. So $\mathfrak{b}_{\kappa}=\mathfrak{b}\left(\left\{[f]_{=*:} f \in\right.\right.$ $\left.\left.{ }^{\kappa} \kappa\right\}, \leq_{=*}\right)$ and $\mathfrak{d}_{\kappa}=\mathfrak{d}\left(\left\{[f]_{=*}: f \in{ }^{\kappa} \kappa\right\}, \leq_{=*}\right)$.

Lemma 3.2 ([4]). For any poset P there is a well-founded and dominating subposet P^{\prime} of P.
Proof. Let $\tau=\left\langle p_{\alpha}: \alpha<\lambda\right\rangle$ be a maximal sequence such that $\forall \alpha<\lambda \forall \beta<\alpha\left(p_{\alpha} \nless p_{\beta}\right)$. It is not difficult to check that P^{\prime} is dominating, as if not for any $p \in P$ such that $\forall \alpha<\lambda\left(p \nless p_{\alpha}\right)$, the sequence $\left\langle p_{\alpha}: \alpha \leq \lambda\right\rangle$ contradicts the maximality of τ, where $p_{\lambda}=p$. Take $P^{\prime}=\left\{p_{\alpha}: \alpha<\lambda\right\}$.

In the above Lemma P^{\prime} is clearly cofinal in P and so $\mathfrak{d}(P)=\mathfrak{d}\left(P^{\prime}\right)$ and $\mathfrak{b}(P)=\mathfrak{b}\left(P^{\prime}\right)$.
For the purposes of the next lemma, let $\left(R,<_{R}\right)$ be a well-founded poset such that $|R|=\delta$, $\mathfrak{d}(R)=\delta$ and $\mathfrak{b}(R)=\beta$ for some cardinals β and δ. Further, for each $a \in R$, let ($L_{a},<_{L_{a}}$) be a wellorder of order type δ and let $L_{a}=\left\langle l_{a, \gamma}: \gamma<\delta\right\rangle$ where $l_{a, \gamma} \leq_{L_{a}} l_{a, \gamma^{\prime}}$ iff $\gamma \leq \gamma^{\prime}$. Let Q be the disjoint union $Q=R \cup \bigcup\left\{L_{a}: a \in R\right\}$ and let $<_{Q}$ be the partial order on Q defined as follows: $<_{Q} \upharpoonright R \times R=<_{R}$, $\forall a \in R\left(<_{Q} \upharpoonright L_{a} \times L_{a}=<_{L_{a}}\right), \forall a \in R\left(a<_{Q} l_{a, 0}\right)$ and $\forall a^{\prime} \neq a \in R \forall \gamma \in \delta\left(a^{\prime}<_{R} a \rightarrow l_{a^{\prime}, \gamma}<_{Q} l_{a, \gamma}\right)$.
Lemma 3.3. If $\left(R,<_{R}\right),\left\{L_{a}: a \in R\right\}$, and $\left(Q,<_{Q}\right)$ are given as above, then $\mathfrak{d}(Q)=\delta, \mathfrak{b}(Q)=\beta$, $|Q|=\delta, Q$ is well-founded and for each $b \in Q,\left|b \uparrow_{Q}\right|=\delta$.

Proof. For any element $q \in Q$, define the trace q^{R} of q in R to be

$$
q^{R}= \begin{cases}a & q \in L_{a} \\ q & q \in R\end{cases}
$$

and for any subset $A \subseteq Q, A^{R}$ to be $\left\{a^{R}: a \in A\right\}$. Let $b \in Q$. Then $\left|b \uparrow_{Q}\right|=\delta$, as either $b=a$ for an $a \in R$ or $b=l_{a, \gamma}$ for an $a \in R$ and $\gamma<\delta$. In either case $\left|L_{a} \cap b \uparrow_{Q}\right| \geq \delta$. Also $|Q|=\delta$, because $|R|=\delta$ and $\left|L_{a}\right|=\delta$ for each $a \in R$ and δ is an infinite cardinal. As Q is dominating and $|Q|=\delta$, we have $\mathfrak{d}(Q) \leq \delta$.
$\mathfrak{d}(Q) \geq \delta$: Let $A \subseteq Q$ and $|A|<\delta$. Then also $\left|A^{R}\right|<\delta$ and A^{R} is not dominating in R. So $\exists b \in R \forall a \in A^{R}\left(b \not{ }_{R} a\right)$. Then b is also unbounded in A.
$\mathfrak{b}(Q) \geq \beta$: Let $A \subseteq Q$ and $|A|<\beta$. Then also $\left|A^{R}\right|<\beta$ and A^{R} is not unbounded in R and so $\exists d \in R \forall a \in A^{R}\left(a<_{R} d\right)$. For an ordinal $\alpha<\delta$, let $H_{\alpha}=\left\{l_{a, \alpha}: a \in R\right\}$. Let $\alpha^{\prime}=\sup \left\{\gamma: A \cap H_{\gamma} \neq \varnothing\right\}$. By regularity of $\beta, \alpha^{\prime}<\beta$. However $\delta \geq \beta>\alpha^{\prime}$ and any $l_{d, \gamma}$ where $\alpha^{\prime}<\gamma<\delta$ domintaes A.
$\mathfrak{b}(Q) \leq \beta$: Let $A \subseteq R$ be unbounded in R with respect to $<_{R}$ and let $|A|=\beta$. Consider an arbitrary $q \in Q$. Note that if $a \in A$ is such that $a \nless R q^{R}$, then also $a \not_{Q} q$. Thus A is an unbounded family of Q with respect to $<_{Q}$.

Finally, to show that Q is well-founded consider an arbitrary, non-empty $A \subseteq Q$. If $A \cap R \neq \varnothing$, then a minimal element of $A \cap R$ is also a minimal element of A. Otherwise let $m \in R$ be a minimal element of A^{R}. Let $\alpha^{\prime}=\min \left\{\gamma: A \cap H_{\gamma} \neq \varnothing\right\}$. Then $l_{m, \alpha^{\prime}}$ is a minimal element of A.

We will make use of the following notation: Whenever $\left(X,<_{X}\right)$ is a well-founded poset, then for an arbitrary y in X, let $X_{y}=\left\{x \in X: x<_{X} y\right\}$ and $y \uparrow X=\left\{x \in X: y<_{X} x\right\}$.

