PRESERVATION OF UNBOUNDEDNESS AND THE CONSISTENCY OF $b<s$

VERA FISCHER

1. The Weakly Bounding Property

Recall the following definitions:
Definition 1. Let f and g be functions in ${ }^{\omega} \omega$. We say that f is dominated by g iff there is some natural number n such that $f \leq_{n} g$, i.e. $(\forall i \geq n)(f(i) \leq g(i))$. Then $<^{*}=\cup \leq_{n}$ is called the bounding relation on ${ }^{\omega} \omega$. If \mathcal{F} is a family of functions in ${ }^{\omega} \omega$ we say that \mathcal{F} is dominated by the function g, and denote it by $\mathcal{F}<^{*} g$ iff $(\forall f \in \mathcal{F})\left(f<^{*} g\right)$. We say that \mathcal{F} is unbounded (also not dominated) iff there is no function $g \in^{\omega} \omega$ which dominates it.

Definition 2. A forcing notion \mathbb{P} is called weakly bounding iff for every (V, \mathbb{P})-generic filter G, the ground model reals are unbounded in $V[G]$. That is for every $f \in V[G] \cap^{\omega} \omega$ there is a ground model function g such that $\{n: g(n) \leq f(n)\}$ is infinite.

Theorem 1. If δ is a limit, and $\left\langle\mathbb{P}_{i}: i \leq \delta\right\rangle$ is a countable support iteration of proper forcing notions such that every initial stage of the iteration \mathbb{P}_{i} is weakly bounding, then \mathbb{P}_{δ} is weakly bounding.

Proof. The proof is by induction on δ. Let \dot{f} be a \mathbb{P}-name of a function, and p an arbitrary condition in \mathbb{P}. We will show that there is a ground model function g and an extension q of p such that $q \Vdash_{\delta} g \not \leq f$. Note that this is equivalent to $q \Vdash \forall n \in \omega \exists k \geq n(\dot{f}(k) \leq g(k))$.

Consider a countable elementary submodel \mathcal{M} of $H(\lambda)$, where $\lambda>$ $2^{|\mathbb{P}|}$, such that p, \mathbb{P}_{δ} and \dot{f} are elements of \mathcal{M}. Since $\mathcal{M} \cap^{\omega} \omega$ is countable there is a function g which dominates all functions in \mathcal{M}. Similarly to the proof of the Properness Extension Lemma fix an increasing, unbounded sequence $\left\{\gamma_{n}\right\}_{n \in \omega}$ in $\mathcal{M} \cap \delta$. Inductively we will construct two sequences $\left\langle q_{n}: n \in \omega\right\rangle$ of $\left(\mathcal{M}, \mathbb{P}_{\gamma_{n}}\right)$-generic conditions and $\left\langle\dot{p}_{n}\right.$: $n \in \omega\rangle$ of $\mathbb{P}_{\gamma_{n}}$-names for conditions in $\mathcal{M} \cap \mathbb{P}_{\delta}$ such that:
(1) q_{n} is $\left(\mathcal{M}, \mathbb{P}_{\gamma_{n}}\right)$-generic, and $q_{n} \upharpoonright \gamma_{n-1}=q_{n-1}$.

Date: October 12, 2005
(2) \dot{p}_{n} is a $\mathbb{P}_{\gamma_{n}}$-name such that

$$
\begin{array}{ll}
q_{n} \Vdash_{\gamma_{n}} & \left(\dot{p}_{n} \in \mathcal{M} \cap \mathbb{P}_{\delta}\right) \wedge\left(\dot{p}_{n-1} \leq \dot{p}_{n}\right) \wedge\left(\dot{p}_{n} \upharpoonright \gamma_{n} \in \dot{G}_{\gamma_{n}}\right) \wedge \\
& \left(\dot{p}_{n} \Vdash_{\delta} \exists k \geq n(\dot{f}(k) \leq g(k))\right)
\end{array}
$$

Begin with p_{0} the given condition p and q_{0} any $\left(\mathcal{M}, \mathbb{P}_{\gamma_{0}}\right)$-generic condition extending $p_{0} \upharpoonright \gamma_{n}$. Suppose q_{n} and \dot{p}_{n} have been defined and let $G_{\gamma_{n}}$ be any $\left(V, \mathbb{P}_{\gamma_{n}}\right)$-generic filter containing q_{n}. Then there is a condition p_{n} in $\mathcal{M} \cap \mathbb{P}_{\delta}$ such that $p_{n}=\dot{p}_{n}\left[G_{\gamma_{n}}\right]$. Let $r_{0}=p_{n}$.

In $M\left[G_{\gamma_{n}}\right]$ we can construct inductively an increasing sequence $\left\langle r_{n}\right.$: $n \in \omega\rangle$ of conditions in $\mathcal{M} \cap \mathbb{P}_{\delta}$ such that $r_{n} \upharpoonright \gamma_{n} \in G_{\gamma_{n}}$ and

$$
r_{i} \Vdash_{\delta} \dot{f}(i)=k \text { for some } k .
$$

Let f^{*} be the function thus interpreted. Note that since the sequence $\left\langle r_{j}: j \in \omega\right\rangle$ is increasing for every $j \in \omega$ we have $r_{j} \Vdash_{\delta} \dot{f} \upharpoonright j=f^{*} \upharpoonright j$. Since f^{*} belongs to $M\left[G_{\gamma_{n}}\right]$ and $\mathbb{P}_{\gamma_{n}}$ is weakly bounding there is a ground model function $h \in \mathcal{M} \cap^{\omega} \omega$ such that

$$
M\left[G_{\gamma_{n}}\right] \vDash\left\{i: f^{*}(i) \leq h(i)\right\} \text { is infinite . }
$$

However h is a function from \mathcal{M} and so is dominated by the function g. Thus there is some natural number k_{0} such that for every $i \geq k_{0}$ we have $h(i) \leq g(i)$. But then there is an $i_{0} \geq \max \left\{n+1, k_{0}\right\}$ such that $f^{*}\left(i_{0}\right) \leq h\left(i_{0}\right) \leq g\left(i_{0}\right)$. However for $j=i_{0}+1$ we have

$$
r_{j} \Vdash_{\delta} \dot{f}\left(i_{0}\right)=f^{*}\left(i_{0}\right) .
$$

Let \dot{p}_{n+1} be a $\mathbb{P}_{\gamma_{n}}$-name for r_{j}. Then

$$
\begin{array}{ll}
q_{n} \Vdash_{\gamma_{n}} & \left(\dot{p}_{n+1} \in \mathcal{M} \cap \mathbb{P}_{\delta}\right) \wedge\left(\dot{p}_{n} \leq \dot{p}_{n+1}\right) \wedge\left(\dot{p}_{n+1} \upharpoonright \gamma_{n} \in \dot{G}_{\gamma_{n}}\right) \wedge \\
& \left(\dot{p}_{n+1} \Vdash_{\delta} \exists k \geq n+1(\dot{f}(k) \leq g(k))\right)
\end{array}
$$

However by the Properness Extension Lemma applied to $\gamma_{n}, \gamma_{n+1}, q_{n}$ and \dot{p}_{n+1} there is an $\left(\mathcal{M}, \mathbb{P}_{\gamma_{n+1}}\right)$-generic condition q_{n+1} such that

$$
q_{n+1} \upharpoonright \gamma_{n}=q_{n}
$$

and

$$
q_{n+1} \Vdash \vdash_{\gamma_{n+1}} \dot{p}_{n+1} \upharpoonright \gamma_{n+1} \in \dot{G}_{\gamma_{n+1}} .
$$

With this inductive construction of the sequences $\left\langle q_{n}: n \in \omega\right\rangle$ and $\left\langle\dot{p}_{n}: n \in \omega\right\rangle$ is completed. But then just as in the Properness Extension Lemma we obtain that $q=\cup_{n \in \omega} q_{n}$ is an extension of p such that

$$
q \Vdash_{\delta} \dot{p}_{n} \in \dot{G}_{\delta} \text { for every } n \in \omega .
$$

So, if G is $\left(V, \mathbb{P}_{\delta}\right)$-generic and $q \in G$, then

$$
V[G] \vDash \forall n \in \omega \exists k \geq n(\dot{f}(k) \leq g(k)),
$$

i.e. $q \Vdash_{\delta} g \not \subset \dot{f}$.

