Open Covers and Symmetric Operators

Vera Usheva and Stephen Watson November 5, 2002

Abstract: We show that despite the infinitary nature of discreteness, the theorem of Stone-Michael can be proved entirely outside the topological context as an essentially finitary and combinatorial theorem.

Key Words: open covers, symmetric operators, discrete and disjoint refinements

1. Introduction

We show that each open cover in a topological space gives rise naturally to a symmetric operator on the underlying set. If each open cover has a star refinement, then in a natural way the induced symmetric operator also admits star refinements. Surprisingly the existence of a σ -discrete refinement of an open cover then corresponds to the existence of a σ -disjoint refinement of the induced symmetric operators. Thus the classical theorem proved by Stone and Michael that *if every open cover has a star refinement which is an open cover, then every open cover has a \sigma-disjoint open refinement which covers, has a finitary combinatorial counterpart in this language of symmetric operators. That is we show that despite the infinitary nature of discreteness the theorem of Stone-Michael can be proved entirely outside the topological context, as an essentially finitary and combinatorial theorem: If a class of symmetric operators admits star refinements, then every operator in that class has a \sigma-disjoint refinement which covers in that class. The original topological theorem can then still be derived as a special case.*

2. Preliminaries

2.1 Definition. Suppose \mathcal{A} and \mathcal{B} are subfamilies of $\mathcal{P}(X)$. Then \mathcal{B} is said to be a refinement of \mathcal{A} if for every $B \in \mathcal{B}$ there exists a $A \in \mathcal{A}$ such that $B \subset A$. The family \mathcal{B} is said to be a precise refinement of \mathcal{A} if \mathcal{B} and \mathcal{A} are indexed by the same index set S and for every $s \in S$ $B_s \subset A_s$.

2.2 Definition. Let $\mathcal{A} = \{A_s : s \in S\}$ be a subfamily of $\mathcal{P}(X)$. The star of a set $Y \subset X$ with respect to \mathcal{A} is the set $\mathsf{St}(Y, \mathcal{A}) = \bigcup \{A_s : Y \cap A_s \neq \emptyset\}$.

2.3 Definition. The family $\mathcal{B} = \{B_t : T \in T\}$ is said to be a star refinement of the family $\mathcal{A} = \{A_s : s \in S\}$ if for every $t \in T$ there exists $s \in S$ such that $\mathsf{St}(B_t, \mathcal{B}) \subset A_s$

2.4 Definition. The family \mathcal{B} is said to be barycentric refinement of the family $\mathcal{A} = \{A_s : s \in S\}$ if for every $x \in X$ there exists $s \in S$ such that $\mathsf{St}(x, \mathcal{B}) \subset \mathsf{A}_s$.

We introduce the following definitions and notation.

2.5 Definition. Any mapping $G: \mathcal{P}(X) \to \mathcal{P}(X)$ will be called *an operator* on X. The set of all operators on X, will be denoted $\mathcal{O}(X)$.

2.6 Definition. An operator $G \in \mathcal{O}(X)$ will be called *monotone* if $G(A) \subset G(B)$ for any $A, B \in \mathcal{P}(X)$ such that $A \subset B$. The set of all monotone operators on a given set X will be denoted $\mathcal{M}(X)$.

2.7 Definition. An operator $G \in \mathcal{O}(X)$ will be called *pointwise* if it preserves unions, i.e. $G(A) = \bigcup \{G(a) : a \in A\}$ for any set $A \in \mathcal{P}(X)$. The set of all pointwise operators on a given set X will be denoted $\mathcal{P}t(X)$.

In the following we fix certain notation, which will be of constant use.

• For any operator $G \in \mathcal{O}(X)$ and any family $\mathcal{A} \in \mathcal{P}^2(X)$ we denote by $G(\mathcal{A})$ or simply $G\mathcal{A}$ the family $\{G(A) : A \in \mathcal{A}\}$. In particular for any $G \in \mathcal{O}(X)$ we denote by G also the family $\{G(x) : x \in X\}$.

