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1. Introduction

We show that each open cover in a topological space gives rise naturally to a symmetric
operator on the underlying set. If each open cover has a star refinement, then in a nat-
ural way the induced symmetric operator also admits star refinements. Surprisingly the
existence of a g-discrete refinement of an open cover then corresponds to the existence of
a o-disjoint refinement of the induced symmetric operators. Thus the classical theorem
proved by Stone and Michael that if every open cover has a star refinement which is an
open cover, then every open cover has a o-disjoint open refinement which covers, has
a finitary combinatorial counterpart in this language of symmetric operators. That is
we show that despite the infinitary nature of discreteness the theorem of Stone-Michael
can be proved entirely outside the topological context, as an essentially finitary and
combinatorial theorem: If a class of symmetric operators admits star refinements, then
every operator in that class has a o-disjoint refinement which covers in that class. The
original topological theorem can then still be derived as a special case.

2. Preliminaries

2.1 Definition. Suppose A and B are subfamilies of P(X). Then B is said to be a
refinement of A if for every B € B there exists a A € A such that B C A. The family
B is said to be a precise refinement of A if B and A are indexed by the same index set
S and for every s € S By C As.

2.2 Definition. Let A = {A; : s € S} be a subfamily of P(X). The star of a set
Y C X with respect to A is the set St(Y, A) = U{A, : Y N A, # 0}.

2.3 Definition. The family B = {B; : T € T'} is said to be a star refinement of the
family A = {A; : s € S} if for every t € T there exists s € S such that St(B;, B) C A,

2.4 Definition. The family B is said to be barycentric refinement of the family A =
{As : s € S} if for every x € X there exists s € S such that St(z,B) C As.

We introduce the following definitions and notation.

2.5 Definition. Any mapping G:P(X) — P(X) will be called an operator on X. The
set of all operators on X, will be denoted O(X).
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2.6 Definition. An operator G € O(X) will be called monotone if G(A) C G(B) for
any A, B € P(X) such that A C B. The set of all monotone operators on a given set X
will be denoted M (X).

2.7 Definition. An operator G € O(X) will be called pointwise if it preserves unions,
ie. G(A) = U{G(a) : a € A} for any set A € P(X). The set of all pointwise operators
on a given set X will be denoted Pt(X).

In the following we fix certain notation, which will be of constant use.

e For any operator G € O(X) and any family A € P?(X) we denote by G(.A) or simply
GA the family {G(A) : A € A}. In particular for any G € O(X) we denote by G also
the family {G(z) : x € X}.

e For any two operators G,H € O(X) and any two families A, B € P?(X) denote by
G(A) < G(B) the fact that G(.A) is a precise refinement of G(B). In further applications
we often refer to the above notation as inequality between the considered families.

e For any two operators G,H € O(X) and any two families A, B € P?(X) denote by
G(A) < G(B) the fact that G(.A) is a refinement of G(B).

e For any two families A, B € P?(X) indexed by the same index set S, we denote by
A_p the family {(A_p), : s € S} where (A_p)s = A\ Ui<s By and < is a well order
on the index set S.

S

3. Pointwise Operators and Pointwise Inverse

3.1 Definition. The operator G is called inverse to the operator H if x € G(y) if and
only if y € H(z) for any two points x and y in the underlying set. In case that G is
inverse to H and G is pointwise, we refer to it as the pointwise inverse of H.

3.2 Remark. Note that the pointwise inverse always exists and is unique among the
pointwise operators.

3.3 Definition. For any operator G define by G~ (x) = {y € X : z € G(y)} a pointwise
operator G~, and by GT(A4) = {z € X : G(z) C A} where A € P(X) an operator G™.

3.4 Remark. Note that G~ is the (unique ) pointwise inverse of G and that G* is not
necessarily pointwise, but is monotone. Any pointwise operator is also monotone.

3.5 Proposition. For any two operators G and H we have (GH)” = H~-G™.
Proof. Directly from the definition of (GH)™. O

3.6 Definition. An operator G will be called symmetric if G = G™.

Note that a symmetric operator is necessarily pointwise. The set of all symmetric oper-
ators on a given set will be denoted Sm(X).

3.7 Proposition. Sm(X) C Pt(X) C M(X) C O(X)

3.8 Proposition. For any pointwise operator G the operators GG~ and G~ G are
symmetric.

Proof. For pointwise operators (G7)~ = G. O
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3.9 Lemma. For any pointwise operator G and any two subsets A and B of the
underlying set the intersection AN GG~ (B) is nonempty if and only if the intersection
GG~ (A) N B is nonempty if and only if G~ (A) NG~ (B) is nonempty.

