PRESERVATION OF UNBOUNDEDNESS AND THE CONSISTENCY OF b < s

VERA FISCHER

1. The Weakly Bounding Property

Recall the following definitions:

Definition 1. Let f and g be functions in ${}^{\omega}\omega$. We say that f is dominated by g iff there is some natural number n such that $f \leq_n g$, i.e. $(\forall i \geq n)(f(i) \leq g(i))$. Then $<^* = \cup \leq_n$ is called the bounding relation on ${}^{\omega}\omega$. If \mathcal{F} is a family of functions in ${}^{\omega}\omega$ we say that \mathcal{F} is dominated by the function g, and denote it by $\mathcal{F} <^* g$ iff $(\forall f \in \mathcal{F})(f <^* g)$. We say that \mathcal{F} is unbounded (also not dominated) iff there is no function $g \in {}^{\omega}\omega$ which dominates it.

Definition 2. A forcing notion \mathbb{P} is called *weakly bounding* iff for every (V, \mathbb{P}) -generic filter G, the ground model reals are unbounded in V[G]. That is for every $f \in V[G] \cap^{\omega} \omega$ there is a ground model function g such that $\{n : g(n) \leq f(n)\}$ is infinite.

Theorem 1. If δ is a limit, and $\langle \mathbb{P}_i : i \leq \delta \rangle$ is a countable support iteration of proper forcing notions such that every initial stage of the iteration \mathbb{P}_i is weakly bounding, then \mathbb{P}_{δ} is weakly bounding.

Proof. The proof is by induction on δ . Let \dot{f} be a \mathbb{P} -name of a function, and p an arbitrary condition in \mathbb{P} . We will show that there is a ground model function g and an extension q of p such that $q \Vdash_{\delta} g \nleq \dot{f}$. Note that this is equivalent to $q \Vdash \forall n \in \omega \exists k \ge n(\dot{f}(k) \le g(k))$.

Consider a countable elementary submodel \mathcal{M} of $H(\lambda)$, where $\lambda > 2^{|\mathbb{P}|}$, such that p, \mathbb{P}_{δ} and \dot{f} are elements of \mathcal{M} . Since $\mathcal{M} \cap^{\omega} \omega$ is countable there is a function g which dominates all functions in \mathcal{M} . Similarly to the proof of the Properness Extension Lemma fix an increasing, unbounded sequence $\{\gamma_n\}_{n\in\omega}$ in $\mathcal{M} \cap \delta$. Inductively we will construct two sequences $\langle q_n : n \in \omega \rangle$ of $(\mathcal{M}, \mathbb{P}_{\gamma_n})$ -generic conditions and $\langle \dot{p}_n : n \in \omega \rangle$ of \mathbb{P}_{γ_n} -names for conditions in $\mathcal{M} \cap \mathbb{P}_{\delta}$ such that:

(1) q_n is $(\mathcal{M}, \mathbb{P}_{\gamma_n})$ -generic, and $q_n \upharpoonright \gamma_{n-1} = q_{n-1}$.

Date: October 12, 2005.

(2) \dot{p}_n is a \mathbb{P}_{γ_n} -name such that

$$\begin{array}{ll} q_n \Vdash_{\gamma_n} & (\dot{p}_n \in \mathcal{M} \cap \mathbb{P}_{\delta}) \land (\dot{p}_{n-1} \leq \dot{p}_n) \land (\dot{p}_n \upharpoonright \gamma_n \in G_{\gamma_n}) \land \\ & (\dot{p}_n \Vdash_{\delta} \exists k \geq n(\dot{f}(k) \leq g(k))) \end{array}$$

Begin with p_0 the given condition p and q_0 any $(\mathcal{M}, \mathbb{P}_{\gamma_0})$ -generic condition extending $p_0 \upharpoonright \gamma_n$. Suppose q_n and \dot{p}_n have been defined and let G_{γ_n} be any $(V, \mathbb{P}_{\gamma_n})$ -generic filter containing q_n . Then there is a condition p_n in $\mathcal{M} \cap \mathbb{P}_{\delta}$ such that $p_n = \dot{p}_n[G_{\gamma_n}]$. Let $r_0 = p_n$.

In $M[G_{\gamma_n}]$ we can construct inductively an increasing sequence $\langle r_n : n \in \omega \rangle$ of conditions in $\mathcal{M} \cap \mathbb{P}_{\delta}$ such that $r_n \upharpoonright \gamma_n \in G_{\gamma_n}$ and

$$r_i \Vdash_{\delta} f(i) = k$$
 for some k .

Let f^* be the function thus interpreted. Note that since the sequence $\langle r_j : j \in \omega \rangle$ is increasing for every $j \in \omega$ we have $r_j \Vdash_{\delta} \dot{f} \upharpoonright j = f^* \upharpoonright j$. Since f^* belongs to $M[G_{\gamma_n}]$ and \mathbb{P}_{γ_n} is weakly bounding there is a ground model function $h \in \mathcal{M} \cap^{\omega} \omega$ such that

$$M[G_{\gamma_n}] \vDash \{i : f^*(i) \le h(i)\}$$
 is infinite.

However h is a function from \mathcal{M} and so is dominated by the function g. Thus there is some natural number k_0 such that for every $i \geq k_0$ we have $h(i) \leq g(i)$. But then there is an $i_0 \geq \max\{n+1, k_0\}$ such that $f^*(i_0) \leq h(i_0) \leq g(i_0)$. However for $j = i_0 + 1$ we have

$$r_j \Vdash_{\delta} f(i_0) = f^*(i_0)$$

Let \dot{p}_{n+1} be a \mathbb{P}_{γ_n} -name for r_j . Then

$$q_n \Vdash_{\gamma_n} (\dot{p}_{n+1} \in \mathcal{M} \cap \mathbb{P}_{\delta}) \land (\dot{p}_n \le \dot{p}_{n+1}) \land (\dot{p}_{n+1} \upharpoonright \gamma_n \in G_{\gamma_n}) \land (\dot{p}_{n+1} \Vdash_{\delta} \exists k \ge n + 1(\dot{f}(k) \le g(k)))$$

However by the Properness Extension Lemma applied to γ_n , γ_{n+1} , q_n and \dot{p}_{n+1} there is an $(\mathcal{M}, \mathbb{P}_{\gamma_{n+1}})$ -generic condition q_{n+1} such that

$$q_{n+1} \upharpoonright \gamma_n = q_n$$

and

$$q_{n+1} \Vdash_{\gamma_{n+1}} \dot{p}_{n+1} \upharpoonright \gamma_{n+1} \in G_{\gamma_{n+1}}$$

With this inductive construction of the sequences $\langle q_n : n \in \omega \rangle$ and $\langle \dot{p}_n : n \in \omega \rangle$ is completed. But then just as in the Properness Extension Lemma we obtain that $q = \bigcup_{n \in \omega} q_n$ is an extension of p such that

 $q \Vdash_{\delta} \dot{p}_n \in \dot{G}_{\delta}$ for every $n \in \omega$.

