PARTITIONING PAIRS OF COUNTABLE SETS OF ORDINALS

VERA FISCHER

1. PARTITIONING PAIRS OF COUNTABLE ORDINALS

Before we proceed with the main results to be discussed we review some well known properties of stationary subsets on ω_1 (see [1] section II.6)

Lemma 1. There are ω_1 disjoint stationary subsets of ω_1 .

Proof. Let $\operatorname{Cub}(\omega_1) = \{X \subseteq \omega_1 : \exists C \subseteq X(C \text{ is club on } \omega_1)\}$. Then $\operatorname{Cub}(\omega_1)$ is countably complete filter. Its dual ideal $\operatorname{Cub}^*(\omega_1) = \{X \subseteq \omega_1 : \exists X' \in \operatorname{Cub}(\omega_1)(X = \omega_1 \setminus X')\}$ is countably complete and contains all singletons and so all countable subsets of ω_1 . Recall also that $X \subseteq \omega_1$ is stationary if and only if $X \notin \operatorname{Cub}^*(\omega_1)$.

For every $\rho < \omega_1$ let $f_{\rho} \colon \rho \to \omega$ be an injective mapping. Then $\forall \alpha < \omega_1 \ \forall n \in \omega$ let

$$X_{\alpha}^{n} = \{ \rho < \omega_{1} : \alpha < \rho \text{ and } f_{\rho}(\alpha) = n \}.$$

Note that if $\alpha \neq \beta$ then for every $n \in \omega$ we have $X_{\alpha}^n \cap X_{\beta}^n = \emptyset$ (otherwise $\exists \rho < \kappa$ greater than α, β such that $f_{\rho}(\alpha) = f_{\rho}(\beta) = n$ which is a contradiction to f_{ρ} being injective). Also for every $\alpha < \omega_1$

$$\bigcup_{n\in\omega}X_{\alpha}^{n} = \{\rho < \omega_{1} : \alpha < \rho\} \in \operatorname{Cub}(\omega_{1}).$$

Since $\operatorname{Cub}^*(\omega_1)$ is countably complete ideal $\forall \alpha \in \omega_1 \exists h(\alpha) \in \omega$ such that $X^{h(\alpha)}_{\alpha} \notin \operatorname{Cub}^*(\omega_1)$ and so in particular $X^{h(\alpha)}_{\alpha}$ is stationary. But $h \colon \omega_1 \to \omega$ and so there is $n \in \omega$ such that $|h^{-1}(n)| = \omega_1$. Therefore $\{X^n_{\alpha} : h(\alpha) = n\}$ is an uncountable family of disjoint stationary subsets of ω_1 .

Corollary 1. There is a mapping $g : \omega_1 \to \omega_1$ such that $\forall \alpha \in \omega_1$, $g^{-1}(\{\alpha\})$ is stationary.

Proof. Let $\{X_{\alpha} : \alpha \in \omega_1\}$ be a family of disjoint stationary subsets of ω_1 . Then $\forall \alpha < \omega_1$ define $g \upharpoonright X_{\alpha} = \alpha$ and $g \upharpoonright [\omega_1 \setminus (\bigcup_{\alpha < \omega_1} X_{\alpha})] = 0$. \Box

Recall the following definitions:

Date: January 29, 2007.

Definition 1. We say that

 $\omega_1 \to [\omega_1]^2_{\omega_1}$

iff for every $f: [\omega_1]^2 \to \omega_1$ there is $A \in [\omega_1]^{\omega_1}$ s.t. $f''[A]^2 \neq \omega_1$.

Remark. Thus

$$\omega_1 \not\rightarrow [\omega_1]^2_\omega$$

iff there is a $f : [\omega_1]^2 \to \omega_1$ such that $\forall A \in [\omega_1]^{\omega_1}, f^*[A]^2 = \omega_1$.

The following result is due to S. Todorcevic (see [3]).

Theorem 1. $\omega_1 \not\rightarrow [\omega_1]^2_{\omega_1}$.

Proof. We will find a function $f': [\omega_1]^2 \to \omega_1$ such that for every uncountable $A \subseteq \omega_1$, $f''[A]^2 = \omega_1$. In fact we will find a function $f: [\omega_1]^2 \to \omega_1$ such that for every uncountable set A, $f''[A]^2$ contains a closed unbounded set. By Corollary 1 there is a function $g: \omega_1 \to \omega_1$ such that $g^{-1}(\{\alpha\})$ is stationary for every $\alpha \in \omega_1$. Then $f' = g \circ f$ is a witness to $\omega_1 \to [\omega_1]^2_{\omega_1}$.

