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Abstract. We construct a model in which there exists a refining matrix of regular height λ larger than h;
both λ = c and λ < c are possible. A refining matrix is a refining system of mad families without common
refinement. Of particular interest in our proof is the preservation of B-Canjarness.

1. Introduction

The Boolean algebra P(ω)/fin has attracted a lot of attention in the last decades. The distributivity
of P(ω)/fin, the well-known distributivity number h, was introduced in [2], where also the famous base
matrix theorem is proved. It is defined as the least number of mad families such that there is no single
mad family refining all of them and as we will see is tightly connected to many other structural properties
of P(ω)/fin. Equivalently, h can be defined as the least cardinal on which P(ω)/fin adds a new function
into the ordinals and clearly, a system of h many mad families can be always chosen to be refining. A
review of basic definitions will be given in Section 2.

In this paper, we consider refining matrices of arbitrary height:

Definition 1.1. We say thatA = {Aξ | ξ < λ} is a refining matrix of height λ if

(1) Aξ is a mad family, for each ξ < λ,
(2) Aη refines Aξ whenever η ≥ ξ, and
(3) there is no common refinement, i.e., there is no mad family B which refines every Aξ.

Note that dropping (2) in the above definition would not yield an interesting notion, because such
objects trivially exist whenever λ ≥ h. It is straightforward to check that the existence of refining matrices
is only a matter of cofinality: if δ is a singular cardinal with cf(δ) = λ, then there exists a refining matrix
of height δ if and only if there exists one of height λ. While h is the minimal height of a refining matrix, it
is easy to check that there can never be a refining matrix of regular height larger than c. Refining matrices
and similar objects have been extensively studied, for example in [2], [11], [13], [23], [10], [1], and [30].
However, to the best of our knowledge, all refining matrices considered in the above works, are of height
h. Thus, the very natural question arises, if a refining matrix is necessarily of height h, which leads to the
main result of the current paper:
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Main Theorem 1.2. Let V0 be a model of ZFC which satisfies GCH. In V0, let ω1 < λ ≤ µ be cardinals
such that λ is regular and cf(µ) > ω. Then there is a c.c.c. (and hence cofinality preserving) extension W
of V0 in which there exists a refining matrix of height λ, and ω1 = h = b < c = µ.

Thus, in particular, the existence of refining matrices of two different regular heights is consistent. We
construct the model W as follows. We start with V0 and pass to the Cohen extension V in which c = µ.
In V , we define a forcing iteration (see Section 3.1) which adds a refining matrix of height λ. Building
on ideas from [21], we use c.c.c. iterands which approximate the refining matrix by finite conditions.
However we have to use an iteration, because after a single step of the forcing new reals are added, which
prevents the generically added almost disjoint families from being maximal. We show that the generic
object is actually a refining matrix: in particular, the branches are towers (see Section 4.3) and the levels
are mad families (see Section 4.4); for that, we use complete subforcings (see Section 3.4) to capture new
subsets of ω (see Section 4.2).

To establish ω1 = h = b in the final model, we show that b = ω1 and use the fact that h ≤ b holds
in ZFC. In fact, we show that the ground model reals B = ωω ∩ V0 remain unbounded. For that, we
represent our iteration as a finer iteration of Mathias forcings with respect to carefully selected filters (see
Section 6.1) and use a characterization from [20] to show that these filters are B-Canjar (see Section 5
and Section 6.2), i.e., that the corresponding Mathias forcings preserve the unboundedness of B. 1 One
can use a genericity argument to show that the chosen filters are B-Canjar at the stage where they appear,
however the B-Canjarness of the filters is needed in later stages of the iteration. Since the notion of
B-Canjarness of a filter is not absolute (see2 Example 5.4), we develop a new method allowing us to
guarantee that the B-Canjarness of a filter is preserved by Mathias forcings with respect to certain other
filters. One basic ingredient is the notion of a “sum” F0 ⊕F1 of two, or finitely many, filters F0 and F1

for which the following holds true (see Lemma 5.8.(1)):

Proposition 1.3. If B ⊆ ωω is unbounded and F0 ⊕F1 is B-Canjar, then Mathias forcing with respect
to F1 forces “F0 is B-Canjar”.

We conclude the paper with further discussion and some open questions. In Section 7.2, we consider
the nature of maximal branches through refining matrices. There are two possibilities for such branches:
either the branch is cofinal or not. Consistently, there are refining matrices of height h without cofinal
branches (this was shown in [11] and [13]). In contrast, in the model of Main Theorem 1.2 all maximal
branches of the generic refining matrix of height λ > h are cofinal. In the Cohen model, however, there
are no refining matrices of this type of height larger than h. In Section 7.3, we conclude the paper with
a discussion of the notion of a spectrum of refining systems of mad families which our main result gives
rise to.

2. Preliminaries

In this section, we recall basic definitions and facts. The reader should feel free to skip this section and
only come back if necessary.

1In [15], the same is done for Hechler’s original forcings [21] to add a tower or to add a mad family.
2We thank Osvaldo Guzmán [19] for providing an example of non-absoluteness.
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Let [ω]ω denote the collection of infinite subsets of ω and let ⊆∗ denote the pre-order of almost-
inclusion: b ⊆∗ a if b \ a is finite. We write a =∗ b if a ⊆∗ b and b ⊆∗ a. We say that a and b are
almost disjoint if a ∩ b is finite. Moreover, we say that A ⊆ [ω]ω is an almost disjoint family if a and a′

are almost disjoint whenever a, a′ ∈ A with a , a′. An almost disjoint family A is maximal (called mad
family) if for each b ∈ [ω]ω there exists a ∈ A such that |b ∩ a| = ℵ0 (i.e., if A is a maximal antichain in
([ω]ω,⊆∗)). For two almost disjoint families A and B, we say that B refines A if for each b ∈ B there exists
an a ∈ A with b ⊆∗ a. Let spec(a) := {µ | µ is an infinite cardinal and there is a mad family of size µ} be
the mad spectrum on ω, and let a := min(spec(a)) be the almost disjointness number. It is well-known
and easy to see that there are always mad families of size c. For a sequence 〈aξ | ξ < δ〉 ⊆ [ω]ω, we
say that b ∈ [ω]ω is a pseudo-intersection of 〈aξ | ξ < δ〉 if b ⊆∗ aξ for each ξ < δ. We say that
〈aξ | ξ < δ〉 is a tower of length δ if aη ⊆∗ aξ for any η > ξ, and it does not have an infinite pseudo-
intersection. Let spec(t) := {δ | δ is regular and there is a tower of length δ} be the tower spectrum, and
let t := min(spec(t)) be the tower number.

Recall from Definition 1.1 that a refining matrix A = {Aξ | ξ < λ} is a refining system of mad families
without common refinement. Such a system can be viewed as a tree, which we think of growing down-
wards: for each ξ < λ, the elements of the mad family Aξ form the level ξ of the tree, and for b ∈ Aη and
a ∈ Aξ with η > ξ, the element b is below the element a in the tree if and only if b ⊆∗ a. Due to the refining
structure of the refining matrix, each element of Aη is below exactly one element of Aξ. Note that this
tree is necessarily splitting3 at some limit levels, because there always appear ⊆∗-decreasing sequences
of limit length which have no weakest lower bound. We say that 〈aξ | ξ < δ〉 is a branch through A if
aξ ∈ Aξ for each ξ < δ, and aη ⊆∗ aξ for each ξ ≤ η < δ. We say that the branch is maximal if there is no
branch through A strictly extending it. As a matter of fact, a maximal branch through a refining matrix
can be cofinal or not; for a discussion of different types of refining matrices (in particular ones without
cofinal branches), see Section 7.2. We say that b ∈ [ω]ω intersects A if for each ξ < λ there is an a ∈ Aξ
with b ⊆∗ a. Definition 1.1(3) is in fact equivalent to

(3’) {b ∈ [ω]ω | b intersectsA} is not dense in ([ω]ω,⊆∗).

If there is no b intersecting A, we call A normal. Note that a refining matrix can always be turned
into a normal refining matrix of the same height: let ā be a witness for (3’), and, for each ξ < λ, let
Āξ := {a ∩ ā | a ∈ Aξ ∧ |a ∩ ā| = ω}; it is easy to check that {Āξ | ξ < λ} is a refining matrix of height λ
below ā. We say that A is a base matrix if

⋃
ξ<λ Aξ is dense in ([ω]ω,⊆∗). This notion goes back to [2]

where the existence of base matrices of height h has been shown. It is straightforward to check that a base
matrix is always normal.

For f , g ∈ ωω, we write f ≤∗ g if f (n) ≤ g(n) for all but finitely many n ∈ ω. We say that B ⊆ ωω is
an unbounded family, if there exists no g ∈ ωω with f ≤∗ g for all f ∈ B. The (un)bounding number b
is the smallest size of an unbounded family in ωω. The following inequalities between the cardinal
characteristics are well-known and not too hard to prove (see, e.g., [4] for more details):

(1) ω1 ≤ t ≤ h ≤ b ≤ a ≤ c.

