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Abstract. We show that Miller partition forcing preserves selective independent families and
P -points, which implies the consistency of cof(N ) = a = u = i < aT = ω2. In addition, we show
that Shelah’s poset for destroying the maximality of a given maximal ideal preserves tight mad
families and so, we establish the consistency of cof(N ) = a = i = ω1 < u = aT = ω2.

1. Introduction

One of the oldest questions regarding the theory of cardinal invariants of the continuum is the
following question of Jerry Vaughan [50]: Is the inequality i < a consistent?1

Not only this problem is interesting since it involves two fundamental objects in infinite combi-
natorics (maximal independent families and MAD families), but a positive solution to the problem
will most likely require the development of new ideas and forcing techniques. 2 In order to gain
more insight into the problem of Vaughan, we compare i with the following cardinal invariant
introduced by A. Miller in [42].

Definition. Define aT as the smallest size of a partition of ωω into compact sets.

It is well-known that the Baire space ωω is not σ-compact (see [32]), which implies that aT
is uncountable. Furthermore, d is the least size of a family of compact sets covering ωω (see
[3]), so it follows that d ≤ aT . It is known that the compact subspaces of the Baire space are
in correspondence with the finitely branching subtrees of ω<ω. Using this correspondence and
König’s lemma, it is easy to prove that aT is equal to the least size of a maximal AD family of
finitely branching subtrees of ω<ω. M. Džamonja, M. Hrušák and J. Moore proved that ♦d implies
that aT = ω1 (see Theorem 7.6 of [43]). Thus, since ♦d holds in most of the natural models of
d = ω1 (see [43] and [27] for a precise formulation of this statement), aT = ω1 also holds in these
models.
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On the other hand, given a partition C of ωω into compact sets, Miller introduced a proper
forcing notion Q(C) which has the Laver property and destroys C, that is C no longer covers
ωω after forcing with Q(C). The forcing notion is known as Miller partition forcing and plays
an important role in the current article (see Definition 2.1). Spinas showed that Q(C) is ωω-
bounding, which together with Miller’s result establishes the Sacks property of Q(C), see [49].
Thus, every partition of ωω into compact sets can be destroyed with a proper forcing that has the
Sacks property, which implies the consistency of cof (N ) < aT and in particular the consistency
of d < aT . In [52, Proposition 4.1.31], Zapletal proved that Q(C) is forcing equivalent to the
quotient of the Borel sets of ωω modulo a σ-ideal generated by the closed sets. In this way, the
forcing Q(C) falls into the scope of the theory developed in [52] and [51].

In this article, we study the effect of Miller partition forcing on the independence number i

and obtain the consistency of i < aT . The key argument is the fact that Miller partition forcing
preserves selective independent families, fact for which we provide two proofs: one building on
Laflamme’s filter games (see [34] and Definition 3.9) and one building on the notion of fusion with
witnesses (see Definition 2.9). Both, the fusion with witnesses, as well as the use of Laflamme’s
filter game in the context of Miller’s partition forcing are highly innovative and do not occur in
earlier work on Q(C).

The notion of selective independent family was introduced by S. Shelah in his work on the
consistency of i < u (see [46]). Selective independent families are families with very strong com-
binatorial properties, which resemble the combinatorial features of Ramsey ultrafilters. Studying
the similarities and differences between selective independent families and Ramsey ultrafilters re-
mains a very interesting line of research. For more recent work on maximal independent families
see [14, 19, 12, 20, 45].

Employing our notion of fusion with witnesses, we show also that Q(C) preserves P -points.
Together with the fact that Miller partition forcing and its iterations preserve tight mad families,
see [25], we obtain the consistency of the following constellation, which implies that in a natural
sense Q(C) is optimal for aT .

Theorem. It is relatively consistent that i = a = u = ω1 < aT .

The question if one can increase simultaneously u and aT , while preserving small witnesses to a

and i becomes of interest. Further, we show that Shelah’s poset QI for destroying the maximality
of a given maximal ideal from [46] strongly preserves tight MAD families. Our results imply that as
far as the classical cardinal characteristics of the continuum are concerned, Shelah’s QI is optimal
for u, as it increases the ultrafilter number u, while it keeps all other (classical) characteristics
small. The following result appears as Corollary 4.13 in the article:

Theorem. It is relatively consistent that i = a = ω1 < u.

Finally, combining Miller partition forcing, Shelah’s QI , our preservation results, as well as the
preservation results of [25] and [46], in Corollary 4.14 we obtain

Theorem. It is relatively consistent that i = a = ω1 < u = aT = ω2.
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2. Miller Partition Forcing

2.1. Continuous reading of names. Recall that Sacks forcing S consists of all perfect trees in
2<ω ordered by inclusion. That is, p ∈ S if and only if

(1) p ⊆ 2<ω,
(2) ∀σ ∈ p ∀τ ∈ 2<ω

(
τ ⊆ σ → τ ∈ p

)
,

(3) ∀σ ∈ p ∃τ, τ ′ ∈ p
(
σ ⊆ τ ∧ σ ⊆ τ ′ ∧ τ 6⊆ τ ′ ∧ τ ′ 6⊆ τ

)
.

We will use standard notation: If p ∈ S and σ ∈ p we let p(σ) = {τ ∈ p | τ ⊆ σ or σ ⊆ τ} and call
σ a splitting node if σai ∈ p for each i ∈ 2. Let split(p) = {σ ∈ p | σ is a splitting node }. For
each n ∈ ω let splitn(p) = {σ ∈ split(p) | |{τ ∈ split(p) | τ ( σ}| = n} and stem(p) the unique
element in split0(p). Finally, for p ∈ S let [p] = {f ∈ 2ω | ∀n ∈ ω( f |n ∈ p )}. More about Sacks
forcing can be found in [5, 4, 30, 23, 40, 15, 53].

Definition 2.1. (Miller partition forcing) Let C ⊆ P (2ω) be an uncountable partition of 2ω into
closed sets and let

Q(C) = {p ∈ S | for every K ∈ C, K ∩ [p] is nowhere dense in [p]}

ordered by reversed inclusion.

This forcing destroys the partition C in the following way. If G is a P(C)-generic filter, then

rgen =
⋃⋂

G

is an element of 2ω which does not belong to the interpretation in V [G] of any element of C. So
in V [G], C is no longer a partition of 2ω. Thus, if we start with a model of CH and define PM
as the resulting model after forcing with a countable support iteration of length ω2 of all forcing
notions of the form Q(C) with C ranging over all uncountable partitions in closed sets of 2ω in all
intermediate models, then PM will not have any uncountable partition in closed sets of 2ω of size
less than ω2. Note that, Miller defined and used PM in [42] to show that cov(M) = ω1 does not
imply that aT = ω1.

Notice that if C is the partition of 2ω into singletons, then Q(C) = S. Actually, it can be seen
that if C is an analytic subset of K(2ω), where K(2ω) is the space of non-empty closed subsets of
2ω equipped with the Vietoris topology, then Q(C) is forcing equivalent to the Sacks forcing S.

Theorem 2.2. Let C ⊆ K(2ω) be an uncountable analytic partition of 2ω. Then Q(C) is forcing
equivalent to the Sacks forcing S.

Proof. Let p ∈ Q(C). It is enough to find q ∈ Q(C) such that q ≤ p and {r ∈ Q(C) | r ≤
q} = {r ∈ S | r ⊆ q}. To do this consider f : K(2ω) −→ 2ω given by f(A) = minA and let
X = {K ∩ [p] | K ∈ C}\{∅}. Notice that X is an uncountable analytic subset of K(2ω), f |X
is injective and im(f |X) ⊆ [p]. This implies that there is q ∈ S such that [q] ⊆ im(fX). It
is easy to see that q ⊆ p and |[q] ∩ K| ≤ 1 for every K ∈ C. Checking that q is as desired is
straightforward. �
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A main difficulty in adapting Sacks fusion sequences to Q(C) is guaranteeing that the fusion is
indeed an element of Q(C). The following proposition can be found in [25].

Proposition 2.3. Let p ∈ S. Then p ∈ Q(C) if and only if there is a dense D ⊆ [p] such that
every two different elements of D belong to different elements of C.

The following lemmas play an important role in the proof of Theorem 3.12, which is our main
tool in showing that Q(C) preserves small witnesses to i.

Lemma 2.4. Let p ∈ Q(C) and let ḟ be a Q(C)-name such that p 
 ḟ ∈ 2ω. Then there exists
q ≤ p, g ∈ [q] and h ∈ 2ω such that for every m,n ∈ ω, if g|m ∈ splitn(q) then

q(g|m) 
 h(n) = ḟ(n).

