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1. Introduction

We show that each open cover in a topological space gives rise naturally to a symmetric
operator on the underlying set. If each open cover has a star refinement, then in a nat-
ural way the induced symmetric operator also admits star refinements. Surprisingly the
existence of a σ-discrete refinement of an open cover then corresponds to the existence of
a σ-disjoint refinement of the induced symmetric operators. Thus the classical theorem
proved by Stone and Michael that if every open cover has a star refinement which is an
open cover, then every open cover has a σ-disjoint open refinement which covers, has
a finitary combinatorial counterpart in this language of symmetric operators. That is
we show that despite the infinitary nature of discreteness the theorem of Stone-Michael
can be proved entirely outside the topological context, as an essentially finitary and
combinatorial theorem: If a class of symmetric operators admits star refinements, then
every operator in that class has a σ-disjoint refinement which covers in that class. The
original topological theorem can then still be derived as a special case.

2. Preliminaries

2.1 Definition. Suppose A and B are subfamilies of P(X). Then B is said to be a
refinement of A if for every B ∈ B there exists a A ∈ A such that B ⊂ A. The family
B is said to be a precise refinement of A if B and A are indexed by the same index set
S and for every s ∈ S Bs ⊂ As.

2.2 Definition. Let A = {As : s ∈ S} be a subfamily of P(X). The star of a set
Y ⊂ X with respect to A is the set St(Y,A) = ∪{As : Y ∩As 6= ∅}.
2.3 Definition. The family B = {Bt : T ∈ T} is said to be a star refinement of the
family A = {As : s ∈ S} if for every t ∈ T there exists s ∈ S such that St(Bt,B) ⊂ As

2.4 Definition. The family B is said to be barycentric refinement of the family A =
{As : s ∈ S} if for every x ∈ X there exists s ∈ S such that St(x,B) ⊂ As.

We introduce the following definitions and notation.

2.5 Definition. Any mapping G:P(X) → P(X) will be called an operator on X. The
set of all operators on X, will be denoted O(X).
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2.6 Definition. An operator G ∈ O(X) will be called monotone if G(A) ⊂ G(B) for
any A,B ∈ P(X) such that A ⊂ B. The set of all monotone operators on a given set X
will be denoted M(X).

2.7 Definition. An operator G ∈ O(X) will be called pointwise if it preserves unions,
i.e. G(A) = ∪{G(a) : a ∈ A} for any set A ∈ P(X). The set of all pointwise operators
on a given set X will be denoted Pt(X).

In the following we fix certain notation, which will be of constant use.

• For any operator G ∈ O(X) and any family A ∈ P2(X) we denote by G(A) or simply
GA the family {G(A) : A ∈ A}. In particular for any G ∈ O(X) we denote by G also
the family {G(x) : x ∈ X}.
• For any two operators G, H ∈ O(X) and any two families A,B ∈ P2(X) denote by
G(A) < G(B) the fact that G(A) is a precise refinement of G(B). In further applications
we often refer to the above notation as inequality between the considered families.

• For any two operators G, H ∈ O(X) and any two families A,B ∈ P2(X) denote by
G(A) ≺ G(B) the fact that G(A) is a refinement of G(B).

• For any two families A,B ∈ P2(X) indexed by the same index set S, we denote by
A−B the family {(A−B)s : s ∈ S} where (A−B)s = As\ ∪t<s Bt and < is a well order
on the index set S.

3. Pointwise Operators and Pointwise Inverse

3.1 Definition. The operator G is called inverse to the operator H if x ∈ G(y) if and
only if y ∈ H(x) for any two points x and y in the underlying set. In case that G is
inverse to H and G is pointwise, we refer to it as the pointwise inverse of H.

3.2 Remark. Note that the pointwise inverse always exists and is unique among the
pointwise operators.
3.3 Definition. For any operator G define by G−(x) = {y ∈ X : x ∈ G(y)} a pointwise
operator G−, and by G+(A) = {x ∈ X : G(x) ⊂ A} where A ∈ P(X) an operator G+.
3.4 Remark. Note that G− is the (unique ) pointwise inverse of G and that G+ is not
necessarily pointwise, but is monotone. Any pointwise operator is also monotone.
3.5 Proposition. For any two operators G and H we have (GH)− = H−G−.

Proof. Directly from the definition of (GH)−.

3.6 Definition. An operator G will be called symmetric if G = G−.

Note that a symmetric operator is necessarily pointwise. The set of all symmetric oper-
ators on a given set will be denoted Sm(X).

3.7 Proposition. Sm(X) ⊂ Pt(X) ⊂M(X) ⊂ O(X)

3.8 Proposition. For any pointwise operator G the operators GG− and G−G are
symmetric.

Proof. For pointwise operators (G−)− = G.
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3.9 Lemma. For any pointwise operator G and any two subsets A and B of the
underlying set the intersection A∩GG−(B) is nonempty if and only if the intersection
GG−(A) ∩B is nonempty if and only if G−(A) ∩G−(B) is nonempty.