• For any two operators $G, H \in \mathcal{O}(X)$ and any two families $\mathcal{A}, \mathcal{B} \in \mathcal{P}^2(X)$ denote by $G(\mathcal{A}) < G(\mathcal{B})$ the fact that $G(\mathcal{A})$ is a precise refinement of $G(\mathcal{B})$. In further applications we often refer to the above notation as *inequality* between the considered families.

• For any two operators $G, H \in \mathcal{O}(X)$ and any two families $\mathcal{A}, \mathcal{B} \in \mathcal{P}^2(X)$ denote by $G(\mathcal{A}) \prec G(\mathcal{B})$ the fact that $G(\mathcal{A})$ is a refinement of $G(\mathcal{B})$.

• For any two families $\mathcal{A}, \mathcal{B} \in \mathcal{P}^2(X)$ indexed by the same index set S, we denote by $\mathcal{A}_{-\mathcal{B}}$ the family $\{(A_{-B})_s : s \in S\}$ where $(A_{-B})_s = A_s \setminus \bigcup_{t < s} B_t$ and < is a well order on the index set S.

3. Pointwise Operators and Pointwise Inverse

3.1 Definition. The operator G is called *inverse to* the operator H if $x \in G(y)$ if and only if $y \in H(x)$ for any two points x and y in the underlying set. In case that G is inverse to H and G is pointwise, we refer to it as the *pointwise inverse* of H.

3.2 Remark. Note that the pointwise inverse always exists and is unique among the pointwise operators.

3.3 Definition. For any operator G define by $G^{-}(x) = \{y \in X : x \in G(y)\}$ a pointwise operator G^{-} , and by $G^{+}(A) = \{x \in X : G(x) \subset A\}$ where $A \in \mathcal{P}(X)$ an operator G^{+} .

3.4 Remark. Note that G^- is the (unique) pointwise inverse of G and that G^+ is not necessarily pointwise, but is monotone. Any pointwise operator is also monotone.

3.5 Proposition. For any two operators G and H we have $(GH)^- = H^-G^-$.

Proof. Directly from the definition of $(GH)^{-}$.

3.6 Definition. An operator G will be called *symmetric* if $G = G^{-}$.

Note that a symmetric operator is necessarily pointwise. The set of all symmetric operators on a given set will be denoted Sm(X).

3.7 Proposition. $\mathcal{S}m(X) \subset \mathcal{P}t(X) \subset \mathcal{M}(X) \subset \mathcal{O}(X)$

3.8 Proposition. For any pointwise operator G the operators GG⁻ and G⁻G are symmetric.

Proof. For pointwise operators $(G^{-})^{-} = G$.

3.9 Lemma. For any pointwise operator G and any two subsets A and B of the underlying set the intersection $A \cap GG^{-}(B)$ is nonempty if and only if the intersection $GG^{-}(A) \cap B$ is nonempty if and only if $G^{-}(A) \cap G^{-}(B)$ is nonempty.

Proof. The intersection $G^{-}(A) \cap G^{-}(B)$ is nonempty if and only if $\exists a \in A \exists b \in B \exists x$ such that $x \in G^{-}(a) \cap G^{-}(b)$. But this is equivalent to $\exists a \in A \exists b \in B \exists x$ such that $a \in G(x)$ and $x \in G^{-1}(b)$, i.e. $\exists a \in A \exists b \in B$ such that $a \in GG^{-1}(b)$, i.e. the intersection $A \cap GG^{-1}(B)$ is nonempty.

3.10 Remark. Suppose G is a monotone operator such that $G^{-}(A) \cap G^{-}(B) \neq \emptyset$ for some A and B. Then $GG^{-}(A) \cap B \neq \emptyset$ and $A \cap GG^{-}(B) \neq \emptyset$.