3See also the discussion in Section 3.1 about the generic refining matrix of Main Theorem 1.2, whose underlying tree is
splitting everywhere.
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3. Forcing a refining matrix

In this section, we start with the proof of Main Theorem 1.2. In Section 3.1 we define a key forcing
notion, study its basic properties, as well as properties of the generic object (see Sections 3.2 and 3.3) and
establish a crucial lemma about complete subforcings (see Section 3.4). In Section 4, we will complete
the proof that the generic object is indeed a refining matrix. Section 5 and Section 6 are devoted to the
remaining part of our main result, i.e. to showing that ω1 = h = b in the final model.

3.1. Definition of the forcing iteration. We will define a forcing for adding a refining matrix. The
definition has been motivated by the posets for adding towers and mad families from Hechler’s paper [21];
see [15] for a representation of these forcings in a form analogous to our definition of Qα below.

We proceed as follows. In V0, let Cµ be the usual forcing for adding µ many Cohen reals and let V be
the extension by Cµ. In V , we perform a finite support iteration of length λ to add a refining matrix of
height λ. The iterands of this iteration have the countable chain condition (see Lemma 3.3) and are of size
continuum. In particular, the size of the continuum stays the same during the whole iteration and c = µ

in the final model (see Lemma 3.4.(1)). Our generic refining matrix {Aξ+1 | ξ < λ} will be based on λ<λ:
each node σ ∈ λ<λ of successor length will carry an infinite set aσ ⊆ ω such that for each ξ < λ,

Aξ+1 = {aσ | σ ∈ λξ+1}

is a mad family, and aσ ⊆∗ aτ if σ extends τ. All maximal branches of the generic matrix will be cofinal.
We write τ E σ if τ ⊆ σ (i.e., if σ extends τ); we write τ C σ if τ E σ and τ , σ. The length of σ is
denoted by |σ|. We say that σ is below τ if τ Eσ; moreover, we say that ρa j is to the left of ρai whenever
j < i, and we call a set of nodes a block if it is of the form {ρai | i < λ} for some ρ ∈ λ<λ. Note that
our mad families Aξ+1 are indexed by successor ordinals only, because there are ⊆∗-decreasing sequences
of limit length which do not have weakest lower bounds, and therefore it is necessary that the underlying
tree “splits” at such limit levels. Before giving the precise definition of our forcing iteration, let us explain
why an iteration is needed. We generically add a set aσ ⊆ ω for every σ ∈ λ<λ in V of successor length
in such a way that aτ ⊇∗ aσ if τ E σ, and aσ ∩ aτ =∗ ∅ if |σ| = |τ|, resulting in a refining system of almost
disjoint families. But since new reals and hence new branches through λ<ω are added, the almost disjoint
family Aω+1 is not maximal, witnessed by any pseudo-intersection of such a new branch.

As usual, we abuse notation and identify aσ ⊆ ω with its characteristic function in 2ω. Throughout
succ denotes sequences τ of ordinals, where τ has successor length.

Definition 3.1. We define a finite support iteration {Pα, Q̇α | α < λ} of length λ. Let P0 = {∅}. Let α < λ

and assume Pα has been defined. For every β ≤ α, let Gβ be generic for Pβ, let T ′α =
⋃
β<α(λ<λ∩succ)V[Gβ]

and let Tα = (λ<λ∩succ)V[Gα]\T ′α. In V[Gα],Qα consists of all p, where p is a function with finite domain,
dom(p) ⊆ Tα, such that for each σ ∈ dom(p), p(σ) = (sp

σ, f p
σ , h

p
σ) = (sσ, fσ, hσ) where4

(1) sσ ∈ 2<ω,
(2) if τ C σ, then |sτ| ≥ |sσ|,
(3) dom( fσ) ⊆ (dom(p) ∪ T ′α) ∩ {τ ∈ Tα ∪ T ′α | τ C σ} is finite,
(4) fσ: dom( fσ)→ ω,

4The paragraph after the definition gives a short intuitive explanation of the roles of sσ, fσ, and hσ.



REFINING SYSTEMS OF MAD FAMILIES 5

(5) whenever τ ∈ dom( fσ) ∩ Tα, n ∈ dom(sσ) are such that n ≥ fσ(τ) (hence n ∈ dom(sτ) by (2)
and (3)), we have

sτ(n) = 0→ sσ(n) = 0,

and whenever τ ∈ dom( fσ) ∩ T ′α, n ∈ dom(sσ) are such that n ≥ fσ(τ), we have

aτ(n) = 0→ sσ(n) = 0,

(6) dom(hσ) ⊆ dom(p) ∩ {ρa j | j < i}, where ρ ∈ λ<λ and i ∈ λ are such that σ = ρai,
(7) hσ: dom(hσ)→ ω,
(8) whenever τ ∈ dom(hσ), n ∈ dom(sτ) ∩ dom(sσ) are such that n ≥ hσ(τ), we have

sτ(n) = 0 ∨ sσ(n) = 0.

The order on Qα is defined as follows: q ≤ p (“q is stronger than p”) if

(i) dom(p) ⊆ dom(q),
(ii) and for each σ ∈ dom(p), we have

(a) sp
σ E sq

σ,
(b) dom( f p

σ ) ⊆ dom( f q
σ) and f p

σ (τ) ≥ f q
σ(τ) for each τ ∈ dom( f p

σ ),
(c) dom(hp

σ) ⊆ dom(hq
σ) and hp

σ(τ) ≥ hq
σ(τ) for each τ ∈ dom(hp

σ).

Given a generic filter G for Qα, we define for each σ ∈ Tα,

aσ =
⋃
{sp
σ | p ∈ G ∧ σ ∈ dom(p)}.

This completes the definition of the forcing.

In the above definition sσ is a finite approximation of the set aσ assigned to σ, whereas the functions
fσ and hσ are promises for guaranteeing that the branches through the generic matrix are ⊆∗-decreasing
and the levels are almost disjoint families, respectively. More precisely, fσ promises that aσ \ fσ(τ) ⊆ aτ
for each τ ∈ dom( fσ) and hσ promises that aτ ∩ aσ ⊆ hσ(τ) for each τ ∈ dom(hσ) (see Lemma 3.5.(4)).

Remark 3.2. Note that Qα is not separative. As an example, we can take p and q as follows: dom(p) =

dom(q) = {σ, τ} where σ is to the left of τ; p(τ) = q(τ) = (〈1〉, ∅, h) where h(σ) = 0; p(σ) = (〈〉, ∅, ∅)
and q(σ) = (〈0〉, ∅, ∅). It is easy to see that p � q, but any condition stronger than p is compatible
with q. Therefore, we later need to provide certain iteration lemmas for the general case of non-separative
forcings (see Lemma 4.1.(3)).

3.2. Countable chain condition and some implications. We are now going to show that our iterands
Qα have the c.c.c. and so their finite support iteration Pλ does not change cofinalities or cardinalities.

Lemma 3.3. Qα is precaliber ω1 (hence in particular c.c.c.) for every α < λ.

In fact, Qα is even σ-centered: in Section 6, we are going to show that each Qα can be represented as a
finite support iteration of length strictly less than c+ of Mathias forcings with respect to certain filters; since
filtered Mathias forcings are σ-centered and σ-centeredness is preserved under finite support iterations of
length strictly less than c+, it follows that Qα is σ-centered (see also Corollary 6.2.(1)).
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Proof of Lemma 3.3. Let {pi | i < ω1} ⊆ Qα. First note that it is possible to extend5 all sp
σ (with σ ∈

dom(p)) of a condition p ∈ Qα to the same length Np ∈ ω, by just adding 0’s at the end. Therefore we
can assume that there exists N such that |spi

σ | = N for each i ∈ ω1 and each σ ∈ dom(pi). Apply the
∆-system lemma to {dom(pi) | i ∈ ω1} to find X ⊆ ω1 of size ω1 such that {dom(pi) | i ∈ X} is a ∆-system
with root R ⊆ Tα. Then we repeatedly apply the ∆-system lemma to obtain Y ⊆ X of size ω1 such that
{dom( f pi

σ ) ∩ T ′α | i ∈ Y} is a ∆-system with root Aσ for each σ ∈ R. Moreover, we can assume that for
each σ ∈ R, there are s∗σ, f ∗σ, and h∗σ such that for all i ∈ Y , we have spi

σ = s∗σ, f pi
σ � (R ∪ Aσ) = f ∗σ, and

hpi
σ � R = h∗σ. Now it is straightforward to check that any two conditions from {pi | i ∈ Y} are compatible;

in fact, any finitely many of them have a common lower bound. �

Using standard arguments, one can easily show:

Lemma 3.4.
(1) Let α ≤ λ. Then, in V[Pα], we have c = µ.
(2) Every node σ ∈ λ<λ from the final model V[Pλ] already appears in some V[Pα] with α < λ.

3.3. The generic refining matrix. Let G be a generic filter for the iteration Pλ. In the final model V[G],
we derive our intended generic object as follows. For each σ ∈ λ<λ ∩ succ fix the minimal α < λ such
that σ ∈ V[Gα] (see Lemma 3.4.(2)). Then in V[Gα], the node σ belongs to Tα, and letting G(α) be the
Qα generic filter over VPα define aσ =

⋃
{sp
σ | p ∈ G(α) ∧ σ ∈ dom(p)}. In V[G], we let for each ξ < λ,

Aξ+1 = {aσ | |σ| = ξ + 1}. We are now going to show that {Aξ+1 | ξ < λ} is a refining system of almost
disjoint families.