So, if G is (V, \mathbb{P}_{δ}) -generic and $q \in G$, then

$$V[G] \vDash \forall n \in \omega \exists k \ge n(f(k) \le g(k)) ,$$

i.e. $q \Vdash_{\delta} g \nleq \dot{f}$.

 $\mathbf{2}$

Remark. Note that in the previous theorem we required that each initial stage \mathbb{P}_i of the iteration is weakly bounding, rather than each iterand. The reason is that a finite iteration of weakly bounding posets is not necessarily weakly bounding. For example if \mathbb{P} is the forcing notion for adding ω_1 Cohen reals, and \dot{Q} is a \mathbb{P} -name for the Hechler forcing associated to the collection of all ground model reals, then for any $(V, \mathbb{P} * \dot{Q})$ generic filter G, the ground model reals are not unbounded in V[G], yet $\dot{Q}[G_0]$ is weakly bounding in $V[G_0]$ for $G_0 = G \cap \mathbb{P}$. However there is a stronger condition, the almost ${}^{\omega}\omega$ -bounding property which will remedy this situation.

2. The Almost Bounding Property

Definition 3. The partial order \mathbb{P} is called *almost* ${}^{\omega}\omega$ -bounding if for every \mathbb{P} -name \dot{f} , of a function in ${}^{\omega}\omega$ and every condition $p \in \mathbb{P}$ there is a ground model function g in ${}^{\omega}\omega$ such that for every infinite subset Aof ω there is an extension q_A of q such that

$$q_A \Vdash \forall n \exists k \ge n \text{ s.t. } k \in A \text{ and } f(k) \le g(k)$$
.

Lemma 1. If \mathbb{P} is a weakly bounding forcing notion and \dot{Q} is a \mathbb{P} -name of an almost bounding forcing notion, then $\mathbb{P} * \dot{Q}$ is weakly bounding.

Proof. Consider arbitrary $\mathbb{P} * \dot{Q}$ -name of a real f and condition (p, \dot{q}) in $\mathbb{P} * \dot{Q}$. Let G be a $(V, \mathbb{P} * \dot{Q})$ -generic filter containing (p, \dot{q}) and $G_0 = G \cap \mathbb{P}$. Then $\dot{q}[G_0]$ is a condition in $\dot{Q}[G_0]$ and furthermore $\dot{Q}[G_0]$ is an almost bounding poset in $V[G_0]$. Recall from the proof of Lemma 2 on the preservation of properness under CS iteration, that there is a \mathbb{P} -name f^* , such that for every \mathbb{P} -generic filter H_1 , $f^*[H_1]$ is a $Q[H_1]$ -name of a real and furthermore for every $Q[H_1]$ generic filter H_2 , $\dot{f}[H_1 * H_2] = f^*[H_1][H_2]$. Then in particular $f^*[G_0]$ is a $Q[G_0]$ -name for a function in $\omega \omega$ and so by the definition of the almost bounding property, there is a function g in $V[G_0]$ such that for every $A \in [\omega]^{\omega}$ there is an extension q_A of $\dot{q}[G_0]$ which forces that there are infinitely many $i \in A$ for which $g(i) \leq f^*(i)$. However since g is a function in $V[G_0]$ and \mathbb{P} is weakly bounding there is a function h in V such that the set $A = \{i : g(i) \leq h(i)\}$ is infinite. If the second generic extension G_1 contains q_A , then

$$V[G_0 * G_1] \vDash \exists^{\infty} i \in A(\dot{f}(i) \le h(i))$$

and so $\mathbb{P} * \dot{Q}$ is weakly bounding.

Therefore by Theorem 1 we obtain

Theorem 2. The countable support iteration of proper almost ${}^{\omega}\omega$ -bounding posets is weakly bounding.

Other preservation theorems, which will be used in the consistency result to be presented later are:

Theorem 3. Assume CH. Let $\langle \mathbb{P}_i : i \leq \delta \rangle$ where $\delta < \omega_2$, be a countable support iteration of proper forcing posets of size \aleph_1 . Then the CH holds in $V^{\mathbb{P}_{\delta}}$.

Theorem 4. Assume CH. Let $\langle \mathbb{P}_i : i \leq \delta \rangle$ where $\delta \leq \omega_2$, be a countable support iteration of proper forcing posets of size \aleph_1 . Then \mathbb{P}_{δ} satisfies the \aleph_2 -chain condition.

Note that by the previous theorems if we assume the CH in the ground model and if $\langle \mathbb{P}_i : i \leq \omega_2 \rangle$ is a countable support iteration of proper forcing notions of size \aleph_1 , then forcing with \mathbb{P}_{ω_2} does not collapse cardinals: ω_1 is not collapsed since \mathbb{P}_{ω_2} is proper, and cardinals greater or equal ω_2 are not collapsed by the \aleph_2 -chain condition.

We are ready to proceed with the consistency of the bounding number smaller than the splitting number.

3. The Partial Order Q

Recall the following definitions:

Definition 4. A family $B \subseteq^{\omega} \omega$ is said to be *unbounded* if for every $f \in^{\omega} \omega$ there is a function $g \in B$ such that $g \nleq f$, i.e. there are infinitely many i such that $f(i) \leq g(i)$. Then

 $b = \min\{|B| : B \subseteq^{\omega} \omega \text{ and } B \text{ is unbounded}\}$

is called the bounding number.

Definition 5. A family $S \subseteq [\omega]^{\omega}$ is called *splitting* if for any infinite subset A of ω there is a set $B \in S$ such that $A \cap B$ and $A \cap B^c$ are infinite. Then

 $s = \min\{|S| : S \subseteq [\omega]^{\omega} \text{ and } S \text{ is splitting}\}$

is called the splitting number.

In the remaining sections we will establish the following result:

Theorem 5. Assume *CH*. Then there is a generic extension in which cardinals are not collapsed, $2^{\aleph_0} = \aleph_2$, $b = \omega_1$ and $s = \omega_2$.

