PARTITIONING PAIRS OF COUNTABLE SETS OF ORDINALS

VERA FISCHER

1. Partitioning Pairs of Countable Ordinals

Before we proceed with the main results to be discussed we review some well known properties of stationary subsets on ω_{1} (see [1] section II.6)

Lemma 1. There are ω_{1} disjoint stationary subsets of ω_{1}.
Proof. Let $\operatorname{Cub}\left(\omega_{1}\right)=\left\{X \subseteq \omega_{1}: \exists C \subseteq X\left(C\right.\right.$ is club on $\left.\left.\omega_{1}\right)\right\}$. Then $\operatorname{Cub}\left(\omega_{1}\right)$ is countably complete filter. Its dual ideal $\mathrm{Cub}^{*}\left(\omega_{1}\right)=\{X \subseteq$ $\left.\omega_{1}: \exists X^{\prime} \in \operatorname{Cub}\left(\omega_{1}\right)\left(X=\omega_{1} \backslash X^{\prime}\right)\right\}$ is countably complete and contains all singletons and so all countable subsets of ω_{1}. Recall also that $X \subseteq$ ω_{1} is stationary if and only if $X \notin \operatorname{Cub}^{*}\left(\omega_{1}\right)$.

For every $\rho<\omega_{1}$ let $f_{\rho}: \rho \rightarrow \omega$ be an injective mapping. Then $\forall \alpha<\omega_{1} \forall n \in \omega$ let

$$
X_{\alpha}^{n}=\left\{\rho<\omega_{1}: \alpha<\rho \text { and } f_{\rho}(\alpha)=n\right\}
$$

Note that if $\alpha \neq \beta$ then for every $n \in \omega$ we have $X_{\alpha}^{n} \cap X_{\beta}^{n}=\emptyset$ (otherwise $\exists \rho<\kappa$ greater than α, β such that $f_{\rho}(\alpha)=f_{\rho}(\beta)=n$ which is a contradiction to f_{ρ} being injective). Also for every $\alpha<\omega_{1}$

$$
\cup_{n \in \omega} X_{\alpha}^{n}=\left\{\rho<\omega_{1}: \alpha<\rho\right\} \in \operatorname{Cub}\left(\omega_{1}\right)
$$

Since $\mathrm{Cub}^{*}\left(\omega_{1}\right)$ is countably complete ideal $\forall \alpha \in \omega_{1} \exists h(\alpha) \in \omega$ such that $X_{\alpha}^{h(\alpha)} \notin \operatorname{Cub}^{*}\left(\omega_{1}\right)$ and so in particular $X_{\alpha}^{h(\alpha)}$ is stationary. But $h: \omega_{1} \rightarrow \omega$ and so there is $n \in \omega$ such that $\left|h^{-1}(n)\right|=\omega_{1}$. Therefore $\left\{X_{\alpha}^{n}: h(\alpha)=n\right\}$ is an uncountable family of disjoint stationary subsets of ω_{1}.

Corollary 1. There is a mapping $g: \omega_{1} \rightarrow \omega_{1}$ such that $\forall \alpha \in \omega_{1}$, $g^{-1}(\{\alpha\})$ is stationary.

Proof. Let $\left\{X_{\alpha}: \alpha \in \omega_{1}\right\}$ be a family of disjoint stationary subsets of ω_{1}. Then $\forall \alpha<\omega_{1}$ define $g \upharpoonright X_{\alpha}=\alpha$ and $g \upharpoonright\left[\omega_{1} \backslash\left(\cup_{\alpha<\omega_{1}} X_{\alpha}\right)\right]=0$.

Recall the following definitions:
Date: January 29, 2007.