Remark. Note that in the previous theorem we required that each initial stage \mathbb{P}_{i} of the iteration is weakly bounding, rather than each iterand. The reason is that a finite iteration of weakly bounding posets is not necessarily weakly bounding. For example if \mathbb{P} is the forcing notion for adding ω_{1} Cohen reals, and \dot{Q} is a \mathbb{P}-name for the Hechler forcing associated to the collection of all ground model reals, then for any $(V, \mathbb{P} * \dot{Q})$ generic filter G, the ground model reals are not unbounded in $V[G]$, yet $\dot{Q}\left[G_{0}\right]$ is weakly bounding in $V\left[G_{0}\right]$ for $G_{0}=G \cap \mathbb{P}$. However there is a stronger condition, the almost ${ }^{\omega} \omega$-bounding property which will remedy this situation.

2. The Almost Bounding Property

Definition 3. The partial order \mathbb{P} is called almost ${ }^{\omega} \omega$-bounding if for every \mathbb{P}-name \dot{f}, of a function in ${ }^{\omega} \omega$ and every condition $p \in \mathbb{P}$ there is a ground model function g in ${ }^{\omega} \omega$ such that for every infinite subset A of ω there is an extension q_{A} of q such that

$$
q_{A} \Vdash \forall n \exists k \geq n \text { s.t. } k \in A \text { and } \dot{f}(k) \leq g(k) .
$$

Lemma 1. If \mathbb{P} is a weakly bounding forcing notion and \dot{Q} is a \mathbb{P}-name of an almost bounding forcing notion, then $\mathbb{P} * \dot{Q}$ is weakly bounding.

Proof. Consider arbitrary $\mathbb{P} * \dot{Q}$-name of a real \dot{f} and condition (p, \dot{q}) in $\mathbb{P} * \dot{Q}$. Let G be a $(V, \mathbb{P} * \dot{Q})$-generic filter containing (p, \dot{q}) and $G_{0}=G \cap \mathbb{P}$. Then $\dot{q}\left[G_{0}\right]$ is a condition in $\dot{Q}\left[G_{0}\right]$ and furthermore $\dot{Q}\left[G_{0}\right]$ is an almost bounding poset in $V\left[G_{0}\right]$. Recall from the proof of Lemma 2 on the preservation of properness under CS iteration, that there is a \mathbb{P}-name f^{*}, such that for every \mathbb{P}-generic filter $H_{1}, f^{*}\left[H_{1}\right]$ is a $Q\left[H_{1}\right]$-name of a real and furthermore for every $Q\left[H_{1}\right]$ generic filter H_{2}, $\dot{f}\left[H_{1} * H_{2}\right]=f^{*}\left[H_{1}\right]\left[H_{2}\right]$. Then in particular $f^{*}\left[G_{0}\right]$ is a $Q\left[G_{0}\right]$-name for a function in ${ }^{\omega} \omega$ and so by the definition of the almost bounding property, there is a function g in $V\left[G_{0}\right]$ such that for every $A \in[\omega]^{\omega}$ there is an extension q_{A} of $\dot{q}\left[G_{0}\right]$ which forces that there are infinitely many $i \in A$ for which $g(i) \leq f^{*}(i)$. However since g is a function in $V\left[G_{0}\right]$ and \mathbb{P} is weakly bounding there is a function h in V such that the set $A=\{i: g(i) \leq h(i)\}$ is infinite. If the second generic extension G_{1} contains q_{A}, then

$$
V\left[G_{0} * G_{1}\right] \vDash \exists^{\infty} i \in A(\dot{f}(i) \leq h(i))
$$

and so $\mathbb{P} * \dot{Q}$ is weakly bounding.
Therefore by Theorem 1 we obtain

Theorem 2. The countable support iteration of proper almost ${ }^{\omega} \omega$ bounding posets is weakly bounding.

Other preservation theorems, which will be used in the consistency result to be presented later are:

Theorem 3. Assume $C H$. Let $\left\langle\mathbb{P}_{i}: i \leq \delta\right\rangle$ where $\delta<\omega_{2}$, be a countable support iteration of proper forcing posets of size \aleph_{1}. Then the $C H$ holds in $V^{\mathbb{P}_{\delta}}$.
Theorem 4. Assume $C H$. Let $\left\langle\mathbb{P}_{i}: i \leq \delta\right\rangle$ where $\delta \leq \omega_{2}$, be a countable support iteration of proper forcing posets of size \aleph_{1}. Then \mathbb{P}_{δ} satisfies the \aleph_{2}-chain condition.

Note that by the previous theorems if we assume the $C H$ in the ground model and if $\left\langle\mathbb{P}_{i}: i \leq \omega_{2}\right\rangle$ is a countable support iteration of proper forcing notions of size \aleph_{1}, then forcing with $\mathbb{P}_{\omega_{2}}$ does not collapse cardinals: ω_{1} is not collapsed since $\mathbb{P}_{\omega_{2}}$ is proper, and cardinals greater or equal ω_{2} are not collapsed by the \aleph_{2}-chain condition.

We are ready to proceed with the consistency of the bounding number smaller than the splitting number.

3. The Partial Order Q

Recall the following definitions:
Definition 4. A family $B \subseteq^{\omega} \omega$ is said to be unbounded if for every $f \in^{\omega} \omega$ there is a function $g \in B$ such that $g \not \leq f$, i.e. there are infinitely many i such that $f(i) \leq g(i)$. Then

$$
b=\min \left\{|B|: B \subseteq^{\omega} \omega \text { and } B \text { is unbounded }\right\}
$$

is called the bounding number.
Definition 5. A family $S \subseteq[\omega]^{\omega}$ is called splitting if for any infinite subset A of ω there is a set $B \in S$ such that $A \cap B$ and $A \cap B^{c}$ are infinite. Then

$$
s=\min \left\{|S|: S \subseteq[\omega]^{\omega} \text { and } S \text { is splitting }\right\}
$$

is called the splitting number.
In the remaining sections we will establish the following result:
Theorem 5. Assume $C H$. Then there is a generic extension in which cardinals are not collapsed, $2^{\aleph_{0}}=\aleph_{2}, b=\omega_{1}$ and $s=\omega_{2}$.

By the remarks from the previous section under the $C H$, any countable support iteration of length ω_{2} of proper forcing notions of size \aleph_{1} does not collapse cardinals. Therefore if in addition we require the
forcing posets to be almost ${ }^{\omega} \omega$-bounding, by Theorem 2 the resulting iteration will be weakly bounding and so in every generic extension the ground model reals will be an unbounded family of size ω_{1}. However in order the splitting number to be ω_{2} we have to require something more: that at each successor stage of the iteration we add an infinite subset of ω, which is not split by the ground model reals. Therefore it is sufficient to obtain the following:
Theorem 6. Assume $C H$. There is a proper, almost ${ }^{\omega} \omega$-bounding poset Q of size \aleph_{1} such that in every (V, Q)-generic extension there is an infinite subset of ω which is not split by any ground model real.