Corollary 3.4. (GCH) Let κ be a regular infinite cardinal and let β, δ be cardinals such that $\kappa^{+} \leq \beta=\operatorname{cof}(\beta) \leq \operatorname{cof}(\delta)$. There is a well-founded (index) partial order ($W,<W$) of cardinality δ, which has a least and largest elements, denoted c and m respectively and such that for $Q=$ $W \backslash\{m, c\},<_{Q}=Q \times Q \cap<_{W}$ the following holds

$$
\mathfrak{b}(Q)=\beta, \mathfrak{o}(Q)=\delta, \text { and } \forall b \in Q\left(\left|b \uparrow_{Q}\right| \geq \delta\right) .
$$

Proof. Let $\left(Q,<_{Q}\right)$ be a well-founded suborder of $\left([\delta]^{<\beta}, \subseteq\right)$ having the same generalized bounding and dominating numbers as $\left([\delta]^{<\beta}, \subseteq\right)$ such that $\forall b \in Q\left(\left|b \uparrow_{Q}\right| \geq \delta\right)$. By Lemmas 3.2 and 3.3, such a $\left(Q,<_{Q}\right)$ exists. Now, let $W=\{c\} \dot{\cup} Q \dot{\cup}\{m\}$ be a disjoint union and let $<_{W}$ be defined as follows:
(1) for each $a \in Q, c<_{W} a$
(2) $<_{W} \upharpoonright Q \times Q=<_{Q}$,
(3) for each $a \in\{c\} \dot{\cup} Q, a<_{W} m$.

Then $\left(W,<_{W}\right)$ is a well-founded poset with the desired properties.

4. The iteration and its properties

Now we are ready to construct our iteration, which is a slight modification of the non-linear iteration of Hechler forcing for adjoining a dominating real $D(\omega, Q)$ from [4]. From now on assume GCH in the ground model V and we fix κ a regular cardinal, β, δ infinite cardinals with
$\kappa^{+} \leq \beta=\operatorname{cof}(\beta) \leq \operatorname{cof}(\delta)$. Let $\left(W,<_{W}\right)$ and $\left(Q,<_{Q}\right)$ be the well-founded index posets defined in Corollary 3.4. Moreover, let $Q^{\prime}=Q \cup\{m\},<_{Q^{\prime}}=Q^{\prime} \times Q^{\prime} \cap<_{W}$.

Fix a surjective book-keeping function $F: Q \rightarrow \beta$ such that for all $\alpha \in \beta, F^{-1}(\alpha)$ is cofinal in Q. That is $\forall \alpha<\beta \forall b \in Q\left(b \uparrow_{Q} \cap F^{-1}(\alpha) \neq \varnothing\right)$. Such a F exists, since $|Q|=\delta \geq \beta$ and $\forall b \in Q\left(\left|b \uparrow_{Q}\right| \geq \delta\right)$. In addition, for each $\gamma \leq \beta$, let $J^{\gamma}=\{a \in Q: F(a) \geq \gamma\}$.

In the following, we consider $(\beta+1) \times W$ with the inherited lexicographic order $<_{l e x}$ and the product order $<$ where $\left(\alpha_{0}, a_{0}\right)<\left(\alpha_{1}, a_{1}\right)$ iff $\alpha_{0} \in \alpha_{1}$ and $a_{0}<_{W} a_{1}$, or $\alpha_{0}=\alpha_{1}$ and $a_{0}<_{W} a_{1}$.

Definition 4.1. For each (α, a) in $(\beta+1) \times W$ we will define recursively on $<_{l e x}$ a forcing notion $P_{\alpha, a}$ and take $V_{\alpha, a}=V^{P_{\alpha, a}}$. For each $\alpha \leq \beta$ let $P_{\alpha, c}=\mathbb{H}_{\alpha}$. Let $(\alpha, a) \in(\beta+1) \times Q^{\prime}$ and suppose:
(1) for each $(\gamma, b)<_{l e x}(\alpha, a)$ the poset $P_{\gamma, b}$ has been defined;
(2) in case $b \neq c$, also a $P_{\gamma, c}$-name $\dot{T}_{\gamma, b}$ for a forcing notion is given so that $P_{\gamma, b}=P_{\gamma, c} * \dot{T}_{\gamma, b}$;
(3) whenever $\left(\alpha_{0}, a_{0}\right)<\left(\alpha_{1}, a_{1}\right)<(\alpha, a), c \neq a_{0}$ then $\Vdash_{P_{\alpha_{1}, c}} \dot{T}_{\alpha_{0}, a_{0}} \lessdot \dot{T}_{\alpha_{1}, a_{1}}$.

Then, in particular, for each $\left(\alpha_{0}, a_{0}\right)<\left(\alpha_{1}, a_{1}\right) \leq(\alpha, a), P_{\alpha_{0}, a_{0}} \leq P_{\alpha_{1}, a_{1}}$ (see Lemma 4.3).
We proceed to define $P_{\alpha, a}$. Since for each $b \in Q_{a}^{\prime} \backslash J^{\alpha}, F(b)<\alpha$ and so $(F(b), b)<(\alpha, b)$, in $V_{\alpha, c}$ we can fix a $T_{\alpha, b}$-name \dot{H}_{b}^{α} for $V^{F(b), b} \cap{ }^{\kappa} \kappa$. Now, in $V_{\alpha, c}$ let $T_{\alpha, a}$ be the poset of all functions p such that $\operatorname{dom}(p)=Q_{a}^{\prime}$ and
(1) for each $b \in Q_{a}^{\prime} \cap J^{\alpha}, p(b)$ is a $T_{\alpha, b}$-name for an element in the trivial poset;
(2) for each $b \in Q_{a}^{\prime} \backslash J^{\alpha}, \Vdash_{T_{\alpha, b}} p(b) \in \mathbb{H}\left(\dot{H}_{b}^{\alpha}\right)$;
(3) for $\operatorname{supp}(p)=\left\{b \in Q_{a}^{\prime} \backslash J^{\alpha}: \vdash_{T_{\alpha, b}} p(b) \neq \mathbb{1}_{\mathbb{H}\left(\dot{H}_{b}^{\alpha}\right)}\right\}$ we have $|\operatorname{supp}(p)|<\kappa$.