Definition 1. We say that

$$
\omega_{1} \rightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}
$$

iff for every $f:\left[\omega_{1}\right]^{2} \rightarrow \omega_{1}$ there is $A \in\left[\omega_{1}\right]^{\omega_{1}}$ s.t. $f^{\prime \prime}[A]^{2} \neq \omega_{1}$.
Remark. Thus

$$
\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}
$$

iff there is a $f:\left[\omega_{1}\right]^{2} \rightarrow \omega_{1}$ such that $\forall A \in\left[\omega_{1}\right]^{\omega_{1}}, f^{\prime \prime}[A]^{2}=\omega_{1}$.
The following result is due to S . Todorcevic (see [3]).
Theorem 1. $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$.
Proof. We will find a function $f^{\prime}:\left[\omega_{1}\right]^{2} \rightarrow \omega_{1}$ such that for every uncountable $A \subseteq \omega_{1}, f^{\prime \prime}[A]^{2}=\omega_{1}$. In fact we will find a function $f:\left[\omega_{1}\right]^{2} \rightarrow \omega_{1}$ such that for every uncountable set $A, f^{\prime \prime}[A]^{2}$ contains a closed unbounded set. By Corollary 1 there is a function $g: \omega_{1} \rightarrow \omega_{1}$ such that $g^{-1}(\{\alpha\})$ is stationary for every $\alpha \in \omega_{1}$. Then $f^{\prime}=g \circ f$ is a witness to $\omega_{1} \nrightarrow\left[\omega_{1}\right]_{\omega_{1}}^{2}$.

Let $\left\{r_{\alpha}: \alpha \in \omega_{1}\right\}$ be a family of \aleph_{1} distinct functions in ${ }^{\omega} 2$ and for every $\alpha \in \omega_{1}$ fix an injective mapping $e_{\alpha}: \alpha \rightarrow \omega$. Then for all $\alpha, \beta \in \omega_{1}$ let

$$
\sigma(\alpha, \beta)=\sigma\left(r_{\alpha}, r_{\beta}\right)=\min \left\{n: r_{\alpha}(n) \neq r_{\beta}(n)\right\}
$$

and let

$$
\Delta_{\alpha, \beta}=\left\{\delta: \alpha \leq \delta<\beta \text { and } e_{\beta}(\delta) \leq \sigma(\alpha, \beta)\right\}
$$

Then for all $\{\alpha, \beta\} \in\left[\omega_{1}\right]^{2}$ define $f(\alpha, \beta)=\min \Delta_{\alpha, \beta}$ if $\Delta_{\alpha, \beta}$ is nonempty and 0 otherwise.

Consider any uncountable subset A of ω_{1} and for every function g in ${ }^{<\omega} 2=\cup\left\{{ }^{n} 2: n \in \omega\right\}$ define $B_{g}=\left\{\alpha \in A: g \subseteq r_{\alpha}\right\}$. Let

$$
C=\left\{\delta<\omega_{1}: \forall g \in^{<\omega} 2 \text { either } B_{g} \subseteq \delta \text { or }\left|B_{g}\right|=\omega_{1} \text { and } \delta \in B_{g}^{\prime}\right\}
$$

where B_{g}^{\prime} denotes the set of all limit points of B_{g}.
Claim. C is closed unbounded subset of ω_{1}.
Proof. Let $I=\left\{g \in{ }^{<\omega_{2}} 2:\left|B_{g}\right|<\omega_{1}\right\}$. Then for every $g \in I$ there is $\alpha_{g} \in \omega_{1}$ such that $B_{g} \subseteq \alpha_{g}$. Let $\alpha=\sup _{g \in I} \alpha_{g}$. Then $C=\left(\cap_{g \in<\omega_{2} \backslash I} B_{g}^{\prime}\right) \backslash \alpha$ is closed unbounded subset of ω_{1}.