By the remarks from the previous section under the CH, any countable support iteration of length ω_2 of proper forcing notions of size \aleph_1 does not collapse cardinals. Therefore if in addition we require the

forcing posets to be almost ${}^{\omega}\omega$ -bounding, by Theorem 2 the resulting iteration will be weakly bounding and so in every generic extension the ground model reals will be an unbounded family of size ω_1 . However in order the splitting number to be ω_2 we have to require something more: that at each successor stage of the iteration we add an infinite subset of ω , which is not split by the ground model reals. Therefore it is sufficient to obtain the following:

Theorem 6. Assume CH. There is a proper, almost ${}^{\omega}\omega$ -bounding poset Q of size \aleph_1 such that in every (V, Q)-generic extension there is an infinite subset of ω which is not split by any ground model real.

In order to define the partial order, which will demonstrate Theorem 6 we need the notion of logarithmic measure.

Definition 6. Let S be a subset of ω and $h : \mathcal{P}_{\omega}(S) \to \omega$, where $\mathcal{P}_{\omega}(S)$ is the family of all finite subsets of ω . The function h is called a logarithmic measure, if for every $A \in \mathcal{P}_{\omega}(S)$ and for every A_0 , A_1 such that $A = A_0 \cup A_1$ if $h(A) \ge l + 1$ for some $l \ge 1$, then $h(A_0) \ge l$ or $h(A_1) \ge l$. If S is a finite set, then h(S) is called the level of S.

Corollary 1. If h is a logarithmic measure and $h(A_0 \cup \cdots \cup A_{n-1}) \ge l+1$ then for some j, $0 \le j \le n-1$ $h(A_j) \ge l-j$.

Furthermore we will work with logarithmic measures induced by positive sets, which will be essential in order to obtain the almost bounding property (see section 6).

Definition 7. Let $P \subseteq [\omega]^{<\omega}$ be an upwards closed family. Then P induces a logarithmic measure h on $[\omega]^{<\omega}$ defined inductively on |s| for $s \in [\omega]^{<\omega}$ in the following way:

- (1) $h(e) \ge 0$ for every $e \in [\omega]^{<\omega}$
- (2) h(e) > 0 iff $e \in P$
- (3) for $l \ge 1$, $h(e) \ge l+1$ iff |e| > 1 and whenever $e_0, e_1 \subseteq e$ are such that $e = e_0 \cup e_1$, then $h(e_0) \ge l$ or $h(e_1) \ge l$.

Then h(e) = l iff l is the maximal natural number for which these hold.

Corollary 2. If h is a logarithmic measure induced by positive sets and $h(e) \ge l$, then for every a such that $e \subseteq a$, $h(a) \ge l$.

Example 1. Let P be the family of all sets containing at least two points and h the logarithmic measure induced by P on $[\omega]^{\omega}$. Then for every $x \in P$, h(x) = i where i is the minimal natural number such that $|x| \leq 2^i$.

Now we can define the partial order Q, which satisfies Theorem 6.

Definition 8. Let Q be the set of all pairs (u, T) where u is a finite subset of ω and $T = \langle t_i : i \in \omega \rangle$ (here $t_i = (s_i, h_i), s_i = \operatorname{int}(t_i)$ is a finite subsets of ω and h_i is a given logarithmic measure on s_i) is a sequence of logarithmic measures such that

- (1) $\max(u) < \min s_0$
- (2) $\max s_i < \min s_{i+1}$
- (3) $h_i(s_i) < h_{i+1}(s_{i+1}).$

The finite part u is called the stem of the condition p = (u, T), and $T = \langle t_i : i \in \omega \rangle$ the pure part of p. Also $int(T) = \bigcup \{s_i : s \in \omega\}$. In case that $u = \emptyset$ we say that (\emptyset, T) is a pure condition and usually denote it simply by T.

We say that (u_1, T_1) is extended by (u_2, T_2) , where $T_l = \langle t_i^l : i \in \omega \rangle$ for l = 1, 2, and denote it by

$$(u_1, T_1) \le (u_2, T_2)$$

iff the following conditions hold:

- (1) u_2 is an end-extension of u_1 and $u_2 \setminus u_1 \subseteq int(T_1)$
- (2) $\operatorname{int}(T_2) \subseteq \operatorname{int}(T_1)$ and furthermore there is an infinite sequence $\langle B_i : i \in \omega \rangle$ of finite subsets of ω such that $\max u_2 < \min(t_j)$ for $j = \min B_0$, $\max(B_i) < \min(B_{i+1})$ and $s_i^2 \subseteq \bigcup \{s_j^1 : j \in B_i\}$.
- (3) for every h_i^2 positive subset e of s_i^2 there is some $j \in B_i$ such that $e \cap s_i^1$ is h_i^1 -positive.

In case that $u_1 = u_2$ we say the (u_2, T_2) is a pure extension of (u_1, T_1) .

4. The Splitting Number

The reason that in every generic extension via Q there is a real which is not split by the ground model subsets of ω is the same as for Mathias forcing. We will need the following lemma.

Lemma 2. Suppose T is a pure condition and A is an infinite subset of ω . Then there is a pure extension T' of T such that int(T') is contained in A or in A^c .

Proof. Let $T = \langle t_i : i \in \omega \rangle$ where $t_i = (s_i, h_i)$. For every *i* define $r_i = (s_i \cap A, h_i \upharpoonright s_i \cap A)$ or $r_i = (s_i \cap A^c, h_i \upharpoonright s_i \cap A^c)$ depending on whether $h_i(s_i \cap A) \ge h_i(s_i) - 1$ or $h_i(s_i \cap A^c) \ge h_i(s_i) - 1$. Then there is an infinite index set *I* such that $\forall i \in I$ int $(r_i) \subset A$ or alternatively $\forall i \in I$ int $(r_i) \subset A^c$. Then the pure condition $T' = \langle r_i : i \in I \rangle$ is well defined (i.e. the measures r_i are strictly increasing), extends *T* and int(T') is contained in *A* or in A^c .

Lemma 3. Let G be a Q-generic filter. Then the real

 $U_G = \bigcup \{ u : \exists T(u, T) \in G \}$

is not split by any ground model subset of ω .

Proof. Suppose by way of contradiction that there is a ground model subset A of ω such that $U_G \cap A$ and $U_G \cap A^c$ are infinite. Let $D_A = \{(u,T) \in Q : \operatorname{int}(T) \subset (A) \text{ or int}(T) \subseteq A^c\}$. Then by Lemma 2 the set D_A is a dense subset of Q and so $G \cap D_A$ is nonempty. However if (u_0, T_0) belongs to this intersection then by the definition of D_A $\operatorname{int}(T_0)$ is contained in A or in A^c . But (u_0, T_0) also belongs to G. It is not difficult to see from the definition of the extension relation on Qthat $U_G \subseteq^* \operatorname{int}(T)$ for every condition p = (u, T) which belongs to G. Therefore $U_G \subseteq^* \operatorname{int}(T_0)$ and so U_G is almost contained in A or in A^c . This is a contradiction since it implies that the intersection of U_G with A^c or A respectively, is finite. \Box

Lemma 4. If $\langle \mathbb{P}_i : i \leq \delta \rangle$ is a countable support iteration of length δ , where $cf(\delta) > \omega$, then any real is added at some initial stage δ_0 of the iteration such that $\delta_0 < \delta$.

