Open Covers and Symmetric Operators

Vera Usheva and Stephen Watson
November 5, 2002

Abstract

We show that despite the infinitary nature of discreteness, the theorem of Stone-Michael can be proved entirely outside the topological context as an essentially finitary and combinatorial theorem.

Key Words: open covers, symmetric operators, discrete and disjoint refinements

1. Introduction

We show that each open cover in a topological space gives rise naturally to a symmetric operator on the underlying set. If each open cover has a star refinement, then in a natural way the induced symmetric operator also admits star refinements. Surprisingly the existence of a σ-discrete refinement of an open cover then corresponds to the existence of a σ-disjoint refinement of the induced symmetric operators. Thus the classical theorem proved by Stone and Michael that if every open cover has a star refinement which is an open cover, then every open cover has a σ-disjoint open refinement which covers, has a finitary combinatorial counterpart in this language of symmetric operators. That is we show that despite the infinitary nature of discreteness the theorem of Stone-Michael can be proved entirely outside the topological context, as an essentially finitary and combinatorial theorem: If a class of symmetric operators admits star refinements, then every operator in that class has a σ-disjoint refinement which covers in that class. The original topological theorem can then still be derived as a special case.

2. Preliminaries

2.1 Definition. Suppose \mathcal{A} and \mathcal{B} are subfamilies of $\mathcal{P}(X)$. Then \mathcal{B} is said to be a refinement of \mathcal{A} if for every $B \in \mathcal{B}$ there exists a $A \in \mathcal{A}$ such that $B \subset A$. The family \mathcal{B} is said to be a precise refinement of \mathcal{A} if \mathcal{B} and \mathcal{A} are indexed by the same index set S and for every $s \in S B_{s} \subset A_{s}$.
2.2 Definition. Let $\mathcal{A}=\left\{A_{s}: s \in S\right\}$ be a subfamily of $\mathcal{P}(X)$. The star of a set $Y \subset X$ with respect to \mathcal{A} is the set $\operatorname{St}(Y, \mathcal{A})=\cup\left\{A_{s}: Y \cap A_{s} \neq \emptyset\right\}$.
2.3 Definition. The family $\mathcal{B}=\left\{B_{t}: T \in T\right\}$ is said to be a star refinement of the family $\mathcal{A}=\left\{A_{s}: s \in S\right\}$ if for every $t \in T$ there exists $s \in S$ such that $\operatorname{St}\left(B_{t}, \mathcal{B}\right) \subset \mathrm{A}_{s}$
2.4 Definition. The family \mathcal{B} is said to be barycentric refinement of the family $\mathcal{A}=$ $\left\{A_{s}: s \in S\right\}$ if for every $x \in X$ there exists $s \in S$ such that $\operatorname{St}(x, \mathcal{B}) \subset \mathrm{A}_{s}$.
We introduce the following definitions and notation.
2.5 Definition. Any mapping $\mathrm{G}: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ will be called an operator on X. The set of all operators on X, will be denoted $\mathcal{O}(X)$.
2.6 Definition. An operator $\mathrm{G} \in \mathcal{O}(X)$ will be called monotone if $\mathrm{G}(A) \subset \mathrm{G}(B)$ for any $A, B \in \mathcal{P}(X)$ such that $A \subset B$. The set of all monotone operators on a given set X will be denoted $\mathcal{M}(X)$.
2.7 Definition. An operator $\mathrm{G} \in \mathcal{O}(X)$ will be called pointwise if it preserves unions, i.e. $\mathrm{G}(A)=\cup\{\mathrm{G}(a): a \in A\}$ for any set $A \in \mathcal{P}(X)$. The set of all pointwise operators on a given set X will be denoted $\mathcal{P} t(X)$.
In the following we fix certain notation, which will be of constant use.