Let $\{r_{\alpha} : \alpha \in \omega_1\}$ be a family of \aleph_1 distinct functions in ω_2 and for every $\alpha \in \omega_1$ fix an injective mapping $e_{\alpha} : \alpha \to \omega$. Then for all $\alpha, \beta \in \omega_1$ let

$$\sigma(\alpha,\beta) = \sigma(r_{\alpha},r_{\beta}) = \min\{n : r_{\alpha}(n) \neq r_{\beta}(n)\}$$

and let

$$\Delta_{\alpha,\beta} = \{\delta : \alpha \le \delta < \beta \text{ and } e_{\beta}(\delta) \le \sigma(\alpha,\beta)\}.$$

Then for all $\{\alpha, \beta\} \in [\omega_1]^2$ define $f(\alpha, \beta) = \min \Delta_{\alpha,\beta}$ if $\Delta_{\alpha,\beta}$ is nonempty and 0 otherwise.

Consider any uncountable subset A of ω_1 and for every function g in ${}^{<\omega}2 = \bigcup \{ {}^n2 : n \in \omega \}$ define $B_g = \{ \alpha \in A : g \subseteq r_{\alpha} \}$. Let

$$C = \{\delta < \omega_1 : \forall g \in {}^{<\omega} 2 \text{ either } B_g \subseteq \delta \text{ or } |B_g| = \omega_1 \text{ and } \delta \in B'_g\}$$

where B'_q denotes the set of all limit points of B_q .

Claim. C is closed unbounded subset of ω_1 .

Proof. Let $I = \{g \in {}^{<\omega}2 : |B_g| < \omega_1\}$. Then for every $g \in I$ there is $\alpha_g \in \omega_1$ such that $B_g \subseteq \alpha_g$. Let $\alpha = \sup_{g \in I} \alpha_g$. Then $C = (\bigcap_{g \in {}^{<\omega}2 \setminus I} B'_g) \setminus \alpha$ is closed unbounded subset of ω_1 .

Let $\delta \in C$. Since A is unbounded there is $\beta \in A$ such that $\delta < \beta$. Let $n = e_{\beta}(\delta)$ and $g = r_{\beta} \upharpoonright n$. Then $\beta \in B_g$ and so by definition of C, B_g is uncountable. For every $\gamma \in B_g$ such that $\gamma > \beta$ let $m_{\gamma} = \sigma(\beta, \gamma)$ and $h_{\gamma} = r_{\gamma} \upharpoonright m_{\gamma} + 1$. Since B_g is uncountable there is $m \in \omega$, $h: m+1 \to 2$ such that for uncountably many $\gamma \in B_g$, $m = m_{\gamma}$, $h = h_{\gamma}$. Then B_h is

an uncountable subset of B_g such that for every $\gamma \in B_h$ the distance $\sigma(\beta, \gamma) = m \ge n$. We will find $\alpha \in B_h$ such that $f(\alpha, \beta) = \delta$.

Let $F = \{\gamma < \delta : e_{\beta}(\gamma) \leq m\}$. Since e_{β} is injective F is a finite subset of δ . By definition of C, δ is a limit point of B_h and so there is $\alpha \in B_h \cap \delta$ such that $F \subseteq \alpha$. Suppose γ is an ordinal such that $\alpha \leq \gamma < \beta$ and $e_{\beta}(\gamma) \leq \sigma(\alpha, \beta) = m$. Then $\gamma \notin F$ and so $\delta \leq \gamma$. Therefore $\delta = \min \Delta_{\alpha,\beta}$ and so $\delta = f(\alpha, \beta)$.

2. PARTITIONING PAIRS OF COUNTABLE SETS OF ORDINALS

Definition 2. Let λ be an uncountable cardinal and let $\mathcal{P}_{\omega_1}(\lambda)$ be the family of all countable subsets of λ . Then

$$[\mathcal{P}_{\omega_1}(\lambda)]_{\subset}^2 = \{(x,y) \in [\mathcal{P}_{\omega_1}(\lambda)]^2 : x \subseteq y\}.$$

Definition 3. Let λ be an uncountable cardinal. We say that

 $\mathcal{P}_{\omega_1}(\lambda) \to [\text{unbdd}]^2_{\lambda}$

iff for every coloring $f: [\mathcal{P}_{\omega_1}(\lambda)]_{\subset}^2 \to \lambda$ there is an unbounded set $A \subseteq \mathcal{P}_{\omega_1}(\lambda)$ such that $f''[A]_{\subset}^2 \neq \lambda$.