In order to define the partial order, which will demonstrate Theorem 6 we need the notion of logarithmic measure.
Definition 6. Let S be a subset of ω and $h: \mathcal{P}_{\omega}(S) \rightarrow \omega$, where $\mathcal{P}_{\omega}(S)$ is the family of all finite subsets of ω. The function h is called a logarithmic measure, if for every $A \in \mathcal{P}_{\omega}(S)$ and for every A_{0}, A_{1} such that $A=A_{0} \cup A_{1}$ if $h(A) \geq l+1$ for some $l \geq 1$, then $h\left(A_{0}\right) \geq l$ or $h\left(A_{1}\right) \geq l$. If S is a finite set, then $h(S)$ is called the level of S.
Corollary 1. If h is a logarithmic measure and $h\left(A_{0} \cup \cdots \cup A_{n-1}\right) \geq l+1$ then for some $j, 0 \leq j \leq n-1 h\left(A_{j}\right) \geq l-j$.

Furthermore we will work with logarithmic measures induced by positive sets, which will be essential in order to obtain the almost bounding property (see section 6).
Definition 7. Let $P \subseteq[\omega]^{<\omega}$ be an upwards closed family. Then P induces a logarithmic measure h on $[\omega]^{<\omega}$ defined inductively on $|s|$ for $s \in[\omega]^{<\omega}$ in the following way:
(1) $h(e) \geq 0$ for every $e \in[\omega]^{<\omega}$
(2) $h(e)>0$ iff $e \in P$
(3) for $l \geq 1, h(e) \geq l+1$ iff $|e|>1$ and whenever $e_{0}, e_{1} \subseteq e$ are such that $e=e_{0} \cup e_{1}$, then $h\left(e_{0}\right) \geq l$ or $h\left(e_{1}\right) \geq l$.
Then $h(e)=l$ iff l is the maximal natural number for which these hold.
Corollary 2. If h is a logarithmic measure induced by positive sets and $h(e) \geq l$, then for every a such that $e \subseteq a, h(a) \geq l$.
Example 1. Let P be the family of all sets containing at least two points and h the logarithmic measure induced by P on $[\omega]^{\omega}$. Then for every $x \in P, h(x)=i$ where i is the minimal natural number such that $|x| \leq 2^{i}$.

Now we can define the partial order Q, which satisfies Theorem 6 .

Definition 8. Let Q be the set of all pairs (u, T) where u is a finite subset of ω and $T=\left\langle t_{i}: i \in \omega\right\rangle$ (here $t_{i}=\left(s_{i}, h_{i}\right), s_{i}=\operatorname{int}\left(t_{i}\right)$ is a finite subsets of ω and h_{i} is a given logarithmic measure on s_{i}) is a sequence of logarithmic measures such that
(1) $\max (u)<\min s_{0}$
(2) $\max s_{i}<\min s_{i+1}$
(3) $h_{i}\left(s_{i}\right)<h_{i+1}\left(s_{i+1}\right)$.

The finite part u is called the stem of the condition $p=(u, T)$, and $T=\left\langle t_{i}: i \in \omega\right\rangle$ the pure part of p. Also $\operatorname{int}(T)=\cup\left\{s_{i}: s \in \omega\right\}$. In case that $u=\emptyset$ we say that (\emptyset, T) is a pure condition and usually denote it simply by T.

We say that $\left(u_{1}, T_{1}\right)$ is extended by $\left(u_{2}, T_{2}\right)$, where $T_{l}=\left\langle t_{i}^{l}: i \in \omega\right\rangle$ for $l=1,2$, and denote it by

$$
\left(u_{1}, T_{1}\right) \leq\left(u_{2}, T_{2}\right)
$$

iff the following conditions hold:
(1) u_{2} is an end-extension of u_{1} and $u_{2} \backslash u_{1} \subseteq \operatorname{int}\left(T_{1}\right)$
(2) $\operatorname{int}\left(T_{2}\right) \subseteq \operatorname{int}\left(T_{1}\right)$ and furthermore there is an infinite sequence $\left\langle B_{i}: i \in \omega\right\rangle$ of finite subsets of ω such that max $u_{2}<\min \operatorname{int}\left(t_{j}\right)$ for $j=\min B_{0}, \max \left(B_{i}\right)<\min \left(B_{i+1}\right)$ and $s_{i}^{2} \subseteq \cup\left\{s_{j}^{1}: j \in B_{i}\right\}$.
(3) for every h_{i}^{2} positive subset e of s_{i}^{2} there is some $j \in B_{i}$ such that $e \cap s_{j}^{1}$ is h_{j}^{1}-positive.
In case that $u_{1}=u_{2}$ we say the $\left(u_{2}, T_{2}\right)$ is a pure extension of $\left(u_{1}, T_{1}\right)$.

4. The Splitting Number

The reason that in every generic extension via Q there is a real which is not split by the ground model subsets of ω is the same as for Mathias forcing. We will need the following lemma.

Lemma 2. Suppose T is a pure condition and A is an infinite subset of ω. Then there is a pure extension T^{\prime} of T such that int $\left(T^{\prime}\right)$ is contained in A or in A^{c}.

Proof. Let $T=\left\langle t_{i}: i \in \omega\right\rangle$ where $t_{i}=\left(s_{i}, h_{i}\right)$. For every i define $r_{i}=\left(s_{i} \cap A, h_{i} \upharpoonright s_{i} \cap A\right)$ or $r_{i}=\left(s_{i} \cap A^{c}, h_{i} \upharpoonright s_{i} \cap A^{c}\right)$ depending on whether $h_{i}\left(s_{i} \cap A\right) \geq h_{i}\left(s_{i}\right)-1$ or $h_{i}\left(s_{i} \cap A^{c}\right) \geq h_{i}\left(s_{i}\right)-1$. Then there is an infinite index set I such that $\forall i \in I \operatorname{int}\left(r_{i}\right) \subset A$ or alternatively $\forall i \in I \operatorname{int}\left(r_{i}\right) \subset A^{c}$. Then the pure condition $T^{\prime}=\left\langle r_{i}: i \in I\right\rangle$ is well defined (i.e. the measures r_{i} are strictly increasing), extends T and $\operatorname{int}\left(T^{\prime}\right)$ is contained in A or in A^{c}.

Lemma 3. Let G be a Q-generic filter. Then the real

$$
U_{G}=\bigcup\{u: \exists T(u, T) \in G\}
$$

is not split by any ground model subset of ω.
Proof. Suppose by way of contradiction that there is a ground model subset A of ω such that $U_{G} \cap A$ and $U_{G} \cap A^{c}$ are infinite. Let $D_{A}=$ $\left\{(u, T) \in Q: \operatorname{int}(T) \subset(A)\right.$ or $\left.\operatorname{int}(T) \subseteq A^{c}\right\}$. Then by Lemma 2 the set D_{A} is a dense subset of Q and so $G \cap D_{A}$ is nonempty. However if $\left(u_{0}, T_{0}\right)$ belongs to this intersection then by the definition of D_{A} $\operatorname{int}\left(T_{0}\right)$ is contained in A or in A^{c}. But $\left(u_{0}, T_{0}\right)$ also belongs to G. It is not difficult to see from the definition of the extension relation on Q that $U_{G} \subseteq^{*} \operatorname{int}(T)$ for every condition $p=(u, T)$ which belongs to G. Therefore $U_{G} \subseteq^{*} \operatorname{int}\left(T_{0}\right)$ and so U_{G} is almost contained in A or in A^{c}. This is a contradiction since it implies that the intersection of U_{G} with A^{c} or A respectively, is finite.

