PRESERVATION OF PROPERNESS UNDER COUNTABLE SUPPORT ITERATION

VERA FISCHER

1. Preliminaries on Generic Conditions

If \leq is a preorder on a set P and $p_0 \leq p_1$, we say that p_1 is an extension of p_0 . Recall that a preorder is separative if and only if whenever p_1 is not an extension of p_0 there is an extension of p_1 which is incompatible with p_0 . We say that $\mathbb{P} = (P, \leq)$ is a forcing notion (also forcing poset) if \leq is a separative preorder with minimal element $0_{\mathbb{P}}$. Note that if \mathbb{P} is separative and $p_1 \Vdash \check{p}_0 \in \check{G}$ then $p_0 \leq p_1$ (here \check{G} is the canonical name of the \mathbb{P} -generic set). Also often in forcing formulas we write a instead of \check{a} for an element a of the ground model V.

Definition 1. Let \mathbb{P} be a forcing notion, $\lambda > 2^{|\mathbb{P}|}$ and \mathcal{M} countable elementary submodel of $H(\lambda)$ with $\mathbb{P} \in \mathcal{M}$. We say that $q \in \mathbb{P}$ is $(\mathcal{M}, \mathbb{P})$ -generic iff for every dense subset D of \mathbb{P} which belongs to \mathcal{M} the set $D \cap \mathcal{M}$ is predense above q.

Definition 2. The forcing notion \mathbb{P} is called proper iff $\forall \lambda > 2^{|\mathbb{P}|}$ and every countable elementary submodel \mathcal{M} of $H(\lambda)$ such that $\mathbb{P} \in \mathcal{M}$, every condition $p \in \mathbb{P} \cap \mathcal{M}$ has an $(\mathcal{M}, \mathbb{P})$ -generic extension.

We will use the following characterizations of (M, \mathbb{P}) -generic conditions.

Lemma 1. Let \mathbb{P} be a forcing notion, $\lambda > 2^{|\mathbb{P}|}$ and \mathcal{M} a countable elementary submodel of $H(\lambda)$ such that $\mathbb{P} \in \mathcal{M}$. Let $q \in \mathbb{P}$. Then the following conditions are equivalent:

(1) q is $(\mathcal{M}, \mathbb{P})$ -generic. (2) for every dense $D \subseteq \mathbb{P}$ which belongs to $\mathcal{M}, q \Vdash D \cap \mathcal{M} \cap \dot{G} \neq \emptyset$. (3) $q \Vdash \mathcal{M}[\dot{G}] \cap Ord = \mathcal{M} \cap Ord$ (4) $q \Vdash \mathcal{M}[\dot{G}] \cap V = \mathcal{M} \cap V$.

Date: October 5, 2005.

Proof. The equivalence of (1) and (2) is straightforward from the definition of $(\mathcal{M}, \mathbb{P})$ -generic conditions. Thus we proceed with the equivalence of (2) and (3).

Suppose $\dot{\tau} \in \mathcal{M}$ is a name of an ordinal. We have to show that $q \Vdash \dot{\tau} \in \mathcal{M}$. Let $D = \{p \in \mathbb{P} : p \Vdash \dot{\tau} = \check{\alpha} \text{ for some ordinal } \alpha\}$. Then D is a dense subset of \mathbb{P} and since D is definable from τ , \mathbb{P} the set D is also an element of \mathcal{M} . Let f be a function defined on D such that $(\forall d \in D)(f(d) = \alpha \text{ iff } d \Vdash \dot{\tau} = \check{\alpha}).$ Then the function f is definable from D and so f also belongs to the elementary submodel \mathcal{M} . By our assumption, i.e. part (2), $q \Vdash D \cap \mathcal{M} \cap G \neq \emptyset$. Consider any (V, \mathbb{P}) -generic filter G which contains q. Then

$$V[G] \vDash \exists d(d \in D \cap \mathcal{M} \cap G) .$$

Since d is an element of the generic filter, $V[G] \models (\dot{\tau}[G] = \alpha)$ where $d \Vdash \dot{\tau} = \check{\alpha}$. But $d \in \mathcal{M}$ and so $f(d) = \alpha \in \mathcal{M}$. Therefore $V[G] \models$ $(\dot{\tau}[G] \in \mathcal{M})$ and since G was arbitrary generic with $q \in G, q \Vdash \dot{\tau} \in \mathcal{M}$.