Proof. Recursively construct a sequence {qn}n∈ω ⊆ Q(C) such that:
(1) q0 ≤ p
(2) ∀n ∈ ω

(
qn+1 ≤ qn

)
(3) ∀n ∈ ω

(
stem(qn) ( stem(qn+1)

)
(4) ∀n ∈ ω∃in ∈ 2

(
qn 
 ḟ(n) = in

)
Now, let g =

⋃
n∈ω

stem(qn) and for every n ∈ ω let sn = |stem(qn)|. Define

q =
⋃
n∈ω

qn
(
stem(qn)a(1− g(sn))

)
,

and let h ∈ ω2 such that h(n) = in for every n ∈ ω. Using Proposition 2.3 it is easy to see
that q ∈ Q(C). Moreover q ≤ p, g is a branch through q, for every n ∈ ω g|sn ∈ splitn(q)

and q(g|sn) ≤ qn. Thus, in particular, for every n ∈ ω, we have q(g|sn) 
 h(n) = ḟ(n), which
completes the proof. �

The following lemma can be deduced from [52, Proposition 4.1.31 and 4.1.2]. For the conve-
nience of the reader, we provide a direct proof.

Lemma 2.5. Let p ∈ Q(C) and let ḟ be a Q(C)-name such that p 
 ḟ ∈ 2ω. Then there exists
q ≤ p and a continuous H : [q] −→ 2ω such that q 
 H(ṙgen) = ḟ .

Proof. For q ∈ Q(C), g ∈ [q] and h ∈ 2ω, we say that the triple (q, g, h) is good if it satisfies the
conclusion of Lemma 2.4. That is, for every m,n ∈ ω, if g|m ∈ splitn(q) then q(g|m) 
 h(n) =

ḟ(n). Notice that if (q, g, h) is good and m ∈ ω then the triple (q(g|m), g, h) is also good.
Next, recursively construct a sequence {(qσ, gσ, hσ)}σ∈2<ω of good triples and a sequence

{Tσ}σ∈2<ω of elements of K such that:
(a) q∅ ≤ p,
(b) ∀σ, τ ∈ 2<ω

(
σ ⊆ τ → qτ ≤ qσ

)
.

(c) ∀σ, τ ∈ 2n
(
σ 6= τ → [qσ] ∩ [qτ ] = ∅

)
.

(d) ∀σ, τ ∈ 2n
(
σ 6= τ → [qσ] ∩ Tτ = ∅

)
.

(e) ∀σ ∈ 2<ω∃m ∈ ω
(
(qσa0, gσa0, hσa0) = (qσ(gσ|m), gσ, hσ)

)
(f) ∀σ ∈ 2<ω

(
gσ ∈ Tσ

)
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(g) ∀σ ∈ 2n
(
qσ 
 f(n) = hσ(n)

)
The above can be easily achieved by applying repeatedly Lemma 2.4 and using the fact that each
element of C is nowhere dense in every condition. Once the desired sequences are constructed,
define q =

⋂
n∈ω

⋃
σ∈2n

qσ. To see that q ∈ Q(C) notice that conditions (b) and (c) imply q ∈ S,

conditions (e) and (f) assure that gσ ∈ [q] for each σ ∈ 2<ω and condition (d) together with the
fact that necessarily {gσ}σ∈2<ω is dense in q guarantee by Proposition 2.3 that q is in fact in Q(C).

It remains to observe that by (c) and (f), the function H : [q] −→ 2ω given by

H(g)(n) = hσ(n) if and only if σ ∈ 2n ∧ g ∈ qσ
is well defined and continuous. Moreover q 
 H(ṙgen) = ḟ , which completes the proof. �

Remark 2.6. By slight modifications of the proof given above, one can show that Q(C) has
minimal real degree of constructibility, the Sacks property, and is proper.

2.2. Fusion with witnesses. We begin with some auxiliary notions.

Definition 2.7. Let C = {Cα}α∈ω1 be an uncountable partition of 2ω into closed sets.
(1) We say that x, y ∈ ω2 are C-different if x, y belong to different elements of C.
(2) A tree p ⊆ 2<ω is said to be C-branching if for any s ∈ p there are C-different branches

in [p] extending s.

Note that, a C-branching tree is perfect. We will use the following notation: whenever C as
above is given, for each x ∈ 2ω we denote by αx the unique ordinal such that x ∈ Cαx .

Lemma 2.8. Let p ⊆ 2<ω be a tree. The following are equivalent:
(a) p ∈ Q(C).
(b) p is C-branching.
(c) p is perfect and [p] contains a countable dense subset with C-different branches.

Proof. ((a) ⇒ (c)) Let p ∈ Q(C). p is a perfect tree by the definition. Thus arrange split(p)

and assign by induction, to each splitting node s, a real x from [p] extending s which was either
already considered or belongs to different set from C than all previously selected reals. This is
possible since any s ∈ split(p) may be extended to t ∈ split(p) with [p(t)] being disjoint with
finitely many sets from C containing all previously selected reals. The set of all assigned branches
is the required dense set.

((c)⇒ (b)) Trivial.
((b) ⇒ (a)) Let β < ω1 and s ∈ p. There are x, y ∈ [p] such that s ⊆ x, y and αx 6= αy. We

take z ∈ {x, y} such that αz 6= β. Since z ∈ [p] \Cβ and Cβ is closed, there is s ⊆ t ⊆ z such that
[pt] ∩ Cβ = ∅. �

The particular enumeration constructed in Lemma 2.8 will be applied several times. Therefore
we state explicitly that we may assume the dense set in Lemma 2.8 is enumerated as {xt : t ∈ p}
such that s ⊆ xs, and if s ⊆ t ⊆ xs then xt = xs.

Definition 2.9. [Fusion sequence with witnesses]
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(1) Let p be a condition in Q(C). We say that a set X ⊆ ω2 is a p-witness for the n-th level if
X ⊆ [p], for each s ∈ splitn(p) there is x ∈ X extending s, and X has C-different elements.
Note that if X is a p-witness for the (n + 1)-st level then each node from n-th splitting
level of p is contained in C-different branches.

(2) Let (p,X), (q, Y ) be couples with p, q being conditions in Q(C), and sets X,Y being p-
witness for the (n+ 1)-st level, q-witness for the n-th level, respectively. Then

(p,X) ≤n (q, Y ) if and only if p ≤ q and X ⊇ Y .
Note that if (p,X) ≤n (q, Y ) then split<n(p) = split<n(q).

(3) A sequence {(pn, Xn)}n∈ω is a fusion sequence with witnesses if (pn+1, Xn+1) ≤n (pn, Xn)

for each n.

Lemma 2.10. If a sequence {(pn, Xn)}n∈ω is a fusion sequence with witnesses then the fusion⋂
{pn : n ∈ ω} is a condition in Q(C).

Proof. We denote p =
⋂
{pn : n ∈ ω}, X =

⋃
{Xn : n ∈ ω}, and we assume that we have s ∈ p.

We take n ∈ ω and t ∈ splitn(p) such that t extends s. Since splitn(p) = splitn(pn+1), the set
Xn+1 contains C-different branches extending t. Hence, X is dense in [p]. One can easily see that
X is contained in [p]. Finally, by Lemma 2.8 we conclude that p ∈ Q(C). �

A. Miller [42] and O. Spinas [49] applied separate fusion arguments in their proofs, while
A. Miller [42] introduced the notion of a fusion even formally. The partial order Q(C) was recently
used in [25], where the notion of a nice sequence was isolated from O. Spinas’s fusion arguments.
Our definition of fusion sequence covers both approaches. The sequence {Xn}n∈ω in our definition
may be obtained as sets of leftmost branches in Miller’s fusion argument, and as certain terms
of nice sequence in Spinas’s approach. In fact, nice sequence may be obtained reenumerating our
dense set {xt : t ∈ p} in Lemma 2.8.

In addition to fusion sequences, we shall use two basic schemas to amalgamate conditions.
Let us have a condition p ∈ Q(C), and for each s ∈ splitn(p), i ∈ {0, 1}, a condition q(s, i)

extending p(sai). Using Lemma 2.8, one can easily see that the tree

q =
⋃
{q(s, i) : s ∈ splitn(p), i ∈ {0, 1}}

is a condition in Q(C) as well. In the second amalgamation technique, we are given a decreasing
sequence {qi}i∈ω of extensions of p with strictly increasing stems sn = stem qn. We set x =

⋃
i∈ω si

and take q =
⋃
i∈ω qi(s

a
i 〈1 − x(|si|)〉). Again, using Lemma 2.8, one can easily see that q is

a condition in Q(C).
The proof of the fact that Q(C) is ωω-bounding is underlying many of the fusion arguments to

follow. For convenience of the reader, we repeat it here. We will make use of the following two
Lemmas.

Lemma 2.11. Let ḟ be a Q(C)-name for a function in ωω and let h be a function in ωω ∩ V .
The set of all conditions q satisfying the following property is dense in Q(C): There is a real
x ∈ [q] and a sequence {fs}s∈x�split(q) of functions in <ωω such that for any s = x � splitn(q) we
have q(s) 
 ḟ � h(n) = fs.
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Proof. Let p ∈ Q(C). One can construct a decreasing sequence {qi}i∈ω of extensions of p with
strictly increasing stems such that qn 
 ḟ � h(n) = fn for some fn ∈ h(n)ω. We denote sn =

stem qn and we set x =
⋃
i∈ω si. Finally, we take the amalgamation q =

⋃
i∈ω qi(s

a
i 〈1− x(|si|)〉).

�

Lemma 2.12. Let ḟ be a Q(C)-name for a function in ωω. The set of all conditions q satisfying
the following property is dense in Q(C): For all m ∈ ω, for all t ∈ splitm(q) there is ft ∈ m+1ω

such that
q(t) 
 ḟ � (m+ 1) = f̌t.