The extension relation of $T_{\alpha, a}$ is defined as follows: $p \leq q$ iff $\operatorname{supp}(q) \subseteq \operatorname{supp}(p)$ and for each $b \in \operatorname{supp}(q)$, if $b \in Q_{a}^{\prime} \backslash J^{\alpha}$ then $p \upharpoonright b \Vdash_{T_{\alpha, b}} p(b) \leq_{\mathbb{H}\left(\dot{H}_{b}^{\alpha}\right)} q(b)$, where $p \upharpoonright b$ abbreviates $p \upharpoonright Q_{b}^{\prime}$. For $b \in Q_{a}^{\prime} \backslash J^{\alpha}$, w.l.o.g. we assume that $p(b)=\left(s_{b}^{p}, \dot{f}_{b}^{p}\right)$ where the stem s_{b}^{p} is in the ground model and

Lemma 4.2. For any $\alpha \leq \alpha^{\prime} \leq \beta$ and $a \in Q^{\prime}, V_{\alpha^{\prime}, c} \vDash T_{\alpha, a} \leq T_{\alpha^{\prime}, a}$.
Proof. Consider in $V_{\alpha^{\prime}, c}$ the mapping $i: T_{\alpha, a} \rightarrow T_{\alpha^{\prime}, a}$ where $\operatorname{supp}(i(p))=\operatorname{supp}(p)$ and for each $b \in \operatorname{supp}(i(p)), \Vdash_{T_{\alpha^{\prime}, b}} i(p)(b)=\left(s_{b}^{i(p)}, \dot{f}_{b}^{i(p)}\right)$, where $s_{b}^{i(p)}=s_{b}^{p}$ and $\dot{f}_{b}^{i(p)}$ is a $T_{\alpha^{\prime}, b^{\prime}}$-name for the κ-real named by \dot{f}_{b}^{p}. The mapping i witnesses that $T_{\alpha, a} \lessdot T_{\alpha^{\prime}, a}$ in $V_{\alpha^{\prime}, c}$, by making crucial use of $J^{\alpha^{\prime}} \subseteq J^{\alpha}$. If $b \in \operatorname{supp}(p) \subseteq Q_{a}^{\prime} \backslash J^{\alpha}$, then $\left(\right.$ by $\left.J^{\alpha^{\prime}} \subseteq J^{\alpha}\right) b \in \operatorname{supp}(i(p)) \subseteq Q_{a}^{\prime} \backslash J^{\alpha^{\prime}}$. In this case,
 for $V^{P_{F(b), b}} \cap^{\kappa} \kappa$ as well. As the second coordinates refer to the same set of κ-reals, compatibility and incompatibility depends on the stems at $\operatorname{supp}(p)$.
Lemma 4.3. $\forall b \in W \quad \forall \alpha<\alpha^{\prime} \leq \beta\left(P_{\alpha, b} \leq P_{\alpha^{\prime}, b}\right)$.
Proof. Proceed inductively on W. If $b=c$ and $\alpha \leq \beta$, then the Lemma holds by the product-like property of the forcing in Definition 2.4. For $b \in Q^{\prime}$ the claim holds by Lemmas 4.2 and 2.6.
Remark 4.4. All together we have $\forall \alpha, \alpha^{\prime} \leq \beta \forall a, b \in W\left(\alpha \leq \alpha^{\prime} \wedge a<_{W} b \rightarrow P_{\alpha, a} \leq P_{\alpha^{\prime}, b}\right)$.
Remark 4.5. Note that $J^{0}=Q$, so at the bottom "plane" we iterate with trivial forcing only. Also $J^{\beta}=\varnothing$, so at the top "plane" we have no trivial forcings, but only restricted Hechlers.

Example 4.6. Working in $V_{\alpha, c}$ observe the following: Let $p, q \in T_{\alpha, a}$ for some $a \in Q^{\prime}$ be such that for each $b \in \operatorname{supp}(q) \cap \operatorname{supp}(p), s_{b}^{p} \subseteq s_{b}^{q} \vee s_{b}^{p} \supseteq s_{b}^{q}$. Then p, q are compatible, with a common extension $r \in T_{\alpha, a}$ defined as follows: $\operatorname{supp}(r)=\operatorname{supp}(p) \cup \operatorname{supp}(q)$ and

- $\Vdash_{T_{\alpha, b}} r(b)=p(b)$ if $b \in \operatorname{supp}(p) \backslash \operatorname{supp}(q)$
- $\vdash^{T_{\alpha, b}} r(b)=q(b)$ if $b \in \operatorname{supp}(q) \backslash \operatorname{supp}(p)$
- $\Vdash_{T_{\alpha, b}} r(b)=\left(s_{b}^{r}, \dot{f}_{b}^{r}\right)$ if $b \in \operatorname{supp}(p) \cap \operatorname{supp}(q)$, where $s_{b}^{r}=s_{b}^{p} \cup s_{b}^{q}$ and $\dot{f_{b}^{r}}$ is a $T_{\alpha, b}$-name for the pointwise maximum of \dot{f}_{b}^{q} and \dot{f}_{b}^{p}.

Lemma 4.7. For any $\alpha \leq \beta$ and $a \in W$, the forcing $P_{\alpha, a}$ is κ^{+}-c.c. and is κ-closed.
Proof. If $a=c$, then $P_{\alpha, a}$ equals \mathbb{H}_{α} which has the κ^{+}-c.c. and is κ-closed.
If $a \neq c$, then $P_{\alpha, a}=P_{\alpha, c} * \dot{T}_{\alpha, a}$. Since $P_{\alpha, c}=\mathbb{H}_{\alpha}$ has the κ^{+}-c.c., it is sufficient to show that for any \mathbb{H}_{α}-generic $G, V[G] \vDash " T_{\alpha, a}$ has the κ^{+}-c.c.". In $V[G]$, consider any $S=\left\{p_{\alpha}: \alpha<\kappa^{+}\right\}$ a family of conditions in $T_{\alpha, a}$ of size κ^{+}. We will show that S is not an antichain. Since the support of each condition is of size less than κ, and $\kappa^{<\kappa}=\kappa$, we can apply the Δ-System-Lemma to $\left\{\operatorname{supp}\left(p_{\alpha}\right): \alpha<\kappa^{+}\right\}$to get a $Y \in[S]^{\kappa^{+}}$such that $\left\{\operatorname{supp}\left(p_{\alpha}\right): p_{\alpha} \in Y\right\}$ forms a Δ-System with root R. Again since $\kappa^{<\kappa}=\kappa,|Y|=\kappa^{+}$and $|R|<\kappa$, we can assume that if $b \in R$ and $p_{\alpha} \in Y$ then $p_{\alpha}(b)=\left(t_{b}, \dot{f}_{b}^{\alpha}\right)$ where t_{b} is the same stem for each $p_{\alpha} \in Y$. Now, for $p_{\alpha}, p_{\beta} \in Y$ one can define a common extension q as follows: $\operatorname{supp}(q)=\operatorname{supp}\left(p_{\alpha}\right) \cup \operatorname{supp}\left(p_{\beta}\right)$; if $b \in R$ then $q(b)=\left(t_{b}, \dot{f}_{b}\right)$ where \dot{f}_{b} is the pointwise maximum of $\left\{\dot{f}_{b}^{\alpha}, \dot{f}_{b}^{\beta}\right\}$. If $b \in \operatorname{supp}\left(p_{\alpha}\right) \backslash \operatorname{supp}\left(p_{\beta}\right)$ then $q(b)=p_{\alpha}(b)$ and if $b \in \operatorname{supp}\left(p_{\beta}\right) \backslash \operatorname{supp}\left(p_{\alpha}\right)$ then $q(b)=p_{\beta}(b)$.