- For any operator $\mathrm{G} \in \mathcal{O}(X)$ and any family $\mathcal{A} \in \mathcal{P}^{2}(X)$ we denote by $\mathrm{G}(\mathcal{A})$ or simply $\mathrm{G} \mathcal{A}$ the family $\{\mathrm{G}(A): A \in \mathcal{A}\}$. In particular for any $\mathrm{G} \in \mathcal{O}(X)$ we denote by G also the family $\{\mathrm{G}(x): x \in X\}$.
- For any two operators $\mathrm{G}, \mathrm{H} \in \mathcal{O}(X)$ and any two families $\mathcal{A}, \mathcal{B} \in \mathcal{P}^{2}(X)$ denote by $\mathrm{G}(\mathcal{A})<\mathrm{G}(\mathcal{B})$ the fact that $\mathrm{G}(\mathcal{A})$ is a precise refinement of $\mathrm{G}(\mathcal{B})$. In further applications we often refer to the above notation as inequality between the considered families.
- For any two operators $\mathrm{G}, \mathrm{H} \in \mathcal{O}(X)$ and any two families $\mathcal{A}, \mathcal{B} \in \mathcal{P}^{2}(X)$ denote by $\mathrm{G}(\mathcal{A}) \prec \mathrm{G}(\mathcal{B})$ the fact that $\mathrm{G}(\mathcal{A})$ is a refinement of $\mathrm{G}(\mathcal{B})$.
- For any two families $\mathcal{A}, \mathcal{B} \in \mathcal{P}^{2}(X)$ indexed by the same index set S, we denote by $\mathcal{A}_{-\mathcal{B}}$ the family $\left\{\left(A_{-B}\right)_{s}: s \in S\right\}$ where $\left(A_{-B}\right)_{s}=A_{s} \backslash \cup_{t<s} B_{t}$ and $<$ is a well order on the index set S.

3. Pointwise Operators and Pointwise Inverse

3.1 Definition. The operator G is called inverse to the operator H if $x \in \mathrm{G}(y)$ if and only if $y \in \mathrm{H}(x)$ for any two points x and y in the underlying set. In case that G is inverse to H and G is pointwise, we refer to it as the pointwise inverse of H .
3.2 Remark. Note that the pointwise inverse always exists and is unique among the pointwise operators.
3.3 Definition. For any operator G define by $\mathrm{G}^{-}(x)=\{y \in X: x \in \mathrm{G}(y)\}$ a pointwise operator G^{-}, and by $\mathrm{G}^{+}(A)=\{x \in X: \mathrm{G}(x) \subset A\}$ where $A \in \mathcal{P}(X)$ an operator G^{+}.
3.4 Remark. Note that G^{-}is the (unique) pointwise inverse of G and that G^{+}is not necessarily pointwise, but is monotone. Any pointwise operator is also monotone.
3.5 Proposition. For any two operators G and H we have $(\mathrm{GH})^{-}=\mathrm{H}^{-} \mathrm{G}^{-}$.

Proof. Directly from the definition of (GH) ${ }^{-}$.
3.6 Definition. An operator G will be called symmetric if $\mathrm{G}=\mathrm{G}^{-}$.