Proof. Let f be a \mathbb{P}_{δ} -name of a real and p an arbitrary condition in \mathbb{P} . We can assume that

$$\dot{f} = \bigcup \{ \langle \langle i, j_p^i \rangle, p \rangle : p \in A_i, i \in \omega, j_p^i \in \omega \}$$

where for each i, A_i is a maximal antichain in \mathbb{P} . Consider any countable elementary submodel \mathcal{M} of $H(\lambda)$, λ is sufficiently large, such that \mathbb{P} , \dot{f} , p, A_i for every i belong to \mathcal{M} . If q is an $(\mathcal{M}, \mathbb{P})$ -generic condition extending p and G a (V, \mathbb{P}) -generic filter containing q, then for every iwe have $A_i \cap G = \mathcal{M} \cap A_i \cap G$. That is for

$$\mathcal{M} \cap \dot{f} = \bigcup \{ \langle \langle i, j_p^i \rangle, p \rangle : p \in \mathcal{M} \cap A_i, i \in \omega, j_p^i \in \omega \}$$

and $i \in \omega$ we have $q \Vdash_{\delta} \dot{f}(i) = (\mathcal{M} \cap \dot{f})(i)$. Since \mathcal{M} is a countable model, the intersection $\mathcal{M} \cap A_i$ is also countable and so if $\alpha_i = \sup\{\alpha_p : p \in \mathcal{M} \cap A_i\}$ where for every $p \in \mathcal{M} \cap A_i$ we define $\alpha_p = \sup \operatorname{supt}(p)$, then $\delta_0 = \sup\{\alpha_i : i \in \omega\}$ is an ordinal of countable cofinality which is smaller than δ . Then every condition p in $A_i \cap \mathcal{M}$ has support in δ_0 . Therefore we can consider $\mathcal{M} \cap \dot{f}$ as a \mathbb{P}_{δ_0} -name of a real such that $q \Vdash_{\delta} \dot{f} = \mathcal{M} \cap \dot{f}$.

Theorem 7. If $\langle \mathbb{P}_i : i \leq \omega_2 \rangle$ is a countable support iteration of proper forcing notions, then any set of reals of cardinality ω_1 is added at some proper initial stage if the iteration.

Proof. Let A be an arbitrary family of size \aleph_1 of reals in $V^{\mathbb{P}\omega_2}$. Consider any (V, \mathbb{P}) -generic filter G. Then for every $\dot{f} \in A$ there is an ordinal α_f of countable cofinality such that $\dot{f}[G] = \dot{f}[G_{\alpha_f}]$. But then $A \subseteq V[G_{\alpha}]$ where $\alpha = \sup\{\alpha_f : \dot{f} \in A\}$. Since A is of size $\aleph_1, cf(\alpha) \leq \omega_1$. Therefore $\alpha < \omega_2$ and $A \subseteq V[G_{\alpha}]$ where $G_{\alpha} = G \cap \mathbb{P}_{\alpha}$. \Box

Note that by the previous theorem if we iterate the forcing notion $Q \ \omega_2$ -times with countable support, than any family A of ω_1 -reals in the generic extension is not splitting. Really if G is \mathbb{P}_{ω_2} -generic, where $\langle \mathbb{P}_i : i \leq \omega_2 \rangle$ is the iteration of Q, then by Theorem 7 there is some $\delta_0 < \omega_2$, such that $A \subseteq V[G_{\delta_0}]$ where $G_{\delta_0} = \mathbb{P}_{\delta_0} \cap G$. By Lemma 3 in $V[G_{\delta_0+1}]$ there is a real which is not split by A.

5. Axiom A Implies Properness

Definition 9. A forcing poset $\mathbb{P} = (P, \leq)$ is said to satisfy Axiom A, iff the following conditions hold:

- (1) There is a sequence of separative preorders on $P \{\leq_n\}_{n\in\omega}$, where $\leq_0 = \leq$, such that $\leq_m \subseteq \leq_n$ for every $m \leq n$. That is, whenever $m \leq n$ and p, q are conditions in P such that $p \leq_m q$, then $p \leq_n q$.
- (2) If $\{p_n\}_{n\in\omega}$ is a sequence of conditions in P such that $p_n \leq_{n+1} p_{n+1}$ for every n, then there is a condition p such that $p_n \leq_n p$ for every n. The sequence $\{p_n\}_{n\in\omega}$ is called a *fusion sequence* and p is called the *fusion* of the sequence.
- (3) For every $D \subseteq \mathbb{P}$ which is dense, and every condition p, for every $n \in \omega$ there is a condition p' such that $p \leq_n p'$ and a countable subset D_0 of D which is predense above p'.

Lemma 5. If the forcing notion \mathbb{P} satisfies axiom A, then \mathbb{P} is proper.

Proof. Let \mathcal{D} be the family of all dense subsets of \mathbb{P} , and \mathcal{D}' the family of all countable subsets of \mathbb{P} . Since the partial order \mathbb{P} satisfies Axiom A, there is a function

$$\sigma: \omega \times \mathbb{P} \times \mathcal{D} \to \mathbb{P} \times \mathcal{D}'$$

such that $\sigma(n, p, D) = (p', D')$ iff $p \leq_n p'$ and D' is a countable subset of D which is predense above p'.

Let \mathcal{M} be a countable elementary submodel of $H(\lambda)$, λ sufficiently large, such that \mathbb{P} , σ belong to \mathcal{M} . We will show that every condition in $\mathbb{P} \cap \mathcal{M}$ has an $(\mathcal{M}, \mathbb{P})$ -generic extension. Fix an enumeration $\langle D_n :$ $n \in \omega \rangle$ of the dense subsets of \mathbb{P} which belong to \mathcal{M} and let $p = p_0$ be a given condition in $\mathcal{M} \cap \mathbb{P}$. Since σ is an element of \mathcal{M} , also $\sigma(1, p_0, D_1) = (p_1, D'_1)$ belongs to \mathcal{M} . But then p_1 , and D'_1 are elements of \mathcal{M} themselves. Proceed inductively to define a fusion sequence $\langle p_n : n \in \omega \rangle$ of conditions in $\mathcal{M} \cap \mathbb{P}$ and a sequence $\langle D'_n : n \in \omega \rangle$ of countable subsets of \mathbb{P} , such that for every $n \in \omega$ $D'_n \in \mathcal{M}$, $D'_n \subseteq D_n$ and D'_n is predense above p_n . Let q be the fusion of $\{p_n\}_{n \in \omega}$ and D an arbitrary dense subset of \mathbb{P} which belongs to \mathcal{M} . Then $D = D_m$ for some m. Since $p_m \leq_m q$, and D'_m is predense above p_m , D'_m is also predense above q. But D'_m is countable, and since it belongs to \mathcal{M} it is a subset of \mathcal{M} . Therefore $D'_m \subseteq \mathcal{M} \cap D_m = \mathcal{M} \cap D$, which implies that $\mathcal{M} \cap \mathcal{D}$ is predense above q.