Again as $P_{\alpha, c}=\mathbb{H}_{\alpha}$ is κ-closed, it is sufficient to show that for any \mathbb{H}_{α}-generic $G, V[G] \vDash$ " $T_{\alpha, a}$ is κ-closed". Consider in $V[G]$ a decreasing sequence ($p_{\alpha}: \alpha<\gamma$) of conditions, where $\gamma<\kappa$. We will define a common extension p, by using the fact that the forcing in Definition 2.3 is κ-closed. Proceed as follows. Let $\operatorname{supp}(p)=\bigcup_{\alpha<\gamma} \operatorname{supp}\left(p_{\alpha}\right)$. Then $|\operatorname{supp}(p)|<\kappa$ by regularity of κ. If for any $\alpha<\gamma$ and $b \in \operatorname{supp}\left(p_{\alpha}\right)$ we have $p_{\alpha}(b)=\left(t_{\alpha}(b), \dot{f}_{\alpha}(b)\right)$, then let $p(b)=(t, \dot{f})$ where $t=\bigcup\left\{t_{\alpha}(b): b \in \operatorname{supp}\left(p_{\alpha}\right)\right\}$ and \dot{f} is a $T_{\alpha, b}$-name for the pointwise supremum of the second coordinates $\left\{\dot{f}_{\alpha}(b): b \in \operatorname{supp}\left(p_{\alpha}\right)\right\}$. Then p is as desired.

The next Lemma is analogous to Lemma 15 in [3].
Lemma 4.8. Suppose $b \in W$, then the following two properties hold:
(a) Any condition $p \in P_{\beta, b}$ is already in $P_{\alpha, b}$ for some $\alpha<\beta$.
(b) If \dot{f} is a $P_{\beta, b}$-name for a κ-real then it is a $P_{\alpha, b}$-name for some $\alpha<\beta$.

Proof. We show (a) and (b) simultaneously by transfinite induction on $b \in W$, the well-founded poset. Because $P_{\beta, b}$ has the κ^{+}-c.c. property and β is such that $\operatorname{cof}(\beta)>\kappa$, we can easily see that (a) implies (b) if we pass over to a nice name of the κ-real at hand.

Now we begin the induction by letting $b=c$: Properties (a) and (b) for $b=c$ are both true as β is regular, above κ and the domain of a condition in \mathbb{H}_{β} is of size less than κ. Hence this stage does not add new κ-reals.

Let $b \neq c$ and let $p \in P_{\beta, b}=P_{\beta, c} * \dot{T}_{\beta, b}$. Then p is of the form $\left(p_{0}, \dot{p}_{1}\right)$, where $p_{0} \in P_{\beta, c}$ and $\Vdash_{P_{\beta, c}} \dot{p}_{1} \in \dot{T}_{\beta, b}$. For $p_{0} \in P_{\beta, c}$ the induction hypothesis on (a) holds. So there is a $\alpha_{0}<\beta$ such
that $p_{0} \in P_{\alpha_{0}, c}$. Since $\Vdash_{T_{\beta, b}}\left|\operatorname{supp}\left(\dot{p}_{1}\right)\right|<\kappa$, \dot{p}_{1} involves less than κ-many names for κ-reals (the second coordinate of the restricted Hechler forcing). This gives an object of size at most κ, and we can use the induction hypothesis on (b) in order to find an $\alpha_{1}<\beta$ such that \dot{p}_{1} is a $P_{\alpha_{1}, c}$-name. Then $p=\left(p_{0}, \dot{p}_{1}\right)$ belongs to $P_{\alpha, b}$, where $\alpha=\max \left\{\alpha_{0}, \alpha_{1}\right\}$. So (a) is true for stages with $b \neq c$ and implies (b) for stages with $b \neq c$, because a nice name for a κ-real involves at most κ-many conditions and $\operatorname{cof}(\beta)=\beta>\kappa$.

5. Preserving A Witness for \mathfrak{a}_{κ}

Recall [3] §2 (Adding a mad family).
Definition 5.1. ([3]) Let $M \subseteq N$ be models of ZFC, $\mathcal{B}=\left\{B_{\alpha}\right\}_{\alpha<\gamma} \subseteq M \cap[\kappa]^{\kappa}$ and $A \in N \cap[\kappa]^{\kappa}$. Then we say $\underset{\sim}{\sim}(M, N, \mathcal{B}, A)$ is true, if for every $h \in M \cap^{\kappa \times[\gamma]^{<\kappa}} \kappa$ and $m \in \kappa$ we can find $n \geq m, F \in$ $[\gamma]^{<\kappa}$ satisfying $[n, h(n, F)) \backslash \bigcup_{\alpha \in F} B_{\alpha} \subseteq A$.

Lemma 5.2. ([3]) Suppose $\hat{\sim}(M, N, \mathcal{B}, A)$ is true and let $I(\mathcal{B})$ be the κ-complete ideal generated by \mathcal{B} and the sets of size less than κ. Then for $B \in M \cap[\kappa]^{\kappa}, B \notin I(\mathcal{B})$ we have $|A \cap B|=\kappa$.