Remark. Thus

$$\mathcal{P}_{\omega_1}(\lambda) \not\rightarrow [\text{unbdd}]^2_{\lambda}$$

iff for every coloring $f : [\mathcal{P}_{\omega_1}(\lambda)]_{\subset}^2 \to \lambda$ for every unbounded set $A \subseteq \mathcal{P}_{\omega_1}(\lambda)$ we have $f^{"}[A]_{\subset}^2 = \lambda$.

In 1990 D. Velleman obtained a generalization of Theorem 1 (see [4]) to pairs of countable sets of ordinals.

Theorem 2. Let λ be an uncountable cardinal. Suppose that there is a stationary subset S of $\mathcal{P}_{\omega_1}(\lambda)$ of cardinality λ . Then $\mathcal{P}_{\omega_1}(\lambda) \twoheadrightarrow$ [unbdd]²_{λ}.

Remark. If GCH holds, then for every uncountable cardinal λ the cardinality of $\mathcal{P}_{\omega_1}(\lambda)$ is $\lambda^{\omega} = \lambda$ and so the hypothesis of Theorem 2 holds. Thus GCH implies $\mathcal{P}_{\omega_1}(\lambda) \not\rightarrow [\text{unbdd}]^2_{\lambda}$ for every uncountable cardinal λ .

Proof. We will show that there is $f': [\mathcal{P}_{\omega_1}(\lambda)]_{\subset}^2 \to \lambda$ such that for every unbounded $A \subseteq \mathcal{P}_{\omega_1}(\lambda)$, $f''[A]_{\subset}^2 = \lambda$. In fact we will find a function $f: [\mathcal{P}_{\omega_1}(\lambda)]_{\subset}^2 \to \mathcal{P}_{\omega_1}(\lambda)$ such that for every unbounded set $A \subseteq \mathcal{P}_{\omega_1}(\lambda)$ there is a closed unbounded set $C = C_A$ on $\mathcal{P}_{\omega_1}(\lambda)$ such that $S \cap C \subseteq f''[A]_{\subset}^2$. Matsubara has shown (see [2]) that (under the hypothesis of the theorem) there is a function $g: S \to \lambda$ such that $(\forall \alpha \in \lambda)g^{-1}(\{\alpha\})$ is stationary. Then $f' = g \circ f: [\mathcal{P}_{\omega_1}(\lambda)]_{\subset}^2 \to \lambda$ is the desired coloring.

VERA FISCHER

Just as in Theorem 1 fix a family $\{r_{\alpha} : \alpha < \omega_1\}$ of \aleph_1 distinct functions in ω_2 . For any two x, y countable subsets of λ let

$$\sigma(x, y) = \sigma(r_{\text{type}(x)}, r_{\text{type}(y)})$$

if type $(x) \neq$ type(y) and let $\sigma(x, y) = 0$ otherwise. Let $c: S \to \lambda$ be a bijection. For every $y \in \mathcal{P}_{\omega_1}(\lambda)$ let $Q_y = \{x \in S : x \subseteq y \text{ and } c(x) \in y\}$. Then $|Q_y| = \omega$ (since y is countable and c is injective) and so we can fix an injective mapping $e_y: Q_y \to \omega$. For any pair x, y of countable subsets of λ let

$$\Delta_{x,y} = \{ d \in Q_y : x \subseteq d \text{ and } e_y(x) \le \sigma(x,y) \}.$$

Then for every $(x, y) \in [\mathcal{P}_{\omega_1}(\lambda)]^2_{\subset}$ let $f(x, y) = \min_{\subset} \Delta_{x,y}$ if there is such a minimum (i.e. a smallest under inclusion element of $\Delta_{x,y}$) and let $f(x, y) = \emptyset$ otherwise. We claim that f is the desired coloring.

Consider any unbounded subset A of $\mathcal{P}_{\omega_1}(\lambda)$ and for every g in ${}^{<\omega}2$ let $B_g = \{x \in A : g \subseteq r_x\}$. Let C be the set of all $d \in \mathcal{P}_{\omega_1}(\lambda)$ such that for every g in ${}^{<\omega}2$ the following holds: either there is no $x \in B_g$ such that $d \subseteq x$ or B_g is unbounded and for every finite subset w of d there is $x \in B_g$ such that $w \subseteq x \subseteq d$.