Proof. The intersection G−(A) ∩G−(B) is nonempty if and only if ∃a ∈ A∃b ∈ B∃x
such that x ∈ G−(a) ∩ G−(b). But this is equivalent to ∃a ∈ A∃b ∈ B∃x such that
a ∈ G(x) and x ∈ G−1(b), i.e. ∃a ∈ A∃b ∈ B such that a ∈ GG−1(b), i.e. the intersection
A ∩GG−1(B) is nonempty.

3.10 Remark. Suppose G is a monotone operator such that G−(A) ∩G−(B) 6= ∅ for
some A and B. Then GG−(A) ∩B 6= ∅ and A ∩GG−(B) 6= ∅.
3.11 Proposition. For any operator G the inequality 1 < G implies that 1 < G− and
G+ < 1.

Proof. For any x we have x ∈ G(x). Then by the definition of inverse operator we obtain
x ∈ G−(x), that is 1 < G−. To obtain the other inequality suppose that x ∈ G+(A) for
some subset A of X. By definition that is G(x) ⊂ A. But x ∈ G(x) and so x ∈ A.

3.12 Proposition. For any pointwise operator G and any subset A of the underlying
set the identities G−(Ac) = G+(A)c

and (G−)+(Ac) = G(A)c hold.

Proof. The point x belongs to G−(Ac) if and only if the intersection G(x) ∩ Ac is
nonempty, which is equivalent to x ∈ G+(A)c. The point x belongs to (G−)+(Ac) if
and only if the intersection G−(x) ∩A is empty, which is equivalent to x /∈ G(A).

4. Cross Multiplication

4.1 Proposition. For any pointwise operator G and any two subsets A and B of the
underlying set G(A) ⊂ B if and only if A ⊂ G+(B).
Proof. Note that by definition G(a) ⊂ B if and only if a ∈ G+(B) and use the fact
that G is pointwise.

We refer to the above Proposition as cross multiplication of G and G+.

4.2 Corollary. For any pointwise operator G we have GG+ < 1 and 1 < G+G.

4.3 Proposition. Suppose G and H are pointwise operators. Then (GH)+ = H+G+.

Proof. For any subset A of the underlying set we have x ∈ (GH)+(A) if and only if
GH(x) ⊂ A, which by cross multiplication holds if and only if H(x) ⊂ G+(A) and again
by cross multiplication this holds, if and only if x ∈ H+G+(A).

4.4 Corollary. Suppose A and B are pointwise operators such that An < B for some
n ∈ IN. Then AmB+ < A+p for any m, p ∈ IN such that m + p = n.

Proof. By Corollary 4.2 we have BB+ < 1 and so AnB+ < 1. Apply p-times cross
multiplication of A and A+ to obtain the desired inequality.

4.5 Proposition. For any pointwise operator G and any monotone operator H such
that G ≺ H we have GG− < HH−.

Proof. Consider arbitrary point z and ω ∈ GG−(z). There exists a point x ∈ G−(z)
such that ω ∈ G(x). Since G ≺ H, there exists a point y such that G(x) ⊂ H(y). But
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z ∈ G(x) and so z ∈ H(y). Then in particular y ∈ H−(z). By monotonicity we obtain
H(y) ⊂ HH−(z). But ω ∈ H(y) and so ω ∈ HH−(z).

4.6 Proposition. Suppose G is a pointwise operator, A and B families such that
G−(A) < G+(B). Then G−(A−B) is disjoint.

Proof. Consider arbitrary elements (A−B)s and (A−B)t of A−B. We can assume that
s < t, where < denotes the total ordering relation on the index set. Since GG−(As) ⊂
Bs, we have GG−(A−B)s∩(A−B)t is empty, which implies by Lemma 3.9 that G−(A−B)
is disjoint.

4.7 Lemma. Suppose {Ai}∞i=1 is a sequence in P2(X) such that ∪ ∪ Ai = X. Then
∪(Ai−Ai+1) = X.

Proof. For any x ∈ X choose the smallest index s(x) such that x ∈ Ai,s(x) for some i.
Then x ∈ (Ai−Ai+1)s(x).

5. Star and σ-disjoint refinements

5.1 Definition. A class of operators Θ(X) is said to admit star refinements, if for
every S ∈ Θ(X) there exists S′ ∈ Θ(X) such that (S′)2 < S.

5.2 Proposition. Suppose Θ(X) is a class of monotone operators > 1 which admits
star refinements. Then for every natural number n ≥ 2 and every S ∈ Θ(X) there exists
S′ ∈ θ(X) such that (S′)n < S.

Proof. Consider any S0 = S ∈ Θ(X) and for every i = 0, . . . , n−1 choose Si+1 ∈ Θ(X)
such that S2

i+1 < Si. Then by monotonicity S2n

n < S and since S > 1, Sn
n < S.