Lemma 3.5. Let α < λ.

(1) Let σ ∈ Tα, n ∈ ω. Then Dσ,n = {q ∈ Qα | σ ∈ dom(q) and |sq
σ| ≥ n} is dense in Qα.

(2) The set D of conditions q in Qα such that for each σ ∈ dom(q)
(a) if τ ∈ dom(q) and τ C σ, then τ ∈ dom( f q

σ),
(b) if σ = ρai then for each j < i such that ρa j ∈ dom(q), we have that ρa j ∈ dom(hq

σ)
is dense in Qα. Moreover, for each p ∈ Qα there is q ∈ D, q ≤ p such that dom(p) = dom(q).

(3) If α > 0, τ′ ∈ T ′α, p ∈ Qα and τ′ C σ for some σ ∈ dom(p), then there is q ∈ D (here D is from
item (2) above) such that q ≤ p, dom(p) = dom(q) and τ′ ∈ dom( f q

σ).
(4) Let p ∈ Qα and σ ∈ dom(p).

(a) If τ ∈ dom( f p
σ ), then p aσ \ f p

σ (τ) ⊆ aτ. In particular, p aσ ⊆∗ aτ.
(b) If τ ∈ dom(hp

σ), then p aτ ∩ aσ ⊆ hp
σ(τ) In particular, p aτ ∩ aσ =∗ ∅.

Proof. (1) Let p ∈ Qα. Clearly, we can assume that σ ∈ dom(p). It is easy to see, using (2), (5), and (8)
in Definition 3.1, that, by adjoining 0’s, it is possible to extend all sp

τ in such a way that the resulting q is
a condition and |sq

σ| ≥ n.
(2) Let p ∈ Qα, σ ∈ dom(p). For every τ ∈ dom(p) \ dom( f p

σ ) with τ C σ, let f q
σ(τ) = |sp

σ|. For every
ρa j ∈ dom(p) \ dom(hp

σ) with j < i, let hq
σ(ρa j) = |sp

σ|.
(3) Take f q

σ(τ′) = |sp
σ|.

(4) This is easy to see, using (5) and (8) in Definition 3.1.

5In Lemma 3.9, we will show a stronger fact.
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�

Now we can show that in the final model V[Pλ], the sets along branches of λ<λ are ⊆∗-decreasing and
the sets on any level of λ<λ ∩ succ are pairwise almost disjoint.

Corollary 3.6. In V[Pλ], the following hold:

(1) If τ, σ ∈ λ<λ ∩ succ such that τ C σ, then aσ ⊆∗ aτ.
(2) If ρ ∈ λ<λ and j < i < λ, then aρa j ∩ aρai =∗ ∅. Moreover for each ξ < λ, σ,σ′ ∈ λξ+1, σ , σ′,

we have aσ ∩ aσ′ =∗ ∅ and so Aξ+1 = {aσ | σ ∈ λξ+1} is an almost disjoint family.

Proof. To show (1), let η < λ be minimal such that σ ∈ (λ<λ)V[Pη]. Lemma 3.5.(1), Lemma 3.5.(2), and
Lemma 3.5.(4a) imply that the set {q ∈ Qη | q aσ ⊆∗ aτ} is dense. Hence already V[Pη+1] |= aσ ⊆∗ aτ,
which remains true in V[Pλ]. To show (2), take η < λ minimal such that ρ ∈ (λ<λ)V[Pη]. Lemma 3.5.(1),
Lemma 3.5.(2) and Lemma 3.5.(4b) imply that the set {q ∈ Qη | q aρa j ∩ aρai =∗ ∅} is dense. Given
σ,σ′ ∈ λξ+1 such that σ , σ′, find ρ ∈ λ<λ with ρCσ,σ′ and i, j < λ, j , i such that ρa jEσ and ρaiEσ′.
Apply the preceding argument and then (1). �

Finally, we show that each aσ is infinite. By “s(m) = 1”, we actually mean “m ∈ dom(s) and s(m) = 1”.

Lemma 3.7. Let α < λ, σ ∈ Tα, n ∈ ω. Then Dσ,n = {q ∈ Qα | σ ∈ dom(q) and ∃m ≥ n(sq
σ(m) = 1)} is

dense in Qα.

Proof. The proof proceeds by induction on α < λ. Let σ ∈ Tα, n ∈ ω and p ∈ Qα. By Lemma 3.5.(1), we
can assume that σ ∈ dom(p). Let N0 ∈ ω be bigger than the maximal length of all the sp

τ with τ ∈ dom(p)
and τ E σ, and bigger than n. Let A =

⋃
{dom( f p

τ ) ∩ T ′α | τ ∈ dom(p) ∧ τ E σ}.
If A is empty, let m ∈ ω be arbitrary with m ≥ N0. Otherwise, let N1 ≥ N0 be large enough such that

aψ′ \ N1 ⊆ aψ for all ψ, ψ′ ∈ A with ψ E ψ′ (see Corollary 3.6). Moreover, let ψ∗ be the longest element
of the finite set A. By induction, aψ∗ is infinite, so we can fix m ≥ N1 such that aψ∗(m) = 1. Therefore
aψ(m) = 1 for each ψ ∈ A. Now, for every τ ∈ dom(p) with τ E σ, extend sp

τ with 0’s to a node s̄τ of
length m and take sq

τ = s̄aτ 1. It is easy to check that q is a condition, q ≤ p and sq
σ(m) = 1 as desired. �

Altogether, we proved that {Aξ+1 | ξ < λ} is a refining system of almost disjoint families. To show that
it forms a refining matrix requires much more, the proof of which will be completed in Section 4.

3.4. Upwards closed sets and complete subforcings. The goal of this section is to show that our forc-
ing Qα has complete subforcings which use only part of Tα (see Lemma 3.11). In Section 4.2, this will be
extended to the whole iteration (see Lemma 4.8), which will be an important ingredient of the proof that
the generic object is a refining matrix (see Section 4.3 and Section 4.4). Moreover, Lemma 3.11 will play
a crucial role in showing that h = b = ω1 in the final extension. We now work in V[Pα].

Definition 3.8. A condition p ∈ Qα is called full if there exists an N ∈ ω such that for all σ ∈ dom(p)

(1) |sp
σ| = N,

(2) N > max(rng( f p
σ )) and N > max(rng(hp

σ)),
(3) τ ∈ dom( f p

σ ) for each τ ∈ dom(p) with τ C σ, and
(4) if σ = ρai then for each j < i with ρa j ∈ dom(p), we have ρa j ∈ dom(hp

σ).
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A condition p ∈ Pλ is said to be full, if p(0) is full.

Later, we will use quotients Pλ /Pη and a modification where 0 is replaced by η. Lemma 3.5 gives:

Lemma 3.9. For every condition p ∈ Qα there exists a full condition q with q ≤ p and dom(q) = dom(p).
Hence the set of full conditions in Pλ is dense in Pλ.

Important complete suborders of our forcing are captured by the following notion:

Definition 3.10. Let C ⊆ λ<λ, α < λ.

(1) QC
α = {p ∈ Qα | dom(p) ⊆ C}.

(2) C is said to be α-upwards closed if for each σ ∈ C and each τ C σ with τ ∈ Tα, we have τ ∈ C.
(3) For p ∈ Qα, let p �� C be the function p′ with dom(p′) = dom(p)∩C, sp′

σ = sp
σ, f p′

σ = f p
σ � (C∪T ′α)

and hp′
σ = hp

σ � C for each σ ∈ dom(p′). Clearly, p′ is a condition in QC
α and if C is α-upwards

closed, then f p′
σ = f p

σ .

Recall that P′ is a complete subforcing of P, denoted P′ lP, if for each q, q′ in P′, q ⊥P′ q′ → q ⊥P q′,
and each p ∈ P has a reduction q ∈ P′ (i.e. a condition q such that if r ∈ P′ and r ≤ q then r 6⊥P p).

Lemma 3.11. Let C ⊆ λ<λ be α-upwards closed. Then QC
α is a complete subforcing of Qα. Moreover, if

p ∈ Qα is a full condition, then p �� C is a reduction of p to QC
α .

The sets λ1 = {σ ∈ λ<λ | |σ| = 1}, 1<λ = {σ ∈ λ<λ | σ(ξ) = 0 for every ξ} are 0-upwards closed. Thus,
Q(λ1)

0 and Q(1<λ)
0 are complete subforcings of Q0. Note that they are isomorphic to the posets introduced

by Hechler [21] to add a mad family or a tower, respectively (for a further study see [15]).

Proof of Lemma 3.11. We give the proof only for the case α = 0 and leave the only slightly different
general case to the reader. To show that incompatible conditions inQC

0 are incompatible inQ0, let p0, p1 ∈

QC
0 and q ∈ Q0 with q ≤ p0, p1; then q′ = q �� C is in QC

0 and q′ ≤ p0, p1, as desired. Now, consider
any p ∈ Q0 and let p′ ≤ p be a full condition with dom(p′) = dom(p). We will show that p′ �� C is a
reduction of p to QC

0 . Let q ≤ p′ �� C with q ∈ QC
0 .