Proof. Let p ∈ Q(C). We build a fusion sequence {(qn, Xn)}n∈ω with q0 ≤ q such that its
fusion q has the required property. Let the condition q0, branch x, and sequence {fs}s∈x�split(q0)
be obtained from Lemma 2.11 for p and h(n) = n+ 1. We set X0 = {x}.

Let 0 ≤ n < ω. Suppose we have defined qn ∈ Q(C) and finite Xn ⊆ [qn]. Let s ∈ splitn(qn).
Take the unique branch x ∈ Xn extending s, node r = x � splitn+1(qn), and number i = x(|s|)
in {0, 1}. We set q(s, i) = qn(r). Let t ⊇ sa〈1− i〉 be such that [qn(t)] ∩ Cαx = ∅ for all already
considered branches x (i.e., all branches in Xn and those assigned to previous nodes in some
order of splitn(qn)). Use Lemma 2.11 for qn(t) and h(j) = n+ j + 2 to obtain q(s, 1− i) ≤ qn(t),
branch x and sequence {fs}s∈x�split(qn).

Finally, let Xn+1 be the set of all considered branches in this step, and

qn+1 =
⋃
{q(s, i) : s ∈ splitn(qn), i ∈ {0, 1}}.

One can verify that the sequence {(qn, Xn)}n∈ω is a fusion sequence with witnesses. �

As an application, we obtain the following straightforward proof of the fact that P(K) is ωω-
bounding.

Lemma 2.13 (O. Spinas [49]). The poset Q(C) is ωω-bounding.

Proof. Let ḟ be a Q(C)-name for a function in ωω and let p ∈ Q(C). We will show that there is
q ≤ p and g ∈ V ∩ ωω such that q 
 ḟ ≤∗ ǧ.

By Lemma 2.12 we can assume that for all m ∈ ω, for all t ∈ splitm(p) there is ft ∈ m+1ω such
that p(t) 
 ḟ � (m+ 1) = f̌t. Define g ∈ ωω as follows:

g(n) = max{fs(n) + 1: s ∈ splitn(q)}.

Then q 
 ∀n(ḟ(n) < g(n)). �

2.3. P -points preservations. Next, we show that Miller partition forcing preserves P -points.
We will make use of the following notation: Given G ⊆ P(ω), let 〈G〉up = {X ∈ P(ω) : ∃G ∈
G(G ⊆ X)} and 〈G〉dn = {X ∈ P(ω) : ∃G ∈ G(X ⊆ G)}.

Theorem 2.14. The forcing notion Q(C) preserves P-points and Ramsey ultrafilters.

Proof. We prove just first part. The second claim follows from the first one and the fact that
the forcing notion Q(C) is ωω-bounding, see [26, Lemma 21.12]. Note that a family G generates
an ultrafilter on ω if and only if P(ω) = 〈G〉up ∪ 〈G∗〉dn.
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Let U be an ultrafilter in V . We shall prove that the family U generates an ultrafilter in V Q(C),
i.e., V Q(C) � P(ω) = 〈U〉up ∪ 〈U∗〉dn. In V Q(C), take any set in P(ω). We fix p ∈ Q(C) and
a Q(C)-name Ẏ such that p 
 Ẏ ⊆ ω. By Lemma 2.12 we can assume that for all m ∈ ω, for all
t ∈ splitm(p) there is ut ∈ m+12 such that

p(t) 
 Ẏ � (m+ 1) = ǔt.

Note that the latter property remains true for any stronger condition q, since t in the m-th level
of q is an extension of some s in the m-th level of p. Let {xt : t ∈ p} ⊆ [p] be a dense set in [p]

containing C-different elements (enumerated such that s ⊆ xs, and if s ⊆ t ⊆ xs then xt = xs).
We set Yt =

⋃
{us : s ⊆ xt}.

Claim. We can assume that Y0 = {Ys : s ∈ p} is in U or Y1 = {ω \ Ys : s ∈ p} is in U .

Proof. We set U0 = {s ∈ p : Ys ∈ U} and U1 = {s ∈ p : (ω \ Ys) ∈ U}. The sets U0, U1 are disjoint
and their union is p. We may distinguish two cases:
(i) There is s ∈ p such that p(s) ⊆ U0. In this case, just take p(s).
(ii) For each s ∈ p there is t ∈ p(s) such that t ∈ U1. We build a fusion sequence {(pn, Xn)}n∈ω

such that the fusion has the required properties. Taking s ∈ split0(p) there is t ∈ p(s) such
that t ∈ U1. We set p0 = p(t) and X0 = {xt}.

Let 0 ≤ n < ω. Suppose we have defined pn ∈ Qα and finite Xn ⊆ [pn]. Let s ∈ splitn(pn).
Take node r = xs � splitn+1(pn), and number i = xs(|s|) in {0, 1}. We set p(s, i) = pn(r).
Let t ⊇ sa〈1− i〉 be splitting such that t ∈ U1. We set p(s, 1− i) = p(t).

Finally, let
pn+1 =

⋃
{p(s, i) : s ∈ splitn(pn), i ∈ {0, 1}}.

and let Xn+1 be the set of all xt’s for t ∈ splitn+1(pn+1). One can verify that the sequence
{(pn, Xn)}n∈ω is a fusion sequence with witnesses.

�

We assume that Y0 ∈ U , the other case may be handled analogously. We take a pseudoint-
ersection Z of Y0 in U , with Z ⊆ Y∅. We shall simultaneously build two fusion sequences with
witnesses, namely {(p0n, X0

n)}n∈ω, {(p1n, X1
n)}n∈ω, and a partition of Z into two sets Z0, Z1 such

that for their respective fusions q0, q1 ≤ p we obtain q0 
 Ž0 ⊆ Ẏ and q1 
 Ž1 ⊆ Ẏ .
Let p0 = p1 = p, X0

0 = X1
0 = {Y∅}, and k0 = 0, k1 = 2. We assume that p0n, p1n, k2n, and

k2n+1 are constructed. Let t ∈ splitk2n(p) ∩ split(p0n), and set w∗(t) = xt � splitk2n+1
(p). For each

i ∈ {0, 1}, we take w∗(t, i) ∈ splitk2n+1+1(p) extending w∗(t)ai. There is k2n+2 > k2n+1 + 1 such
that

Z \ k2n+2 ⊆
⋂
{Yw∗(t,i) : t ∈ splitk2n(p) ∩ split(p0n), i ∈ {0, 1}}.

We set w(t, i) = xw∗(t,i) � splitk2n+2
(p). Take pn+1 =

⋃
{p(w(t, i)) : t ∈ splitk2n(p) ∩ split(p0n), i ∈

{0, 1}} and Xn+1 = {xw(t,i) : t ∈ splitk2n(p) ∩ split(p0n), i ∈ {0, 1}}. One can see that p0n 

Ž ∩ [k2n, k2n+1) ⊆ Ẏ . The construction of condition p1n and the choice of number k2n+3 are done
similarly, and leads to p1n 
 Ž ∩ [k2n+1, k2n+2) ⊆ Ẏ . Finally, we define
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Z0 = Z ∩
⋃
{[k2n, k2n+1) : n ∈ ω} and Z1 = Z ∩

⋃
{[k2n+1, k2n+2) : n ∈ ω}.

�

3. Selective independence

3.1. Dense maximality. Recall the definition:

Definition 3.1. A family B ⊆ P (ω) is an independent family if for every distinct A0, . . . , An ∈ A
and h : {A0, . . . , An} −→ 2, the set

⋂
i≤n

A
h(Ai)
i is infinite where A0

i = Ai and A1
i = ω\Ai. It is

maximal independent , if it is independent and maximal under inclusion.

We will be exclusively interested in infinite independent families. For an independent family A
let FF(A) be the set of all finite be set of all finite partial functions from A to 2 and order it by
inclusion. For h ∈ FF(A), we let Ah =

⋂
{Ah(A) | A ∈ dom(h)} where A0 = ω\A and A1 = A for

A ⊆ ω. The density ideal of A, denoted id(A) is the set of all X ⊆ ω such that for all h ∈ FF(A)

there is h′ ⊇ h in FF(A) such that Ah′ ∩X is finite (or equivalently empty). Dual, to the density
ideal of A is the density filter of A denoted fil(A) and consisting of all X ⊆ ω such that for all
h ∈ FF(A) there is h′ ⊇ h in FF(A) such that Ah\X is finite (or equivalently empty).3

Lemma 3.2. Let A be an infinite independent family. The following are equivalent:
(1) For all X ∈ P(ω) and all h ∈ FF(A) there is h′ ⊇ h such that Ah ∩X or Ah\X is finite.
(2) For all h ∈ FF(A) and all X ⊆ Ah either Ah\X ∈ id(A) or there is h′ ∈ FF(A) such that

h′ ⊇ h and Ah′ ⊆ Ah\X.
(3) For each X ∈ P(ω)\ fil(A) there is h ∈ FF(A) such that X ⊆ ω\Ah.