Let D be a dense subset of \mathbb{P} , such that $D \in \mathcal{M}$. In $H(\lambda)$ there is an onto mapping f, defined on |D| and taking values in D. Since \mathcal{M} is elementary submodel of $H(\lambda)$ there is such an f in \mathcal{M} . Let $\dot{\tau} = \min\{i : f(i) \in G_{\mathbb{P}}\}$. Then since D is a dense subset of $\mathbb{P}, \dot{\tau}$ is a name of an ordinal. Furthermore $\dot{\tau}$ is definable from f, \mathbb{P} and so $\dot{\tau}$ is an element of \mathcal{M} . By assumption $q \Vdash \dot{\tau} \in \mathcal{M}$. Thus fix any (V,\mathbb{P}) -generic filter G containing q. Then $V[G] \models (\dot{\tau}[G] \in \mathcal{M})$. But $\dot{\tau}[G] = \min\{i : f(i) \in G\}$ and so

$$V[G] \vDash (\exists i \in \mathcal{M}) (f(i) \in D \cap G)$$

(take $i = \dot{\tau}[G]$). However since $i \in \mathcal{M}$, also $f(i) \in \mathcal{M}$ and so $V[G] \models$ $D \cap G \cap M \neq \emptyset$. But G was arbitrary and so $q \Vdash D \cap G \cap \mathcal{M} \neq \emptyset$.

The equivalence of (2) and (4) is done in a similar way.

Lemma 2. Let \mathbb{P} be a forcing notion, Q a \mathbb{P} -name of a forcing notion (i.e. $0_{\mathbb{P}} \Vdash Q$ is a forcing notion), λ sufficiently large cardinal and \mathcal{M} countable elementary submodel of $H(\lambda)$ s.t. $\mathbb{P} * \dot{Q} \in \mathcal{M}$. Then if p_0 is an $(\mathcal{M}, \mathbb{P})$ -generic condition and $p_0 \Vdash "\dot{q}_0$ is $(\mathcal{M}[\dot{G}], \dot{Q}[\dot{G}]) - generic"$ then

$$(p_0, \dot{q}_0)$$
 is $(\mathcal{M}, \mathbb{P} * Q) - generic$.

Proof. We will show that (p_0, \dot{q}_0) is $(\mathcal{M}, \mathbb{P} * \dot{Q})$ -generic by using part (3) of Lemma 1. Let G be any $(\mathcal{M}, \mathbb{P} * \dot{Q})$ -generic filter containing (p_0, \dot{q}_0) . Then $G_0 = G \cap \mathbb{P}$ is (V, \mathbb{P}) -generic and $p_0 \in G_0$. Since p_0 is $(\mathcal{M}, \mathbb{P})$ -generic by part (3) of Lemma 1

$$\mathcal{M}[G_0] \cap \mathrm{Ord} = \mathcal{M} \cap \mathrm{Ord}$$
.

 $\mathbf{2}$

Similarly, if $G_1 = G/G_0 = \{\dot{q}[G_0] : (\exists p)(p, \dot{q}) \in G\}$ then G_1 is $(V[G_0], \dot{Q}[G_0])$ -generic and since p_0 belongs to the generic filter G_0 , $\dot{q}_0[G_0]$ is $(\mathcal{M}[G_0], \dot{Q}[G_0])$ -generic. Again by Lemma 1 part (3)

$$(\mathcal{M}[G_0])[G_1] \cap \operatorname{Ord} = \mathcal{M}[G_0] \cap \operatorname{Ord}$$
.

So it is left to check that $\mathcal{M}[G] \subseteq \mathcal{M}[G_0][G_1]$. However for every $\mathbb{P} * \dot{Q}$ -name $\dot{\tau}$ there is a \mathbb{P} -name $\dot{\tau}_*$ definable from $\dot{\tau}$ such that for every \mathbb{P} -generic filter H_1 , $\dot{\tau}_*[H_1]$ is a $\dot{Q}[H_1]$ -name, such that for every $(V[H_1], \dot{Q}[H_1])$ -generic filter H_2 , $\dot{\tau}[H_1 * H_2] = \dot{\tau}_*[H_1][H_2]$.