Lemma 4. If $\left\langle\mathbb{P}_{i}: i \leq \delta\right\rangle$ is a countable support iteration of length δ, where $c f(\delta)>\omega$, then any real is added at some initial stage δ_{0} of the iteration such that $\delta_{0}<\delta$.
Proof. Let \dot{f} be a \mathbb{P}_{δ}-name of a real and p an arbitrary condition in \mathbb{P}. We can assume that

$$
\dot{f}=\bigcup\left\{\left\langle\left\langle i, j_{p}^{i}\right\rangle, p\right\rangle: p \in A_{i}, i \in \omega, j_{p}^{i} \in \omega\right\}
$$

where for each i, A_{i} is a maximal antichain in \mathbb{P}. Consider any countable elementary submodel \mathcal{M} of $H(\lambda), \lambda$ is sufficiently large, such that $\mathbb{P}, \dot{f}, p, A_{i}$ for every i belong to \mathcal{M}. If q is an $(\mathcal{M}, \mathbb{P})$-generic condition extending p and G a (V, \mathbb{P})-generic filter containing q, then for every i we have $A_{i} \cap G=\mathcal{M} \cap A_{i} \cap G$. That is for

$$
\mathcal{M} \cap \dot{f}=\bigcup\left\{\left\langle\left\langle i, j_{p}^{i}\right\rangle, p\right\rangle: p \in \mathcal{M} \cap A_{i}, i \in \omega, j_{p}^{i} \in \omega\right\}
$$

and $i \in \omega$ we have $q \Vdash_{\delta} \dot{f}(i)=(\mathcal{M} \cap \dot{f})(i)$. Since \mathcal{M} is a countable model, the intersection $\mathcal{M} \cap A_{i}$ is also countable and so if $\alpha_{i}=\sup \left\{\alpha_{p}\right.$: $\left.p \in \mathcal{M} \cap A_{i}\right\}$ where for every $p \in \mathcal{M} \cap A_{i}$ we define $\alpha_{p}=\sup \operatorname{suppt}(p)$, then $\delta_{0}=\sup \left\{\alpha_{i}: i \in \omega\right\}$ is an ordinal of countable cofinality which is smaller than δ. Then every condition p in $A_{i} \cap \mathcal{M}$ has support in δ_{0}. Therefore we can consider $\mathcal{M} \cap \dot{f}$ as a $\mathbb{P}_{\delta_{0}}$-name of a real such that $q \Vdash_{\delta} \dot{f}=\mathcal{M} \cap \dot{f}$.

Theorem 7. If $\left\langle\mathbb{P}_{i}: i \leq \omega_{2}\right\rangle$ is a countable support iteration of proper forcing notions, then any set of reals of cardinality ω_{1} is added at some proper initial stage if the iteration.

Proof. Let A be an arbitrary family of size \aleph_{1} of reals in $V^{\mathbb{P}_{\omega_{2}}}$. Consider any (V, \mathbb{P})-generic filter G. Then for every $\dot{f} \in A$ there is an ordinal α_{f} of countable cofinality such that $\dot{f}[G]=\dot{f}\left[G_{\alpha_{f}}\right]$. But then $A \subseteq V\left[G_{\alpha}\right]$ where $\alpha=\sup \left\{\alpha_{f}: \dot{f} \in A\right\}$. Since A is of size $\aleph_{1}, c f(\alpha) \leq \omega_{1}$. Therefore $\alpha<\omega_{2}$ and $A \subseteq V\left[G_{\alpha}\right]$ where $G_{\alpha}=G \cap \mathbb{P}_{\alpha}$.

Note that by the previous theorem if we iterate the forcing notion $Q \omega_{2}$-times with countable support, than any family A of ω_{1}-reals in the generic extension is not splitting. Really if G is $\mathbb{P}_{\omega_{2}}$-generic, where $\left\langle\mathbb{P}_{i}: i \leq \omega_{2}\right\rangle$ is the iteration of Q, then by Theorem 7 there is some $\delta_{0}<\omega_{2}$, such that $A \subseteq V\left[G_{\delta_{0}}\right]$ where $G_{\delta_{0}}=\mathbb{P}_{\delta_{0}} \cap G$. By Lemma 3 in $V\left[G_{\delta_{0}+1}\right]$ there is a real which is not split by A.

5. Axiom A Implies Properness

Definition 9. A forcing poset $\mathbb{P}=(P, \leq)$ is said to satisfy Axiom A, iff the following conditions hold:
(1) There is a sequence of separative preorders on $P\left\{\leq_{n}\right\}_{n \in \omega}$, where $\leq_{0}=\leq$, such that $\leq_{m} \subseteq \leq_{n}$ for every $m \leq n$. That is, whenever $m \leq n$ and p, q are conditions in P such that $p \leq_{m} q$, then $p \leq_{n} q$.
(2) If $\left\{p_{n}\right\}_{n \in \omega}$ is a sequence of conditions in P such that $p_{n} \leq_{n+1}$ p_{n+1} for every n, then there is a condition p such that $p_{n} \leq_{n} p$ for every n. The sequence $\left\{p_{n}\right\}_{n \in \omega}$ is called a fusion sequence and p is called the fusion of the sequence.
(3) For every $D \subseteq \mathbb{P}$ which is dense, and every condition p, for every $n \in \omega$ there is a condition p^{\prime} such that $p \leq_{n} p^{\prime}$ and a countable subset D_{0} of D which is predense above p^{\prime}.

Lemma 5. If the forcing notion \mathbb{P} satisfies axiom A, then \mathbb{P} is proper.
Proof. Let \mathcal{D} be the family of all dense subsets of \mathbb{P}, and \mathcal{D}^{\prime} the family of all countable subsets of \mathbb{P}. Since the partial order \mathbb{P} satisfies Axiom A , there is a function

$$
\sigma: \omega \times \mathbb{P} \times \mathcal{D} \rightarrow \mathbb{P} \times \mathcal{D}^{\prime}
$$

such that $\sigma(n, p, D)=\left(p^{\prime}, D^{\prime}\right)$ iff $p \leq_{n} p^{\prime}$ and D^{\prime} is a countable subset of D which is predense above p^{\prime}.

Let \mathcal{M} be a countable elementary submodel of $H(\lambda), \lambda$ sufficiently large, such that \mathbb{P}, σ belong to \mathcal{M}. We will show that every condition in $\mathbb{P} \cap \mathcal{M}$ has an $(\mathcal{M}, \mathbb{P})$-generic extension. Fix an enumeration $\left\langle D_{n}\right.$: $n \in \omega\rangle$ of the dense subsets of \mathbb{P} which belong to \mathcal{M} and let $p=p_{0}$ be a given condition in $\mathcal{M} \cap \mathbb{P}$. Since σ is an element of \mathcal{M}, also $\sigma\left(1, p_{0}, D_{1}\right)=\left(p_{1}, D_{1}^{\prime}\right)$ belongs to \mathcal{M}. But then p_{1}, and D_{1}^{\prime} are elements
of \mathcal{M} themselves. Proceed inductively to define a fusion sequence $\left\langle p_{n}\right.$: $n \in \omega\rangle$ of conditions in $\mathcal{M} \cap \mathbb{P}$ and a sequence $\left\langle D_{n}^{\prime}: n \in \omega\right\rangle$ of countable subsets of \mathbb{P}, such that for every $n \in \omega D_{n}^{\prime} \in \mathcal{M}, D_{n}^{\prime} \subseteq D_{n}$ and D_{n}^{\prime} is predense above p_{n}. Let q be the fusion of $\left\{p_{n}\right\}_{n \in \omega}$ and D an arbitrary dense subset of \mathbb{P} which belongs to \mathcal{M}. Then $D=D_{m}$ for some m. Since $p_{m} \leq_{m} q$, and D_{m}^{\prime} is predense above p_{m}, D_{m}^{\prime} is also predense above q. But D_{m}^{\prime} is countable, and since it belongs to \mathcal{M} it is a subset of \mathcal{M}. Therefore $D_{m}^{\prime} \subseteq \mathcal{M} \cap D_{m}=\mathcal{M} \cap D$, which implies that $\mathcal{M} \cap \mathcal{D}$ is predense above q.