Proof. First we show that (1) implies (2). Let h ∈ FF(A), letX ⊆ Ah and supposeAh\X /∈ id(A).
Thus, there is h′ ∈ FF(A) such that for all h′′ ⊇ h′ the set Ah′′ ∩ (Ah\X) is non-empty. Note that
if h and h′ are incompatible, then Ah′ ∩ (Ah\X) = ∅, which is a contradiction. Therefore h and
h′ are compatible and without loss of generality, we can assume that h′ ⊇ h. Thus, we have that
for all h′′ ⊇ h′, the set Ah′′\X 6= ∅. Now, since (1) holds, there is h′′ ⊇ h′ such that Ah′′ ∩X = ∅.
That is, Ah′′ ⊆ Ah\X.

Next, we show that (2) implies (3). Thus, consider any X ∈ P(ω)\ fil(A). Then, in particular
ω\X /∈ id(A) and so there is h ∈ FF(A) such that for all h′ ⊇ h, |Ah′ ∩ (ω\X)| = |Ah′\X| = ω.
Let Y = Ah\X. Thus, Y ⊆ Ah. By part (2) either Ah\Y ∈ id(A) or there is h′ ⊇ h such that
Ah′ ⊆ Ah\Y . SupposeAh\Y ∈ id(A). Then, there is h′ ⊇ h such thatAh′∩(Ah\Y ) = Ah′\Y = ∅.
However Ah′\Y = Ah′ ∩X = ∅ and so X ⊆ ω\Ah′ and we are done. If there is h′ ⊇ h such that
Ah′ ⊆ Ah\Y = Ah ∩X, then Ah′ ∩ (ω\X) = Ah′\X = ∅, contradicting the choice of h.

To see that (3) implies (2), consider any h ∈ FF(A) and X ⊆ Ah. Let Y = Ah\X. If
ω\Y ∈ fil(A), then Y = Ah\X ∈ id(A). Otherwise, there is h∗ such that ω\Y ⊆ ω\Ah∗, which
implies that Ah∗ ⊆ Y = Ah\X. Note that if h⊥h∗, then for some C ∈ A we have (without loss

3In the notation of [14], fil(A) = FA and CA = FF(A). The density ideal and filter have been also studied
in [19].
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of generality) that Ah∗ ⊆ C and Ah ⊆ ω\C, which contradicts Ah∗ ⊆ Ah. Thus h∗ and h are
compatible, and so Ah∗∪h ⊆ Ah∗ ⊆ Ah\X.

To see that (2) implies (1) consider any X ∈ [ω]ω\A and let h ∈ FF(A). We want to show that
there is h′ ⊇ h such that either Ah′ ∩X = ∅, or Ah′\X = ∅. Let Y = X ∩Ah. Thus, Y ⊆ Ah. If
Ah\Y ∈ id(A), then Ah\X ∈ id(I) and so there is h′ ⊇ h such that Ah′ ∩ (Ah\X) = Ah′\X = ∅.
Otherwise, there is h′ ⊇ h such that Ah′ ⊆ Ah\Y and so Ah′ ∩ Y = ∅. However, Ah′ ∩ Y =

Ah′ ∩ (X ∩ Ah) = Ah′ ∩X = ∅. �

An independent family A is said to be densely maximal if any one of the above three definitions
holds. The notion of dense maximality of independent families appears (to the best knowledge of
the authors) for the first time in [24]. In particular, we obtain:

Corollary 3.3. Let A be an infinite independent family. Then, A is densely maximal iff

P(ω) = fil(A) ∪ 〈ω\Ah : h ∈ FF(A)〉dn.4

The fact that partial orders with the Sacks property are Cohen preserving will play an important
role in our results:

Lemma 3.4 ([14]). Let W be a P-generic extension of V , where P has the Sacks property. If
A ∈ V is an independent family, then in W , fil(A) is generated by fil(A)V .

3.2. Selectivity. Recall the following definitions. Let F ⊆ P(ω). Then F is centered if for ever
finite subfamily H,

⋂
H ∈ F ; F is a P -set, if every countably subfamily has a pseudo-intersection

in F ; F is a Q-set, if for every partition E of ω into bounded sets, there is a X ∈ F meeting each
element of the partition on at most one point, i.e. |X ∩ E| ≤ 1 for each E ∈ E .

Definition 3.5. Let F be a filter over ω. We say that F is a selective filter if and only if for
every partition {Xi}i∈ω of ω into elements of F∗, where F∗ is the dual ideal of F , there exists
Y ∈ F such that |Y ∩Xi| ≤ 1 for each i ∈ ω.

Note, that a filter F ⊆ P(ω) is selective (also called Ramsey) if and only if F extends the
Frechét filter and is both a P-set and a Q-set.

Definition 3.6. An independent family is said to be selective if it densely maximal and fil(A) is
a selective filter.

Selective independent families exist under CH, result which is due to Shelah (see [46]). Further
studies of selective independent families can be found in [14] and [19]. The following preservation
theorem, will be central to the proof that iterations of Miller partition forcing, as well as other
partial orders which are of interest for this article, preserve selective independent families.

Lemma 3.7 ([46], Lemma 3.2). Let F be a selective filter and let H ⊆ P (ω)\F be cofinal in
P (ω)\F with respect to ⊆∗. If 〈Pα, Q̇α | α < δ〉 is a countable support iteration of ωω-bounding
proper forcing notions such that for all α < δ, we have 1Pα 
 “H is cofinal in P (ω)\〈F〉”, then
the same holds for δ.

4Thus, in the notation of [14], A is densely maximal iff P(ω) = FA ∪ 〈CA〉dn.
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The forcing iterations, that we will be interested in, all have the Sacks property. Thus, in the
corresponding generic extensions fil(A), is generated by fil(A) ∩ V , where V denotes the ground
model (see Lemma 3.4). Thus, if fil(A) is selective in the ground model, then it will remain
selective in the desired generic extensions. Thus, the above preservation theorem implies that
in order to guarantee that a given selective independent family remains selective (in our desired
generic extensions), it is sufficient to guarantee that each iterand preserves the dense maximality
of the family. Note that, the fact that the density filter is selective will play an crucial role in this
preservation arguments. That is, our techniques do not imply that densly maximal independnet
families are preserved, but only - selective ones. Before giving detailed proofs of these crucial
preservation properties of Miller partition forcing (see Corollary 3.14 and Theorem 3.17) which
are also the most technical arguments in the paper, we state our main result:

Theorem 3.8. Assume CH. There is a cardinals preserving generic extension in which

cof(N ) = a = u = i = ω1 < aT = ω2.

Proof. Let V denote the ground model. We assume that A is a selective independent family in V ,
U is a P-point in V , and E is a tight MAD family in V (according to [25]). Using an appropriate
bookkeeping device define a countable support iteration 〈Pα, Q̇β : α ≤ ω2, β < ω2〉 of posets such
that for each α, Pα forces that Qα = Q(C) for some uncountable partition of 2ω into compact
sets and such that V Pω2 � aT = ω2. Pω2 is ωω-bounding, and therefore cof(N ) = ω1. By Shelah’s
preservation theorem 3.7 and Corollary 3.14, or alternatively by Theorem 3.17, the family A
remains maximal independent in V Pω2 and so a witness to i = ω1. Similarly, U generates a P-
point in V Pω2 , so u = ω1 as well. And finally, a = ω1 since E is a tight MAD family (see [25]). �

We proceed with taking care of the successor stages of our forcing construction, i.e. the fact
that Miller partition forcing preserves selective independent families. In Subsection 3.3 we give
a proof of this fact using Laflamme’s filter games and in Subsection 3.4 using the technique we
introduced earlier, fusion with witnesses.

3.3. Laflamme’s filter game. Selective filters have proven useful in preservation results regard-
ing the independence number i, see [46, 19, 14]. The following game was introduced by C.
Laflamme.

Definition 3.9 (Laflamme, [34]). Let F be a filter over ω. The game G(F , ω,F) is defined as
follows. On the n turn, Player I plays some Un ∈ F and Player II responds with some an ∈ Un.
After ω turns, Player II wins if the sequence {an}n∈ω belongs to F . Otherwise, Player I wins.

It is not hard to prove that the Player II never has a winning strategy in this game. On the
other hand, we have the following theorem of Laflamme, see [34] (as well as [35]).

Theorem 3.10 (Laflamme). A filter F is not selective if and only if Player I does have a winning
strategy for the game G(F , ω,F).
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Lemma 3.11. Let F be a selective filter, p ∈ S and H : [p] −→ P (ω) be a continuous function
such that for every s ∈ p, ⋃

H
[
[p(s)]

]
∈ F .

Then there are q ∈ S, Y ∈ F such that q ⊆ p and for every f ∈ [q], Y ⊆ H(f).

Proof. For every q ∈ S such that q ⊆ p, let L(q) =
⋃
H
[
[q]
]
. Now consider the game G(F , ω,F).

Player I will play the following strategy, while constructing a sequence {tσ}σ∈2<ω ⊆ p such that:
(a) ∀σ ∈ 2<ω∀i ∈ 2

(
tσ ( tσai

)
.

(b) ∀σ, τ ∈ 2n
(
σ 6= τ → (tσ and tτ are incomparable )

)
.