Let $\delta \in C$. Since A is unbounded there is $\beta \in A$ such that $\delta<\beta$. Let $n=e_{\beta}(\delta)$ and $g=r_{\beta} \upharpoonright n$. Then $\beta \in B_{g}$ and so by definition of C, B_{g} is uncountable. For every $\gamma \in B_{g}$ such that $\gamma>\beta$ let $m_{\gamma}=\sigma(\beta, \gamma)$ and $h_{\gamma}=r_{\gamma} \upharpoonright m_{\gamma}+1$. Since B_{g} is uncountable there is $m \in \omega, h: m+1 \rightarrow 2$ such that for uncountably many $\gamma \in B_{g}, m=m_{\gamma}, h=h_{\gamma}$. Then B_{h} is
an uncountable subset of B_{g} such that for every $\gamma \in B_{h}$ the distance $\sigma(\beta, \gamma)=m \geq n$. We will find $\alpha \in B_{h}$ such that $f(\alpha, \beta)=\delta$.

Let $F=\left\{\gamma<\delta: e_{\beta}(\gamma) \leq m\right\}$. Since e_{β} is injective F is a finite subset of δ. By definition of C, δ is a limit point of B_{h} and so there is $\alpha \in B_{h} \cap \delta$ such that $F \subseteq \alpha$. Suppose γ is an ordinal such that $\alpha \leq \gamma<\beta$ and $e_{\beta}(\gamma) \leq \sigma(\alpha, \beta)=m$. Then $\gamma \notin F$ and so $\delta \leq \gamma$. Therefore $\delta=\min \Delta_{\alpha, \beta}$ and so $\delta=f(\alpha, \beta)$.

2. Partitioning Pairs of Countable Sets of Ordinals

Definition 2. Let λ be an uncountable cardinal and let $\mathcal{P}_{\omega_{1}}(\lambda)$ be the family of all countable subsets of λ. Then

$$
\left[\mathcal{P}_{\omega_{1}}(\lambda)\right]_{\subset}^{2}=\left\{(x, y) \in\left[\mathcal{P}_{\omega_{1}}(\lambda)\right]^{2}: x \subseteq y\right\} .
$$

Definition 3. Let λ be an uncountable cardinal. We say that

$$
\mathcal{P}_{\omega_{1}}(\lambda) \rightarrow[\text { unbdd }]_{\lambda}^{2}
$$

iff for every coloring $f:\left[\mathcal{P}_{\omega_{1}}(\lambda)\right]_{\subset}^{2} \rightarrow \lambda$ there is an unbounded set $A \subseteq$ $\mathcal{P}_{\omega_{1}}(\lambda)$ such that $f^{\prime \prime}[A]_{\subset}^{2} \neq \lambda$.

Remark. Thus

$$
\mathcal{P}_{\omega_{1}}(\lambda) \nrightarrow[\text { unbdd }]_{\lambda}^{2}
$$

iff for every coloring $f:\left[\mathcal{P}_{\omega_{1}}(\lambda)\right]_{\subset}^{2} \rightarrow \lambda$ for every unbounded set $A \subseteq$ $\mathcal{P}_{\omega_{1}}(\lambda)$ we have $f^{\prime \prime}[A]_{\subset}^{2}=\lambda$.

In 1990 D. Velleman obtained a generalization of Theorem 1 (see [4]) to pairs of countable sets of ordinals.

Theorem 2. Let λ be an uncountable cardinal. Suppose that there is a stationary subset S of $\mathcal{P}_{\omega_{1}}(\lambda)$ of cardinality λ. Then $\mathcal{P}_{\omega_{1}}(\lambda) \nrightarrow$ [unbdd] ${ }_{\lambda}^{2}$.

Remark. If $G C H$ holds, then for every uncountable cardinal λ the cardinality of $\mathcal{P}_{\omega_{1}}(\lambda)$ is $\lambda^{\omega}=\lambda$ and so the hypothesis of Theorem 2 holds. Thus $G C H$ implies $\mathcal{P}_{\omega_{1}}(\lambda) \nrightarrow[\text { unbdd }]_{\lambda}^{2}$ for every uncountable cardinal λ.