Proof. For suppose not and let $A \cap B \subseteq n \in \kappa$. Let $m^{\prime} \geq n, F^{\prime} \in[\gamma]^{<\kappa}$. Since $Y \subseteq^{*} X \in I(\mathcal{B})$ implies $Y \in I(\mathcal{B})$ and $\bigcup_{\alpha \in F^{\prime}} B_{\alpha} \in I(\mathcal{B})$ and $B \notin I(\mathcal{B})$, we must have $B \not \ddagger^{*} \bigcup_{\alpha \in F^{\prime}} B_{\alpha}$. So there is $k_{m^{\prime}}^{F^{\prime}}$ such that $m^{\prime}<k_{m^{\prime}}^{F^{\prime}} \in B \backslash \cup_{\alpha \in F^{\prime}} B_{\alpha}$. Now for all $m \geq n$ and $F \in[\gamma]^{<\kappa}$ we define $h(m, F)=k_{m}^{F}+1$ and $h(m, F)=0$ if $m<n$. As h is defined in M and $[m, h(m, F)) \backslash \cup_{\alpha \in F} B_{\alpha} \nsubseteq A$ for all $m \geq n, F \in[\gamma]^{<\kappa}$, we contradict $\hat{\sim}(M, N, \mathcal{B}, A)$.

The family \mathcal{A}_{γ} added by \mathbb{H}_{γ} (Definition 2.4) satisfies the $\mathcal{\tau}_{\boldsymbol{\lambda}}$-property in the following sense.
 $A_{\alpha}=\left\{i: \exists p \in G_{\gamma+1} p(\alpha, i)=1\right\}$ for each $\alpha \leq \gamma$, then we have $\star\left(V\left[G_{\gamma}\right], V\left[G_{\gamma+1}\right], \mathcal{A}_{\gamma}, A_{\gamma}\right)$.
Proof. Let $h \in V\left[G_{\gamma}\right] \cap^{\kappa \times[\gamma]^{\kappa \kappa}} \kappa,(p, H) \in \mathbb{H}_{[\gamma, \gamma+1)}$ and $m \in \kappa$ be arbitrary. By the definition of $\mathbb{H}_{[\gamma, \gamma+1)}$ we have $\operatorname{dom}(p)=\{\gamma\} \times n_{p}$ for some $n_{p} \in \kappa$. Now we define the following extension (q, K) of (p, H). Let $n \in \kappa$ be above n_{p} and m, and let $n_{q}=h(n, H)$. Define dom (q) to be $\{\gamma\} \times n_{q}$. Let $K=H$ and

$$
q(\gamma, i)= \begin{cases}p(\gamma, i) & \text { if } i<n_{p} \\ 0 & \text { if } i \in\left[n_{p}, n\right) \\ 1 & \text { if } i \in\left[n, n_{q}\right) \wedge i \notin \cup_{\alpha \in H} A_{\alpha} \\ 0 & \text { if } i \in\left[n, n_{q}\right) \wedge i \in \cup_{\alpha \in H} A_{\alpha}\end{cases}
$$

Then (q, K) extends (p, H) and $(q, K) \Vdash[n, h(n, H)) \backslash \cup_{\alpha \in H} A_{\alpha} \subseteq A_{\gamma}$ and we are done.
Lemma 5.4. ([3]) Let $M \subseteq N$ be models of ZFC, $P \in M$ a forcing poset such that $P \subseteq M, G$ a P-generic filter over N (hence also P-generic over M). Then the following holds: If $\mathcal{B}=\left\{B_{\alpha}\right\}_{\alpha<\gamma} \subseteq$ $M \cap[\kappa]^{\kappa}$ and $A \in N \cap[\kappa]^{\kappa}$ and $\approx(M, N, \mathcal{B}, A)$ holds, then $\approx(M[G], N[G], \mathcal{B}, A)$.
Proof. For suppose not and let $h \in M[G] \cap^{\kappa \times[\gamma]^{\kappa \kappa}} \kappa, m \in \kappa$ be such that $\forall n \geq m \forall F \in[\gamma]^{<\kappa} N[G] \vDash$ $[n, h(n, F)) \backslash \bigcup_{\alpha \in F} B_{\alpha} \nsubseteq A$. Then there are $p \in G$, a P-name $\dot{h} \in M$ for h and $m \in \kappa$ with $p \Vdash_{N} \forall n \geq m \forall F \in[\gamma]^{<\kappa}[n, h(n, F)) \backslash \cup_{\alpha \in F} B_{\alpha} \nsubseteq A$.

Now in M, for \dot{h} let $p_{n}^{F} \in G$ be a condition extending p and deciding the value of h at point (n, F), i.e. $p_{n}^{F} \Vdash \dot{h}(n, F)=k_{n}^{F}$. Then $\left.p_{n}^{F} \Vdash_{N}\left[n, k_{n}^{F}\right)\right) \backslash \bigcup_{\alpha \in F} B_{\alpha} \nsubseteq A$, so $\left.N \vDash\left[n, k_{n}^{F}\right)\right) \backslash \cup_{\alpha \in F} B_{\alpha} \nsubseteq$ A. However, the function

$$
h^{\prime}(n, F)= \begin{cases}0 & \text { if } n<m \\ k_{n}^{F} & \text { else }\end{cases}
$$

is in M and contradicts $\mathcal{Z}(M, N, \mathcal{B}, A)$.
Lemma 5.5. $\forall b \in W \forall \alpha<\beta\left(\underset{\delta}{ }\left(V_{\alpha, b}, V_{\alpha+1, b}, \mathcal{A}_{\alpha}, A_{\alpha}\right)\right)$.
Proof. Proceed inductively on W. If $b=c$ and $\alpha \leq \beta$, then the statement $\hat{\nu}\left(V_{\alpha, c}, V_{\alpha+1, c}, \mathcal{A}_{\alpha}, A_{\alpha}\right)$ holds by Lemma 5.3. Suppose next that $b \in Q^{\prime}$. Note that $\approx\left(V_{\alpha, c}, V_{\alpha+1, c}, \mathcal{A}_{\alpha}, A_{\alpha}\right)$ holds, $T_{\alpha, b} \in$ $V_{\alpha, c} \subseteq V_{\alpha^{\prime}, c}$ and $V_{\alpha^{\prime}, c} \vDash T_{\alpha, b} \leftrightarrows T_{\alpha^{\prime}, b}$ (Lemma 4.2). So any $V_{\alpha^{\prime}, c^{-}}$generic subset of $T_{\alpha^{\prime}, b}$ is also $V_{\alpha^{\prime}, c^{-}}$generic subset of $T_{\alpha, b}$. Consequently, by Lemma 5.4, $\approx\left(V_{\alpha, b}, V_{\alpha+1, b}, \mathcal{A}_{\alpha}, A_{\alpha}\right)$.