Let q′ ≤ q be such that |sq′
σ | = |sq′

τ | for all σ, τ ∈ dom(q′). Let dom(r) = dom(q′) ∪ dom(p′). For
σ ∈ dom(p′) \ dom(q′) let sr

σ = sp′
σ , f r

σ = f p′
σ , hr

σ = hp′
σ . Similarly for σ ∈ dom(q′) \ dom(p′) let sr

σ = sq′
σ ,

f r
σ = f q′

σ , hr
σ = hq′

σ . For σ ∈ dom(q′) ∩ dom(p) let sr
σ = sq′

σ , f r
σ = f q′

σ , dom(hr
σ) = dom(hq′

σ ) ∪ dom(hp′
σ ),

and for σ′ ∈ dom(hq′
σ ) let hr

σ(σ′) = hq′
σ (σ′), for σ′ ∈ dom(hp′

σ ) \ dom(hq′
σ ) let hr

σ(σ′) = hp′
σ (σ′).

Claim. r is a condition.

Proof. It is very easy to check that sr
σ, f r

σ and hr
σ are well-defined with the right domains and ranges for

all σ ∈ dom(r). Next, we show that if σ E τ, then |sr
σ| ≥ |s

r
τ|: If τ ∈ dom(q′), it follows by the α-upwards

closure that σ ∈ dom(q′), hence by definition sr
σ = sq′

σ , sr
τ = sq′

τ and |sr
σ| ≥ |s

r
τ| since q′ is a condition. If

τ < dom(q′), then |sr
τ| = |s

p′
τ | = |s

p′
σ | and regardless if σ ∈ dom(q) or not, |sr

σ| ≥ |s
p′
σ |.

Let σ, τ ∈ dom(r) with τ ∈ dom( f r
σ) and m ≥ f r

σ(τ) and sr
σ(m) = 1. We have to show that sr

τ(m) = 1
(note that, in case α > 0, one also has to deal with the case τ ∈ dom( f r

σ)\dom(r) which works similarly
with aτ(m) in place of sr

τ(m)). Case 1: σ and τ are both in dom(q′). In this case sr
σ = sq′

σ , sr
τ = sq′

τ ,
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f r
σ(τ) = f q′

σ (τ) and sr
τ(m) = 1 holds since q′ is a condition. Case 2: σ ∈ dom(q′) and τ < dom(q′). This

contradicts the α-upwards closure of C. Case 3: σ < dom(q′) and τ ∈ dom(q′). So f r
σ = f p′

σ and sr
σ = sp′

σ .
Thus m < |sp′

σ | and τ ∈ dom(p′) because dom( f r
σ) ⊆ dom(p′). Since p′ is a condition, it follows that

sp′
τ (m) = 1 and clearly sr

τ(m) = sp′
τ (m). Case 4: σ < dom(q′) and τ < dom(q′). In this case sr

σ = sp′
σ ,

sr
τ = sp′

τ , f r
σ = f p′

σ and sr
τ(m) = 1 follows since p′ is a condition.

Assume ρ, ρ′ ∈ dom(r), ρ′ ∈ dom(hr
ρ), m ≥ hr

ρ(ρ
′) and sr

ρ(m) = 1; we have to show that sr
ρ′(m) = 0, if

it is defined. Case 1: ρ, ρ′ ∈ dom(q′). In this case sr
ρ = sq′

ρ , sr
ρ′ = sq′

ρ′ and hr
ρ(ρ
′) = hq′

ρ (ρ′) and sr
ρ′(m) = 0

follows since q′ is a condition. Case 2: ρ ∈ dom(q′) and ρ′ < dom(q′). Since ρ′ ∈ dom(hr
ρ) \ dom(q′)

it follows that ρ ∈ dom(p′) and ρ′ ∈ dom(hp′
ρ ). If m ≥ |sp′

ρ |, then |sr
ρ′(m)| is undefined. If m < |sp′

ρ | the

fact that p′ is a condition implies that sp′

ρ′ (m) = 0 which is the same as sr
ρ′(m). Case 3: ρ < dom(q′) and

ρ′ ∈ dom(q′). It follows that ρ′ ∈ dom(hr
ρ) = dom(hp′

ρ ) ⊆ dom(p′) and m < |sr
ρ| = |sp′

ρ |. Since p′ is a

condition sp′

ρ′ (m) = 0 which is the same as sr
ρ′(m). Case 4: ρ, ρ′ < dom(q′). In this case sr

ρ = sp′
ρ , sr

ρ′ = sp′

ρ′

and hr
ρ = hp′

ρ and sr
ρ′(m) = 0 follows since p′ is a condition. �

It is straightforward to check that r extends both q′ and p′ (and therefore q and p). �

4. No refinement, and madness of levels

This section is dedicated to the central part of the proof that the generic object added by our forcing
iteration is a refining matrix of height λ. In Sections 4.4 and 4.3 we show that the levels are mad families
with no further refinements. We start with some preliminary lemmas and concepts.

4.1. On forcing iterations and correct systems. Next, we gather some key properties of forcing iter-
ations and completeness, which will play a crucial role for our construction later. For further reading,
see [18]. Throughout the subsection P, Q, etc. denote arbitrary forcing posets. Recall the following:

Lemma 4.1.
(1) Suppose that P0 lP and6 P1 lP satisfying P0 ⊆ P1. Then P0 lP1. Moreover, if q ∈ P0 is a

reduction of p ∈ P1 from P to P0, then q is also a reduction of p from P1 to P0.
(2) Suppose that P′ lP. Let ϕ be some formula, let ẋ, ẏ, etc. be P′-names, and let p ∈ P such that

pP ϕ(ẋ, ẏ, . . .). Then for each p′ ∈ P′ which is a reduction of p, we have p′ P′ ϕ(ẋ, ẏ, . . .).
(3) Let {Pα, Q̇α | α < δ} and {P′α, Q̇

′
α | α < δ} be finite support iterations such that for each α < δ,

Pα Q̇
′
α l Q̇α. Then P′δ is a complete subforcing of Pδ.

Moreover, if red: Q0 → Q′0 is a map such that red(q) is a reduction of q for each q ∈ Q0, then
for each p ∈ Pδ, there is a p′ ∈ P′δ such that p′ is a reduction of p, and p′(0) = red(p(0)), and, if
α ≥ 1 and p(α) is a P′α-name with p � α p(α) ∈ Q̇′α, then p′(α) = p(α).

The first part of item (3) can be found in [9]), however we will need the technical strengthening given
by the mapping red. The iterands in (3) need not be separative, which is essential, as we will apply the
Lemma to the Qα’s from Definition 3.1. The concept below has been introduced by Brendle (see [7, 8]):

6In fact, it is sufficient for the proof to go through that incompatible conditions in P1 are incompatible in P.
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Definition 4.2. A system of forcings R0,R1 l R with R0 ∩ R1 l R0,R1 is correct if any two conditions
p0 ∈ R0 and p1 ∈ R1 which have a common reduction in R0 ∩ R1 are compatible in R.

Under the assumptions of the lemma below, R = P ∗Q̇, R0 = P and R1 = P′ ∗Q̇′ is a correct system. We
do not know however, whether the conclusion of the lemma holds for every correct system.

Lemma 4.3. Let P ∗Q̇ and P′ ∗Q̇′ be two-step iterations satisfying P′ lP and P Q̇′ l Q̇. Then

V[P′ ∗Q̇′] ∩ V[P] = V[P′].

Proof. We will only show the special case which we will need later (it is straightforward to extend the
proof to the general case): for any δ, ε ∈ Ord,

δε ∩ V[P′ ∗Q̇′] ∩ V[P] ⊆ V[P′].

Let G be a generic filter for P′, let ḟ0 be a P-name, and let ḟ1 be a P′ ∗Q̇′-name. Work in V[G]. Assume
towards a contradiction that there is a condition (p, q̇) ∈ P ∗Q̇ with p ∈ P /G such that

(2) (p, q̇) ḟ0 = ḟ1 ∈ Ord<Ord ∧ ḟ0 < V[G].

Let p′ ∈ G be a reduction of p to P′. By standard arguments, we can fix a P′-name q̇′ such that p “q̇′

is a reduction of q̇” and (p′, q̇′) ∈ P′ ∗Q̇′. Since p is reduction of (p, q̇) to P, it follows from (2) and
Lemma 4.1.(2) that p ḟ0 < V[G]. Therefore, we can fix γ ∈ ε such that p does not decide ḟ0(γ) in P /G.
Let (p1, q̇1) ≤ (p′, q̇′) and ξ1 ∈ δ such that p1 ∈ G and (p1, q̇1) ḟ1(γ) = ξ1. Since p does not decide ḟ0
at γ, we can fix p0 ∈ P /G with p0 ≤ p and ξ0 ∈ δ with ξ0 , ξ1 such that p0  ḟ0(γ) = ξ0. Now we want
to find a condition (p∗, q̇∗) which is stronger than (p, q̇), (p1, q̇1) and (p0,1). First note that p0 and p1 are
compatible, because p0 ∈ P /G and p1 ∈ G, and fix p∗ ≤ p0, p1. Since p∗ ≤ p, p1 it follows that p∗  “q̇′

is a reduction of q̇ and q̇1 ≤ q̇′” hence p∗  q̇1 6⊥ q̇. Let q̇∗ be a P-name such that p∗  q̇∗ ≤ q̇1, q̇. It is
easy to check that (p∗, q̇∗) ≤ (p, q̇), (p1, q̇1), (p0,1). Now (p∗, q̇∗) ḟ0 = ḟ1 ∧ ḟ0(γ) = ξ0 ∧ ḟ1(γ) = ξ1, but
ξ0 , ξ1, a contradiction. �

We conclude with an easy observation we will need later on:

Lemma 4.4. Suppose P′ lP, ḃ is a P′-name and p ∈ P is such that p ḃ ∈ [ω]ω. Then for each N ∈ ω
there are r ∈ P′, m > N such that r m ∈ ḃ and r is compatible with p.