In the remainder of this and next section we will show that the forcing notion Q satisfies Axiom A. For this consider the following preorders defined on Q: Let \leq_0 be just the order of Q.

For any two conditions (u_1, T_1) and (u_2, T_2) we say that

$$(u_1, T_1) \leq_1 (u_2, T_2)$$
 iff $u_1 = u_2$ and $(u_1, T_1) \leq_0 (u_2, T_2)$.

Furthermore for every $i \ge 1$, if $T_l = \langle t_i^l : i \in \omega \rangle$ for l = 1, 2 we say that

$$(u_1, T_1) \leq_{i+1} (u_2, T_2)$$
 iff $t_1^j = t_2^j \forall j = 0, \dots, i-1$.

That is the stem and the first i logarithmic measures are not changed in the extension.

Then if $\{p_n\}_{n\in\omega} = \{(u,T_n)\}_{n\in\omega}$ where $T_n = \langle t_j^n : j \in \omega \rangle$, the condition p = (u,T) where $T = \langle t_j : j \in \omega \rangle$ for $t_j = t_j^{j+1}$ is a fusion of this sequence. Thus in order to verify Axiom A we still have to show that part (3) is satisfied. For this we will need the notion of a preprocessed condition which is considered in the next section.

6. Preprocessed Conditions

Definition 10. Suppose D is a dense open set. We say that the condition p = (u, T) where $T = \langle t_i : i \in \omega \rangle$, is preprocessed for D and i if for every subset of i which end-extends u the condition $(v, \langle t_j : j \geq i \rangle)$ has a pure extension in D if and only if $(v, \langle t_i : j \geq i \rangle)$ belongs to D.

Lemma 6. If D is a dense open set and $i \in \omega$ if (u, T) is preprocessed for D and i, then any extension of (u, T) is also preprocessed for D and i.

Proof. Suppose (w, R) extends (u, T) and let $v \subset i$ such that $(v, \langle r_j : j \geq i \rangle)$ has a pure extension in D. Since R extends T, by definition of the extension relation on Q we obtain that $\langle r_j : j \geq i \rangle$ is an extension of $\langle t_j : j \geq i \rangle$. Therefore $(v, \langle t_j : j \geq i \rangle$ has a pure extension in D and since (u, T) is preprocessed for D and i the condition $(v, \langle t_j : j \geq i \rangle)$

belongs to D. But D is open and since $(v, \langle r_j : j \ge i \rangle) \ge (v, \langle t_j : j \ge i \rangle)$ we obtain that $(v, \langle r_j : j \ge i \rangle)$ belongs to D itself.

Lemma 7. Every condition (u, T) has an \leq_{i+1} extension which is preprocessed for D and i.

Proof. Let $T = \langle t_j : j \in \omega \rangle$. Fix an enumeration of all subsets of *i*: v_1, \ldots, v_k . Consider $(v_1, \langle t_j : j \geq i \rangle)$. If $(v_1, \langle t_j : j \geq i \rangle)$ has a pure extension in D, denote it $(v_1, \langle t_j^1 : j \geq i \rangle)$. If there is no such pure extension, let $t_j^1 = t_j$ for every $j \geq i$. In the next step consider similarly $(v_2, \langle t_j^1 : j \geq i \rangle)$. If it has a pure extension in D, denote it $(v_2, \langle t_j^2 : j \geq i \rangle)$. If there is no such pure extension, then for every $j \geq i$ let $t_j^2 = t_j^1$. At the k-th step we will obtain a condition $(v_k, \langle t_j^k : j \geq i \rangle)$. Then $(u, \langle t_j^k : j \in \omega \rangle)$ where for every $j < i, t_j^k = t_j$ is an \leq_{i+1} extension of (u, T) which is preprocessed for D and i.

Really suppose $(v, \langle t_j^k : j \geq i \rangle)$ has a pure extension in D where $v \subset i$. Then $v = v_m$ for some $m, 1 \leq m \leq k$. Then at step m, we must have had that $(v_m, \langle t_j^{m-1} : j \geq i \rangle)$ has a pure extension in D, and so we have fixed such a pure extension $(v_m, \langle t_j^m : j \geq i \rangle) \in D$. However since m-1 < k, we have

$$\langle t_j^m : j \ge i \rangle \le \langle t_j^k : j \ge i \rangle.$$

But D is open and so $(v_m, \langle t_i^k : j \ge i \rangle)$ is an element of D itself. \Box

Lemma 8. Let D be a dense open set. Then any condition has a pure extension which is preprocessed for D and every natural number i.

Proof. Let p = (u, T) be an arbitrary condition. Then be Lemma 7 we can construct inductively a fusion sequence $\{p_i\}_{i \in \omega}$ such that $p_0 = p$ and p_{i+1} is an \leq_{i+1} extension of p_i which is preprocessed for D and i. Then if q is the fusion of the sequence for every $i \in \omega$ we have that $p_{i+1} \leq_{i+1} q$. This implies that $p_{i+1} \leq q$ and so by Lemma 6 q is preprocessed for D and i.

Remark. Whenever p is a condition which is preprocessed for a given dense open set and every natural number n, we will simply say that p is preprocessed for D.

We are ready to show that the forcing notion Q satisfies Axiom A, part (3). Let D be a dense open set and p an arbitrary condition. By Lemma 8 there is a pure extension q = (u, T) for $T = \langle t_j : j \in \omega \rangle$ which is preprocessed for D and every natural number. Recall that qis obtained as a fusion of a sequence and so in particular $p \leq_n q$ for every n. Furthermore the set

$$D_0 = \{ (v, \langle t_j : j \ge i \rangle) \in D : v \subseteq i, i \in \omega, v \text{ end-extends } u \}$$

is a countable subset of D which is predense above q. Really let (w, R) be an arbitrary extension of q. Then since D is dense (w, R) has an extension $(w \cup w', R')$ in D. However $R' \ge R \ge \langle t_j : j \ge k_w \rangle$, where $k_w = \min\{j : \max w < \min \operatorname{int} t_j\}$. Therefore $(w \cup w', \langle t_j : j \ge k_w \rangle)$ has a pure extension in D and since q is preprocessed for D the condition $(w \cup w', \langle t_j : j \ge k_w \rangle)$ belongs to D. Thus in particular $(w \cup w', \langle t_j : j \ge k_w \rangle)$ belongs to D_0 and is compatible with (w, R) (with common extension $(w \cup w', R')$).