In the remainder of this and next section we will show that the forcing notion Q satisfies Axiom A. For this consider the following preorders defined on Q : Let \leq_{0} be just the order of Q.

For any two conditions $\left(u_{1}, T_{1}\right)$ and $\left(u_{2}, T_{2}\right)$ we say that

$$
\left(u_{1}, T_{1}\right) \leq_{1}\left(u_{2}, T_{2}\right) \text { iff } u_{1}=u_{2} \operatorname{and}\left(u_{1}, T_{1}\right) \leq_{0}\left(u_{2}, T_{2}\right) .
$$

Furthermore for every $i \geq 1$, if $T_{l}=\left\langle t_{i}^{l}: i \in \omega\right\rangle$ for $l=1,2$ we say that

$$
\left(u_{1}, T_{1}\right) \leq_{i+1}\left(u_{2}, T_{2}\right) \text { iff } t_{1}^{j}=t_{2}^{j} \forall j=0, \ldots, i-1
$$

That is the stem and the first i logarithmic measures are not changed in the extension.

Then if $\left\{p_{n}\right\}_{n \in \omega}=\left\{\left(u, T_{n}\right)\right\}_{n \in \omega}$ where $T_{n}=\left\langle t_{j}^{n}: j \in \omega\right\rangle$, the condition $p=(u, T)$ where $T=\left\langle t_{j}: j \in \omega\right\rangle$ for $t_{j}=t_{j}^{j+1}$ is a fusion of this sequence. Thus in order to verify Axiom A we still have to show that part (3) is satisfied. For this we will need the notion of a preprocessed condition which is considered in the next section.

6. Preprocessed Conditions

Definition 10. Suppose D is a dense open set. We say that the condition $p=(u, T)$ where $T=\left\langle t_{i}: i \in \omega\right\rangle$, is preprocessed for D and i if for every subset of i which end-extends u the condition ($v,\left\langle t_{j}: j \geq i\right\rangle$) has a pure extension in D if and only if ($v,\left\langle t_{j}: j \geq i\right\rangle$) belongs to D.

Lemma 6. If D is a dense open set and $i \in \omega$ if (u, T) is preprocessed for D and i, then any extension of (u, T) is also preprocessed for D and i.

Proof. Suppose (w, R) extends (u, T) and let $v \subset i$ such that $\left(v,\left\langle r_{j}\right.\right.$: $j \geq i\rangle$) has a pure extension in D. Since R extends T, by definition of the extension relation on Q we obtain that $\left.\left\langle r_{j}: j \geq i\right)\right\rangle$ is an extension of $\left\langle t_{j}: j \geq i\right\rangle$. Therefore $\left(v,\left\langle t_{j}: j \geq i\right\rangle\right.$ has a pure extension in D and since (u, T) is preprocessed for D and i the condition $\left(v,\left\langle t_{j}: j \geq i\right\rangle\right.$
belongs to D. But D is open and since $\left(v,\left\langle r_{j}: j \geq i\right\rangle\right) \geq\left(v,\left\langle t_{j}: j \geq i\right\rangle\right)$ we obtain that ($v,\left\langle r_{j}: j \geq i\right\rangle$) belongs to D itself.
Lemma 7. Every condition (u, T) has an \leq_{i+1} extension which is preprocessed for D and i.
Proof. Let $T=\left\langle t_{j}: j \in \omega\right\rangle$. Fix an enumeration of all subsets of i : v_{1}, \ldots, v_{k}. Consider ($v_{1},\left\langle t_{j}: j \geq i\right\rangle$). If ($v_{1},\left\langle t_{j}: j \geq i\right\rangle$) has a pure extension in D, denote it $\left(v_{1},\left\langle t_{j}^{1}: j \geq i\right\rangle\right)$. If there is no such pure extension, let $t_{j}^{1}=t_{j}$ for every $j \geq i$. In the next step consider similarly $\left(v_{2},\left\langle t_{j}^{1}: j \geq i\right\rangle\right)$. If it has a pure extension in D, denote it $\left(v_{2},\left\langle t_{j}^{2}: j \geq i\right\rangle\right.$. If there is no such pure extension, then for every $j \geq i$ let $t_{j}^{2}=t_{j}^{1}$. At the k-th step we will obtain a condition $\left(v_{k},\left\langle t_{j}^{k}: j \geq i\right\rangle\right)$. Then $\left(u,\left\langle t_{j}^{k}: j \in \omega\right\rangle\right)$ where for every $j<i, t_{j}^{k}=t_{j}$ is an \leq_{i+1} extension of (u, T) which is preprocessed for D and i.

Really suppose $\left(v,\left\langle t_{j}^{k}: j \geq i\right\rangle\right)$ has a pure extension in D where $v \subset i$. Then $v=v_{m}$ for some $m, 1 \leq m \leq k$. Then at step m, we must have had that $\left(v_{m},\left\langle t_{j}^{m-1}: j \geq i\right)\right.$ has a pure extension in D, and so we have fixed such a pure extension $\left(v_{m},\left\langle t_{j}^{m}: j \geq i\right\rangle\right) \in D$. However since $m-1<k$, we have

$$
\left\langle t_{j}^{m}: j \geq i\right\rangle \leq\left\langle t_{j}^{k}: j \geq i\right\rangle
$$

But D is open and so $\left(v_{m},\left\langle t_{j}^{k}: j \geq i\right\rangle\right)$ is an element of D itself.
Lemma 8. Let D be a dense open set. Then any condition has a pure extension which is preprocessed for D and every natural number i.
Proof. Let $p=(u, T)$ be an arbitrary condition. Then be Lemma 7 we can construct inductively a fusion sequence $\left\{p_{i}\right\}_{i \in \omega}$ such that $p_{0}=p$ and p_{i+1} is an \leq_{i+1} extension of p_{i} which is preprocessed for D and i. Then if q is the fusion of the sequence for every $i \in \omega$ we have that $p_{i+1} \leq_{i+1} q$. This implies that $p_{i+1} \leq q$ and so by Lemma $6 q$ is preprocessed for D and i.

Remark. Whenever p is a condition which is preprocessed for a given dense open set and every natural number n, we will simply say that p is preprocessed for D.

We are ready to show that the forcing notion Q satisfies Axiom A, part (3). Let D be a dense open set and p an arbitrary condition. By Lemma 8 there is a pure extension $q=(u, T)$ for $T=\left\langle t_{j}: j \in \omega\right\rangle$ which is preprocessed for D and every natural number. Recall that q is obtained as a fusion of a sequence and so in particular $p \leq_{n} q$ for every n. Furthermore the set

$$
D_{0}=\left\{\left(v,\left\langle t_{j}: j \geq i\right\rangle\right) \in D: v \subseteq i, i \in \omega, v \text { end-extends } u\right\}
$$

is a countable subset of D which is predense above q. Really let (w, R) be an arbitrary extension of q. Then since D is dense (w, R) has an extension $\left(w \cup w^{\prime}, R^{\prime}\right)$ in D. However $R^{\prime} \geq R \geq\left\langle t_{j}: j \geq k_{w}\right\rangle$, where $k_{w}=\min \left\{j: \max w<\min \operatorname{int} t_{j}\right\}$. Therefore $\left(w \cup w^{\prime},\left\langle t_{j}: j \geq k_{w}\right\rangle\right)$ has a pure extension in D and since q is preprocessed for D the condition $\left(w \cup w^{\prime},\left\langle t_{j}: j \geq k_{w}\right\rangle\right)$ belongs to D. Thus in particular ($w \cup w^{\prime},\left\langle t_{j}:\right.$ $\left.j \geq k_{w}\right\rangle$) belongs to D_{0} and is compatible with (w, R) (with common extension $\left.\left(w \cup w^{\prime}, R^{\prime}\right)\right)$.