5.3 Remark. Note that the above proposition holds also for monotone operators which
are < 1.
5.4 Definition. A class of operators Θ(X) is said to admit σ-disjoint refinements, if
for every S ∈ Θ(X) there exists a cover P of X, which decomposes as P = ∪Pi and a
family {Si : i ∈ ω} in Θ(X) such that for each i ∈ ω Si+1(Pi) is a disjoint refinement of
S.
5.5 Theorem. Suppose Θ(X) is a class of symmetric operators > 1 which admits star
refinements, then for every S ∈ Θ(X) and every natural number n ≥ 1 there is a cover
P , which decomposes as P = ∪Pi and a family {Si : i ∈ ω} in Θ(X) such that for each
i, n Sn

i+1(Pi) is a disjoint refinement of S. Thus ∪Sn
i+1(Pi) is a σ-disjoint refinement of

S, which is a cover.

Proof. Consider any S = S0 ∈ Θ(X) and for every i ≥ 0 choose Si+1 ∈ Θ(X) such
that S(2n+1)

i+1 < Si. By Theorem 4.4 Sn
i+1(S

+
i S) < (Sn

i+1)
+(S+

i+1S). Let Pi = S+
i S−S+

i+1S.

Then by Lemma 4.7 ( applied for Ai = S+
i S ) P = ∪Pi is a cover, since ∪A0 = ∪S+

0 S =
X. Furthermore by 4.6 the family Sn

i+1(Pi) is disjoint. Since S+
i+1 < 1, Sn

i+1(Pi) is a
refinement of S.

6. Barycentric Refinements
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6.1 Definition. For any class Θ(X) of pointwise operators let SΘ(X) be the class of
operators of the form GG− for G in Θ(X).

6.2 Remark. Note that SΘ(X) consists of symmetric operators.

6.3 Definition. A class of pointwise operators Θ(X) is said to admit barycentric
refinements if for every S ∈ Θ(X), there exists T ∈ SΘ(X) such that T ≺ S.

6.4 Theorem. Suppose Θ(X) is is a class of pointwise operators > 1 which admits
barycentric refinements. Then:

(i) SΘ(X) admits star refinements.
(ii) For every S ∈ Θ(X) and every natural number n ≥ 2 there exists S′ ∈ SΘ(X)

such that (S′)n ≺ S.
(iii) For every S ∈ Θ(X) and every natural number n ≥ 2 there exists a cover P which

decomposes as ∪Pi and a family of operators {Si : i ∈ ω} in SΘ(X) such that Sn
i+1(Pi)

is disjoint refinement of S.

Proof. Let S ∈ SΘ(X). Then S = GG− for some G ∈ Θ(X). Since Θ(X) admits
barycentric refinements there exists an S′ ∈ SΘ(X) such that S′ ≺ G. Then by Propo-
sition 4.5 (S′)2 < S and so SΘ(X) admits star refinements. For part ii conider any
S ∈ Θ(X). Since Θ(X) admits barycentric refinements there exists a T ∈ SΘ(X) such
that T ≺ S. But by part i and Proposition 5.2 there exists T′ ∈ SΘ(X) such that
(T′)n < T, and so (T′)n ≺ S. Part iii follows by theorem 5.5 applied to SΘ(X).

6.5 Remark. Note that 6.4.ii ( for n = 2 ) is weaker than star refinements - 5.1.

7. Open Operators

7.1 Definition. For any topological space X a pointwise operator G on X will be
called open if 1 < G and G(x) is open for any x ∈ X. The set of all open operators on
X will be denoted by T (X).

7.2 Theorem. A topological space X has the property that every open cover of X
has an open barycentric refinement which covers if and only if T (X) admits barycentric
refinements.

Proof. Suppose A is an open cover of X and B is a given open barycentric refienement
of A which covers. Let B be an open operator such that B(x) ∈ B for every x ∈ X.
Then BB− ≺ A.

7.3 Corollary. If X is a topological space such that every open cover of X has an
open star refinement, then every open cover has an open symmetric star refinement.

Proof. Apply Theorem 6.4.ii to T (X) for n = 3, and note that for symmetric open
operators S, S3(x) = St(S(x),S).

7.4 Proposition. An open family A is discrete ( resp. locally finite ) if and only if
there exists an open operator G such that G−A is disjoint ( resp. point finite ).

Proof. The family A is not discrete ( resp. not locally finite ) if and only if for every
open operator G there exists a point x and a set of indexes I of cardinality 2 ( resp.
≥ ω ) such that G(x) ∩ Ai 6= ∅ for every i ∈ I, which by cross multiplication holds if
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and only if x ∈ G−(Ai) for every i ∈ I, i.e. for every open operator G the family G−A
is not disjoint ( resp. not point finite ).

7.5 Theorem. Suppose X is a topological space such that every open cover has an
open star refinement. Then every open cover has an open σ-discrete refinement, which
is a cover.

Proof. By Theorem 7.2 T (X) admits barycentric refinements, and so by Theorem
6.4.iii for every S ∈ T (X) there exists a cover P = ∪Pi and a family {Si : i ∈ ω} in
ST (X) such that S2

i+1(Pi) is a disjoint refinement of S. But by Proposition 7.4 Si+1(Pi)
is a discrete refinement of S, and so ∪Si+1(Pi) is σ-discrete and covers.
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