Claim. C is a closed unbounded subset of $\mathcal{P}_{\omega_1}(\lambda)$.

Proof. Let $I = \{g \in {}^{<\omega} 2 : B_g \text{ is not unbounded}\}$. Then for every $g \in I$ there is a countable subset x_g of λ such that for no $x \in B_g(x_g \subseteq x)$. Let $x_0 = \bigcup_{g \in I} x_g$.

Consider any $d \in \mathcal{P}_{\omega_1}(\lambda)$ and let $d_0 = d \cup x_0$. Let d_1 be a common limit point of $\langle B_g : g \in \langle \omega_2 \rangle I \rangle$ above d_0 , i.e. $d_0 \subseteq d_1$ and for all $g \in \langle \omega_2 \rangle I$ there is an increasing sequence $\langle x_g^n : n \in \omega \rangle \subseteq B_g$ such that $d_1 = \bigcup_{n \in \omega} x_g^n$. To see that d_1 is an element of C consider any $g \in \langle \omega_2$. If B_g is bounded then there is no x in B_g covering d_1 since $x_g \subseteq x_0 \subseteq d_1$. If B_g is unbounded and w is a finite subset of d_1 then there is some $m \in \omega$ such that $w \subseteq x_g^m \subseteq d_1$.

To show that C is closed consider any increasing sequence $\langle d_n : n \in \omega \rangle$ of elements of C and let $d = \bigcup_{n \in \omega} d_n$. Let $g \in {}^{<\omega}2$. If $g \in I$ then since $d_0 \in C$ there is no $x \in B_g$ which covers d_0 and so there is no $x \in B_g$ which covers d. Otherwise B_g is unbounded. But then if w is a finite subset of d, there is some d_n such that $w \subseteq d_n$ and since $d_n \in C$ there is an element $x \in B_g$ for which $w \subseteq x \subseteq d_n \subseteq d$.

Let $d \in S \cap C$. Since A is unbounded there is $y \in A$ such that $d \cup \{c(d)\} \subseteq y$. But then $d \in Q_y$ and so $n = e_y(d)$ is defined. Let $g = r_y \upharpoonright n$. Since $y \in B_g$ covers d, by definition of C we obtain that B_g is unbounded. Then for every $z \in B_g$ such that $y \subseteq z$ and type $(y) \neq$ type(z) let $m_z = \sigma(y, z)$ and let $h_z = r_z \upharpoonright m_z + 1$. Again since B_g is

4

unbounded there is $m \in \omega$ and $h: m+1 \to 2$ such that for unboundedly many $z \in B_h$, $m_z = m$ and $h_z = h$. Then B_h is an unbounded subset of B_g and for every $z \in B_h$ the distance $\sigma(z, y) = m \ge n$. We will find a set $x \in B_h$ such that f(x, y) = d.

Let $F = \{q \in Q_y : e_y(q) \leq m \text{ and } d \nsubseteq q\}$. Since e_y is injective, F is finite. For every $q \in F$ let $\alpha_q \in d \setminus q$. Then $w = \{\alpha_q : q \in F\}$ is a finite subset of d and since B_h is unbounded and $d \in C$, there is $x \in B_h$ such that $w \subseteq x \subseteq d$. We claim that f(x, y) = d. Consider any $z \in Q_y$ such that $x \subseteq z$ and $e_y(z) \leq m$. Then $z \notin F$ and so $d \subseteq z$. Therefore d is the minimum (under inclusion) of $\Delta_{x,y}$ and so f(x, y) = d.

References

- [1] K. Kunen Set Theory: An Introduction to Independence Proofs, Elsevier, 2005.
- [2] Y. Matsubara *Menas Conjecture and Generic Ultrapowers*, Annals of Pure and Applied Logic, vol. 36(1987), pp.225-234.
- [3] S. Todorcevic Partitioning Pairs of Countable Ordinals, Acta Mathematica, vol. 159(1987), pp. 261-294.
- [4] D. Velleman Partitioning Pairs of Countable Sets of Ordinals, The Journal of Symbolic Logic, vol. 55, Sept. 1990

E-mail address: vfischer@mathstat.yorku.ca