7. Logarithmic Measures Induced by Positive Sets

Lemma 9. Let P be an upwards closed family of finite subsets of ω and h the induced logarithmic measure. Let $l \ge 1$. Then for every subset A of ω if A does not contain a set of measure $\ge l+1$, then there are A_0, A_1 such that $A = A_0 \cup A_1$ and none of A_0, A_1 contain a set of measure greater or equal l.

Proof. Note that if A is a finite set, then the given condition is exactly part 3 of Definition 7. Thus assume A is infinite. For every natural number k, let $A_k = A \cap k$ and let T be the family of all functions $f: m \to \bigcup_{0 \le k \le m} A_k \times A_k$, where $m \in \omega$, such that for every k,

$$f(k) = (a_0^k, a_1^k) \in A_k \times A_k$$

where $a_0^k \cup a_1^k = A_k$, $h(a_0^k) \not\geq l$, $h(a_1^k) \not\leq l$ and for every $k : 1 \leq k \leq m$, $a_0^{k-1} \subseteq a_0^k$, $a_1^{k-1} \subseteq a_1^k$.

Then T together with the end-extension relation is a tree. Furthermore for every $m \in \omega$, the m-th level of T is nonempty. Really consider an arbitrary natural number m. Then $A \cap m = A_m$ is a finite set which is not of measure greater or equal l+1. By Definition 7, part (3), there are sets a_0^m , a_1^m such that $A_m = a_0^m \cup a_1^m$ and $h(a_0^m) \not\geq l$, $h(a_1^m) \not\geq l$. Let $a_0^{m-1} = A_m \cap a_0^m$ and $a_1^{m-1} = A_m \cap a_1^m$. Then by Corollary 2 the measure of each of a_0^{m-1} , a_1^{m-1} is not greater or equal to l and $A_{m-1} = A \cap (m-1) = a_0^{m-1} \cup a_1^{m-1}$. Therefore in m steps we can define finite sequences $\langle a_0^k : 0 \leq k \leq m \rangle$, $\langle a_1^k : 0 \leq k \leq m \rangle$ such that for every k, $A_k = a_0^k \cup a_1^k$, $h(a_0^k) \not\geq l$, $h(a_1^k) \not\geq l$ and $\forall k : 0 \leq k \leq m-1$ $a_0^k \subseteq a_0^{k+1}$, $a_1^k \subseteq a_1^{k+1}$. Therefore $f : m \to \bigcup_{0 \leq k \leq m} A_k \times A_k$ defined by $f(k) = (a_0^k, a_1^k)$ is a function in the m'th level of T.

Therefore by König's Lemma there is an infinite branch through T. Let $f: \omega \to \bigcup_{k \in \omega} A_k \times A_k$ where $f(k) = (a_0^k, a_1^k), a_0^k \cup a_1^k = A_k$, etc., be such an infinite branch. Then if $A_0 = \bigcup_{k \in \omega} a_0^k, A_1 = \bigcup_{k \in \omega} a_1^k$ we have that $A = A_0 \cup A_1$ and none of the sets A_0 , A_1 contain a set of measure greater or equal l. Consider arbitrary finite subset x of A_0 . Then $x \subseteq a_0^k$ for some $k \in \omega$. But $h(a_0^k) \not\geq l$ and so $h(x) \not\geq l$. The same argument applies to A_1 .

Lemma 10 (Sufficient Condition for High Values). Let P be an upwards closed family of finite subsets of ω and h the logarithmic measure induced by P. Then if for every $n \in \omega$ and every partition of ω into n-sets $\omega = A_0 \cup \cdots \cup A_{n-1}$ there is some $j \leq n-1$ such that A_j contains a positive set, then for every natural number k, for every $n \in \omega$ and partition of ω into n-sets $\omega = A_0 \cup \cdots \cup A_{n-1}$ there is some $j \leq n-1$ such that A_j contains a set of measure greater or equal k.

Proof. The proof proceeds by induction on k. If k = 1 this is just the assumption of the Lemma. So suppose we have proved the claim for k = l and furthermore that it is false for k = l + 1. Then there is some $n \in \omega$ and partition of ω into n-sets $\omega = A_0 \cup \cdots \cup A_{n-1}$ such that none of A_0, \ldots, A_{n-1} contain a set of measure greater or equal l + 1. By Lemma 9 for each $j \leq n - 1$ there are sets A_j^0, A_j^1 none of which contains a set of measure greater or equal l and such that $A_j = A_j^0 \cup A_j^1$. Then

$$\omega = A_0^0 \cup A_0^1 \dots \cup A_{n-1}^0 \cup A_{n-1}^1$$

is a partition of ω into 2n sets, none of which contains a set of measure $\geq l$. This contradicts the inductive hypothesis for k = l.

8. The Bounding Number

Lemma 11. Let D be a dense open set, $T = \langle t_j : j \in \omega \rangle$ a pure condition which is preprocessed for D. Let $v \in [\omega]^{<\omega}$. Then the family $\mathcal{P}_v(T)$ which consists of all finite subsets x of ω such that

(1) $\exists l \in \omega \text{ s.t. } x \cap int(t_l) \text{ is } t_l \text{ positive}$

(2) $\exists w \subseteq x \text{ s.t. } (v \cup w, T) \in D$.

induces a logarithmic measure $h = h_v(T)$ which takes arbitrary high values.

Proof. The family $\mathcal{P}_v(T)$ is nonempty and upwards closed. Consider the condition (v, T). Since D is dense there is an extension $(v \cup w, R)$ of (v, T) which belongs to D. By definition of the extension relation $w \subseteq$ $\operatorname{int}(T)$ and so for some $l \in \omega$ we have $w \subseteq \cup \{\operatorname{int}(t_j) : j = 0, \ldots, l-1\}$. However $(v \cup w, R)$ is a pure extension of $(v \cup w, \langle t_j : j \geq l \rangle)$ and since T is preprocessed for D (and every natural number) the condition $(v \cup w, \langle t_j : j \geq l \rangle)$ belongs to D. Then $x = \cup \{\operatorname{int}(t_j) : j = 0, \ldots, l-1\}$ is an element of $\mathcal{P}_v(T)$.