6. The Result

The next theorem gives us the consistency result.
Theorem 6.1. $V_{\beta, m} \vDash \mathfrak{b}_{\kappa}=\mathfrak{a}_{\kappa}=\beta \leq \mathfrak{d}_{\kappa}=\delta$.
Proof. $\mathfrak{a}_{\kappa} \leq \beta$: The family $\mathcal{A}_{\beta}=\left\{A_{\alpha}: \alpha<\beta\right\}$ added in the first column is a κ-mad family in the model $V_{\beta, m}$. If this was not the case, then $\exists x \in V_{\beta, m} \cap[\kappa]^{\kappa} \forall A_{\alpha} \in \mathcal{A}_{\beta}\left(\left|x \cap A_{\alpha}\right|<\kappa\right)$. By Lemma 4.8, we have $\exists \alpha<\beta\left(x \in V_{\alpha, m} \cap[\kappa]^{\kappa}\right)$. However by Lemma 5.4, $\underset{\sim}{ }\left(V_{\alpha, m}, V_{\alpha+1, m}, \mathcal{A}_{\alpha}, A_{\alpha}\right)$ holds and so $\left|A_{\alpha} \cap x\right|=\kappa$ by Lemma 5.2.
$\mathfrak{b}_{\kappa} \geq \beta$: Let $B \subseteq V_{\beta, m} \cap{ }^{\kappa} \kappa$ be such that $|B|<\beta$. By $\mathfrak{b}(Q)=\beta$ and by Lemma 4.8, we have $\exists b \in Q \exists \alpha<\beta\left(B \subseteq V_{\alpha, b} \cap{ }^{\kappa} \kappa\right)$. As $\forall \gamma<\beta \forall c \in Q\left(c \uparrow_{Q} \cap F^{-1}(\gamma) \neq \varnothing\right)$ we can find an element $b^{\prime} \in Q$ with $b<b^{\prime}$ and $F\left(b^{\prime}\right)=\alpha$. Then the poset $P_{\alpha+1, b^{\prime}}$ adds, among other things, a dominating κ-real over $V_{\alpha, b^{\prime}} \cap{ }^{\kappa} \kappa \supseteq V_{\alpha, b} \cap{ }^{\kappa} \kappa$, hence B is not unbounded.

By the previous paragraphs we have $V_{\beta, m} \vDash \mathfrak{b}_{\kappa}=\mathfrak{a}_{\kappa}=\beta$, as $\mathfrak{b}_{\kappa} \leq \mathfrak{a}_{\kappa}$ is provable in ZFC.
$\delta \geq \mathfrak{d}_{\kappa}$: Let \dot{f} be a $P_{\beta, m}$-name for a κ-real. By the previous Lemma 4.8, the property $\mathfrak{b}(Q)=$ $\beta \geq \kappa^{+}$and the regularity of β, there is a $b \in Q$ and an $\alpha<\beta$ such that $f \in V_{\alpha, b} \cap{ }^{\kappa} \kappa$. Let $D \subseteq Q$ be a dominating family of size δ and let $d \in D$ be such that $b<_{Q} d$. As $\forall \gamma<\beta \forall c \in Q\left(c \uparrow_{Q}\right.$ $\left.\cap F^{-1}(\gamma) \neq \varnothing\right)$, we can find an element $d_{\alpha, b} \in Q$ with $d_{\alpha, b}>d$ and $F\left(d_{\alpha, b}\right)=\alpha$. Then $P_{\alpha+1, d_{\alpha, b}}$ adds a dominating real over the model $V_{\alpha, d_{\alpha, b}} \supseteq V_{\alpha, b}$, call it $g^{d_{\alpha, b}}$. Hence the arbitrary f is dominated by the set $\left\{g^{d_{\alpha, b}}: d \in D, \alpha \in \beta\right\}$ which is of size $\delta \cdot \beta=\delta$.

Now, for each $a \in Q$ and $P_{\beta, m}$-generic filter G, let $f_{G}^{a}=\bigcup\left\{t_{a}: \exists p \in G\left(p(a)=\left(t_{a}, \dot{f}_{a}\right)\right)\right\}$ and let \dot{f}_{G}^{a} be a $P_{\beta, m}$-name for f_{G}^{a}.

Claim 6.2. If $g \in V_{F(a), a}$ and $b \not{ }_{Q} a$, then $V_{\beta, m} \vDash f_{G}^{b} \nless^{*} g$.
Proof. Let p be an arbitrary condition in $T_{\beta, m}$ (in $V_{\beta, c}$), $n \in \kappa$ and let \dot{g} be a $T_{\beta, a}$-name for g. We will find an extension of p which forces $\dot{f}_{G}^{b}(k) \geq \dot{g}(k)$ for some $k \geq n$. Let $p(a)=\left(t, \dot{g}^{\prime}\right)$ and $p(b)=(s, \dot{h})$. Let \dot{f} be a $T_{\beta, a^{-}}$name for the pointwise maximum of \dot{g}^{\prime} and \dot{g}. Now define the condition p_{0} as follows: $\operatorname{supp}\left(p_{0}\right)=\operatorname{supp}(p)$ and $p_{0}(e)=p(e)$ for each $e \neq a$, and $p_{0}(a)=(t, \dot{f})$.

Clearly $p_{0} \leq p$. Now let $k \in \kappa$ be large enough such that $\{\operatorname{dom}(t), \operatorname{dom}(s), n\} \subset k$. Next let $q \in T_{\beta, a}$ extend $p_{0} \upharpoonright a$ and q decide the value of \dot{f} up to k. Now define the extension p_{1} of p_{0} by setting $p_{1}(e)=p_{0}(e)$ for each $e \not k_{Q} a$ and $p_{1}(e)=q(e)$ for each $e<_{Q} a$. So p_{1} is an extension of p_{0} carrying the information on the values of \dot{f} up to k; and now we do the same for b and p_{1}, so we let $r \in T_{\beta, b}$ with $r \leq p_{1} \upharpoonright b$ and r decides the values of \dot{h} up to k. We define the extension p_{2} as $p_{2}(e)=p_{1}(e)$ for each $e \Varangle_{Q} b$ and $p_{2}(e)=r(e)$ for each $e<_{Q} b$. Now $p \geq p_{0} \geq p_{1} \geq p_{2}$ and $p_{2}(a)=p_{0}(a)$ and $p_{2}(b)=p(b)$. Now we extend p_{2} as desired: First find an end-extension $t^{\prime} \supseteq t$ such that $\operatorname{dom}\left(t^{\prime}\right)=k+1$ and for $\operatorname{dom}(t) \leq i<\operatorname{dom}\left(t^{\prime}\right), t^{\prime}(i)>\dot{f}(i)$. Then find an end-extension $s^{\prime} \supseteq s$ such that $\operatorname{dom}\left(s^{\prime}\right)=k+1$ and for $\operatorname{dom}(s) \leq i<k+1\left(s^{\prime}(i)>\max \left\{\dot{h}(i), t^{\prime}(i)\right\}\right)$. Then any further extension p_{2}^{\prime} of p_{2} satisfying $s_{b}^{p_{2}^{\prime}}=s^{\prime}$ forces $\dot{f}_{G}^{b}(k)>\dot{f}(k)$ which gives the claim.
$\delta \leq \mathfrak{d}_{\kappa}$: Let $F \subseteq V_{\beta, m} \cap{ }^{\kappa} \kappa$ be a family of size less than δ. As in the previous paragraph we can
 $\left\{a_{f}: f \in F\right\}$ is not dominating in Q. Hence $\exists u \in Q \forall f \in F\left(u \nless_{Q} a_{f}\right)$. Then by Claim 6.2 we have $\forall f \in F\left(f_{G}^{u} \not^{*} f\right)$. Hence F is not dominating.