7. Logarithmic Measures Induced by Positive Sets

Lemma 9. Let P be an upwards closed family of finite subsets of ω and h the induced logarithmic measure. Let $l \geq 1$. Then for every subset A of ω if A does not contain a set of measure $\geq l+1$, then there are A_{0}, A_{1} such that $A=A_{0} \cup A_{1}$ and none of A_{0}, A_{1} contain a set of measure greater or equal l.

Proof. Note that if A is a finite set, then the given condition is exactly part 3 of Definition 7. Thus assume A is infinite. For every natural number k, let $A_{k}=A \cap k$ and let T be the family of all functions $f: m \rightarrow \bigcup_{0 \leq k \leq m} A_{k} \times A_{k}$, where $m \in \omega$, such that for every k,

$$
f(k)=\left(a_{0}^{k}, a_{1}^{k}\right) \in A_{k} \times A_{k}
$$

where $a_{0}^{k} \cup a_{1}^{k}=A_{k}, h\left(a_{0}^{k}\right) \nsupseteq l, h\left(a_{1}^{k}\right) \not \leq l$ and for every $k: 1 \leq k \leq m$, $a_{0}^{k-1} \subseteq a_{0}^{k}, a_{1}^{k-1} \subseteq a_{1}^{k}$.

Then T together with the end-extension relation is a tree. Furthermore for every $m \in \omega$, the m-th level of T is nonempty. Really consider an arbitrary natural number m. Then $A \cap m=A_{m}$ is a finite set which is not of measure greater or equal $l+1$. By Definition 7, part (3), there are sets a_{0}^{m}, a_{1}^{m} such that $A_{m}=a_{0}^{m} \cup a_{1}^{m}$ and $h\left(a_{0}^{m}\right) \nsupseteq l, h\left(a_{1}^{m}\right) \nsupseteq l$. Let $a_{0}^{m-1}=A_{m} \cap a_{0}^{m}$ and $a_{1}^{m-1}=A_{m} \cap a_{1}^{m}$. Then by Corollary 2 the measure of each of a_{0}^{m-1}, a_{1}^{m-1} is not greater or equal to l and $A_{m-1}=A \cap(m-1)=a_{0}^{m-1} \cup a_{1}^{m-1}$. Therefore in m steps we can define finite sequences $\left\langle a_{0}^{k}: 0 \leq k \leq m\right\rangle,\left\langle a_{1}^{k}: 0 \leq k \leq m\right\rangle$ such that for every $k, A_{k}=a_{0}^{k} \cup a_{1}^{k}, h\left(a_{0}^{k}\right) \nsupseteq l, h\left(a_{1}^{k}\right) \nsupseteq l$ and $\forall k: 0 \leq k \leq m-1$ $a_{0}^{k} \subseteq a_{0}^{k+1}, a_{1}^{k} \subseteq a_{1}^{k+1}$. Therefore $f: m \rightarrow \bigcup_{0 \leq k \leq m} A_{k} \times A_{k}$ defined by $f(k)=\left(a_{0}^{k}, a_{1}^{k}\right)$ is a function in the m 'th level of T.

Therefore by König's Lemma there is an infinite branch through T. Let $f: \omega \rightarrow \bigcup_{k \in \omega} A_{k} \times A_{k}$ where $f(k)=\left(a_{0}^{k}, a_{1}^{k}\right), a_{0}^{k} \cup a_{1}^{k}=A_{k}$, etc., be such an infinite branch. Then if $A_{0}=\bigcup_{k \in \omega} a_{0}^{k}, A_{1}=\bigcup_{k \in \omega} a_{1}^{k}$ we have that $A=A_{0} \cup A_{1}$ and none of the sets A_{0}, A_{1} contain a set of measure greater or equal l. Consider arbitrary finite subset x of A_{0}.

Then $x \subseteq a_{0}^{k}$ for some $k \in \omega$. But $h\left(a_{0}^{k}\right) \nsupseteq l$ and so $h(x) \nsupseteq l$. The same argument applies to A_{1}.

Lemma 10 (Sufficient Condition for High Values). Let P be an upwards closed family of finite subsets of ω and h the logarithmic measure induced by P. Then if for every $n \in \omega$ and every partition of ω into n-sets $\omega=A_{0} \cup \cdots \cup A_{n-1}$ there is some $j \leq n-1$ such that A_{j} contains a positive set, then for every natural number k, for every $n \in \omega$ and partition of ω into n-sets $\omega=A_{0} \cup \cdots \cup A_{n-1}$ there is some $j \leq n-1$ such that A_{j} contains a set of measure greater or equal k.

Proof. The proof proceeds by induction on k. If $k=1$ this is just the assumption of the Lemma. So suppose we have proved the claim for $k=l$ and furthermore that it is false for $k=l+1$. Then there is some $n \in \omega$ and partition of ω into n-sets $\omega=A_{0} \cup \cdots \cup A_{n-1}$ such that none of A_{0}, \ldots, A_{n-1} contain a set of measure greater or equal $l+1$. By Lemma 9 for each $j \leq n-1$ there are sets A_{j}^{0}, A_{j}^{1} none of which contains a set of measure greater or equal l and such that $A_{j}=A_{j}^{0} \cup A_{j}^{1}$. Then

$$
\omega=A_{0}^{0} \cup A_{0}^{1} \cdots \cup A_{n-1}^{0} \cup A_{n-1}^{1}
$$

is a partition of ω into $2 n$ sets, none of which contains a set of measure $\geq l$. This contradicts the inductive hypothesis for $k=l$.

8. The Bounding Number

Lemma 11. Let D be a dense open set, $T=\left\langle t_{j}: j \in \omega\right\rangle$ a pure condition which is preprocessed for D. Let $v \in[\omega]^{<\omega}$. Then the family $\mathcal{P}_{v}(T)$ which consists of all finite subsets x of ω such that
(1) $\exists l \in \omega$ s.t. $x \cap \operatorname{int}\left(t_{l}\right)$ is t_{l} positive
(2) $\exists w \subseteq x$ s.t. $(v \cup w, T) \in D$.
induces a logarithmic measure $h=h_{v}(T)$ which takes arbitrary high values.

Proof. The family $\mathcal{P}_{v}(T)$ is nonempty and upwards closed. Consider the condition (v, T). Since D is dense there is an extension $(v \cup w, R)$ of (v, T) which belongs to D. By definition of the extension relation $w \subseteq$ $\operatorname{int}(T)$ and so for some $l \in \omega$ we have $w \subseteq \cup\left\{\operatorname{int}\left(t_{j}\right): j=0, \ldots, l-1\right\}$. However $(v \cup w, R)$ is a pure extension of $\left(v \cup w,\left\langle t_{j}: j \geq l\right\rangle\right)$ and since T is preprocessed for D (and every natural number) the condition $\left(v \cup w,\left\langle t_{j}: j \geq l\right\rangle\right)$ belongs to D. Then $x=\cup\left\{\operatorname{int}\left(t_{j}\right): j=0, \ldots, l-1\right\}$ is an element of $\mathcal{P}_{v}(T)$.