On the first turn Player I defines t∅ = ∅ and plays U0 = L(p(t∅)). As the rules dictate, Player II
responds with some a0 ∈ U0. Since a0 ∈

⋃
H
[
[p(t∅)]

]
, there is f ∈ [p(t∅)] such that a0 ∈ H(f).

As H is continuous there is k ∈ ω such that for every g ∈ [p(f |k)] we have a0 ∈ H(g). Now Player
I extends f |k to incomparable t0, t1 ∈ p such that t∅ ( t0, t1 and plays U1 = L(p(t0)) ∩ L(p(t1)).
As the rules dictate Player II responds with some a1 ∈ U1.

In general, suppose that it is the n+ 1 turn and that Player I has constructed {tσ}σ∈2≤n and
for every m ≤ n played Um =

⋂
σ∈2≤m

L(p(tσ)). As an ∈
⋂
σ∈2n

(⋃
H
[
[p(tσ)]

])
, for every σ ∈ 2n

there is fσ ∈ [p(t0)] such that an ∈ H(fσ). Since H is continuous, there is k ∈ ω such that for
every σ ∈ 2n and every g ∈ [p(fσ|k)], an ∈ H(g). Now Player I extends each fσ|k to incomparable
tσa0, tσa1 ∈ p such that tσ ( tσa0, tσa1 and plays Un+1 =

⋂
σ∈2≤n+1

L(p(tσ)). As the rules dictate,

Player II responds with some an+1 ∈ Un+1.
Since F is a selective filter, this is not a winning strategy for Player I. Therefore there is a

match where Player I plays by the above strategy, but Player II wins. Let {an}n∈ω and {tσ}σ∈2<ω
be the sequences associated to one of these matches and let q = {τ ∈ p | ∃σ ∈ 2ω

(
τ ⊆ tσ

)
}. It is

straightforward that q and Y = {an}n∈ω are the objects we are looking for. �

Theorem 3.12. Let F be a selective filter and let G be a Q(C)-generic filter. In V [G], for every
X ∈ P (ω) one of the following statements occurs:
(a) There is Y ∈ F ∩ V such that Y ⊆ X.
(b) There is Z ∈ V , such that Z /∈ F and X ⊆ Z.

Proof. Let Ẋ be a name for a subset of ω, p ∈ Q(C) and suppose no condition below p forces (b).
By Lemma 2.5 there is a continuous H : [p] −→ P (ω) such that p 
 H(ṙgen) = Ẋ. For every
q ∈ S such that q ⊆ p, let L(q) =

⋃
H
[
[q]
]
and note that if q ∈ Q(C) then L(q) ∈ F . This holds,

because q 
 X ⊆ L(q) and q does not force (b). We say that a conditions q ∈ S, which is not
necessarily in Q(C), is special if q ⊆ p and for every s ∈ q we have that L(q(s)) ∈ F .

We will make use of the following notion: Given s ∈ p we say that the pair (q, T ) is s-special
if q ∈ S is special, T ∈ C, [q] ⊆ [p(s)] ∩ T . We divide the proof in cases.

Case 1 For every s ∈ p, there is an s-special pair (q, T ).

In this case, consider the game G(F , ω,F). Player I will play by the following strategy, while
recursively constructing sequences {qσ}σ∈2<ω ⊆ S, {sσ}σ∈2<ω ⊆ p, and {Tσ}σ∈2<ω ⊆ K such that:
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(a) ∀σ ∈ 2<ω the pair (qσ, Tσ) is sσ-special;
(b) ∀σ ∈ 2<ω

(
qσa0 ⊆ qσ

)
;

(c) ∀σ ∈ 2<ω
(
Tσa0 = Tσ

)
;

(d) ∀σ, τ ∈ 2n
(
σ 6= τ → Tσ 6= Tτ

)
;

(e) ∀σ ∈ 2<ω∀i ∈ 2
(
sσ ( sσai

)
;

(f) ∀σ ∈ 2<ω
(
sσa0 ∈ qσ ∧ [p(sσa1)] ∩ Tσ = ∅

)
.

On the first turn, Player I defines s∅ = ∅, an s∅-special pair (q∅, T∅) and plays U0 = L(q∅).
As the rules dictate, Player II responds with some a0 ∈ U0. Since a0 ∈

⋃
H
[
[q∅]
]
, there is some

f ∈ [q∅] such that a0 ∈ H(f) and since H is continuous there is k ∈ ω such that for every
g ∈ [p(f |k)], a0 ∈ H(g). Notice that since (q∅, T∅) is s∅-special, we have that f |k is compatible
with sσ and moreover we can extend f |k to incomparable s0, s1 ∈ p such that s∅ ( s0, s1, s0 ∈ q∅
and [p(s1)] ∩ T∅ = ∅. Now Player I defines q0 = q∅(s0), T0 = T∅, an s1-special pair (q1, T1) and
plays U1 = L(q0) ∩ L(q1). As the rules dictate, Player II responds with some a1 ∈ U1.

In general, suppose that is the n+ 1 turn and Player I has constructed qσ, sσ and Tσ for every
σ ∈ 2≤n. Moreover, suppose that for every m ≤ n Player I has played Um =

⋂
σ∈2m

L(qσ). Since

an ∈
⋂
σ∈2n

(⋃
H
[
[qσ]
])
, for every σ ∈ 2n there is fσ ∈ [qσ] such that an ∈ H(fσ). As H is

continuous, there is k ∈ ω such that for every σ ∈ 2n and every g ∈ [p(fσ|k)], an ∈ H(g). As each
(qσ, Tσ) is sσ-special, we have that fσ|k is compatible with sσ and that

⋃
σ∈2n

Tσ ∩ [p] is nowhere

dense in [p]. Then we can extend each fσ|k to incomparable sσa0, sσa1 ∈ p such that sσ ( sσa0,
sσa1, sσa0 ∈ qσ and p(sσa1)] ∩ Tσ = ∅. Now Player I defines qσa0 = qσ(sσa0), Tσa0 = Tσ, an
sσa1-special pair (qσa1, Tσa1) and plays Un+1 =

⋂
σ∈2n+1

L(qσ). As the rules dictate, Player II

responds with some an+1 ∈ Un+1.
Since F is a selective filter, the above is not a winning strategy for Player I and so, there is a

match where Player I follows the strategy, but Player II wins. Let {an}n∈ω, {qσ}σ∈2ω , {sσ}σ∈2ω
and {Tσ}σ∈2ω be the sequences associated to one of these matches. To finish Case 1, define
q = {τ ∈ p | ∃σ ∈ 2ω

(
τ ⊆ sσ

)
}. Moreover, if c0 is the constant 0 function in 2ω and σ ∈ 2<ω

then gσ =
⋃
{sτ | τ ⊆ σac0} ∈ Tσ and the set Q = {gσ | σ ∈ 2<ω} is dense in [q]. But then, by

Proposition 2.3, q ∈ Q(C). Since for every n ∈ ω, every σ ∈ 2n+1 and every g ∈ [p(sσ)], we have
that an ∈ H(g) and every g ∈ [q] satisfies this condition for some σ ∈ 2n+1, we obtain that for
every g ∈ [q], {an}n∈ω ⊆ H(g). In particular we have that q 
 {an}n∈ω ⊆ Ẋ. Since {an}n∈ω ∈ F ,
we are done.

Case 2 There is s0 ∈ p for which there is no s0-special pair (q, T ). That is, every ordered pair
(q, T ) does not satisfy one of the following conditions: q ∈ S is special, T ∈ K, or [q] ⊆ [p(s0)]∩T .

In this case, we use Lemma 3.11 to find q ∈ S and Y ∈ F such that q ⊆ p(s0) and for every
f ∈ [q], Y ⊆ H(f). Notice that q is special. Suppose towards a contradiction that q /∈ Q(C). Since
every element of C is closed, this means that there is some T ∈ C such that T ∩ [q] has non-empty
interior in [q] and so we can find τ ∈ q such that [q(τ)] ⊆ T . Then (q(τ), T ) is s0-special, which is
a contradiction. Therefore q ∈ Q(C). To finish this case, just note that as before q 
 Y ⊆ Ẋ. �
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Suppose that C is the partition of 2ω in singletons. Then Q(C) = S and so Case 1 of Theo-
rem 3.12 never occurs. Therefore Lemma 3.11 actually yields a complete proof of Theorem 3.12
for Sacks forcing. Additionally, we obtain once again:

Corollary 3.13. The poset Q(C) preserves selective ultrafilters.

Corollary 3.14. Let A be a selective independent family and let G be a Q(C)-generic filter.
Then, in V [G], A is still selective independent.

Proof. Since Q(C) is proper and has the Sacks property, 〈fil(A)V 〉 is a selective filter in V [G], but
by Lemma 3.4.(1) we know that fil(A)V [G] = 〈fil(A)V 〉. To show that A remains dense in V [G],
note that by Theorem 3.12, the family P (ω)V \fil(A)V is cofinal in P (ω)V [G]\〈fil(A)V 〉. However,
by hypothesis {ω\Ah : h ∈ FF(A)} is cofinal in P (ω)V \ fil(A)V and so by Lemma 3.4 we are
done. �

3.4. Fusion sequences and selectivity. We use a combinatorial characterization of Q-filters,
a similar one to a characterization of happy families, see Proposition 0.7 by A. Mathias [37] or
Proposition 11.6 in [26].