Theorem 6.3. If β, δ, μ are infinite cardinals with $\kappa^{+} \leq \beta=\operatorname{cof}(\beta) \leq \operatorname{cof}(\delta) \leq \delta \leq \mu$ and $\operatorname{cof}(\mu)>\kappa$, then there is a κ^{+}-c.c. and κ-closed generic extension in which $\mathfrak{b}_{\kappa}=\mathfrak{a}_{\kappa}=\beta, \mathfrak{d}_{\kappa}=\delta$ and $\mathfrak{c}_{\kappa}=\mu$.

Proof. In the above construction replace the underlying poset $\left(Q,<_{Q}\right)$ by the following poset $\left(R,<_{R}\right): R$ consists of pairs (p, i) such that either $i=0 \wedge p \in \mu$ or $i=1 \wedge p \in Q$. The order relation is defined as $(p, i)<_{R}(q, j)$ iff $i=0 \wedge j=1$ or $i=j=1 \wedge p<_{Q} q$ or $i=j=0 \wedge p<q$ in μ. Then $\mathfrak{b}(R)=\mathfrak{b}(Q)=\beta$ and $\mathfrak{d}(R)=\mathfrak{d}(Q)=\delta$ as the map $i: Q \rightarrow R$ defined as $b \mapsto(1, b)$ is a cofinal embedding from Q into R. The bottom part (μ, ϵ) of R ensures that in the final model $\mathfrak{c}_{\kappa} \geq \mu$ holds. By a standard argument of counting nice names $\mathfrak{c}_{\kappa} \leq \mu$ in $V_{\beta, m}$.

7. Further Remarks

We also want to point out that the model in $[3, \S 4]$ is an alternative witness for the constellation we showed here in the case of $\kappa=\omega$, namely $\mathfrak{b}=\mathfrak{a}<\mathfrak{d}<\mathfrak{c}$. Recall the construction in [3] forcing $\mathfrak{b}=\mathfrak{a}=\kappa<\mathfrak{s}=\lambda$: Let $\kappa<\lambda$ be fixed regular uncountable cardinals. First introduce a surjective book-keeping function $f:\{\nu<\lambda: \nu \equiv 1 \bmod 2\} \rightarrow \kappa$ where $\forall \alpha<\kappa\left(f^{-1}(\alpha)\right.$ is cofinal in $\left.\lambda\right)$. The matrix is defined recursively and consists of finite support iterations $\left\langle\left\langle P_{\alpha, \xi}: \alpha \leq \kappa, \xi \leq \lambda\right\rangle,\left\langle\dot{Q}_{\alpha, \xi}\right.\right.$: $\alpha \leq \kappa, \xi \leq \lambda\rangle\rangle$ where:
(1) If $\xi=0$, then for each $\alpha \leq \kappa, P_{\alpha, 0}$ is Hechler's poset from Definition 2.4 which adds an almost disjoint family $\mathcal{A}_{\alpha}=\left\{A_{\beta}\right\}_{\beta<\alpha}$ which is m.a.d. in $V_{\alpha, 0}$ if $\alpha \geq \omega_{1}$.
(2) If $\xi=\mu+1 \equiv 1 \bmod 2$, then for each $\alpha \leq \kappa, \Vdash_{P_{\alpha, \mu}} \dot{Q}_{\alpha, \mu}=\mathbb{M}\left(\dot{U}_{\alpha, \mu}\right)$ while $\dot{U}_{\alpha, \mu}$ is a $P_{\alpha, \mu^{-}}$name for an ultrafilter with the property that for $\alpha<\beta \leq \kappa$, $\Vdash_{P_{\beta, \mu}} \dot{U}_{\alpha, \mu} \subseteq \dot{U}_{\beta, \mu}$. This helps to evaluate the splitting number in the final model.
(3) If $\xi=\mu+1$ and $\xi \equiv 0 \bmod 2$, then for each $\alpha \leq f(\mu) \dot{Q}_{\alpha, \mu}$ is a $P_{\alpha, \mu}$-name with $\Vdash_{P_{\alpha, \mu}}$ " $\dot{Q}_{\alpha, \mu}$ is the trivial forcing"; and if $\alpha>f(\mu)$ then $\dot{Q}_{\alpha, \mu}$ is the $P_{\alpha, \mu}$-name for adding a dominating real over the model $V_{f(\mu), \mu}$.
(4) If ξ is a limit ordinal, then for each $\alpha \leq \kappa, P_{\alpha, \xi}$ is the direct limit of the previous $P_{\alpha, \mu}$.