To show that h takes arbitrarily high values it is enough to show that for every n and partition of ω into n-sets $\omega = A_0 \cup \ldots A_{n-1}$, there is $k \leq n-1$ such that A_k contains a positive set. Thus fix a natural number n and a partition of ω . For every $k: 0 \le k \le n-1$ and $j \in \omega$ let $s_j^k = s_j \cap A_k$ where $t_j = (s_j, h_j)$. Suppose that for every k there is a constant M_k such that $h_j(s_j^k) \leq M_k$, i.e. the constant M_k bounds the measures of $s_i \cap A_k$. Then let $M = \max_{k \le n-1} M_k$. Since T is a pure condition the measures $h_i(s_i)$ take arbitrarily high values and so in particular there is an $i \in \omega$ such that $h_j(s_j) \ge M + n + 1$. By Corollary 1 there is a $k: 0 \leq k \leq n-1$ such that $h_i(s_i^k) \geq (M+n)-k \geq M+1 > M_k$ (notice that $s_i = s_i^0 \cup \ldots s_i^{n-1}$) which is a contradiction to the definition of M_k . Therefore there is some k such that the measures $h_j(s_j^k)$ take arbitrarily high values and so there is a pure extension $R = \langle r_j : j \in \omega \rangle$ of T such that $int(R) \subseteq A_k$. Since D is dense, there is an extension $(v \cup w, R')$ of (v, R) which belongs to D. By definition of the extension relation on $Q, w \subseteq \bigcup \{ int(r_i) : j = 0, \dots, l \}$ for some $l \in \omega$. However $(v \cup w, R') \ge (v \cup w, T)$ and since T is preprocessed for $D, (v \cup w, T) \in D$. Therefore

$$x = \bigcup \{ \operatorname{int}(t_j) : j = 0, \dots, l-1 \}$$

is a positive set contained in A_k .

Corollary 3. Let D be a dense open set and $T = \langle t_j : j \in \omega \rangle$ a pure condition which is preprocessed for D. Let $v \in [\omega]^{<\omega}$. Then there is a pure extension $R = \langle r_j : j \in \omega \rangle$ such that for every $l \in \omega$ and every $s \subseteq int(r_l)$ which is r_l -positive, there is $w \subseteq s$ such that $(v \cup w, \langle t_j : j \ge l+1 \rangle) \in D$.

Proof. Let h be the logarithmic measure induced by $\mathcal{P}_v(T)$. Consider the following inductive construction. Let x_0 be any positive set. Then there is $B_0 \in [\omega]^{<\omega}$ such that $x_0 \subseteq \cup \{\operatorname{int}(t_j) : j \in B_0\}$. Let $r_0 = (x_0, h \upharpoonright x_0 + 1)$. Furthermore let $A_0 = \max\{\operatorname{int}(t_j) : j = \max(B_0)\} + 1$, $A_1 = \omega \setminus A_0$ and $H_1 = \max\{h(x) : x \subseteq A_0\}$. Then by the sufficient condition for arbitrarily high values there is $x_1 \subseteq A_1$ such that $h(x_1) \ge H_1 + 1$. Furthermore there is a finite set B_1 such that $\max B_0 < \min B_1$ and such that $x_1 \subseteq \cup \{\operatorname{int}(t_j) : j \in B_1\}$. Let $r_1 = (x_1, h \upharpoonright x_1 + 1)$.Proceed inductively. Suppose $\langle r_0, \ldots, r_{k-1} \rangle$, $\langle B_0, \ldots, B_{k-1} \rangle$ have been defined so that

- (1) $r_j = (x_j, h \upharpoonright x_j + 1), x_j \subseteq \cup \{ \operatorname{int}(t_i) : i \in B_j \}$
- (2) $h(x_j) < h(x_{j+1})$ and $\max B_j < \min B_{j+1}$.

To obtain r_k let $A_0 = \max\{\operatorname{int}(t_j) : j = \max(B_{k-1})\} + 1$, $A_1 = \omega \setminus A_0$, $H_k = \max\{h(x) : x \subseteq A_0\}$. Then by the sufficient condition for high values there is $x_k \subseteq A_k$ such that $h(x_k) \ge H_k + 1$. Furthermore there is a finite set B_k such that $\max B_{k-1} < \min B_k$ and $x_k \subseteq \cup\{\operatorname{int}(t_j) : j \in B_k\}$. Let $r_k = (x_k, h \upharpoonright x_k + 1)$.

Let $R = \langle r_j : j \in \omega \rangle$ be the so constructed condition. Suppose $e \subseteq \operatorname{int}(r_j) = x_j$ is r_j -positive. That is h(e) > 0 and so $x \in \mathcal{P}_v(T)$. But then by part (2) of the Definition of $\mathcal{P}_v(T)$ there is an $l \in B_j$ such that $e \cap \operatorname{int}(t_l)$ is t_l -positive. This implies that R is an extension of T.

Furthermore, consider any $l \in \omega$ and $s \subseteq int(r_l)$ which is r_l -positive. Then $s \in \mathcal{P}_v(T)$ and so there is $w \subseteq s$ such that $(v \cup w, T) \in D$. But $(v \cup w, \langle r_j : j \ge l+1 \rangle)$ extends $(v \cup w, T)$ and since D is open the condition $(v \cup w, \langle r_j : j \ge l+1 \rangle)$ belongs to D itself. \Box

Remark. Whenever R is a pure condition which satisfies Corollary 3 for some given dense open set D, and finite subset v of ω we will say that $\phi(v, R, D)$ holds. Note also that any further pure extension of R preserves this property.

Corollary 4. Let D be a dense open set, T a pure condition which is preprocessed for D and $k \in \omega$. Then there is a pure extension R of T, $R = \langle r_j : j \in \omega \rangle$ such that $\forall v \subset k \forall l \forall s \subseteq int(r_l)$ which is r_l -positive, there is $w_v \subseteq s$ such that $(v \cup w, \langle r_j : j \ge l+1 \rangle) \in D$.

Proof. Let v_1, \ldots, v_n be an enumeration of all (proper) subsets of k. By Corollary 3 for each $j = 1, \ldots, n$ there is a pure extension T_j of T_{j-1} (where T_0 is the given condition T) such that $\phi(v_j, T_j, D)$. Then $R = T_n$ has the required property.

Remark. Whenever R is a pure condition which satisfies the property of the above statement for some natural number k and dense open set D we will say that $\phi(k, R, D)$ holds.