Lemma 3.15. Let F be a filter. The following are equivalent:

(a) F is a Q-filter.
(b) For any increasing function f ∈ ωω there is {k(n) : n ∈ ω} ∈ F such that f(k(n)) < k(n+ 1).

Proof. ((a)⇒ (b)) Inductively, choose a sequence {n(l)}l∈ω such that n(0) = 0 and

n(l + 1) = min{n : nl < n and ∀m ≤ nl(f(m) ≤ n)}.

We consider the partition E0 = {[n3l, n3l+3)}l∈ω. There is C1 ∈ F such that C1 is a semi-selector
for E0. Now, define an equivalence relation E1 on C1 as follows:

m ∼E1 k iff m = k ∨m < k ≤ f(m) ∨ k < m ≤ f(k).

Each E1 equivalence relation has at most two members. Indeed, if there were three numbers
m1 < m2 < m3 in one equivalence class of E1 thenm1 < m2 < m3 ≤ f(m1). There are l1 < l2 < l3
such that mi ∈ [n3li , n3li+3). Then m1 < n3l2 ≤ m2 < n3l3 ≤ m3 ≤ f(m1). However, on the other
hand by the definition of sequence {n(l)}l∈ω we have f(m1) ≤ n3l2+1 < n3l3 , a contradiction.

Extend E1 to an equivalence relation E2 on ω by defining

m ∼E2 k iff m = k ∨m ∼E1 k.

There is C2 in F such that C2 is a semi-selector for E2. Without loss of generality C2 ⊆ C1

and 0 ∈ C2. Let {k(n)}n∈ω enumerate in increasing order C2. Thus for all n, n′ we have that
k(n) 6∼E2 k(n′). Thus, if n < n′ then k(n′) 6≤ f(k(n)) and so for all n ∈ ω, f(k(n)) < k(n+ 1).

((b)⇒ (a)) Let E be a bounded partition of ω. We set

f(n) = max
⋃
{E ∈ E : (∃i ≤ n) i ∈ E}.
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There is {k(n) : n ∈ ω} ∈ F such that f(k(n)) < k(n+ 1) for each n ∈ ω. The set {k(n) : n ∈ ω}
is a semi-selector for E . Indeed, k(n) ≤ f(k(n)) < k(n+1) and therefore k(n+1) is from different
set of partition E than all k(i) for i ≤ n. �

In particular, we get the following, which we state for completeness.

Lemma 3.16. An ωω-bounding forcing notion preserves Q-filters.

Proof. If P is an ωω-bounding forcing notion, F a Q-filter in V , then we use part (2) of Lemma 3.15
for f ∈ V ∩ ωω dominating function g ∈ V P ∩ ωω. �

Theorem 3.17. (CH) Let 〈Pα, Q̇β : α ≤ ω2, β < ω2〉 be a countable support iteration such that
for each α, Qα = Q(Cα) for some partition Cα of 2ω. If A is a selective independent family then
(A is a selective independent family)V

Pω2 .

Proof. We begin with a proof that 〈fil(A) ∩ V 〉up has a property similar to being a happy family
by A. Mathias [37], see [26] as well. Note that A. Mathias [37, Proposition 0.10] has shown that
an ultrafilter G is Ramsey if and only if G is happy (see Proposition 11.7 in [26] as well).

Claim 3.18. In V Pα , let {Gn}n∈ω be a sequence of finite subsets of 〈fil(A) ∩ V 〉up. There is
{k(n) : n ∈ ω} ∈ fil(A) ∩ V such that

k(n+ 1) ∈
⋂
Gk(n).

Proof. G is a p-set and therefore there is C0 ∈ G such that C0 ⊆∗ G for each G ∈
⋃
{Gn : n ∈ ω}.

Thus, for some function f ∈ ωω

(∀n ∈ ω) C0 \ f(n) ⊆
⋂
Gn.

Since Pα is ωω-bounding, without loss of generality f ∈ V ∩ ωω, f is strictly increasing, and
n + 2 < f(n). Let us take {k(n) : n ∈ ω} ∈ fil(A) ∩ V from Lemma 3.15 such that C =

{k(n+ 1): n ∈ ω} ⊆ C0. Hence, we have k(n+ 1) ∈ C0 \ f(k(n)), and so k(n+ 1) ∈
⋂
Gk(n). �

We will prove by induction on α ≤ ω2 that the family A remains densely maximal in V Pα .
Suppose first that α is a limit. Note that for each β ≤ α, (fil(A))V

Pβ
= 〈fil(A) ∩ V 〉up. Now,

suppose for each β < α, V Pβ � A is densely maximal. That is

V Pβ � 〈fil(A) ∩ V 〉up ∪ 〈{ω\Ah : h ∈ FF(A)}〉dn = P(ω).

However, by Shelah’s preservation theorem, V Pα � 〈fil(A) ∩ V 〉up ∪ 〈{ω\Ah : h ∈ FF(A)}〉dn =

P(ω). Thus A remains densely maximal in V Pα .
Suppose V Pα � A is densely maximal. We will show that V Pα+1 � A is densely maximal. In

V Pα+1 , take any Y ∈ P(ω)\〈fil(A) ∩ V 〉up. Suppose Y /∈ 〈{ω\Ah : h ∈ FF(A)}〉dn. Thus, for all
h ∈ FF(A), Y 6⊆ ω\Ah and so for all h ∈ FF(A), |Y ∩ Ah| = ω. Therefore in V Pα we can fix
p ∈ Qα and a Qα-name Ẏ for Y such that for all h ∈ FF(A), p 
 |Ẏ ∩ Ah| =∞.

By Lemma 2.12 we can assume that for all m ∈ ω, for all t ∈ splitm(p) there is ut ∈ m+12 such
that p(t) 
 Ẏ � (m+ 1) = ǔt. Now, in V Pα for each t ∈ p, let

Yt = {m ∈ ω : p(t) 6
 m̌ /∈ Ẏ }.
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Claim 3.19.

(i) p(t) 
 Ẏ ⊆ Y̌t.
(ii) If s ⊆ t then Yt ⊆ Ys.
(iii) Yt ∈ fil(A) ∩ V Pα .
(iv) If m ∈ Ys for s ∈ splitn(p), and n < m then there is t ∈ splitm(p) extending s such that

p(t) 
 m̌ ∈ Ẏ .

Proof. (i) Let m ∈ Ẏ [G] for a generic G containing p(t). If p(t) 
 m̌ /∈ Ẏ then m /∈ Ẏ [G],
a contradiction.

(ii) Since p(t) ⊆ p(s), from p(t) 6
 m̌ /∈ Ẏ we obtain p(s) 6
 m̌ /∈ Ẏ .
(iii) If Yt /∈ fil(A) ∩ V Pα then there is h ∈ FF(A) such that Yt ⊆ ω\Ah, i.e. Yt ∩Ah = ∅. Since

p(t) 
 Ẏ ⊆ Y̌t, then p(t) 
 Ah ∩ Ẏ = ∅. However, p(t) 
 |Ẏ ∩Ah| =∞, which is a contradiction.
(iv) Since p(s) 6
 m̌ /∈ Ẏ there is a condition q ≤ p(s) such that q 
 m̌ ∈ Ẏ . However, by

our assumption on p due to Lemma 2.12, for any t ∈ splitm(p) we have either p(t) 
 m̌ ∈ Ẏ

or p(t) 
 m̌ /∈ Ẏ . Since {p(t) : t ∈ splitm(p), t ⊇ s} is pre-dense in p(s), there is t ∈ splitm(p)

extending s such that p(t) 
 m̌ ∈ Ẏ . �

Claim 3.20. We can assume that a dense set X ⊆ [p] with C-different elements has the associated
family {yx : x ∈ X} of sets in fil(A) such that if t = x � splitn(p) then p(t) 
 yx(n) ∈ Ẏ .

Proof. Hence, Yt ∈ 〈fil(A) ∩ V 〉up for each t ∈ split(p). By Claim 3.18 for Gn being the family of
all Yt’s with t ∈ split≤n+2(p), we obtain {k(n) : n ∈ ω} ∈ fil(A) such that

k(n+ 1) ∈
⋂
{Yt : t ∈ split≤k(n)+2(p)}.

Moreover, by part (4) of Claim 3.19, for any s ∈ splitk(n)+1(p) there is t ∈ splitk(n+1)(p)

extending s such that p(t) 
 ǩ(n+ 1) ∈ Ẏ . For each branch x ∈ [p] we consider set

i(x) = {i : p(t) 
 ǩ(i+ 1) ∈ Ẏ for t = x � splitk(i+1)(p)}.

We say that x ∈ [p] is acceptable branch if i(x) is cofinite. The smallest n with i(x) ⊇ [n,∞) is
called a degree of acceptability of x. Due to part (4) of Claim 3.19 there are acceptable branches
extending each s ∈ p. Note that for each acceptable branch x, yx = {k(i+ 1): i ∈ i(x)} ∈ fil(A).
We continue using a fusion argument. We build a fusion sequence {(pn, Xn)}n∈ω.

To define p0, take some acceptable branch x extending some node in splitk(0)+1(p) with degree
of acceptability at most 1, and a node s = x � splitk(1)(p). We set p0 = p(s) and X0 = {x}.