Note that a symmetric operator is necessarily pointwise. The set of all symmetric operators on a given set will be denoted $\mathcal{S} m(X)$.
3.7 Proposition. $\mathcal{S} m(X) \subset \mathcal{P} t(X) \subset \mathcal{M}(X) \subset \mathcal{O}(X)$
3.8 Proposition. For any pointwise operator G the operators GG^{-}and $\mathrm{G}^{-} \mathrm{G}$ are symmetric.
Proof. For pointwise operators $\left(\mathrm{G}^{-}\right)^{-}=\mathrm{G}$.
3.9 Lemma. For any pointwise operator G and any two subsets A and B of the underlying set the intersection $A \cap \mathrm{GG}^{-}(B)$ is nonempty if and only if the intersection $\mathrm{GG}^{-}(A) \cap B$ is nonempty if and only if $\mathrm{G}^{-}(A) \cap \mathrm{G}^{-}(B)$ is nonempty.
Proof. The intersection $\mathrm{G}^{-}(A) \cap \mathrm{G}^{-}(B)$ is nonempty if and only if $\exists a \in A \exists b \in B \exists x$ such that $x \in \mathrm{G}^{-}(a) \cap \mathrm{G}^{-}(b)$. But this is equivalent to $\exists a \in A \exists b \in B \exists x$ such that $a \in \mathrm{G}(x)$ and $x \in \mathrm{G}^{-1}(b)$, i.e. $\exists a \in A \exists b \in B$ such that $a \in \mathrm{GG}^{-1}(b)$, i.e. the intersection $A \cap \mathrm{GG}^{-1}(B)$ is nonempty.
3.10 Remark. Suppose G is a monotone operator such that $\mathrm{G}^{-}(A) \cap \mathrm{G}^{-}(B) \neq \emptyset$ for some A and B. Then $\mathrm{GG}^{-}(A) \cap B \neq \emptyset$ and $A \cap \mathrm{GG}^{-}(B) \neq \emptyset$.
3.11 Proposition. For any operator G the inequality $1<\mathrm{G}$ implies that $1<\mathrm{G}^{-}$and $\mathrm{G}^{+}<1$.
Proof. For any x we have $x \in \mathrm{G}(x)$. Then by the definition of inverse operator we obtain $x \in \mathrm{G}^{-}(x)$, that is $1<\mathrm{G}^{-}$. To obtain the other inequality suppose that $x \in \mathrm{G}^{+}(A)$ for some subset A of X. By definition that is $\mathrm{G}(x) \subset A$. But $x \in \mathrm{G}(x)$ and so $x \in A$.
3.12 Proposition. For any pointwise operator G and any subset A of the underlying set the identities $\mathrm{G}^{-}\left(A^{c}\right)=\mathrm{G}^{+}(A)^{c}$ and $\left(\mathrm{G}^{-}\right)^{+}\left(A^{c}\right)=\mathrm{G}(A)^{c}$ hold.
Proof. The point x belongs to $\mathrm{G}^{-}\left(A^{c}\right)$ if and only if the intersection $\mathrm{G}(x) \cap A^{c}$ is nonempty, which is equivalent to $x \in \mathrm{G}^{+}(A)^{c}$. The point x belongs to $\left(\mathrm{G}^{-}\right)^{+}\left(A^{c}\right)$ if and only if the intersection $\mathrm{G}^{-}(x) \cap A$ is empty, which is equivalent to $x \notin \mathrm{G}(A)$.

4. Cross Multiplication

4.1 Proposition. For any pointwise operator G and any two subsets A and B of the underlying set $\mathrm{G}(A) \subset B$ if and only if $A \subset \mathrm{G}^{+}(B)$.
Proof. Note that by definition $\mathrm{G}(a) \subset B$ if and only if $a \in \mathrm{G}^{+}(B)$ and use the fact that G is pointwise.