Proof. The intersection G™(A) N G~ (B) is nonempty if and only if Ja € AJ € B3x
such that z € G~ (a) N G~ (b). But this is equivalent to 3a € A3b € B3z such that
a € G(z)and xr € G71(b),i.e. Ja € ATb € B such that a € GG ~1(b), i.e. the intersection
AN GG~(B) is nonempty. |

3.10 Remark. Suppose G is a monotone operator such that G7(A) NG~ (B) # 0 for
some A and B. Then GG~ (A)NB # 0 and ANGG~(B) # 0.

3.11 Proposition. For any operator G the inequality 1 < G implies that 1 < G~ and
Gt <1.

Proof. For any x we have x € G(z). Then by the definition of inverse operator we obtain
x € G (), that is 1 < G~. To obtain the other inequality suppose that x € G (A) for
some subset A of X. By definition that is G(z) C A. But z € G(z) andsoz € A. O

3.12 Proposition. For any pointwise operator G and any subset A of the underlying
set the identities G~ (A¢) = GT(A)® and (G~)T(A°) = G(A)® hold.

Proof. The point = belongs to G~ (A°) if and only if the intersection G(z) N A€ is
nonempty, which is equivalent to z € GT(A4)°. The point = belongs to (G~)*(A°) if
and only if the intersection G~ (z) N A is empty, which is equivalent to = ¢ G(4). O

4. Cross Multiplication

4.1 Proposition. For any pointwise operator G and any two subsets A and B of the
underlying set G(A) C B if and only if A C GT(B).

Proof. Note that by definition G(a) C B if and only if a € G*(B) and use the fact
that G is pointwise. O

We refer to the above Proposition as cross multiplication of G and G™.
4.2 Corollary. For any pointwise operator G we have GGT <1 and 1 < GTG.

4.3 Proposition. Suppose G and H are pointwise operators. Then (GH)* = HTG™.
Proof. For any subset A of the underlying set we have z € (GH)"(A) if and only if
GH(x) C A, which by cross multiplication holds if and only if H(z) C GT(A) and again
by cross multiplication this holds, if and only if x € HTGT(A). O

4.4 Corollary. Suppose A and B are pointwise operators such that A™ < B for some
n € IN. Then A™BT < A™ for any m,p € IN such that m + p = n.

Proof. By Corollary 4.2 we have BBT < 1 and so A"B™ < 1. Apply p-times cross
multiplication of A and A" to obtain the desired inequality. O
4.5 Proposition. For any pointwise operator G and any monotone operator H such
that G < H we have GG~ < HH™.

Proof. Consider arbitrary point z and w € GG~ (z). There exists a point z € G (2)
such that w € G(z). Since G < H, there exists a point y such that G(z) C H(y). But
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z € G(z) and so z € H(y). Then in particular y € H™(z). By monotonicity we obtain
H(y) Cc HH™ (2). But w € H(y) and so w € HH™ (2). O

4.6 Proposition. Suppose G is a pointwise operator, A and B families such that
G~ (A) < GT(B). Then G~ (A_p) is disjoint.

Proof. Consider arbitrary elements (A_pg)s and (A_pg); of A_p. We can assume that
s < t, where < denotes the total ordering relation on the index set. Since GG~ (4;) C
B, we have GG~ (A_p)sN(A_p): is empty, which implies by Lemma 3.9 that G~ (A_g)
is disjoint. |
4.7 Lemma. Suppose {A;}$2, is a sequence in P?(X) such that UU A; = X. Then
U(Ai—Ai+1) =X.

Proof. For any x € X choose the smallest index s(x) such that x € A; ;) for some 1.
Then x € (Ai—Ai_H)S(x)' O

5. Star and os-disjoint refinements

5.1 Definition. A class of operators ©(X) is said to admit star refinements, if for
every S € O(X) there exists S’ € ©(X) such that (S")? < S.

5.2 Proposition. Suppose ©(X) is a class of monotone operators > 1 which admits
star refinements. Then for every natural number n > 2 and every S € ©(X) there exists
S’ € 0(X) such that (S")™ < S.

Proof. Consider any Sg =S € ©(X) and for every i = 0,...,n—1 choose S;11 € ©(X)
such that S?,; < 'S;. Then by monotonicity S2" < 'S and since S > 1, S” < S. O

5.3 Remark. Note that the above proposition holds also for monotone operators which
are < 1.

5.4 Definition. A class of operators ©(X) is said to admit o-disjoint refinements, if
for every S € ©(X) there exists a cover P of X, which decomposes as P = UP; and a
family {S; : i € w} in ©(X) such that for each i € w S;11(P;) is a disjoint refinement of
S.