Let us assume that pn and Xn are defined, and consider s ∈ splitk(n)(p) ∩ split(pn). Take
the unique acceptable branch x ∈ Xn extending s. We set q(s, i) = qn(r). Define i = x(|s|) ∈
{0, 1} and si = x � splitk(n+1)(p). Then we set s1−i to be an extension of sa〈1− i〉 such that:

(i) [p(s1−i)]∩Cαx = ∅ for all already considered acceptable branches x (i.e., all branches in Xn

and those assigned to previous nodes in some order of splitk(n)(p) ∩ split(pn)).
(ii) s1−i ∈ splitk(m+1)(p) with m ∈ i(x) for some acceptable branch x ∈ [p] with degree of

acceptability at most m.
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Finally, let Xn+1 be the set of all considered acceptable branches in this step, and

pn+1 =
⋃
{p(si) : s ∈ splitk(n)(p) ∩ split(pn), i ∈ {0, 1}}.

One can see that the sequence {(pn, Xn)}n∈ω is a fusion sequence with witnesses. Moreover,
the fusion q =

⋂
{pn : n ∈ ω} satisfies the requirements. We set X =

⋃
{Xn : n ∈ ω}.

We shall show that the family {yx : x ∈ X} possesses the desired properties. Indeed, let
x ∈ X. For each n ∈ ω we have yx(n) = k(i(x)(n) + 1). Due to construction of q we have
x � splitn(q) = x � splitk(jn+1)(p) for some increasing sequence {ji}i∈ω, and if t = x � splitn(q)

then p(t) 
 ǩ(jn + 1) ∈ Ẏ . Thus k(jn + 1) ∈ yx and consequently jn ≥ i(x)(n) for each n.
Let us now fix n and consider t = x � splitn(q). The definition of yx guaranties that p(s) 

ǩ(i(x)(n) + 1) ∈ Ẏ for s = x � splitk(i(x)(n)+1)(p). Thus we have q(s) 
 y̌x(n) ∈ Ẏ . On the other
hand, s = x � splitk(i(x)(n)+1)(p) ⊆ x � splitk(jn+1)(p) = x � splitn(q) = t. �

Our last part of the proof resembles the proof of previous claim. Let xs for s ∈ split(p) be
the branch in X extending s such that if s ⊆ t ⊆ xs then xt = xs. The corresponding yxs is
denoted ys. The set ys belongs to 〈fil(A)∩V 〉up. By Claim 3.18 for Gn being the family of all yt’s
with t ∈ split≤n+2(p), we obtain {l(n) : n ∈ ω} ∈ fil(A) such that

l(n+ 1) ∈
⋂
{yt : t ∈ split≤l(n)+2(p)}.

Let us denote C = {l(n+ 1): n ∈ ω}. We shall construct a condition q ≤ p such that q 
 Č ⊆ Ẏ .
Then q 
 Ẋ ∈ fil(A) which is a contradiction.

We build a fusion sequence {(pn, Xn)}n∈ω. Let p0 = p, X0 = {xt} for t ∈ split0(p), and suppose
we have defined pn. For each t ∈ splitn(pn) and each i ∈ {0, 1} take w∗(t, i) ∈ splitl(n)+1(p) such
that w∗(t, i) end-extends tai. Then

l(n+ 1) ∈
⋂
{yw∗(t,i) : t ∈ splitn(pn), i ∈ {0, 1}}

and so for each t, i we take w(t, i) = xw∗(t,i) � splitl(n+1)(p). Note that by Claim 3.20 and the fact
that l(n+ 1) ≥ j for l(n+ 1) = yw∗(t,i)(j) we obtain

p(w(t, i)) 
 ľ(n+ 1) ∈ Ẏ .

Take pn+1 =
⋃
{p(w(t, i)) : t ∈ splitn(pn), i ∈ {0, 1}}, Xn+1 = {xw(t,i) : t ∈ splitn(pn), i ∈ {0, 1}}.

�

The successor case of the above proof gives once again:

Corollary 3.21. Let A be a selective independent family and let G be a Q(C)-generic filter.
Then, in V [G], A is still selective independent.

4. No small ultrafilter bases and tightness

4.1. The poset QI . For a maximal ideal I on ω, below QI denotes the forcing notion introduced
by S. Shelah in [46] for obtaining the consistency of i < u. In [46] it is shown that QI is proper [46,
Claim 1.13], ωω-bounding [46, Claim 1.12] and even has the Sacks property [46, Claim 1.12]. In
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the QI-generic extension, I is no longer a maximal ideal [46, Claim 1.5]. For completeness of the
presentation we repeat below the definition and some of the key properties of QI .

Definition 1. Let I be an ideal on ω.
(1) An equivalence relation E on a subset of ω is an I-equivalence relation if domE ∈ I∗ and

each E-equivalence class is in I.
(2) For I-equivalence relations E1, E2, we denote E1 ≤I E2 if domE1 ⊆ domE2, and E1-

equivalence classes are unions of E2-equivalence classes.
(3) Let A ⊆ ω. A function g is A-n-determined if g : A{0, 1} → {0, 1} and there is w ⊆

A ∩ (n+ 1) such that for any η, ν ∈ A{0, 1} with η � w = ν � w we have g(η) = g(ν).

For i ∈ A, by gi we denote a function from A{0, 1} to {0, 1} which maps η ∈ A{0, 1} to η(i).

Claim 4.1. Each A-n-determined function is equal to a function ϕ(g0, . . . , gn) which is obtained
as an interpretation of a formula ϕ(a0, . . . , an) of propositional calculus. The symbols ∧, ∨, ¬ are
interpreted as a maximum, minimum, and complement (i.e., 1 − gi), respectively. The formula
ϕ(a0, . . . , an) may contain constant symbols 0, 1 which are interpreted as constant functions 0, 1.

For an I-equivalence relation E we denote A = A(E) = {x : x ∈ domE, x = min[x]E}.

Definition 4.2 (Set of conditions in QI). Let I be an ideal on ω. We define a forcing notion QI :
p ∈ QI iff p = (H,E) = (Hp, Ep) where

(1) E is an I-equivalence relation,
(2) H is a function with domH = ω,
(3) a value H(n) is an A(E)-n-determined function,
(4) if n ∈ A(E) then H(n) = gn,
(5) if n ∈ domE \A(E) and nEi for i ∈ A(E) then H(n) is gi or 1− gi.

For a condition q ∈ QI , let Aq be A(Eq) in the following.

Definition 4.3. If p, q ∈ QI with Ap ⊆ Aq then we writeHp(n) =∗∗ Hq(n) if for each η ∈ Ap{0, 1}
we have Hp(n)(η) = Hq(n)(η′) where

η′(j) =

{
η(j) j ∈ Ap,
Hp(j)(η) j ∈ Aq \Ap.

Definition 4.4 (The order of QI). If p, q ∈ QI then p ≤ q if
(1) Ep ≤I Eq,
(2) If Hq(n) = gi for n ∈ domEq then Hp(n) = Hp(i),
(3) If Hq(n) = 1− gi for n ∈ domEq then Hp(n) = 1−Hp(i),
(4) If n ∈ ω \ domEq then Hp(n) =∗∗ Hq(n).

Finally, p ≤n q if p ≤ q and Ap contains the first n elements of Aq.

The following has been proven in [46]. Items (1) and (2) correspond to [46, Claim 1.7, (2)],
item (3) is a straightforward modification of [46, Claim 1.8].
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Claim 4.5. Let p ∈ QI . For an initial segment u of Ap, and h : u → {0, 1}, let p[h] be the pair
q = (Hq, Eq) defined by (i) and (ii) below:

(i) Eq = Ep �
⋃
{[i]Ep : i ∈ Ap \ u}.

(ii) If Hp(n) is ϕ(g0, . . . , gn) then Hq(n) is ϕ(g0, . . . , gi/h(i), . . . , gn), where the substitution is
done just for i ∈ u.

Then we have:

(1) p[h] is a condition in QI stronger than p.
(2) The set {p[h] : h ∈ u{0, 1}} is predense below p.
(3) If u is the set of first n elements of Ap, D a dense subset of QI then there is q ∈ QI such that

q ≤n p and q[h] ∈ D for any h ∈ u{0, 1}.

Definition 4.6 (The game GMI(E)). GMI(E) is the following game. In the n-th move, the first
player chooses an I-equivalence relation E1

n ≤I E2
n−1 (E1

0 = E), and the second player chooses
an I-equivalence relation E2

n ≤I E1
n. In the end, the second player wins if⋃
n>0

(domE1
n \ domE2

n) ∈ I.

Otherwise, the first player wins.

Remark 4.7. If the second player wins in the game GMI(E), then the game is invariant to taking
subsets. That is, the game is invariant to taking ≤I-extensions {E2,∗

n }n∈ω with dom(E2,∗
n ) ⊆

domE2
n.

The next lemma corresponds to [46, Claim 1.10, (1)]

Lemma 4.8. The game GMI(E) is not determined for a maximal ideal I.