We refer to the above Proposition as cross multiplication of G and G^{+}.
4.2 Corollary. For any pointwise operator G we have $\mathrm{GG}^{+}<1$ and $1<\mathrm{G}^{+} \mathrm{G}$.
4.3 Proposition. Suppose G and H are pointwise operators. Then $(\mathrm{GH})^{+}=\mathrm{H}^{+} \mathrm{G}^{+}$. Proof. For any subset A of the underlying set we have $x \in(\mathrm{GH})^{+}(A)$ if and only if $\mathrm{GH}(x) \subset A$, which by cross multiplication holds if and only if $\mathrm{H}(x) \subset \mathrm{G}^{+}(A)$ and again by cross multiplication this holds, if and only if $x \in \mathrm{H}^{+} \mathrm{G}^{+}(A)$.
4.4 Corollary. Suppose A and B are pointwise operators such that $A^{n}<B$ for some $n \in \mathbb{N}$. Then $A^{m} B^{+}<A^{+p}$ for any $m, p \in \mathbb{N}$ such that $m+p=n$.
Proof. By Corollary 4.2 we have $B B^{+}<1$ and so $A^{n} B^{+}<1$. Apply p-times cross multiplication of A and A^{+}to obtain the desired inequality.
4.5 Proposition. For any pointwise operator G and any monotone operator H such that $\mathrm{G} \prec \mathrm{H}$ we have $\mathrm{GG}^{-}<\mathrm{HH}^{-}$.
Proof. Consider arbitrary point z and $\omega \in \mathrm{GG}^{-}(z)$. There exists a point $x \in \mathrm{G}^{-}(z)$ such that $\omega \in \mathrm{G}(x)$. Since $\mathrm{G} \prec \mathrm{H}$, there exists a point y such that $\mathrm{G}(x) \subset \mathrm{H}(y)$. But
$z \in \mathrm{G}(x)$ and so $z \in \mathrm{H}(y)$. Then in particular $y \in \mathrm{H}^{-}(z)$. By monotonicity we obtain $\mathrm{H}(y) \subset \mathrm{HH}^{-}(z)$. But $\omega \in \mathrm{H}(y)$ and so $\omega \in \mathrm{HH}^{-}(z)$.
4.6 Proposition. Suppose G is a pointwise operator, \mathcal{A} and \mathcal{B} families such that $\mathrm{G}^{-}(\mathcal{A})<\mathrm{G}^{+}(\mathcal{B})$. Then $\mathrm{G}^{-}\left(\mathcal{A}_{-\mathcal{B}}\right)$ is disjoint.
Proof. Consider arbitrary elements $\left(A_{-B}\right)_{s}$ and $\left(A_{-B}\right)_{t}$ of $\mathcal{A}_{-\mathcal{B}}$. We can assume that $s<t$, where $<$ denotes the total ordering relation on the index set. Since $\mathrm{GG}^{-}\left(A_{s}\right) \subset$ B_{s}, we have $\mathrm{GG}^{-}\left(A_{-B}\right)_{s} \cap\left(A_{-B}\right)_{t}$ is empty, which implies by Lemma 3.9 that $\mathrm{G}^{-}\left(\mathcal{A}_{-\mathcal{B}}\right)$ is disjoint.
4.7 Lemma. Suppose $\left\{\mathcal{A}_{i}\right\}_{i=1}^{\infty}$ is a sequence in $\mathcal{P}^{2}(X)$ such that $\cup \cup \mathcal{A}_{i}=X$. Then $\cup\left(\mathcal{A}_{i-\mathcal{A}_{i+1}}\right)=X$.
Proof. For any $x \in X$ choose the smallest index $s(x)$ such that $x \in \mathcal{A}_{i, s(x)}$ for some i. Then $x \in\left(A_{i-A_{i+1}}\right)_{s(x)}$.