Thus if $\dot{\tau}$ is an $\mathbb{P} * Q$ -name of an ordinal which belongs to \mathcal{M} , then the corresponding name $\dot{\tau}_*$ also is in \mathcal{M} and

$$\dot{\tau}[G] = \dot{\tau}[G_0 * G_1] = \dot{\tau}_*[G_0][G_1] \in \mathcal{M}[G_0][G_1]$$
.

2. PROPERNESS EXTENSION LEMMA

Lemma 3. Let \mathbb{P} be a proper forcing notion, Q a \mathbb{P} -name of a proper forcing notion, i.e. $0_{\mathbb{P}} \Vdash "\dot{Q}$ is proper". Let λ be sufficiently large cardinal and \mathcal{M} countable elementary submodel of $H(\lambda)$ s.t. $\mathbb{P}*\dot{Q} \in \mathcal{M}$. If \dot{r} is a \mathbb{P} -name and q_0 is an $(\mathcal{M}, \mathbb{P})$ -generic condition such that

$$q_0 \Vdash \dot{r} \in \mathcal{M} \cap \mathbb{P} * Q \land \pi(\dot{r}) \in G_0$$

where \dot{G}_0 is the canonical name of the \mathbb{P} -generic filter and π is a projection from $\mathbb{P} * \dot{Q}$ onto the first coordinate, then there is a \mathbb{P} -name \dot{q}_1 such that (q_0, \dot{q}_1) is $(\mathcal{M}, \mathbb{P} * \dot{Q})$ -generic and

$$(q_0, \dot{q}_1) \Vdash_{\mathbb{P} \ast \dot{Q}} \dot{r} \in \dot{G}$$

where \dot{G} is the canonical name of the $\mathbb{P} * \dot{Q}$ -generic filter.

Proof. Consider any (V, \mathbb{P}) -generic filter G_0 which contains q_0 and let $r = (r_0, \dot{r}_1)$ be an element of $\mathcal{M} \cap \mathbb{P} * \dot{Q}$ such that $\dot{r}[G_0] = r$. Note that \dot{r}_1 is also an element of \mathcal{M} and so $\dot{r}_1[G_0]$ belongs to $\dot{Q}[G_0] \cap \mathcal{M}[G_0]$. But $\dot{Q}[G_0]$ is proper in $V[G_0]$ and so

$$V[G_0] \vDash \exists x (x \text{ extends } \dot{r}_1[G_0] \land x \text{ is } (\mathcal{M}[G_0], \dot{Q}[G_0]) - \text{generic }).$$

Since G_0 was arbitrary generic containing q_0

 $q_0 \Vdash_{\mathbb{P}} \exists x (x \text{ extends the second coordinate of } \dot{r} \land x \text{ is } (\mathcal{M}[\dot{G}_0], \dot{Q}[\dot{G}_0]) - \text{generic})$.

Then by existential completeness there is a \mathbb{P} -name \dot{q}_1 such that

 $q_0 \Vdash_{\mathbb{P}} \dot{q}_1$ extends the second coordinate of $\dot{r} \wedge \dot{q}_1$ is $(\mathcal{M}[\dot{G}_0], \dot{Q}[\dot{G}_0])$ -generic.

VERA FISCHER

Therefore by Lemma 2 (q_0, \dot{q}_1) is $(\mathcal{M}, \mathbb{P} * \dot{Q})$ -generic. We still have to show that

$$(q_0, \dot{q}_1) \Vdash_{\mathbb{P} \ast \dot{Q}} \dot{r} \in \dot{G}$$

Consider any extension (u_0, \dot{u}_1) of (q_0, \dot{q}_1) such that for some condition $r = (r_0, \dot{r}_1)$ in $\mathcal{M} \cap \mathbb{P} * \dot{Q}$