4.2. Complete subforcings: hereditarily below γ. In this section, we give some technical definitions
and lemmas as a preparation for the main proofs in Sections 4.3 and 4.4. More precisely, we define, for
each γ < λ, the subforcings of “hereditarily below γ” conditions of our iteration, show that they form
complete subforcings (see Lemma 4.8) and that each condition is hereditarily below γ for some γ < λ

(see Lemma 4.10). For the rest of the section fix η < λ and a Pη-generic filter Gη.

Definition 4.5. Let γ < λ. In V[Gη] define by recursion on η ≤ α ≤ λ for a condition p ∈ Pα /Gη to be
hereditarily below γ and the poset <γ(Pα /Gη):

(1) p ∈ Qη is hereditarily below γ, if dom(p) ⊆ γ<γ.
(2) Let <γ(Pα /Gη) = {p ∈ Pα /Gη | p hereditarily below γ}.
(3) Let α > η, p ∈ Pα+1 /Gη is hereditarily below γ, if p � α ∈ <γ(Pα /Gη), p(α) is a <γ(Pα /Gη)-name

and p � α dom(p(α)) ⊆ γ<γ.
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(4) For α limit, p ∈ Pα /Gη is hereditarily below γ, if p � β ∈ <γ(Pβ /Gη) for every β < α.

For α ≤ λ, a Pα /Gη-name ḃ is hereditarily below γ, if for all (ẋ, p) ∈ ḃ, p ∈ <γ(Pα /Gη) and ẋ is
hereditarily below γ (this is by recursion).

Clearly, if p ∈ Pα /Gη is hereditarily below γ and γ′ > γ, then p is also hereditarily below γ′. The same
holds for a Pα /Gη-name ḃ.

Definition 4.6. Let γ < λ, τ ∈ λ<λ. In V[Gη] define by recursion on η ≤ α ≤ λ for a condition p ∈ Pα /Gη

to be almost hereditarily below γ except for τ and the poset <γ+τ(Pα /Gη):

(1) p ∈ Qη is almost hereditarily below γ except for τ, if dom(p) ⊆ γ<γ ∪ {τ}.
(2) Let <γ+τ(Pα /Gη) = {p ∈ Pα /Gη | p almost hereditarily below γ except for τ}.
(3) Let α > η, p ∈ Pα+1 /Gη is almost hereditarily below γ except for τ, if p � α is almost hereditarily

below γ except for τ, p(α) is a7 <γ(Pα /Gη)-name and p � α dom(p(α)) ⊆ γ<γ.
(4) For α limit, p ∈ Pα /Gη is almost hereditarily below γ except for τ, if p � β is almost hereditarily

below γ except for τ, for every β < α.

For α ≤ λ, a Pα /Gη-name ḃ is almost hereditarily below γ except for τ, if for all (ẋ, p) ∈ ḃ, both p and ẋ
are almost hereditarily below γ except for τ. We will write almost hereditarily below γ and omit the τ if
it is clear from the context which τ is meant.

Clearly, if p ∈ Pα /Gη is almost hereditarily below γ and γ′ > γ, then p is also almost hereditarily
below γ′, and if p ∈ Pα /Gη is hereditarily below γ, then it is almost hereditarily below γ except for τ for
every τ. The same holds for a Pα /Gη-name ḃ. We will make use of the following easy fact:

Lemma 4.7. Assume P′ is a complete subforcing of P and G is P-generic. Then in V[G], the set
(γ<γ)V[G∩P′] is α-upwards closed for any α < λ.

Proof. Clearly, (γ<γ)V[G∩P′] is α-upwards closed in V[G ∩ P′]. Since V[G] and V[G ∩ P′] have the same
ordinals, the same holds true in V[G]. �

We can show now that the suborder of (almost) hereditarily below γ conditions is a complete suborder:

Lemma 4.8. Let γ < λ. Then <γ(Pλ /Gη) l Pλ /Gη. Also, if τ ∈ Tη is such that γ<γ ∪ {τ} is η-upwards
closed, then <γ+τ(Pλ /Gη)lPλ /Gη. Moreover, if p ∈ Pλ /Gη is full and almost hereditarily below γ except
for τ, then (p(η) � γ<γ, p(η + 1), p(η + 2), . . . ) is a reduction of p to <γ(Pλ /Gη).

Proof. Inductively on α we show that <γ(Pα /Gη) and <γ+τ(Pα /Gη)) are complete subforcings of Pα /Gη,
whenever η ≤ α ≤ λ. To simplify notation, we write Pα, <γPα, <γ+τPα instead of Pα /Gη, <γ(Pα /Gη),
<γ+τ(Pα /Gη), respectively. We will define <γPα-names Q̇′α such that <γPλ (or <γ+τPλ respectively) is the
finite support iteration of the Q̇′α’s. The only difference of the two iterations will be the first iterand Q′η.

Initial step α = η+ 1 By Lemma 3.11, <γPη+1 = Q
γ<γ

η lPη+1 = Qη. Similarly, <γ+τPη+1 = Q
γ<γ∪{τ}
η lQη.

Take Q′η = Q
γ<γ

η in the iteration representing <γPλ and Q′η = Q
γ<γ∪{τ}
η in the iteration representing <γ+τPλ.

7This is not a typo: we really require p(α) to be a <γ(Pα /Gη)-name, not just a <γ+τ(Pα /Gη)-name.
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Successor step α + 1 Assume <γPα, <γ+τPα are complete subforcings of Pα. We will show that <γPα+1

and <γ+τPα+1 are complete subforcings of Pα+1. In V[G] for a Pα-generic G, let8 E = (γ<γ)V[G∩<γPα]. By
Lemma 4.7 the set E is α-upwards closed and so by Lemma 3.11, in V[G] we have QE

α l Qα. Note that:

Claim 4.9. QE
α is an element of V[G ∩ <γPα].

Using the claim, fix a <γPα-name Q̇′α for QE
α . Since <γPα ⊆

<γ+τPα and both are complete suborders of
Pα, Lemma 4.1.(1) implies that <γPα l <γ+τPα. Thus, the <γPα-name Q̇′α is also a <γ+τPα-name. Now,
apply Lemma 4.1.(3) to obtain that <γPα ∗ Q̇′α and <γ+τPα ∗ Q̇

′
α are complete subforcings of Pα+1. Since

by definition, <γPα ∗ Q̇′α is equivalent to <γPα+1 and <γ+τPα ∗ Q̇
′
α is equivalent to <γ+τPα+1 the successor

step is complete.
Limit step α Lemma 4.1.(3) implies that the limit of the finite support iteration of the Q̇′α′ with α′ < α

is a complete subforcing of Pα and by definition <γPα (or <γ+τPα respectively) is equivalent to the limit of
this finite support iteration.

Now, let p be a full condition in <γ+τPλ. By Lemma 3.11, p(η) � γ<γ = p(η) �� γ<γ is a reduction
of p(η) to <γPη+1 (which is Q′η in the iteration representing <γPλ). Since <γ+τPλ is the iteration of the Q̇′α
(note that for α ≥ η + 1 the iterands of the two iterations coincide), p � α p(α) ∈ Q′α for α ≥ η + 1 and
so Lemma 4.1.(3) completes the proof. �

Proof of Claim 4.9. We work in V[G]. Let Gβ = G ∩ Pβ. It is straightforward to check that QE
α can be

defined in V[G ∩ <γPα] provided that E ∩ T ′α, and hence also E ∩ Tα, belongs to V[G ∩ <γPα]. Note
that E ∩ T ′α =

⋃
β<α(γ<γ ∩ succ ∩ V[G ∩ <γPα] ∩ V[Gβ]).. Apply Lemma 4.3 to Pβ ∗Q̇, where Q̇ is the

quotient Pα /Pβ, and to <γPβ ∗ Q̇
′, where Q̇′ is the quotient <γPα/ <γPβ to obtain γ<γ ∩ V[G ∩ <γPα] ∩

V[Gβ] = γ<γ ∩ V[Gβ ∩
<γPα]. This is possible, since <γPβ l Pβ by induction hypothesis and Pβ Q̇

′ l Q̇

by Lemma 4.1.(3) for the tail iterations. Therefore, E ∩ T ′α =
⋃
β<α(γ<γ ∩ succ)V[Gβ∩

<γPα], which clearly
belongs to V[G ∩ <γPα], as desired. �

The next lemma shows that every condition is (essentially) hereditarily below γ for some γ < λ.