Proof. We will show that there is $f^{\prime}:\left[\mathcal{P}_{\omega_{1}}(\lambda)\right]_{\subset}^{2} \rightarrow \lambda$ such that for every unbounded $A \subseteq \mathcal{P}_{\omega_{1}}(\lambda), f^{\prime \prime}[A]_{\subset}^{2}=\lambda$. In fact we will find a function $f:\left[\mathcal{P}_{\omega_{1}}(\lambda)\right]_{\subset}^{2} \rightarrow \mathcal{P}_{\omega_{1}}(\lambda)$ such that for every unbounded set $A \subseteq \mathcal{P}_{\omega_{1}}(\lambda)$ there is a closed unbounded set $C=C_{A}$ on $\mathcal{P}_{\omega_{1}}(\lambda)$ such that $S \cap C \subseteq f^{\prime \prime}[A]^{2}$. Matsubara has shown (see [2]) that (under the hypothesis of the theorem) there is a function $g: S \rightarrow \lambda$ such that $(\forall \alpha \in \lambda) g^{-1}(\{\alpha\})$ is stationary. Then $f^{\prime}=g \circ f:\left[\mathcal{P}_{\omega_{1}}(\lambda)\right]_{\subset}^{2} \rightarrow \lambda$ is the desired coloring.

Just as in Theorem 1 fix a family $\left\{r_{\alpha}: \alpha<\omega_{1}\right\}$ of \aleph_{1} distinct functions in ${ }^{\omega} 2$. For any two x, y countable subsets of λ let

$$
\sigma(x, y)=\sigma\left(r_{\operatorname{type}(x)}, r_{\operatorname{type}(y)}\right)
$$

if type $(x) \neq \operatorname{type}(y)$ and let $\sigma(x, y)=0$ otherwise. Let $c: S \rightarrow \lambda$ be a bijection. For every $y \in \mathcal{P}_{\omega_{1}}(\lambda)$ let $Q_{y}=\{x \in S: x \subseteq y$ and $c(x) \in y\}$. Then $\left|Q_{y}\right|=\omega$ (since y is countable and c is injective) and so we can fix an injective mapping $e_{y}: Q_{y} \rightarrow \omega$. For any pair x, y of countable subsets of λ let

$$
\Delta_{x, y}=\left\{d \in Q_{y}: x \subseteq d \text { and } e_{y}(x) \leq \sigma(x, y)\right\} .
$$

Then for every $(x, y) \in\left[\mathcal{P}_{\omega_{1}}(\lambda)\right]_{\subset}^{2}$ let $f(x, y)=\min _{\subset} \Delta_{x, y}$ if there is such a minimum (i.e. a smallest under inclusion element of $\Delta_{x, y}$) and let $f(x, y)=\emptyset$ otherwise. We claim that f is the desired coloring.

Consider any unbounded subset A of $\mathcal{P}_{\omega_{1}}(\lambda)$ and for every g in ${ }^{<\omega} 2$ let $B_{g}=\left\{x \in A: g \subseteq r_{x}\right\}$. Let C be the set of all $d \in \mathcal{P}_{\omega_{1}}(\lambda)$ such that for every g in ${ }^{<\omega} 2$ the following holds: either there is no $x \in B_{g}$ such that $d \subseteq x$ or B_{g} is unbounded and for every finite subset w of d there is $x \in B_{g}$ such that $w \subseteq x \subseteq d$.

Claim. C is a closed unbounded subset of $\mathcal{P}_{\omega_{1}}(\lambda)$.
Proof. Let $I=\left\{g \in^{<\omega} 2: B_{g}\right.$ is not unbounded $\}$. Then for every $g \in I$ there is a countable subset x_{g} of λ such that for no $x \in B_{g}\left(x_{g} \subseteq x\right)$. Let $x_{0}=\cup_{g \in I} x_{g}$.