$$(u_0, \dot{u}_1) \Vdash_{\mathbb{P}*\dot{O}} \dot{r} = \check{r}$$

Since u_0 is an extension of q_0 and $q_0 \Vdash \pi(\dot{r}) \in \dot{G}_0$, we have that $q_0 \Vdash \dot{r}_0 \in \dot{G}_0$. But \mathbb{P} is separative and so u_0 is an extension of r_0 . Also $u_0 \Vdash \dot{r}_1 \leq \dot{q}_1$ and since $u_0 \Vdash \dot{q}_1 \leq \dot{u}_1$, it is the case that $u_0 \Vdash \dot{r}_1 \leq \dot{u}_1$. Therefore (u_0, \dot{u}_1) is an extension of (r_0, \dot{r}_1) and so

$$(u_0, \dot{u}_1) \Vdash_{\mathbb{P}*\dot{O}} \dot{r} = \check{r} \in G$$
 .

The set of conditions in $\mathbb{P}*\dot{Q}$ which evaluate \dot{r} as a condition in $\mathcal{M} \cap \mathbb{P}*\dot{Q}$ is dense above (q_0, \dot{q}_1) and so

$$(q_0, \dot{q}_1) \Vdash_{\mathbb{P} \ast \dot{Q}} \dot{r} \in \dot{G}$$
.

Lemma 4 (Properness Extension Lemma). Let $\langle \mathbb{P}_{\alpha} : \alpha \leq \gamma \rangle$ be a countable support iteration of proper forcing notions, λ sufficiently large cardinal and \mathcal{M} countable elementary submodel of $H(\lambda)$ such that $\gamma, \mathbb{P}_{\gamma}$ belong to \mathcal{M} . If $\gamma_0 \in \gamma \cap \mathcal{M}$, q_0 is $(\mathcal{M}, \mathbb{P}_{\gamma_0})$ -generic and \dot{p}_0 is a \mathbb{P}_{γ_0} -name such that

$$q_0 \Vdash_{\mathbb{P}_{\gamma_0}} \dot{p}_0 \in \mathcal{M} \cap \mathbb{P}_{\gamma} \land \dot{p}_0 \upharpoonright \gamma_0 \in G_{\gamma_0}$$

where G_{γ_0} is the canonical \mathbb{P}_{γ_0} -name of the generic filter, there is an $(\mathcal{M}, \mathbb{P}_{\gamma})$ -generic condition q such that $q \upharpoonright \gamma_0 = q_0$ and

$$q \Vdash_{\mathbb{P}_{\gamma}} \dot{p}_0 \in \dot{G}_{\gamma}$$

where \dot{G}_{γ} is the canonical \mathbb{P}_{γ} name of the generic filter.

Proof. The proof is by induction on γ . If γ is a successor, i.e. $\gamma = \delta + 1$ for some δ then if γ is in the elementary submodel \mathcal{M} , already δ is in \mathcal{M} and so by inductive hypothesis applied to γ_0 , δ and q_0 , we could extend q_0 to an $(\mathcal{M}, \mathbb{P}_{\delta})$ -generic condition with the required properties. Thus the successor case is reduced to the two step iteration which was considered in Lemma 3.

So suppose γ is a limit and the lemma is true for every ordinal smaller than γ . Let $\langle \gamma_n : n \in \omega \rangle$ be an increasing and unbounded sequence of ordinals in $\gamma \cap \mathcal{M}$ and let $\langle D_n : n \in \omega \rangle$ be a fixed enumeration of the dense subsets of \mathbb{P}_{γ} which belong to \mathcal{M} . Inductively we will construct sequences $\langle q_n : n \in \omega \rangle$ and $\langle \dot{p}_n : n \in \omega \rangle$ (starting with \dot{p}_0 - the given \mathbb{P}_{γ_0} -name, and q_0 - the given $(\mathcal{M}, \mathbb{P}_{\gamma_0})$ -generic condition) such that

- (1) q_n is $(\mathcal{M}, \mathbb{P}_{\gamma_n})$ -generic condition and $q_{n+1} \upharpoonright \gamma_n = q_n$
- (2) \dot{p}_n is a \mathbb{P}_{γ_n} -name such that

$$q_n \Vdash_{\mathbb{P}_{\gamma_n}} (\dot{p}_n \in \mathcal{M} \cap \mathbb{P}_{\gamma}) \land (\dot{p}_n \upharpoonright \gamma_n \in G_{\gamma_n}) \land (\dot{p}_{n-1} \le \dot{p}_n) \land (\dot{p}_n \in D_{n-1})$$

where $\dot{p}_n \in D_{n-1}$ is required only for $n \ge 1$ and G_{γ_n} is the canonical name for the \mathbb{P}_{γ_n} -generic filter. For notational simplicity we will write \Vdash_{γ_n} instead of $\Vdash_{\mathbb{P}_{\gamma_n}}$.