5. Star and σ-disjoint refinements

5.1 Definition. A class of operators $\Theta(X)$ is said to admit star refinements, if for every $\mathrm{S} \in \Theta(X)$ there exists $\mathrm{S}^{\prime} \in \Theta(X)$ such that $\left(\mathrm{S}^{\prime}\right)^{2}<\mathrm{S}$.
5.2 Proposition. Suppose $\Theta(X)$ is a class of monotone operators >1 which admits star refinements. Then for every natural number $n \geq 2$ and every $\mathrm{S} \in \Theta(X)$ there exists $S^{\prime} \in \theta(X)$ such that $\left(S^{\prime}\right)^{n}<S$.
Proof. Consider any $\mathrm{S}_{0}=\mathrm{S} \in \Theta(X)$ and for every $i=0, \ldots, n-1$ choose $\mathrm{S}_{i+1} \in \Theta(X)$ such that $\mathrm{S}_{i+1}^{2}<\mathrm{S}_{i}$. Then by monotonicity $\mathrm{S}_{n}^{2^{n}}<\mathrm{S}$ and since $\mathrm{S}>1, \mathrm{~S}_{n}^{n}<\mathrm{S}$.
5.3 Remark. Note that the above proposition holds also for monotone operators which are <1.
5.4 Definition. A class of operators $\Theta(X)$ is said to admit σ-disjoint refinements, if for every $\mathrm{S} \in \Theta(X)$ there exists a cover P of X, which decomposes as $P=\cup P_{i}$ and a family $\left\{\mathrm{S}_{i}: i \in \omega\right\}$ in $\Theta(X)$ such that for each $i \in \omega \mathrm{~S}_{i+1}\left(P_{i}\right)$ is a disjoint refinement of S.
5.5 Theorem. Suppose $\Theta(X)$ is a class of symmetric operators >1 which admits star refinements, then for every $S \in \Theta(X)$ and every natural number $n \geq 1$ there is a cover P, which decomposes as $P=\cup P_{i}$ and a family $\left\{S_{i}: i \in \omega\right\}$ in $\Theta(X)$ such that for each $i, n \mathrm{~S}_{i+1}^{n}\left(P_{i}\right)$ is a disjoint refinement of S . Thus $\cup \mathrm{S}_{i+1}^{n}\left(P_{i}\right)$ is a σ-disjoint refinement of S , which is a cover.
Proof. Consider any $S=S_{0} \in \Theta(X)$ and for every $i \geq 0$ choose $S_{i+1} \in \Theta(X)$ such that $\mathrm{S}_{i+1}^{(2 n+1)}<\mathrm{S}_{i}$. By Theorem $4.4 \mathrm{~S}_{i+1}^{n}\left(\mathrm{~S}_{i}^{+} \mathrm{S}\right)<\left(S_{i+1}^{n}\right)^{+}\left(\mathrm{S}_{i+1}^{+} \mathrm{S}\right)$. Let $P_{i}=\mathrm{S}_{i}^{+} S_{-S_{i+1}^{+}} \mathrm{S}$. Then by Lemma 4.7 (applied for $\left.\mathcal{A}_{i}=\mathrm{S}_{i}^{+} \mathrm{S}\right) P=\cup P_{i}$ is a cover, since $\cup \mathcal{A}_{0}=\cup S_{0}^{+} \mathrm{S}=$ X. Furthermore by 4.6 the family $\mathrm{S}_{i+1}^{n}\left(P_{i}\right)$ is disjoint. Since $\mathrm{S}_{i+1}^{+}<1, \mathrm{~S}_{i+1}^{n}\left(P_{i}\right)$ is a refinement of S.

6. Barycentric Refinements

6.1 Definition. For any class $\Theta(X)$ of pointwise operators let $\mathrm{S}_{\Theta}(X)$ be the class of operators of the form GG^{-}for G in $\Theta(X)$.
6.2 Remark. Note that $\mathrm{S}_{\Theta}(X)$ consists of symmetric operators.
6.3 Definition. A class of pointwise operators $\Theta(X)$ is said to admit barycentric refinements if for every $\mathrm{S} \in \Theta(X)$, there exists $\mathrm{T} \in S_{\Theta}(X)$ such that $\mathrm{T} \prec S$.
6.4 Theorem. Suppose $\Theta(X)$ is is a class of pointwise operators >1 which admits barycentric refinements. Then:
(i) $\mathrm{S}_{\Theta}(X)$ admits star refinements.
(ii) For every $\mathrm{S} \in \Theta(X)$ and every natural number $n \geq 2$ there exists $\mathrm{S}^{\prime} \in \mathrm{S}_{\Theta}(X)$ such that $\left(\mathrm{S}^{\prime}\right)^{n} \prec \mathrm{~S}$.
(iii) For every $\mathrm{S} \in \Theta(X)$ and every natural number $n \geq 2$ there exists a cover P which decomposes as $\cup P_{i}$ and a family of operators $\left\{S_{i}: i \in \omega\right\}$ in $\mathrm{S}_{\Theta(X)}$ such that $S_{i+1}^{n}\left(P_{i}\right)$ is disjoint refinement of S .