3.11 Proposition. For any operator G the inequality 1 < G implies that $1 < G^-$ and $G^+ < 1$.

Proof. For any x we have $x \in G(x)$. Then by the definition of inverse operator we obtain $x \in G^{-}(x)$, that is $1 < G^{-}$. To obtain the other inequality suppose that $x \in G^{+}(A)$ for some subset A of X. By definition that is $G(x) \subset A$. But $x \in G(x)$ and so $x \in A$. \Box

3.12 Proposition. For any pointwise operator G and any subset A of the underlying set the identities $G^{-}(A^{c}) = G^{+}(A)^{c}$ and $(G^{-})^{+}(A^{c}) = G(A)^{c}$ hold.

Proof. The point x belongs to $G^-(A^c)$ if and only if the intersection $G(x) \cap A^c$ is nonempty, which is equivalent to $x \in G^+(A)^c$. The point x belongs to $(G^-)^+(A^c)$ if and only if the intersection $G^-(x) \cap A$ is empty, which is equivalent to $x \notin G(A)$. \Box

4. Cross Multiplication

4.1 Proposition. For any pointwise operator G and any two subsets A and B of the underlying set $G(A) \subset B$ if and only if $A \subset G^+(B)$.

Proof. Note that by definition $G(a) \subset B$ if and only if $a \in G^+(B)$ and use the fact that G is pointwise.

We refer to the above Proposition as cross multiplication of G and G^+ .

4.2 Corollary. For any pointwise operator G we have $GG^+ < 1$ and $1 < G^+G$.

4.3 Proposition. Suppose G and H are pointwise operators. Then $(GH)^+ = H^+G^+$. **Proof.** For any subset A of the underlying set we have $x \in (GH)^+(A)$ if and only if $GH(x) \subset A$, which by cross multiplication holds if and only if $H(x) \subset G^+(A)$ and again by cross multiplication this holds, if and only if $x \in H^+G^+(A)$.

4.4 Corollary. Suppose A and B are pointwise operators such that $A^n < B$ for some $n \in \mathbb{N}$. Then $A^m B^+ < A^{+p}$ for any $m, p \in \mathbb{N}$ such that m + p = n.

Proof. By Corollary 4.2 we have $BB^+ < 1$ and so $A^nB^+ < 1$. Apply *p*-times cross multiplication of A and A^+ to obtain the desired inequality.

4.5 Proposition. For any pointwise operator G and any monotone operator H such that $G \prec H$ we have $GG^- < HH^-$.

Proof. Consider arbitrary point z and $\omega \in \mathrm{GG}^{-}(z)$. There exists a point $x \in \mathrm{G}^{-}(z)$ such that $\omega \in \mathrm{G}(x)$. Since $\mathrm{G} \prec \mathrm{H}$, there exists a point y such that $\mathrm{G}(x) \subset \mathrm{H}(y)$. But

 $z \in G(x)$ and so $z \in H(y)$. Then in particular $y \in H^{-}(z)$. By monotonicity we obtain $H(y) \subset HH^{-}(z)$. But $\omega \in H(y)$ and so $\omega \in HH^{-}(z)$.

4.6 Proposition. Suppose G is a pointwise operator, \mathcal{A} and \mathcal{B} families such that $G^{-}(\mathcal{A}) < G^{+}(\mathcal{B})$. Then $G^{-}(\mathcal{A}_{-\mathcal{B}})$ is disjoint.

Proof. Consider arbitrary elements $(A_{-B})_s$ and $(A_{-B})_t$ of $\mathcal{A}_{-\mathcal{B}}$. We can assume that s < t, where < denotes the total ordering relation on the index set. Since $\mathrm{GG}^-(A_s) \subset B_s$, we have $\mathrm{GG}^-(A_{-B})_s \cap (A_{-B})_t$ is empty, which implies by Lemma 3.9 that $\mathrm{G}^-(\mathcal{A}_{-\mathcal{B}})$ is disjoint.