For suitable cardinals κ, λ, μ in the final model $V_{\kappa, \lambda}$ one can witness $\mathfrak{a}=\mathfrak{b}=\kappa<\lambda=\mathfrak{d}(=\mathfrak{s})<\mathfrak{c}=\mu$: Proceed with a finite support iteration of Cohen forcings of length μ in order to get an intermediate stage (model V_{0}) where $\mathfrak{c}=\mu$ holds. Over V_{0} perform the above described construction. It is not difficult to check that in the resulting model $\mathfrak{a}=\mathfrak{b}=\kappa<\lambda=\mathfrak{s}$. Next, we show that in the model also $\mathfrak{d}=\lambda$:
$\mathfrak{d} \leq \lambda$: Let $f \in V_{\kappa, \lambda} \cap^{\omega} \omega$ be an arbitrary real. By Lemma [3, Lemma 15] and the regularity of λ we have $\exists \alpha<\kappa, \xi<\lambda\left(x \in V_{\alpha, \xi} \cap^{\omega} \omega\right)$ such that $\xi=\eta+1 \equiv 1 \bmod 2$. As $\{\gamma: f(\gamma)=\alpha\}$ is cofinal in λ we can find a $\xi<\xi^{\prime} \equiv 0 \bmod 2$ with $f\left(\xi^{\prime}\right)=\alpha$. Then the poset $P_{\alpha+1, \xi^{\prime}+1}$ adds a Hechler real over the model $V_{\alpha, \xi^{\prime}} \cap^{\omega} \omega \supseteq V_{\alpha, \xi} \cap^{\omega} \omega$, and the λ-many (restricted) Hechler reals in the construction build a dominating family.
$\mathfrak{d} \geq \lambda$: Let $B \subseteq V_{\kappa, \lambda} \cap^{\omega} \omega$ be such that $|B|<\lambda$. By the regularity of λ we have $\exists \xi<\lambda(x \in$ $\left.V_{\kappa, \xi} \cap^{\omega} \omega\right)$. As the remaining part is a finite support iteration of non-trivial forcings, limit stages with countable cofinality add a Cohen real which is unbounded. Hence B is not dominating.

We further point out that the consistency of $\kappa^{+} \leq \mathfrak{b}_{\kappa}=\mathfrak{a}_{\kappa}=\beta \leq \mathfrak{d}_{\kappa}=\mathfrak{c}_{\kappa}=\delta$ can be shown by a (linear) matrix iteration: Assume in the construction of Section 4 additionally that δ is regular and replace Q by the well-order (δ, ϵ). The final model of this matrix, which is of height β and width δ, satisfies $\kappa^{+} \leq \mathfrak{b}_{\kappa}=\mathfrak{a}_{\kappa}=\beta \leq \mathfrak{d}_{\kappa}=\mathfrak{c}_{\kappa}=\delta$. If we additionally want to separate \mathfrak{d}_{κ} and \mathfrak{c}_{κ}, e.g. to force $\mathfrak{c}_{\kappa}=\mu$, we can add μ-many Cohen κ-reals before the above described iteration. However, by arguing with a (linear) matrix iteration, we have to require that δ is regular, leaving the case \mathfrak{d}_{κ} singular unsettled. To force $\kappa^{+} \leq \mathfrak{b}_{\kappa}=\mathfrak{a}_{\kappa}=\beta \leq \mathfrak{d}_{\kappa}=\delta \leq \mathfrak{c}_{\kappa}=\mu$ for a singular δ one has to take the more general approach given in Section 4.

Question 7.1. It is open whether four cardinal characteristics (among other natural candidates), namely $\mathfrak{a}, \mathfrak{s}, \mathfrak{r}$ and \mathfrak{u}, can be controlled strictly between \mathfrak{b} and \mathfrak{d}. Is either of the following constellations consistent: $\mathfrak{b}<\mathfrak{a}<\mathfrak{d}<\mathfrak{c}, \mathfrak{b}<\mathfrak{s}<\mathfrak{d}<\mathfrak{c}, \mathfrak{b}<\mathfrak{r}<\mathfrak{d}<\mathfrak{e}, \mathfrak{b}<\mathfrak{u}<\mathfrak{d}<\mathfrak{c}$?

Since $\mathfrak{b}_{\kappa}=\kappa^{+}$implies that $\mathfrak{a}_{\kappa}=\kappa^{+}$for κ regular uncountable (see [8]), the main result of [4] implies that for a given suitable set C of regular uncountable cardinals, it is consistent that $\mathfrak{b}_{\lambda}=\mathfrak{a}_{\lambda}=\lambda^{+}\left\langle\mathfrak{d}_{\lambda}=\mathfrak{c}_{\lambda}\right.$ holds simultaneously for all $\lambda \in C$. This naturally leads to the following:

Question 7.2. Given a set C of regular uncountable cardinals is it consistent that

$$
\lambda^{+}<\mathfrak{b}_{\lambda}=\mathfrak{a}_{\lambda}<\mathfrak{d}_{\lambda}<\mathfrak{c}_{\lambda}
$$

for all $\lambda \in C$ simultaneously?

References

[1] Blass, Andreas: Combinatorial Cardinal Characteristics of the Continuum; in: M. Foreman/A. Kanamori [Ed.]: Handbook of Set Theory, Springer, Heidelberg/London/New York, 2010, 395-489.
[2] A. Blass, S. Shelah Ultrafilters with small generating sets, Israel Journal of Mathematics 65, 1984, 259-271.
[3] J. Brendle, V. Fischer Mad families, splitting families and large continuum, Journal of Symbolic Logic 76(1), 2011, 198-208.
[4] J. Cummings, S. Shelah: Cardinal invariants above the continuum, Annals of Pure and Applied Logic 75, 1995, 251-268.
[5] V. Fischer, S. D. Friedman, D. Mejia, D. C. Montoya Coherent systems of finite support iterations, Journal of Symbolic Logic 83(1), 2018, 208-236.
[6] S. Hechler Short complete nested sequences in $\beta \mathbb{N} \backslash \mathbb{N}$ and small maximal almost-disjoint families General Topology and its Applications 2, 1972, 139-149.
[7] Kunen, Kenneth: Set Theory, College Publications, London, 2013.
[8] D. Raghavan, S. Shelah: Two results on cardinal invariants at uncountable cardinals; in: Proceedings of the 14th and 15th Asian Logic Conferences (Mumbai, India and Daejeon, South Korea), World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, pages 129-138. World Scientific, 2019.
[9] van Douwen, Eric K.: The integers and topology. Handbook of set-theoretic topology, North-Holland, Amsterdam/New York, 1984, 111-167.

Institute of Mathematics, University of Vienna, Kolingasse 14-16, 1090 Wien, Austria
Email address: oemer.bag@univie.ac.at
Institute of Mathematics, University of Vienna, Kolingasse 14-16, 1090 Wien, Austria
Email address: vera.fischer@univie.ac.at

[^0]: 2000 Mathematics Subject Classification. 03E35, 03E17.
 Key words and phrases. cardinal characteristics; forcing; non-linear iterations; matrix iterations; higher Baire spaces; bounding; dominating; almost disjoitness.

 Acknowledgments.: The authors would like to thank the Austrian Science Fund (FWF) for the generous support through Grants Y1012-N35, I4039.