Proof. Let $\mathrm{S} \in \mathrm{S}_{\Theta}(X)$. Then $\mathrm{S}=\mathrm{GG}^{-}$for some $\mathrm{G} \in \Theta(X)$. Since $\Theta(X)$ admits barycentric refinements there exists an $S^{\prime} \in S_{\Theta}(X)$ such that $S^{\prime} \prec G$. Then by Proposition $4.5\left(\mathrm{~S}^{\prime}\right)^{2}<\mathrm{S}$ and so $\mathrm{S}_{\Theta}(X)$ admits star refinements. For part ii conider any $\mathrm{S} \in \Theta(X)$. Since $\Theta(X)$ admits barycentric refinements there exists a $\mathrm{T} \in \mathrm{S}_{\Theta}(X)$ such that $\mathrm{T} \prec \mathrm{S}$. But by part i and Proposition 5.2 there exists $\mathrm{T}^{\prime} \in \mathrm{S}_{\Theta}(X)$ such that $\left(\mathrm{T}^{\prime}\right)^{n}<\mathrm{T}$, and so $\left(\mathrm{T}^{\prime}\right)^{n} \prec$ S. Part iii follows by theorem 5.5 applied to $S_{\Theta}(X)$.
6.5 Remark. Note that 6.4.ii (for $n=2$) is weaker than star refinements - 5.1.

7. Open Operators

7.1 Definition. For any topological space X a pointwise operator G on X will be called open if $1<\mathrm{G}$ and $\mathrm{G}(x)$ is open for any $x \in X$. The set of all open operators on X will be denoted by $\mathcal{T}(X)$.
7.2 Theorem. A topological space X has the property that every open cover of X has an open barycentric refinement which covers if and only if $\mathcal{T}(X)$ admits barycentric refinements.
Proof. Suppose \mathcal{A} is an open cover of X and \mathcal{B} is a given open barycentric refienement of \mathcal{A} which covers. Let B be an open operator such that $\mathrm{B}(x) \in \mathcal{B}$ for every $x \in X$. Then $\mathrm{BB}^{-} \prec \mathcal{A}$.
7.3 Corollary. If X is a topological space such that every open cover of X has an open star refinement, then every open cover has an open symmetric star refinement.
Proof. Apply Theorem 6.4.ii to $\mathcal{T}(X)$ for $n=3$, and note that for symmetric open operators $\mathrm{S}, \mathrm{S}^{3}(x)=\operatorname{St}(\mathrm{S}(x), \mathrm{S})$.
7.4 Proposition. An open family \mathcal{A} is discrete (resp. locally finite) if and only if there exists an open operator G such that $\mathrm{G}^{-\mathcal{A}}$ is disjoint (resp. point finite).
Proof. The family \mathcal{A} is not discrete (resp. not locally finite) if and only if for every open operator G there exists a point x and a set of indexes I of cardinality 2 (resp. $\geq \omega)$ such that $\mathrm{G}(x) \cap A_{i} \neq \emptyset$ for every $i \in I$, which by cross multiplication holds if
and only if $x \in \mathrm{G}^{-}\left(A_{i}\right)$ for every $i \in I$, i.e. for every open operator G the family $\mathrm{G}^{-} \mathcal{A}$ is not disjoint (resp. not point finite).
7.5 Theorem. Suppose X is a topological space such that every open cover has an open star refinement. Then every open cover has an open σ-discrete refinement, which is a cover.

Proof. By Theorem $7.2 \mathcal{T}(X)$ admits barycentric refinements, and so by Theorem 6.4.iii for every $S \in \mathcal{T}(X)$ there exists a cover $P=\cup P_{i}$ and a family $\left\{\mathrm{S}_{i}: i \in \omega\right\}$ in $\mathrm{S}_{\mathcal{T}}(X)$ such that $\mathrm{S}_{i+1}^{2}\left(P_{i}\right)$ is a disjoint refinement of S . But by Proposition $7.4 \mathrm{~S}_{i+1}\left(P_{i}\right)$ is a discrete refinement of S , and so $\cup \mathrm{S}_{i+1}\left(P_{i}\right)$ is σ-discrete and covers.

References

1. Engelking, Ryszard: General Topology, Berlin: Helderman, 1989
2. Watson, Stephen: Families Indexed by Partial Orders, Preprint, 2001
3. Watson, Stephen: Families of Separated Sets, Top. Appl. 75 (1997)1-11