Lemma 4.10. For every p ∈ Pλ /Gη, there is γ < λ and p′ ∈ <γ(Pλ /Gη) which is forcing equivalent to p.

Proof. Proceed by induction on α. We only sketch the successor step. Let (p, q̇) ∈ (Pα /Gη) ∗ Q̇α. By
inductive hypothesis there is γp < λ such that p ∈ <γp(Pα /Gη). By the c.c.c. of Pα each element of λ<λ in
V[Pα] has a nice Pα /Gη-name σ̇ consisting of less than λ many countable antichains of conditions r such
that r ∈ <γr (Pα /Gη) for some γr. Let γσ̇ be the supremum of all these less than λ many γr. Then σ̇ is a
<γσ̇(Pα /Gη)-name. Now we can assume that q̇ is a nice name which is hereditarily countable except for
the nice names σ̇ for the elements of dom(q̇); then, by the above, one can easily find γq̇ such that q̇ is in
fact a <γq̇(Pα /Gη)-name. Finally, again by the c.c.c., there exists δ < λ such that p dom(q̇) ⊆ δ<δ. Let
γ = max(γp, γq̇, δ) < λ. Then (p, q̇) belongs to <γ(Pα+1 /Gη), which finishes the argument. �

Lemma 4.11. Let G be Pλ /Gη-generic and V[G] |= b ⊆ ω. Then there is γ < λ and a Pλ /Gη-name ḃ
for b which is hereditarily below γ.

8Note that E is really defined this way for both cases (see also footnote 7).
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Proof. Let ḃ be a nice name for b. By Lemma 4.10, we can assume that for every condition p in ḃ, there
exists γp such that p ∈ <γp(Pλ /Gη). Since b is countable and Pλ /Gη has the c.c.c., there exists γ < λ such
that ḃ is a <γ(Pλ /Gη)-name. �

We conclude with a technical lemma which will be crucial later on:

Lemma 4.12. Let τ ∈ Tη \ γ<γ. Let p, r ∈ Pλ /Gη be compatible in Pλ /Gη such that p is full, almost
hereditarily below γ except for τ and r is hereditarily below γ. Then there is p∗ ∈ <γ+τ(Pλ /Gη) such that
p∗ ≤ p, r and p∗(η)(τ) = p(η)(τ).

Proof. Without loss of generality we can assume that dom(p(η)) % {τ}. Since p is full and almost hered-
itarily below γ except for τ, by Lemma 4.8 pred = (p(η) � γ<γ, p(η + 1), p(η + 2), . . . ) is a reduc-
tion of p to <γ(Pλ /Gη). We show that pred and r are compatible in <γ(Pλ /Gη). Assume not. Since
<γ(Pλ /Gη) l Pλ /Gη, it follows that pred ⊥Pλ /Gη r. But p ≤ pred, so p ⊥Pλ /Gη r, which is a contradiction
to the assumption of the lemma. Let q∗ ∈ <γ(Pλ /Gη) be such that q∗ ≤ pred, r. Without loss of generality
q∗(η) is full. Since q∗(η) ≤ pred(η) = p(η) � γ<γ and p(η) � γ<γ = p(η) �� γ<γ is a reduction of p(η) by
Lemma 3.11, q∗(η) is compatible with p(η). Let q̄(η) be a full witness for that. So q̄(η) ≤ p(η), r(η), q∗(η).

Now, let p∗(η) = q̄(η) � γ<γ ∪ {(τ, p(η)(τ))} and for α > η, let p∗(α) = q∗(α). Then p∗(η) is a condition
and moreover, p∗(η) ≤ q∗(η), since q̄(η) ≤ q∗(η) and q∗ hereditarily below γ except for τ. Thus, p∗

is a condition, which is almost hereditarily below γ except for τ and p∗(η)(τ) = p(η)(τ). Since r(η) is
hereditarily below γ, p(η) is almost hereditarily below γ except for τ and q̄(η) ≤ r(η), p(η), it is clear that
p∗(η) extends r(η) and p(η). Thus p∗ ≤ r, p. �

4.3. No refinement: branches are towers. Next we prove that the generic matrix has no refinement.
More precisely, we show that the sets along any branch have no pseudo-intersection.

Lemma 4.13. In V[Pλ], the sequence 〈aσ�(ξ+1) | ξ < λ〉 is a tower for each σ ∈ λλ.

Proof. Let Gλ be Pλ-generic. Work in V[Gλ]. Fix σ ∈ λλ. By Corollary 3.6(1), 〈aσ�(ξ+1) | ξ < λ〉 is
⊆∗-decreasing. Assume towards a contradiction, that for some infinite b ⊆ ω, b ⊆∗ aσ�(ξ+1) for every
ξ < λ. Apply Lemma 4.11 to get γ < λ and a Pλ-name ḃ for b which is hereditarily below γ. Let ζ be the
least successor ordinal with σ � ζ < γ<γ and η < λ minimal such that σ � ζ ∈ V[Gη].

Work in V[Gη] and consider the tail forcing Pλ /Gη. The Pλ-name ḃ can be understood as a Pλ /Gη-
name for b which is hereditarily below γ. Since b ⊆∗ aσ�ζ holds in V[Gλ], we can pick n ∈ ω and
p ∈ Pλ /Gη such that p ḃ \ n ⊆ aσ�ζ . From now on, whenever we say “almost hereditarily below γ”,
we shall mean “almost hereditarily below γ except for σ � ζ”. Note that (the canonical name for) aσ�ζ
is almost hereditarily below γ. Now, by Lemma 4.8 and Lemma 4.1.(2), we can fix p′ which is almost
hereditarily below γ such that p′  ḃ \ n ⊆ aσ�ζ . Since η is minimal with σ � ζ ∈ V[Gη], Qη assigns a set
aσ�ζ to σ � ζ. Without loss of generality σ � ζ ∈ dom(p′(η)) and p′ is a full9 condition.

By Lemma 4.4 there is r ∈ Pλ /Gη hereditarily below γ and m > n, |sp′(η)
σ�ζ
| such that r is compatible

with p′, and r m ∈ ḃ. Apply Lemma 4.12 to obtain p′′ ≤ p′, r such that p′′ is almost hereditarily
below γ, and moreover

p′′(η)(σ � ζ) = p′(η)(σ � ζ).

9Here we use the modification of Definition 3.8, where 0 is replaced by η, i.e., p′(η) is full.
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It follows that p′′ m ∈ ḃ. In particular m > |sp′′(η)
σ�ζ
|, thus we can strengthen p′′ to a condition q (only

strengthening p′′(η)) by extending sp′′(η)
σ�ζ

to length > m with sq(η)
σ�ζ

(m) = 0. Then qm ∈ ḃ ∧ m < aσ�ζ ,
which is a contradiction to the fact that p′ forces ḃ \ n ⊆ aσ�ζ . �

4.4. Levels are mad families. Finally, we show that the levels of the generic matrix form mad families.

Lemma 4.14. In V[Pλ], the family Aξ+1 = {aσ | |σ| = ξ + 1} is mad for each ξ < λ.

Proof. Let Gλ be generic for Pλ and work in V[Gλ]. The main work lies in the following claim, which
guarantees “local madness” below branches. We will prove it after finishing the proof of the lemma.

Claim 4.15. Let ρ ∈ λ<λ and let b ⊆ ω be such that b ∩ aρ�ζ is infinite for every successor ζ ≤ |ρ|. Then
there exists an i < λ such that b ∩ aρai is infinite.

Fix ξ < λ. By Corollary 3.6(2), Aξ+1 is almost disjoint. Using the claim, we will show that Aξ+1 is
actually mad. Let b ⊆ ω be infinite. To find σ ∈ λξ+1 such that b∩aσ is infinite, we construct by induction
on ζ, a branch 〈ρζ | ζ ≤ ξ + 1〉 with |ρζ | = ζ for each ζ and ρζ′ E ρζ for ζ′ ≤ ζ such that b ∩ aρζ is infinite
for every successor ζ ≤ ξ + 1. Let ρ0 = 〈〉. Assume 〈ρζ′ | ζ′ < ζ〉 is constructed. If ζ is a limit, let
ρζ =

⋃
{ρζ′ | ζ

′ < ζ}. If ζ = ζ′ + 1 is a successor, ρζ′ fulfills the assumptions of the claim by induction.
Let i < λ be given by the claim and let ρζ = ρζ′

ai. Then b ∩ aρζ is infinite. Finally take σ = ρξ+1. �

Proof of Claim 4.15. Assume towards a contradiction that b ∩ aρ�ζ is infinite for every successor ζ ≤ |ρ|,
but b ∩ aρai is finite for every i < λ. Let η be minimal with ρ ∈ V[Gη]. Thus aρai (for any i) is not
defined in V[Gη] but it will be defined in V[Gη+1]. From now on, we work in V[Gη]. Consider the tail
forcing Pλ /Gη and apply Lemma 4.11 to get a Pλ/Gη-name ḃ for b and γ′ < λ such that ḃ is hereditarily
below γ′. Let γ < λ be strictly above |ρ| + 1, sup(rng(ρ)), γ′ and pick n ∈ ω, p ∈ Pλ /Gη such that

(1) p ḃ ∩ aρaγ ⊆ n,
(2) p ḃ ∩ aρai is finite, for each i < γ, and
(3) p ḃ ∩ aρ�ζ is infinite, for each successor ζ ≤ |ρ|.