To show that h takes arbitrarily high values it is enough to show that for every n and partition of ω into n-sets $\omega=A_{0} \cup \ldots \mathcal{A}_{n-1}$, there
is $k \leq n-1$ such that A_{k} contains a positive set. Thus fix a natural number n and a partition of ω. For every $k: 0 \leq k \leq n-1$ and $j \in \omega$ let $s_{j}^{k}=s_{j} \cap A_{k}$ where $t_{j}=\left(s_{j}, h_{j}\right)$. Suppose that for every k there is a constant M_{k} such that $h_{j}\left(s_{j}^{k}\right) \leq M_{k}$, i.e. the constant M_{k} bounds the measures of $s_{j} \cap A_{k}$. Then let $M=\max _{k \leq n-1} M_{k}$. Since T is a pure condition the measures $h_{j}\left(s_{j}\right)$ take arbitrarily high values and so in particular there is an $i \in \omega$ such that $h_{j}\left(s_{j}\right) \geq M+n+1$. By Corollary 1 there is a $k: 0 \leq k \leq n-1$ such that $h_{i}\left(s_{i}^{k}\right) \geq(M+n)-k \geq M+1>M_{k}$ (notice that $s_{i}=s_{i}^{0} \cup \ldots s_{i}^{n-1}$) which is a contradiction to the definition of M_{k}. Therefore there is some k such that the measures $h_{j}\left(s_{j}^{k}\right)$ take arbitrarily high values and so there is a pure extension $R=\left\langle r_{j}: j \in \omega\right\rangle$ of T such that $\operatorname{int}(R) \subseteq A_{k}$. Since D is dense, there is an extension $\left(v \cup w, R^{\prime}\right)$ of (v, R) which belongs to D. By definition of the extension relation on $Q, w \subseteq \cup\left\{\operatorname{int}\left(r_{j}\right): j=0, \ldots, l\right\}$ for some $l \in \omega$. However $\left(v \cup w, R^{\prime}\right) \geq(v \cup w, T)$ and since T is preprocessed for $D,(v \cup w, T) \in D$. Therefore

$$
x=\bigcup\left\{\operatorname{int}\left(t_{j}\right): j=0, \ldots, l-1\right\}
$$

is a positive set contained in A_{k}.
Corollary 3. Let D be a dense open set and $T=\left\langle t_{j}: j \in \omega\right\rangle$ a pure condition which is preprocessed for D. Let $v \in[\omega]^{<\omega}$. Then there is a pure extension $R=\left\langle r_{j}: j \in \omega\right\rangle$ such that for every $l \in \omega$ and every $s \subseteq \operatorname{int}\left(r_{l}\right)$ which is r_{l}-positive, there is $w \subseteq s$ such that $\left(v \cup w,\left\langle t_{j}: j \geq l+1\right\rangle\right) \in D$.

Proof. Let h be the logarithmic measure induced by $\mathcal{P}_{v}(T)$. Consider the following inductive construction. Let x_{0} be any positive set. Then there is $B_{0} \in[\omega]^{<\omega}$ such that $x_{0} \subseteq \cup\left\{\operatorname{int}\left(t_{j}\right): j \in B_{0}\right\}$. Let $r_{0}=\left(x_{0}, h \upharpoonright\right.$ $x_{0}+1$). Furthermore let $A_{0}=\max \left\{\operatorname{int}\left(t_{j}\right): j=\max \left(B_{0}\right)\right\}+1, A_{1}=$ $\omega \backslash A_{0}$ and $H_{1}=\max \left\{h(x): x \subseteq A_{0}\right\}$. Then by the sufficient condition for arbitrarily high values there is $x_{1} \subseteq A_{1}$ such that $h\left(x_{1}\right) \geq H_{1}+1$. Furthermore there is a finite set B_{1} such that $\max B_{0}<\min B_{1}$ and such that $x_{1} \subseteq \cup\left\{\operatorname{int}\left(t_{j}\right): j \in B_{1}\right\}$. Let $r_{1}=\left(x_{1}, h \upharpoonright x_{1}+1\right)$.Proceed inductively. Suppose $\left\langle r_{0}, \ldots, r_{k-1}\right\rangle,\left\langle B_{0}, \ldots, B_{k-1}\right\rangle$ have been defined so that
(1) $r_{j}=\left(x_{j}, h \upharpoonright x_{j}+1\right), x_{j} \subseteq \cup\left\{\operatorname{int}\left(t_{i}\right): i \in B_{j}\right\}$
(2) $h\left(x_{j}\right)<h\left(x_{j+1}\right)$ and $\max B_{j}<\min B_{j+1}$.

To obtain r_{k} let $A_{0}=\max \left\{\operatorname{int}\left(t_{j}\right): j=\max \left(B_{k-1}\right)\right\}+1, A_{1}=\omega \backslash A_{0}$, $H_{k}=\max \left\{h(x): x \subseteq A_{0}\right\}$. Then by the sufficient condition for high values there is $x_{k} \subseteq A_{k}$ such that $h\left(x_{k}\right) \geq H_{k}+1$. Furthermore there is a finite set B_{k} such that $\max B_{k-1}<\min B_{k}$ and $x_{k} \subseteq \cup\left\{\operatorname{int}\left(t_{j}\right)\right.$: $\left.j \in B_{k}\right\}$. Let $r_{k}=\left(x_{k}, h \upharpoonright x_{k}+1\right)$.

Let $R=\left\langle r_{j}: j \in \omega\right\rangle$ be the so constructed condition. Suppose $e \subseteq \operatorname{int}\left(r_{j}\right)=x_{j}$ is r_{j}-positive. That is $h(e)>0$ and so $x \in \mathcal{P}_{v}(T)$. But then by part (2) of the Definition of $\mathcal{P}_{v}(T)$ there is an $l \in B_{j}$ such that $e \cap \operatorname{int}\left(t_{l}\right)$ is t_{l}-positive. This implies that R is an extension of T.

Furthermore, consider any $l \in \omega$ and $s \subseteq \operatorname{int}\left(r_{l}\right)$ which is r_{l}-positive. Then $s \in \mathcal{P}_{v}(T)$ and so there is $w \subseteq s$ such that $(v \cup w, T) \in D$. But $\left(v \cup w,\left\langle r_{j}: j \geq l+1\right\rangle\right)$ extends $(v \cup w, T)$ and since D is open the condition $\left(v \cup w,\left\langle r_{j}: j \geq l+1\right\rangle\right)$ belongs to D itself.
Remark. Whenever R is a pure condition which satisfies Corollary 3 for some given dense open set D, and finite subset v of ω we will say that $\phi(v, R, D)$ holds. Note also that any further pure extension of R preserves this property.
Corollary 4. Let D be a dense open set, T a pure condition which is preprocessed for D and $k \in \omega$. Then there is a pure extension R of T, $R=\left\langle r_{j}: j \in \omega\right\rangle$ such that $\forall v \subset k \forall l \forall s \subseteq \operatorname{int}\left(r_{l}\right)$ which is r_{l}-positive, there is $w_{v} \subseteq s$ such that $\left(v \cup w,\left\langle r_{j}: j \geq l+1\right\rangle\right) \in D$.
Proof. Let v_{1}, \ldots, v_{n} be an enumeration of all (proper) subsets of k. By Corollary 3 for each $j=1, \ldots, n$ there is a pure extension T_{j} of T_{j-1} (where T_{0} is the given condition T) such that $\phi\left(v_{j}, T_{j}, D\right)$. Then $R=T_{n}$ has the required property.

Remark. Whenever R is a pure condition which satisfies the property of the above statement for some natural number k and dense open set D we will say that $\phi(k, R, D)$ holds.
Lemma 12. Let \dot{f} be a Q-name for a function in ${ }^{\omega} \omega$ and p arbitrary condition in Q. Then there is a pure extension $q=(u, R)$ of p, where $R=\left\langle r_{i}: i \in \omega l a\right.$ such that $\forall i \forall v \subset i \forall s \subseteq \operatorname{int}\left(r_{i}\right)$ which is r_{i}-positive, there is $w_{v} \subseteq s$ such that $\left(v \cup w_{v},\left\langle r_{j}: j \leq i+1\right\rangle\right) \Vdash \dot{f}(i)=\check{k}$ for some $k \in \omega$.