5.5 Theorem. Suppose ©(X) is a class of symmetric operators > 1 which admits star
refinements, then for every S € ©(X) and every natural number n > 1 there is a cover
P, which decomposes as P = UP; and a family {S; : i € w} in ©(X) such that for each
i,n S}, (P;) is a disjoint refinement of S. Thus US}, (P;) is a o-disjoint refinement of
S, which is a cover.

Proof. Consider any S = Sy € O(X) and for every ¢ > 0 choose S;11 € ©(X) such
that Sginfl) < S;. By Theorem 4.4 ST (SS) < (57,,)7(S{,19). Let P, = S;FS—SZ.*HS'
Then by Lemma 4.7 ( applied for A; =SS ) P = UP; is a cover, since UAg = US]S =
X. Furthermore by 4.6 the family S?,,(P;) is disjoint. Since S}, < 1, S, ,(P;) is a
refinement of S. O

6. Barycentric Refinements
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6.1 Definition. For any class ©(X) of pointwise operators let Sg(X) be the class of
operators of the form GG~ for G in ©(X).

6.2 Remark. Note that Sg(X) consists of symmetric operators.

6.3 Definition. A class of pointwise operators O(X) is said to admit barycentric
refinements if for every S € ©(X), there exists T € Sg(X) such that T < S.

6.4 Theorem. Suppose O(X) is is a class of pointwise operators > 1 which admits
barycentric refinements. Then:

(i) Se(X) admits star refinements.

(ii) For every S € ©(X) and every natural number n > 2 there exists S’ € Sg(X)
such that (S")™ < S.

(ili) Forevery S € ©(X) and every natural number n > 2 there exists a cover P which
decomposes as UP; and a family of operators {S; : i € w} in Sg(x) such that Si', | (P;)
is disjoint refinement of S.

Proof. Let S € Sg(X). Then S = GG~ for some G € ©(X). Since ©(X) admits
barycentric refinements there exists an S’ € Sg(X) such that S’ < G. Then by Propo-
sition 4.5 ()2 < S and so Se(X) admits star refinements. For part ii conider any
S € ©(X). Since ©(X) admits barycentric refinements there exists a T € Sg(X) such
that T < S. But by part i and Proposition 5.2 there exists T/ € Sg(X) such that
(T")" <'T, and so (T’)™ < S. Part iii follows by theorem 5.5 applied to Sg(X). O

6.5 Remark. Note that 6.4.ii ( for n = 2 ) is weaker than star refinements - 5.1.

7. Open Operators

7.1 Definition. For any topological space X a pointwise operator G on X will be
called open if 1 < G and G(x) is open for any x € X. The set of all open operators on
X will be denoted by 7 (X).

7.2 Theorem. A topological space X has the property that every open cover of X
has an open barycentric refinement which covers if and only if T (X) admits barycentric
refinements.

Proof. Suppose A is an open cover of X and B is a given open barycentric refienement
of A which covers. Let B be an open operator such that B(z) € B for every z € X.
Then BB~ < A. |

7.3 Corollary. If X is a topological space such that every open cover of X has an
open star refinement, then every open cover has an open symmetric star refinement.

Proof. Apply Theorem 6.4.ii to 7(X) for n = 3, and note that for symmetric open
operators S, S3(z) = St(S(z),S). O

7.4 Proposition. An open family A is discrete ( resp. locally finite ) if and only if
there exists an open operator G such that G~ A is disjoint ( resp. point finite ).

Proof. The family A is not discrete ( resp. not locally finite ) if and only if for every
open operator G there exists a point x and a set of indexes I of cardinality 2 ( resp.
> w ) such that G(x) N A; # () for every i € I, which by cross multiplication holds if
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and only if x € G~ (A;) for every i € I, i.e. for every open operator G the family G~.A
is not disjoint ( resp. not point finite ). O

7.5 Theorem. Suppose X is a topological space such that every open cover has an
open star refinement. Then every open cover has an open o-discrete refinement, which
is a cover.

Proof. By Theorem 7.2 7(X) admits barycentric refinements, and so by Theorem
6.4.iii for every S € T(X) there exists a cover P = UP; and a family {S; : i € w} in
S7(X) such that S7,, (P;) is a disjoint refinement of S. But by Proposition 7.4 S; 1 (P;)
is a discrete refinement of S, and so US;1(F;) is o-discrete and covers. O
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