Suppose q_n and $\dot{p_n}$ have been defined and consider any $(V, \mathbb{P}_{\gamma_n})$ generic filter G_{γ_n} containing q_n . Let p_n be an element of $\mathcal{M} \cap \mathbb{P}_{\gamma}$ such that $p_n = \dot{p}_n[G_{\gamma_n}]$. The set

$$D' = \{d \upharpoonright \gamma_n : p_n \le d \text{ and } d \in D_n\}$$

is dense above $p_n \upharpoonright \gamma_n$ and since it is definable from γ_n , p_n and D_n all of which belong to \mathcal{M} , D' is itself an element of \mathcal{M} . Then $D = D' \cup \{p \in \mathbb{P}_{\gamma_n} : p \perp (p_n \upharpoonright \gamma_n)\}$ is a dense subset of \mathbb{P}_{γ_n} which belongs to \mathcal{M} and since $q_n \in G_{\gamma_n}$ is $(\mathcal{M}, \mathbb{P}_{\gamma_n})$ -generic the intersection $D \cap \mathcal{M} \cap G_{\gamma_n}$ is nonempty. However $p_n \upharpoonright \gamma_n \in G_{\gamma_n}$ and so if $x \in D \cap \mathcal{M} \cap G_{\gamma_n}$ then xis compatible with $p_n \upharpoonright \gamma_n$. Therefore $D' \cap \mathcal{M} \cap G_{\gamma_n} \neq \emptyset$. But then

$$H(\lambda)[G_{\gamma_n}] \vDash \exists x (x \in \mathbb{P}_{\gamma} \land x \in D_n \land p_n \le x \land x \upharpoonright \gamma_n \in \mathcal{M} \cap G_{\gamma_n}) .$$

Since $\mathcal{M}[G_{\gamma_n}]$ is an elementary submodel of $H(\lambda)[G_{\gamma_n}]$ there is such an x in $\mathcal{M}[G_{\gamma_n}]$. However $\mathcal{M}[G_{\gamma_n}] \cap \mathbb{P}_{\gamma} = \mathcal{M} \cap \mathbb{P}_{\gamma}$ since $\mathbb{P}_{\gamma} \subseteq V$ and $\mathcal{M}[G_{\gamma_n}] \cap V = \mathcal{M} \cap V$ (see Lemma 1). Therefore

$$V[G_{\gamma_n}] \vDash \exists x (x \in \mathcal{M} \cap \mathbb{P}_{\gamma} \land x \in D_n \land p_n \leq x \land x \upharpoonright \gamma_n \in G_{\gamma_n}) .$$

By existential completeness there is a \mathbb{P}_{γ_n} -name \dot{p}_{n+1} such that

$$q_n \Vdash_{\gamma_n} \dot{p}_{n+1} \in \mathcal{M} \cap \mathbb{P}_{\gamma} \land \dot{p}_{n+1} \in D_n \land \dot{p}_n \leq \dot{p}_{n+1} \land \dot{p}_{n+1} \upharpoonright \gamma_n \in G_{\gamma_n} .$$

Now by the inductive hypothesis of the Lemma applied to γ_n , γ_{n+1} , q_n and \dot{p}_{n+1} there is an $(\mathcal{M}, \mathbb{P}_{\gamma_{n+1}})$ -generic condition q_{n+1} such that $q_{n+1} \upharpoonright \gamma_n = q_n$ and

$$q_{n+1} \Vdash_{\gamma_{n+1}} \dot{p}_{n+1} \upharpoonright \gamma_{n+1} \in G_{\gamma_{n+1}}$$

where $G_{\gamma_{n+1}}$ is the canonical $\mathbb{P}_{\gamma_{n+1}}$ -name of the generic filter.