Lemma 12. Let f be a Q-name for a function in $\omega \omega$ and p arbitrary condition in Q. Then there is a pure extension q = (u, R) of p, where $R = \langle r_i : i \in \omega$ la such that $\forall i \forall v \subset i \forall s \subseteq int(r_i)$ which is r_i -positive, there is $w_v \subseteq s$ such that $(v \cup w_v, \langle r_j : j \leq i+1 \rangle) \Vdash \dot{f}(i) = \check{k}$ for some $k \in \omega$.

Proof. Consider the following inductive construction. Let p = (u, T) where $T = \langle t_i : i \in \omega \rangle$. For every $n \in \omega$ denote by D_n the dense open set of all conditions in Q which decide the value of $\dot{f}(n)$. Let $k_0 = \min \operatorname{int}(t_0)$. Then by Lemma 8 we can assume that the pure condition T is preprocessed for D_0 and so by Corollary 4 there is a pure extension $T_1 = \langle t_i^1 : i \in \omega \rangle$ of T such that $\phi(k_0, T_1, D_0)$. Then if $p_1 = (u, T_1)$ we have $p_0 \leq_1 p_1$. To define p_2 consider $k_1 = \max \operatorname{int}(t_0^1) + 1$. Again we can assume that $\langle t_i^1 : i \geq 1 \rangle$ is preprocessed for D_1 (otherwise by Lemma 8 pass to such an extension). Then there is a pure extension $T_2 = \langle t_i^2 : i \geq 1 \rangle$ of $\langle t_i^1 : i \geq 1 \rangle$ such that $\phi(k_1, T_2, D_1)$. Let $p_2 = (u, \langle t_i^2 : i \in \omega \rangle)$ where $t_0^2 = t_0^1$, $k_2 = \max \operatorname{int}(t_1^2) + 1$.

Proceed inductively. Suppose p_0, \ldots, p_n have been defined so that $p_j \leq_{j+1} p_{j+1}$ for every $j = 1, \ldots, n-1$, where $p_j = (u, \langle t_i^j : i \in \omega \rangle)$ and $\phi(k_j, \langle t_i^{j+1} : i \geq j \rangle, D_j)$. Let $k_n = \max \operatorname{int}(t_{n-1}^n) + 1$. We can assume that $\langle t_i^n : i \geq n \rangle$ is preprocessed for D_n . Then by Corollary 4 there is a pure extension $T_{n+1} = \langle t_i^{n+1} : i \geq n \rangle$ of $\langle t_i^n : i \geq n \rangle$ such that $\phi(k_n, T_{n+1}, D_n)$. Let $p_{n+1} = (u, \langle t_i^{n+1} : i \in \omega \rangle)$ where $t_i^{n+1} = t_i^{i+1}$ for every $i = 0, \ldots, n-1$. Then $p_n \leq_{n+1} p_{n+1}$.

Let $q = (u, \langle r_j : j \in \omega \rangle)$ be the fusion of the sequence. Let $i \in \omega$, $v \subset i$ and $s \subset int(r_i)$ which is r_i -positive. However $r_i = t_i^{i+1}$ and so $s \subseteq int(t_i^{i+1})$ is t_i^{i+1} -positive. Also $\phi(k_i, T_{i+1}, D_i)$ holds and so there is $w_v \subseteq s$ such that $(v \cup w_v, \langle t_j^{i+1} : j \ge i+1 \rangle) \in D_i$. It remains to notice that $\langle r_j : j \ge i+1 \rangle$ is extends $\langle t_j^{i+1} : j \ge i+1 \rangle$ and since D_i is open, $(v \cup w_v, \langle r_j : j \ge i+1 \rangle) \in D_i$. By definition of D_i that is

$$(v \cup w_v, \langle r_j : j \ge i+1 \rangle) \Vdash f(i) = k$$

for some natural number k.

Theorem 8. The forcing notion Q is almost ${}^{\omega}\omega$ -bounding.

Proof. Let f be arbitrary Q-name of a function and p a condition in Q. Let q = (u, T), where $T = \langle t_i : i \in \omega \rangle$ be a pure extension of p which satisfies the Main Lemma. Then for every $i \in \omega$ define

 $g(i) = \max\{k : v \subseteq i, w \subseteq \operatorname{int}(t_i), (v \cup w, \langle t_j : j \ge i+1 \rangle) \Vdash f(i) = k\}.$ Consider any $A \in [\omega]^{<\omega}$ and let $q_A = (u, \langle t_i : i \in A \rangle)$. We claim that

 $q_A \Vdash \forall n \exists k (k \ge n \land k \in A \land \dot{f}(k) \le g(k)) .$

Fix any $n_0 \in \omega$. Let (v, R) be an arbitrary extension of q_A . Then there is $i_0 \in A$ such that $i_0 < n_0$, $v \subseteq i_0$ and $s = \operatorname{int}(R) \cap \operatorname{int}(t_{i_0})$ is t_{i_0} -positive. Note that $i_0 \leq k_{i_0} = \max \operatorname{int}(t_{i_0-1}) + 1$ and so $v \subset k_{i_0}$. But then by Lemma 12 there is $w \subseteq s$ such that $(v \cup w, \langle t_j : j \geq i_0 + 1 \rangle) \Vdash$ $\dot{f}(i_0) = \check{k}$ and so in particular

$$(v \cup w, \langle t_j : j \ge i_0 + 1 \rangle) \Vdash f(i_0) \le g(i_0) .$$

However $(v \cup w, R)$ extends $(v \cup w, \langle t_j : j \ge i_0 + 1 \rangle)$ and so $(v \cup w, R) \Vdash \dot{f}(i_0) \le g(i_0)$. Note also that $(v \cup w, R)$ extends (v, R). Then, since (v, R) was an arbitrary extension of q_A , the set of conditions which force " $\exists i_0$ s.t. $i_0 \ge n_0 \land i_0 \in A \land \dot{f}(i_0) \le g(i_0)$ " is dense above q_A . Therefore

$$q_A \Vdash \exists k (k \ge n_0 \land k \in A \land f(k) \le g(k)) .$$

The natural number n_0 was arbitrary and this completes the proof of the theorem.

References

[1] U. Abraham Proper Forcing, for the Handbook of Set-Theory.

[2] M. Godstern *Tools for your forcing constructions*, In Set Theory of the Reals, vol.6 of Israel Mathematical Conference Proceedings, 305-360

[3] S. Shelah Proper and Improper Forcing, Second Edition. Springer, 1998.

[4] S. Shelah On cardinal invariants of the continuum[207] In (J.E. Baumgartner, D.A. Martin, S. Shelah eds.) Contemporary Mathematics (The Boulder 1983 conference) Vol. 31, Amer. Math. Soc. (1984), 184-207.

E-mail address: vfischer@mathstat.yorku.ca