4.7 Lemma. Suppose $\{\mathcal{A}_i\}_{i=1}^{\infty}$ is a sequence in $\mathcal{P}^2(X)$ such that $\cup \cup \mathcal{A}_i = X$. Then $\cup (\mathcal{A}_{i-\mathcal{A}_{i+1}}) = X$.

Proof. For any $x \in X$ choose the smallest index s(x) such that $x \in \mathcal{A}_{i,s(x)}$ for some i. Then $x \in (A_{i-A_{i+1}})_{s(x)}$.

5. Star and σ -disjoint refinements

5.1 Definition. A class of operators $\Theta(X)$ is said to admit star refinements, if for every $S \in \Theta(X)$ there exists $S' \in \Theta(X)$ such that $(S')^2 < S$.

5.2 Proposition. Suppose $\Theta(X)$ is a class of monotone operators > 1 which admits star refinements. Then for every natural number $n \ge 2$ and every $S \in \Theta(X)$ there exists $S' \in \theta(X)$ such that $(S')^n < S$.

Proof. Consider any $S_0 = S \in \Theta(X)$ and for every i = 0, ..., n-1 choose $S_{i+1} \in \Theta(X)$ such that $S_{i+1}^2 < S_i$. Then by monotonicity $S_n^{2^n} < S$ and since S > 1, $S_n^n < S$.

5.3 Remark. Note that the above proposition holds also for monotone operators which are < 1.

5.4 Definition. A class of operators $\Theta(X)$ is said to admit σ -disjoint refinements, if for every $S \in \Theta(X)$ there exists a cover P of X, which decomposes as $P = \bigcup P_i$ and a family $\{S_i : i \in \omega\}$ in $\Theta(X)$ such that for each $i \in \omega S_{i+1}(P_i)$ is a disjoint refinement of S.

5.5 Theorem. Suppose $\Theta(X)$ is a class of symmetric operators > 1 which admits star refinements, then for every $S \in \Theta(X)$ and every natural number $n \ge 1$ there is a cover P, which decomposes as $P = \bigcup P_i$ and a family $\{S_i : i \in \omega\}$ in $\Theta(X)$ such that for each $i, n S_{i+1}^n(P_i)$ is a disjoint refinement of S. Thus $\bigcup S_{i+1}^n(P_i)$ is a σ -disjoint refinement of S, which is a cover.

Proof. Consider any $S = S_0 \in \Theta(X)$ and for every $i \ge 0$ choose $S_{i+1} \in \Theta(X)$ such that $S_{i+1}^{(2n+1)} < S_i$. By Theorem 4.4 $S_{i+1}^n(S_i^+S) < (S_{i+1}^n)^+(S_{i+1}^+S)$. Let $P_i = S_i^+S_{-S_{i+1}^+S}$. Then by Lemma 4.7 (applied for $\mathcal{A}_i = S_i^+S$) $P = \cup P_i$ is a cover, since $\cup \mathcal{A}_0 = \cup S_0^+S = X$. Furthermore by 4.6 the family $S_{i+1}^n(P_i)$ is disjoint. Since $S_{i+1}^+ < 1$, $S_{i+1}^n(P_i)$ is a refinement of S.

6. Barycentric Refinements

6.1 Definition. For any class $\Theta(X)$ of pointwise operators let $S_{\Theta}(X)$ be the class of operators of the form GG^- for G in $\Theta(X)$.

6.2 Remark. Note that $S_{\Theta}(X)$ consists of symmetric operators.

6.3 Definition. A class of pointwise operators $\Theta(X)$ is said to admit barycentric refinements if for every $S \in \Theta(X)$, there exists $T \in S_{\Theta}(X)$ such that $T \prec S$.

6.4 Theorem. Suppose $\Theta(X)$ is is a class of pointwise operators > 1 which admits barycentric refinements. Then:

(i) $S_{\Theta}(X)$ admits star refinements.

(ii) For every $S \in \Theta(X)$ and every natural number $n \ge 2$ there exists $S' \in S_{\Theta}(X)$ such that $(S')^n \prec S$.