With this the inductive construction of the sequences $\langle q_n : n \in \omega \rangle$ and $\langle \dot{p}_n : n \in \omega \rangle$ is complete. Let $q = \bigcup_{n \in \omega} q_n$. Then q extends every q_n . We will show that for every n

$$q \Vdash_{\gamma} \dot{p}_n \in G_{\gamma}$$
.

But then $q \Vdash_{\gamma} \dot{p}_n \in \dot{G}_{\gamma} \cap \mathcal{M} \cap D_{n-1}$ and since $\langle D_n : n \in \omega \rangle$ is an enumeration of all dense subsets of \mathbb{P}_{γ} which belong to \mathcal{M} , this implies that q is $(\mathcal{M}, \mathbb{P}_{\gamma})$ -generic.

Fix an arbitrary n. By condition 2 of the inductive construction for every m which is greater or equal to $n, q \Vdash_{\gamma} \dot{p}_n \leq \dot{p}_m$. But q also forces that $\dot{p}_m \upharpoonright \gamma_m \in \dot{G}_{\gamma_m}$ and so

 $q \Vdash_{\gamma} \dot{p}_n \upharpoonright \gamma_m \in \dot{G}_{\gamma_m}$ for every $m \ge n$.

Consider any extension q' of q such that $q' \Vdash_{\gamma} \dot{p}_n = \check{p}_n$ for some $p_n \in \mathcal{M} \cap \mathbb{P}_{\gamma}$. Then

$$q' \Vdash_{\gamma} \check{p}_n \upharpoonright \gamma_m \in \dot{G}_{\gamma_m} \text{ for every } m \ge n .$$

But \mathbb{P}_{γ_n} is separative and so $p_n \upharpoonright \gamma_m \leq q'$ for every $m \in \omega$. Since the condition p_n belongs to the elementary submodel \mathcal{M} , its domain is contained in \mathcal{M} and so in particular the sequence $\langle \gamma_n : n \in \omega \rangle$ is unbounded in the domain of p_n . Therefore q' extends p_n and so

$$q' \Vdash_{\gamma} \dot{p}_n = \check{p}_n \in G_{\gamma}$$
.

Since the set of conditions which decide \dot{p}_n as a condition in $\mathcal{M} \cap \mathbb{P}_{\gamma}$ is dense above q (it is dense above q_n and q is an extension of q_n)

$$q \Vdash_{\gamma} \dot{p}_n \in \dot{G}_{\gamma} .$$

Theorem 1. Let γ be a limit ordinal and $\langle \mathbb{P}_{\alpha} : \alpha \leq \gamma \rangle$ a countable support iteration of proper forcing posets. Then \mathbb{P}_{γ} is proper.

Proof. Let $\mathbb{P}' = \{0\}$ be the trivial poset. Then $V[\{0\}] = V$ (note that $\{0\}$ is also the generic set) and so every element of the universe can be identified with its \mathbb{P}' -name. Since the trivial poset is completely embedded in every poset, we can apply Lemma 4 with $\gamma_0 = 0$, γ - the length of the iteration, $q_0 = 0$ and p_0 a given condition in $\mathcal{M} \cap \mathbb{P}_{\gamma}$, for which we want to show the existence of an $(\mathcal{M}, \mathbb{P}_{\gamma})$ -generic extension, considered as a \mathbb{P}' -name.

References

- [1] U. Abraham Proper Forcing, for the Handbook of Set-Theory.
- [2] J. Baumgartner *Iterated Forcing*, in: Surveys in Set Theory (A.R.D. Mathias, editor), London Mathematical Society Lecture Notes Series, No. 8, Cambridge University Press, Cambridge 1983.
- [3] M. Godstern *Tools for your forcing constructions*, In Set Theory of the Reals, vol.6 of Israel Mathematical Conference Proceedings, 305-360
- [4] S. Shelah Proper and Improper Forcing, Second Edition. Springer, 1998.

E-mail address: vfischer@mathstat.yorku.ca

6