Consider any $d \in \mathcal{P}_{\omega_{1}}(\lambda)$ and let $d_{0}=d \cup x_{0}$. Let d_{1} be a common limit point of $\left\langle B_{g}: g \in{ }^{<\omega} 2 \backslash I\right\rangle$ above d_{0}, i.e. $d_{0} \subseteq d_{1}$ and for all $g \in{ }^{<\omega} 2 \backslash I$ there is an increasing sequence $\left\langle x_{g}^{n}: n \in \omega\right\rangle \subseteq B_{g}$ such that $d_{1}=\cup_{n \in \omega} x_{g}^{n}$. To see that d_{1} is an element of C consider any $g \in{ }^{<\omega} 2$. If B_{g} is bounded then there is no x in B_{g} covering d_{1} since $x_{g} \subseteq x_{0} \subseteq d_{1}$. If B_{g} is unbounded and w is a finite subset of d_{1} then there is some $m \in \omega$ such that $w \subseteq x_{g}^{m} \subseteq d_{1}$.

To show that C is closed consider any increasing sequence $\left\langle d_{n}: n \in\right.$ $\omega\rangle$ of elements of C and let $d=\cup_{n \in \omega} d_{n}$. Let $g \in{ }^{<\omega} 2$. If $g \in I$ then since $d_{0} \in C$ there is no $x \in B_{g}$ which covers d_{0} and so there is no $x \in B_{g}$ which covers d. Otherwise B_{g} is unbounded. But then if w is a finite subset of d, there is some d_{n} such that $w \subseteq d_{n}$ and since $d_{n} \in C$ there is an element $x \in B_{g}$ for which $w \subseteq x \subseteq d_{n} \subseteq d$.

Let $d \in S \cap C$. Since A is unbounded there is $y \in A$ such that $d \cup\{c(d)\} \subseteq y$. But then $d \in Q_{y}$ and so $n=e_{y}(d)$ is defined. Let $g=r_{y} \upharpoonright n$. Since $y \in B_{g}$ covers d, by definition of C we obtain that B_{g} is unbounded. Then for every $z \in B_{g}$ such that $y \subseteq z$ and type $(y) \neq$ $\operatorname{type}(z)$ let $m_{z}=\sigma(y, z)$ and let $h_{z}=r_{z} \upharpoonright m_{z}+1$. Again since B_{g} is
unbounded there is $m \in \omega$ and $h: m+1 \rightarrow 2$ such that for unboundedly many $z \in B_{h}, m_{z}=m$ and $h_{z}=h$. Then B_{h} is an unbounded subset of B_{g} and for every $z \in B_{h}$ the distance $\sigma(z, y)=m \geq n$. We will find a set $x \in B_{h}$ such that $f(x, y)=d$.

Let $F=\left\{q \in Q_{y}: e_{y}(q) \leq m\right.$ and $\left.d \nsubseteq q\right\}$. Since e_{y} is injective, F is finite. For every $q \in F$ let $\alpha_{q} \in d \backslash q$. Then $w=\left\{\alpha_{q}: q \in F\right\}$ is a finite subset of d and since B_{h} is unbounded and $d \in C$, there is $x \in B_{h}$ such that $w \subseteq x \subseteq d$. We claim that $f(x, y)=d$. Consider any $z \in Q_{y}$ such that $x \subseteq z$ and $e_{y}(z) \leq m$. Then $z \notin F$ and so $d \subseteq z$. Therefore d is the minimum (under inclusion) of $\Delta_{x, y}$ and so $f(x, y)=d$.

References

[1] K. Kunen Set Theory: An Introduction to Independence Proofs, Elsevier, 2005.
[2] Y. Matsubara Menas Conjecture and Generic Ultrapowers, Annals of Pure and Applied Logic, vol. 36(1987), pp.225-234.
[3] S. Todorcevic Partitioning Pairs of Countable Ordinals, Acta Mathematica, vol. 159(1987), pp. 261-294.
[4] D. Velleman Partitioning Pairs of Countable Sets of Ordinals, The Journal of Symbolic Logic, vol. 55, Sept. 1990
E-mail address: vfischer@mathstat.yorku.ca