(iii) For every $S \in \Theta(X)$ and every natural number $n \ge 2$ there exists a cover P which decomposes as $\cup P_i$ and a family of operators $\{S_i : i \in \omega\}$ in $S_{\Theta(X)}$ such that $S_{i+1}^n(P_i)$ is disjoint refinement of S.

Proof. Let $S \in S_{\Theta}(X)$. Then $S = GG^-$ for some $G \in \Theta(X)$. Since $\Theta(X)$ admits barycentric refinements there exists an $S' \in S_{\Theta}(X)$ such that $S' \prec G$. Then by Proposition 4.5 $(S')^2 < S$ and so $S_{\Theta}(X)$ admits star refinements. For part ii conider any $S \in \Theta(X)$. Since $\Theta(X)$ admits barycentric refinements there exists a $T \in S_{\Theta}(X)$ such that $T \prec S$. But by part i and Proposition 5.2 there exists $T' \in S_{\Theta}(X)$ such that $(T')^n < T$, and so $(T')^n \prec S$. Part iii follows by theorem 5.5 applied to $S_{\Theta}(X)$. \Box

6.5 Remark. Note that 6.4.ii (for n = 2) is weaker than star refinements - 5.1.

7. Open Operators

7.1 Definition. For any topological space X a pointwise operator G on X will be called *open* if 1 < G and G(x) is open for any $x \in X$. The set of all open operators on X will be denoted by $\mathcal{T}(X)$.

7.2 Theorem. A topological space X has the property that every open cover of X has an open barycentric refinement which covers if and only if $\mathcal{T}(X)$ admits barycentric refinements.

Proof. Suppose \mathcal{A} is an open cover of X and \mathcal{B} is a given open barycentric refinement of \mathcal{A} which covers. Let B be an open operator such that $B(x) \in \mathcal{B}$ for every $x \in X$. Then $BB^- \prec \mathcal{A}$.

7.3 Corollary. If X is a topological space such that every open cover of X has an open star refinement, then every open cover has an open symmetric star refinement.

Proof. Apply Theorem 6.4.ii to $\mathcal{T}(X)$ for n = 3, and note that for symmetric open operators S, $S^3(x) = \mathsf{St}(S(x), S)$.

7.4 Proposition. An open family \mathcal{A} is discrete (resp. locally finite) if and only if there exists an open operator G such that $G^-\mathcal{A}$ is disjoint (resp. point finite).

Proof. The family \mathcal{A} is not discrete (resp. not locally finite) if and only if for every open operator G there exists a point x and a set of indexes I of cardinality 2 (resp. $\geq \omega$) such that $G(x) \cap A_i \neq \emptyset$ for every $i \in I$, which by cross multiplication holds if

and only if $x \in G^{-}(A_i)$ for every $i \in I$, i.e. for every open operator G the family $G^{-}A$ is not disjoint (resp. not point finite).

7.5 Theorem. Suppose X is a topological space such that every open cover has an open star refinement. Then every open cover has an open σ -discrete refinement, which is a cover.

Proof. By Theorem 7.2 $\mathcal{T}(X)$ admits barycentric refinements, and so by Theorem 6.4.iii for every $S \in \mathcal{T}(X)$ there exists a cover $P = \bigcup P_i$ and a family $\{S_i : i \in \omega\}$ in $S_{\mathcal{T}}(X)$ such that $S_{i+1}^2(P_i)$ is a disjoint refinement of S. But by Proposition 7.4 $S_{i+1}(P_i)$ is a discrete refinement of S, and so $\bigcup S_{i+1}(P_i)$ is σ -discrete and covers.

References

- 1. Engelking, Ryszard: General Topology, Berlin: Helderman, 1989
- 2. Watson, Stephen: Families Indexed by Partial Orders, Preprint, 2001
- 3. Watson, Stephen: Families of Separated Sets, Top. Appl. 75 (1997)1-11