Proof. Consider the following inductive construction. Let $p=(u, T)$ where $T=\left\langle t_{i}: i \in \omega\right\rangle$. For every $n \in \omega$ denote by D_{n} the dense open set of all conditions in Q which decide the value of $\dot{f}(n)$. Let $k_{0}=$ $\min \operatorname{int}\left(t_{0}\right)$. Then by Lemma 8 we can assume that the pure condition T is preprocessed for D_{0} and so by Corollary 4 there is a pure extension $T_{1}=\left\langle t_{i}^{1}: i \in \omega\right\rangle$ of T such that $\phi\left(k_{0}, T_{1}, D_{0}\right)$. Then if $p_{1}=\left(u, T_{1}\right)$ we have $p_{0} \leq_{1} p_{1}$. To define p_{2} consider $k_{1}=\max \operatorname{int}\left(t_{0}^{1}\right)+1$. Again we can assume that $\left\langle t_{i}^{1}: i \geq 1\right\rangle$ is preprocessed for D_{1} (otherwise by Lemma 8 pass to such an extension). Then there is a pure extension $T_{2}=\left\langle t_{i}^{2}\right.$: $i \geq 1\rangle$ of $\left\langle t_{i}^{1}: i \geq 1\right\rangle$ such that $\phi\left(k_{1}, T_{2}, D_{1}\right)$. Let $p_{2}=\left(u,\left\langle t_{i}^{2}: i \in \omega\right\rangle\right)$ where $t_{0}^{2}=t_{0}^{1}, k_{2}=\operatorname{maxint}\left(t_{1}^{2}\right)+1$.

Proceed inductively. Suppose p_{0}, \ldots, p_{n} have been defined so that $p_{j} \leq_{j+1} p_{j+1}$ for every $j=1, \ldots, n-1$, where $p_{j}=\left(u,\left\langle t_{i}^{j}: i \in \omega\right\rangle\right)$ and $\phi\left(k_{j},\left\langle t_{i}^{j+1}: i \geq j\right\rangle, D_{j}\right)$. Let $k_{n}=\operatorname{maxint}\left(t_{n-1}^{n}\right)+1$. We can assume that $\left\langle t_{i}^{n}: i \geq n\right\rangle$ is preprocessed for D_{n}. Then by Corollary 4 there is a pure extension $T_{n+1}=\left\langle t_{i}^{n+1}: i \geq n\right\rangle$ of $\left\langle t_{i}^{n}: i \geq n\right\rangle$ such that $\phi\left(k_{n}, T_{n+1}, D_{n}\right)$. Let $p_{n+1}=\left(u,\left\langle t_{i}^{n+1}: i \in \omega\right\rangle\right)$ where $t_{i}^{n+1}=t_{i}^{i+1}$ for every $i=0, \ldots, n-1$. Then $p_{n} \leq_{n+1} p_{n+1}$.

Let $q=\left(u,\left\langle r_{j}: j \in \omega\right\rangle\right)$ be the fusion of the sequence. Let $i \in \omega$, $v \subset i$ and $s \subset \operatorname{int}\left(r_{i}\right)$ which is r_{i}-positive. However $r_{i}=t_{i}^{i+1}$ and so $s \subseteq \operatorname{int}\left(t_{i}^{i+1}\right)$ is t_{i}^{i+1}-positive. Also $\phi\left(k_{i}, T_{i+1}, D_{i}\right)$ holds and so there is $w_{v} \subseteq s$ such that $\left(v \cup w_{v},\left\langle t_{j}^{i+1}: j \geq i+1\right\rangle\right) \in D_{i}$. It remains to notice that $\left\langle r_{j}: j \geq i+1\right\rangle$ is extends $\left\langle t_{j}^{i+1}: j \geq i+1\right\rangle$ and since D_{i} is open, $\left(v \cup w_{v},\left\langle r_{j}: j \geq i+1\right\rangle\right) \in D_{i}$. By definition of D_{i} that is

$$
\left(v \cup w_{v},\left\langle r_{j}: j \geq i+1\right\rangle\right) \Vdash \dot{f}(i)=\check{k}
$$

for some natural number k.
Theorem 8. The forcing notion Q is almost ${ }^{\omega} \omega$-bounding.
Proof. Let \dot{f} be arbitrary Q-name of a function and p a condition in Q. Let $q=(u, T)$, where $T=\left\langle t_{i}: i \in \omega\right\rangle$ be a pure extension of p which satisfies the Main Lemma. Then for every $i \in \omega$ define
$g(i)=\max \left\{k: v \subseteq i, w \subseteq \operatorname{int}\left(t_{i}\right),\left(v \cup w,\left\langle t_{j}: j \geq i+1\right\rangle\right) \Vdash \dot{f}(i)=\check{k}\right\}$.
Consider any $A \in[\omega]^{<\omega}$ and let $q_{A}=\left(u,\left\langle t_{i}: i \in A\right\rangle\right)$. We claim that

$$
q_{A} \Vdash \forall n \exists k(k \geq n \wedge k \in A \wedge \dot{f}(k) \leq g(k)) .
$$

Fix any $n_{0} \in \omega$. Let (v, R) be an arbitrary extension of q_{A}. Then there is $i_{0} \in A$ such that $i_{0}<n_{0}, v \subseteq i_{0}$ and $s=\operatorname{int}(R) \cap \operatorname{int}\left(t_{i_{0}}\right)$ is $t_{i_{0}}$-positive. Note that $i_{0} \leq k_{i_{0}}=\operatorname{maxint}\left(t_{i_{0}-1}\right)+1$ and so $v \subset k_{i_{0}}$. But then by Lemma 12 there is $w \subseteq s$ such that $\left(v \cup w,\left\langle t_{j}: j \geq i_{0}+1\right\rangle\right) \Vdash$ $\dot{f}\left(i_{0}\right)=\check{k}$ and so in particular

$$
\left(v \cup w,\left\langle t_{j}: j \geq i_{0}+1\right\rangle\right) \Vdash \dot{f}\left(i_{0}\right) \leq g\left(i_{0}\right) .
$$

However $(v \cup w, R)$ extends $\left(v \cup w,\left\langle t_{j}: j \geq i_{0}+1\right\rangle\right)$ and so $(v \cup w, R) \Vdash$ $\dot{f}\left(i_{0}\right) \leq g\left(i_{0}\right)$. Note also that $(v \cup w, R)$ extends (v, R). Then, since (v, R) was an arbitrary extension of q_{A}, the set of conditions which force " $\exists i_{0}$ s.t. $i_{0} \geq n_{0} \wedge i_{0} \in A \wedge \dot{f}\left(i_{0}\right) \leq g\left(i_{0}\right)$ " is dense above q_{A}. Therefore

$$
q_{A} \Vdash \exists k\left(k \geq n_{0} \wedge k \in A \wedge \dot{f}(k) \leq g(k)\right)
$$

The natural number n_{0} was arbitrary and this completes the proof of the theorem.

References

[1] U. Abraham Proper Forcing, for the Handbook of Set-Theory.
[2] M. Godstern Tools for your forcing constructions, In Set Theory of the Reals, vol. 6 of Israel Mathematical Conference Proceedings, 305-360
[3] S. Shelah Proper and Improper Forcing, Second Edition. Springer, 1998.
[4] S. Shelah On cardinal invariants of the continuum[207] In (J.E. Baumgartner,
D.A. Martin, S. Shelah eds.) Contemporary Mathematics (The Boulder 1983 conference) Vol. 31, Amer. Math. Soc. (1984), 184-207.
E-mail address: vfischer@mathstat.yorku.ca