From now on, whenever we say “almost hereditarily below γ”, we shall mean “almost hereditarily
below γ except for ρaγ”. Clearly, ḃ, aρai for i ≤ γ and aρ�ζ for each successor ζ ≤ |ρ| are almost
hereditarily below γ. By Lemma 4.8 and Lemma 4.1.(2), we can fix p′ which is almost hereditarily
below γ such that items (1), (2), and (3) above hold true for p′ in place of p. Without loss of generality,
p′ is full and ρaγ ∈ dom(p′(η)). Define R = dom(p′(η)) ∩ {ρai | i < γ} and R′ = dom( f p′(η)

ρaγ ).
Let ẋ be a Pλ/Gη-name such that  ẋ =

⋂
τ∈R′

(ḃ ∩ aτ) \
⋃
τ∈R

aτ. Since <γ(Pλ /Gη) l Pλ /Gη by Lemma 4.8

and all names used to define ẋ are hereditarily below γ, we can assume that ẋ is hereditarily below γ as
well. Since R and R′ are finite, p′ forces ẋ to be infinite. By Lemma 4.4 there is r ∈ <γ(Pλ /Gη) and
m > n, |sp′(η)

ρaγ | such that r is compatible with p′ and r m ∈ ẋ. Apply Lemma 4.12 to obtain p′′ ≤ p′, r
such that p′′ is almost hereditarily below γ and

p′′(η)(ρaγ) = p′(η)(ρaγ).

In particular p′′ m ∈ ẋ and p′′ m ∈
⋂
τ∈R′ aτ\

⋃
τ∈R aτ. Now extend p′′ to a condition q so that the

following holds: For α > η, q(α) = p′′(α); for τ ∈ (R ∪ R′) ∩ dom(p′′(η)), sq(η)
τ extends sp′′(η)

τ and
|sq(η)
τ | > m; sq(η)

ρaγ extends sp′′(η)
ρaγ and sq(η)

ρaγ (i) = 0 for |sp′′(η)
ρaγ | ≤ i < m, sq(η)

ρaγ (m) = 1.
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Note that in particular, sq(η)
τ (m) = 1 for τ ∈ R′ ∩ dom(p′′(η)), aτ(m) = 1 for τ ∈ R′ \ dom(p′′(η)), and

sq(η)
τ (m) = 0 for τ ∈ R. But then, qm ∈ ẋ ∩ aρaγ, which is a contradiction to p′  ẋ ∩ aρaγ ⊆ n. �

This finishes the proof that the generic matrix is a refining matrix of height λ. It remains to prove that
b (and hence h) is small in our final model; this is the subject of Sections 5 and 6.

5. B-Canjar filters

In this section, we give the preliminaries regardingB-Canjar filters and preservation of unboundedness,
which are needed in Section 6. Let F ⊆ P(ω) be a set with the finite intersection property, i.e., the
intersection of any finitely many of its elements is infinite. We write 〈F〉Fr to denote the filter generated by
F together with the Fréchet filter, i.e., B ∈ 〈F〉Fr if B ⊇

⋂
i<n ai \m for some n,m ∈ ω and {ai | i < n} ⊆ F.

Recall, that for a filter F ⊆ P(ω) containing the Fréchet filter, Mathias forcing with respect to F , denoted
M(F ), is the poset of pairs (s, A) with s ∈ 2<ω and A ∈ F , where the extension relation is defined as
follows: (t, B) ≤ (s, A) if t D s, B ⊆ A, and for each n ≥ |s|, if t(n) = 1, then n ∈ A. The generic real for
M(F ) is a pseudo-intersection of F , M(F ) is σ-centered and Mathias forcing with respect to the Fréchet
filter is forcing equivalent to Cohen forcing C. A filter F is said to be Canjar if M(F ) does not add a
dominating real over the ground model. We will need the following generalization of Canjarness: For an
unbounded family B ⊆ ωω, a filter F is said to be B-Canjar if M(F ) preserves the unboundedness of B.

5.1. A combinatorial characterization of B-Canjarness. We will make use of the following combi-
natorial characterization of B-Canjarness, due to Guzmán-Hrušák-Martı́nez [20]. The characterization
generalizes an earlier result of Hrušák-Minami [22]. For a given filter F on ω, a set X ⊆ [ω]<ω is in
(F <ω)+ if and only if for each A ∈ F there is an s ∈ X with s ⊆ A. Given X̄ = 〈Xn | n ∈ ω〉 with
Xn ⊆ [ω]<ω for each n ∈ ω and f ∈ ωω, let X̄ f =

⋃
n∈ω(Xn ∩ P( f (n))).

Theorem 5.1. LetB ⊆ ωω be an unbounded family. A filter F isB-Canjar if and only if for each sequence
X̄ = 〈Xn | n ∈ ω〉 ⊆ (F <ω)+ there exists an f ∈ B such that X̄ f ∈ (F <ω)+.

Proof. See [20, Proposition 1]. �

Lemma 5.2. Let B ⊆ ωω be an unbounded family. Then:

(1) The Fréchet filter is B-Canjar.
(2) If F is a B-Canjar filter extending the Fréchet filter and {an | n < ω} is such that F ∪ {an | n < ω}

has the finite intersection property, then 〈F ∪ {an | n < ω}〉Fr is B-Canjar.
(3) Every countably generated filter is B-Canjar.

Proof. For item (1), note that Cohen forcing C preserves the unboundedness of every unbounded family.
To see item (2), let X̄ = 〈Xn | n ∈ ω〉 ⊆ (〈F ∪ {an | n < ω}〉Fr

<ω)+. Let Yn = {s ∈ Xn | s ⊆ ∩k<nak}

and let Ȳ = 〈Yn | n ∈ ω〉. It is easy to see that Yn ∈ (F <ω)+ for each n. By the assumption and
Theorem 5.1 there exists f ∈ B such that Ȳ f ∈ (F <ω)+. To show that Ȳ f ∈ (〈F ∪ {an | n < ω}〉Fr

<ω)+, let
B ∈ 〈F ∪ {an | n < ω}〉Fr. We have to find s ∈ Ȳ f with s ⊆ B. Clearly we can assume that ∅ < Ȳ f . Fix
A ∈ F and n ∈ ω with B ⊇ A ∩

⋂
k<n ak. Since F contains the Fréchet filter and Ȳ f ∈ (F <ω)+, there exist

infinitely many s ∈ Ȳ f with s ⊆ A. So there exists m ≥ n and s ∈ Ym ∩ Ȳ f with s ⊆ A; note that s ∈ Ym

implies s ⊆
⋂

k<n ak, so s ⊆ B, as desired. Clearly Ȳ f ⊆ X̄ f , so X̄ f ∈ (〈F ∪ {an | n < ω}〉Fr
<ω)+.
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Item (3) follows immediately from items (1) and (2) of the Lemma. �

5.2. Preservation of unboundedness at limits. We will make use of the following preservation theorem,
a more general version of which can be found in [24, Theorem 2.2].

Theorem 5.3. Suppose {Pα, Q̇α | α < δ} is a finite support iteration of c.c.c. partial orders of limit length δ,
and B ⊆ ωω is unbounded; also suppose that B is countably directed, i.e., it satisfies

(3) ∀A ⊆ B (|A| = ℵ0 → ∃ f ∈ B ∀g ∈ A g ≤∗ f ).

If ∀α < δ Pα “B is an unbounded family”, then Pδ “B is an unbounded family”.

5.3. Preservation of B-Canjarness and finite sums of filters. The notion of B-Canjarness of a filter is
not absolute in general:

Example 5.4 (from [19]). Let B be the ground model reals and U be a B-Canjar ultrafilter. Let P be
Grigorieff forcing with respect to U, which forces that U cannot be extended to a P-point. It is well-
known that P preserves the unboundedness of B, and it can be shown that U is not a P+-filter in V[P];
since any Canjar filter is a P+-filter, it follows thatU is no longer B-Canjar.

Grigorieff forcing is proper, but not c.c.c.; however, Grigorieff forcing can be decomposed into a σ-
closed and a c.c.c. forcing (see [26]). Since a σ-closed forcing does not destroy the B-Canjarness of a
filter, the above example also yields an example of a c.c.c. forcing destroying the B-Canjarness of a filter.

We will now provide a method, which will allow us to guarantee that the B-Canjarness of a filter is not
destroyed by Mathias forcings with respect to certain other filters. As a tool, we introduce finite sums of
filters and consider Mathias forcings with respect to these sums.

Lemma 5.5. Let F be a filter, B ⊆ ωω and P be a forcing notion. Then the following are equivalent:

(1) P forces that10 F is B-Canjar.
(2) M(F ) × P forces that B is unbounded.

Even though we will apply the lemma only in case B is unbounded and F is B-Canjar in the ground
model, this is not necessary for the proof. If one of these assumptions fails, both (1) and (2) are false.