4.2. Tight MAD families. Tight MAD families were investigated in [36, 33, 25]. An AD family A is
called tight if for every {Xn : n ∈ ω} ⊆ I(A)+ there is B ∈ I(A) such that B ∩Xn is infinite for
every n ∈ ω.

Preservation theorem for tight MAD family under countable support iteration of proper forcing
notions was developed by O. Guzmán, M. Hrušák and O. Téllez [25].

Definition 4.9. Let A be a tight MAD family. A proper forcing P strongly preserves the tightness
of A if for every p ∈ P, M a countable elementary submodel of H(κ) (where κ is a large enough
regular cardinal) such that P,A, p ∈ M and B ∈ I(A) for which |B ∩ Y | = ω for every Y ∈
I(A)+ ∩M , there is q ≤ p an (M,P)-generic condition such that

q 
 “(∀Ż ∈ I(A) ∩M [Ġ]) |Ż ∩B| = ω”,

where Ġ denotes the name of generic filter.

We restate Corollary 32 by O. Guzmán, M. Hrušák and O. Téllez [25] which is crucial for
preserving MAD families in the forthcoming model.
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Theorem 4.10. [O. Guzmán, M. Hrušák, O. Téllez] Let A be a tight MAD family. If the sequence
〈Pα, Q̇β : α ≤ ω2, β < ω2〉 is a countable support iteration of proper posets such that

Pα 
α “Q̇α strongly preserves the tightness of A”,

then Pω2 
α “A is a tight MAD family”.

We need the following fact about the outer hulls observed in [25].

Lemma 4.11. Let A be an AD family, P a partial order, Ḃ a P-name for a subset of ω and p ∈ P
such that p 
 “Ḃ ∈ I(A)+”. Then the set {n : (∃q ≤ p) q 
 “n ∈ Ḃ”} is in I(A)+.

And now we are ready to show the main result of the paper.

Theorem 4.12. Let A be a tight MAD family, I being a maximal proper ideal on ω. The poset QI
strongly preserves the tightness of A.

Proof. Let p ∈ QI , M a countable elementary submodel of H(κ) such that I,A, p ∈ M and
B ∈ I(A) for which |B ∩ Y | = ω for every Y ∈ I(A)+ ∩M . We fix an enumeration {Dn : n ∈ ω}
of all open dense subsets of QI that are in M , and an enumeration {Żn : n ∈ ω} of all QI-names
for elements of I(A)+ that are in M with names repeating infinitely many times.

We define a strategy for the first player in the game GMI(E), which cannot be winning in all
rounds.

We set p0 = q0 = p and u0 = ∅. We assume that the first player has chosen E1
n, qn, pn, un,

and the second one an E2
n. We give instructions to choose E1

n+1, qn+1, pn+1, un+1. We begin
with qn+1:

(1) domEqn+1 = domEpn ,
(2) xEqn+1y iff one of the following holds:

(i) xE2
ny.

(ii) There is k ∈ un with x, y ∈ [k]Epn and x, y 6∈ domE2
n.

(iii) There are k0, k1 6∈
⋃
{[i]Epn : i ∈ un} with x ∈ [k0]Epn , y ∈ [k1]Epn and k0, k1 6∈

domE2
n.

(3) Hqn+1 is chosen such that:
(i) If l ∈ ω \ domEpn then Hqn+1(l) =∗∗ Hpn(l).
(ii) If l ∈ domEpn \Aqn+1 , Hpn(l) = gi then Hqn+1(l) = Hqn+1(i).
(iii) If l ∈ domEpn \Aqn+1 , Hpn(l) = 1− gi then Hqn+1(l) = 1−Hqn+1(i).
(iv) If l ∈ Apn \Aqn+1 then Hqn+1(l) =∗∗ Hpn(min[l]Eqn+1 ).

Note that for the already defined condition qn+1 we have qn+1 ≤n pn. Take un+1 = un ∪
{min(Aqn+1 \ un)}. By Lemma 4.11, the set D′n = {r ∈ QI : r 
 “(Żn ∩ B) \ n”} is open
dense below p (and also below qn+1). Then D′n ∩ Dn is dense below qn+1. Therefore we can
apply Lemma 4.8 to obtain pn+1 ≤n+1 qn+1 such that for each h ∈ un+1{0, 1}, the condition
p
[h]
n+1 ∈ D′n ∩ Dn ∩M . In particular, if h ∈ un+1{0, 1} then p

[h]
n+1 
 “(Żn ∩ B) \ n 6= ∅” and

p
[h]
n+1 ∈ Dn ∩M . By Lemma 4.8 we have pn+1 
 “(Żn ∩B) \ n 6= ∅”. Finally, we set

E1
n+1 = Epn+1 � (domEpn+1 \

⋃
{[i]Epn+1 : i ∈ un+1}).
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We define a fusion q of a sequence 〈pn : n ∈ ω〉. Relation Eq has domEq =
⋂
{domEpn : n ∈ ω},

and xEqy if for every n large enough, xEpny. Function Hq is equal to Hpn for large enough n. In
order to guarantee q ∈ QI , it is necessary to choose a play with the first player using described
strategy, but he looses. Thus the second player wins and by Remark 4.7, we can assume that
min domE2

n > maxun+1. Consequently, domEpn \ domE2
n ⊆

⋃
{[k]Eqn+1 : k ∈ un+1}, and thus

domEq ∈ I∗. One can check that other properties for q ∈ QI are satisfied by the definition of q.
Finally, condition q is (M , QI)-generic, and q ≤n pn for each n. Hence, we have q 
 “(∀Ż ∈

I(A) ∩M [Ġ]) |Ż ∩B| = ω”. �

As a corollary we obtain that in Shelah’s model of i < u (see [46]), also the almost disjointness
number is small. Thus, in a certain sense QI is optimal for the ultrafilter number u.

Corollary 4.13. It is relatively consistent that a = i < u.

Moreover, using the preservation results of the current article, together with the preservation
results of [25], as well as the fact that QI has the Sacks property, we obtain:

Corollary 4.14. It is relatively consistent that cof(N ) = i = a = ω1 < aT = u = ω2.

Proof. Work over a model of CH. Let A0 be Shelah’s selective independent family and let A1 be a
tight mad family. Using an appropriate bookkeeping device define a countable support iteration
〈Pα, Q̇β : α ≤ ω2, β < ω2〉 of posets such that for even α, Pα forces that Qα = P(K) for some
uncountable partition of 2ω into compact sets, for odd α, Pα forces that Qα = QI for some
maximal ideal on ω, and such that V Pω2 � aT = u = ω2. The iteration Pω2 has the Sacks property
and therefore cof(N ) = ω1. By the indestructibility of selective independence the family A0

remains maximal independent in V Pω2 and so a witness to i = ω1. Moreover, by the preservation
properties of tight MAD families, see [25], and the above preservation theorems, A1 is a witness to
a = ω1 in the final model. �

Appendix: The problem of Vaughan

We conclude the paper with an overview of the problem of Vaughan and point out towards
the many difficulties surrounding a possible solution of it, in particular the fact that the most
common forcing methods do not seem to help with the problem:

(1) Finite support iteration of ccc forcings of length a regular cardinal over a model of CH.
This approach can not work since in the models obtained in this way, the size of the
continuum is equal to cov (M) and it is known that cov (M) ≤ i.5

(2) Countable support iteration of definable proper forcings of length ω2 over a model of CH.
It follows by the results of M. Džamonja, M. Hrušák and J. Moore in [43] that in all of
these models the equality b = a will hold, so in particular we will have that a ≤ i.

5S. Shelah proved that d ≤ i (see the appendix of [50]). This result was improved by B. Balcar, F. Hernandez-
Hernández and M. Hrušák in [2] where they proved that cof (M) ≤ i.
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(3) Countable support iteration of non-definable proper forcings of length ω2 over a model of
CH. This approach could work, however a model of i < a obtained by this method will
also be a model of ω1 = d < a, (since d ≤ i) thus solving the problem of Roitman, which
is considered to be one of the hardest problems on the theory of cardinal invariants.

(4) Forcing with ultrapowers and iterating along a template. The method of forcing with
ultrapowers and iterating along a template was introduced by S. Shelah in [47] to build
models of d < a and u < a. This is a very powerful method that has been very useful
and has been successfully applied to this day. Unfortunately, it seems that all forcings
obtained using this method, tend to increase i for the same reason they increase a. To
learn more about this powerful method, see [9, 10, 8, 22, 38, 18, 16].

(5) Short finite support iterations over models of MA. Performing a finite support iteration of
length ω1 over a model of MA (for example) is a powerful method to add “small witnesses”
of some cardinal invariants while keeping others large. Models obtained in this way are
often called “dual models” (see [13] for several interesting results and applications of this
methods). In [2] a dual model was constructed to add a small maximal independent family
in order to build a model of i < non (N ). Unfortunately, it is not clear how one could
avoid adding a small MAD family with this method. Moreover, it seems likely that the
principle ♦d of M. Hrušák will hold in this models6 (see [27]).

In principle, it could be possible to construct a model of i < a using matrix iterations (see [7],
[11] and [39]) to learn more about this method), but one would need to be very careful in order
to avoid problems like in the points 1 and 5 above.

Acknowledgement. The authors would like to thank Michael Hrušák for his valuable comments
regarding the topic of the paper.
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