Proof of Lemma 5.5. LetQ = M(F ). Note that (1) holds if and only if P forcesM(〈F̌ 〉Fr) “B unbounded”.
Further P forces that Q̌ is dense in, and hence forcing equivalent to M(〈F̌ 〉Fr). So, (1) holds if and only if
P ∗Q̌ forces that B is unbounded, which is the same as (2) since P ∗Q̌ is equivalent to P×Q = Q × P. �

Definition 5.6. For A, B ⊆ ω, let A⊕ B = {2n | n ∈ A} ∪ {2m + 1 | m ∈ B}. For two filters F0 and F1, let
F0 ⊕F1 = {A⊕ B | A ∈ F0, B ∈ F1} and inductively, let

⊕
k<m+1 Fk =

(⊕
k<m Fk

)
⊕Fm.

Note that F0 ⊕F1 is a filter if F0 and F1 are filters and hence also the finite sum of filters is a filter.
Clearly, reordered sums are isomorphic by an isomorphism induced by a permutation of ω. This implies
that the B-Canjarness of a finite sum of filters does not depend on the order of the sum.

Lemma 5.7. Let F0 and F1 be two filters. Then M(F0) ×M(F1) is forcing equivalent to M(F0 ⊕F1).

10To be more precise, one should write 〈F̌ 〉Fr instead of F .
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Proof. Let D× ⊆ M(F0)×M(F1) be the set of all ((s0, A0), (s1, A1)) ∈ M(F0)×M(F1) with |s0| = |s1|, and
let D⊕ ⊆ M(F0 ⊕F1) be the set of all (s, A) ∈ M(F0 ⊕F1) with |s| being an even number. Note that D× is
a dense subforcing of M(F0) ×M(F1), and D⊕ is a dense subforcing of M(F0 ⊕F1).

For s0, s1 ∈ 2<ω with L = |s0| = |s1|, let s0 ⊕ s1 ∈ 2<ω be such that |s0 ⊕ s1| = 2L and satisfies
(s0 ⊕ s1)(2n) = s0(n) and (s0 ⊕ s1)(2n + 1) = s1(n). Define ι: D× → D⊕ as follows: ((s0, A0), (s1, A1)) 7→
(s0 ⊕ s1, A0 ⊕ A1). It is easy to see that ι is an isomorphism between D× and D⊕. Consequently, M(F0) ×
M(F1) and M(F0 ⊕F1) are forcing equivalent. �

The next Lemma provides the main ingredients for the induction in Lemma 6.3:

Lemma 5.8.
(1) If F0 ⊕F1 is B-Canjar, then M(F1) forces that F0 is B-Canjar.
(2) Let B be a countably directed family, α a limit and {Pβ, Q̇β | β < α} a finite support iteration. If

Pβ forces that F is B-Canjar for every β < α, then Pα forces that F is B-Canjar.
(3) Let F0 be B-Canjar and F1 be countably generated. Then F0 ⊕F1 is B-Canjar.

Proof. To see (1), note that by assumption and Lemma 5.7, M(F0) ×M(F1) forces that B is unbounded;
apply Lemma 5.5 to finish the proof. To see (2) observe that by assumption and Lemma 5.5, M(F ) × Pβ
forces that B is unbounded for every β < α. However M(F )×Pα is the direct limit of 〈M(F )×Pβ | β < α〉
(and M(F ) × Pβ lM(F ) × Pα) and so can be written as the limit of a finite support iteration. Then by
Theorem 5.3, also M(F ) × Pα forces that B is unbounded. The conclusion follows by Lemma 5.5.

For (3), note that by Lemma 5.7, M(F0 ⊕F1) is forcing equivalent to M(F0) × M(F1). Now, in the
extension by M(F0), B is unbounded since F0 is B-Canjar. Moreover the filter generated by F1 in the
same extension is countably generated and so by Lemma 5.2.(3) it is B-Canjar. It remains to observe that
by Lemma 5.5. M(F0) ×M(F1) forces that B is unbounded. �

Using the fact that sums can be reordered (see the remark after Definition 5.6), we obtain the following
stronger statement: Let F0, . . . ,Fm−1 be filters such that the sum of the filters which are not countably
generated is B-Canjar; then

⊕
k<m Fk is B-Canjar.

6. Preserving unboundedness: h = b = ω1

In this section, we complete the proof of Main Theorem 1.2 by showing that b = ω1 in the final
model W. Hence h = ω1 and therefore in W there are refining matrices of heights h and λ. More
specifically, in Section 6.1, we will show that our iteration Pλ can be represented as a finer iteration whose
iterands are Mathias forcings with respect to filters. In Section 6.2, we show that these filters areB-Canjar,
where B is the set of reals of V0. For a similar, but less involved argument showing that Hechler’s original
forcings [21] to add a tower or to add a mad family can be represented as an iteration of Mathias forcings
with respect to B-Canjar filters see [15].

6.1. Finer iteration via filtered Mathias forcings. The notation in this section refers to our construction
in Section 3.1. Fix α < λ. As a preparation, we introduce a “nice” enumeration of Tα. We go through
the nodes in Tα level by level and blockwise (items (1) and (2) below, respectively). More precisely, let
{σνα | ν < Λα} enumerate Tα (note that |Tα| = c and hence Λα is an ordinal with c < Λα < c

+) so that
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(1) |σν̄α| < |σ
ν
α| → ν̄ < ν,

(2) if ρ ∈ λ<λ and {ρai | i < λ} ⊆ Tα, then there is ν < Λα such that ρai = σν+i
α for each i < λ.

For β ≤ Λα let Q<βα = Q
{σνα |ν<β}
α and for β < Λα let Q≤βα = Q

{σνα |ν≤β}
α . Note that Q<Λα

α = Qα and
that {σνα | ν < β} is α-upwards closed for each β ≤ Λα. Therefore, by Lemma 3.11, Q<βα l Qα. By
Lemma 4.1.(1), Q<βα l Q

≤β
α and so we can form the quotient Q≤βα /Q

<β
α . Moreover, because conditions

in Qα have finite domain, Q<βα =
⋃
δ<βQ

<δ
α for each limit ordinal β ≤ Λα. In other words, Q<βα is the

direct limit of the forcings Q<δα for δ < β. So Qα is forcing equivalent to the finite support iteration of the
quotients Q≤βα /Q

<β
α for β < Λα.

We will show that Q≤βα /Q
<β
α is in fact forcing equivalent to M(F β

α ) for some filter F β
α . Work in an

extension by Pα ∗Q
<β
α . Note that for each τ ∈ Tη with η < α, aτ is added by Pα and for ν < β, aσνα is added

by Pα ∗Q
<β
α . These sets11 define F β

α as follows: Let ρ ∈ λ<λ, i < λ be such that σβα = ρai and let

F
β
α = {aρ�(ξ+1) | ξ + 1 ≤ |ρ|} ∪ {ω \ aρa j | j < i}.

That is, Fβα is the collection of all sets assigned to the nodes above σβα and the complements of the sets
assigned to the nodes to the left of σβα within the same block. Now Fβα has the finite intersection property,
becuse any finite intersection of elements of Fβα almost contains aρa j for some j < λ. Let F β

α be the filter
generated by Fβα together with the Fréchet filter, i.e. F β

α = 〈F
β
α〉Fr. Note that the quotient Q≤βα /Q

<β
α

adds aσ where σ = σ
β
α. The lemma below provides a dense embedding from Q

≤β
α /Q

<β
α to M(F β

α ) with the
property that aσ is the generic real for M(F β

α ).

Lemma 6.1. Q≤βα /Q
<β
α is densely embeddable into M(F β

α ).

Proof. For simplicity of notation, let σ = σ
β
α. Let G be a Q<βα -generic filter. We work in the extension by

G, so Q≤βα /Q
<β
α = {p ∈ Q≤βα | ∀q ∈ G(p is compatible with q)}. Define ι: Q≤βα /Q

<β
α → M(F β

α ) as follows:
for p ∈ Q≤βα /Q

<β
α , let p(σ) = (sσ, fσ, hσ) and let ι(p) = (sσ, A), where

A =
⋂

τ∈dom( fσ)

(aτ ∪ fσ(τ)) ∩
⋂

ρ∈dom(hσ)

((ω \ aρ) ∪ hσ(ρ)) \ |sσ|.

To see that ι is a dense embedding, we have to check the following:

(1) (Density) For every condition (s, A) ∈ M(F β
α ), there exists a condition p such that ι(p) ≤ (s, A).

(2) (Incompatibility preserving) If p and p′ are incompatible, then so are ι(p) and ι(p′).
(3) (Order preserving) If p′ ≤ p, then ι(p′) ≤ ι(p).

To show (1), let (s, A) ∈ M(F β
α ). Since A ∈ F β

α , there exist finite sets {ρi | i < m}, {τ j | j < l} and N ∈ ω
such that

⋂
j<l aτ j ∩

⋂
i<m(ω \ aρi) \ N ⊆ A. Extend s with 0’s to sσ such that |sσ| = max(|s|,N) and let

dom(hσ) = {ρi | i < m}, hσ(ρi) = |sσ| for every i, dom( fσ) = {τ j | j < l} and fσ(τ j) = |sσ| for every j. Now,
let p = {(σ, (sσ, fσ, hσ))} ∪ {(τ, (〈〉, ∅, ∅)) | τ ∈ (dom( fσ)∩ Tα)∪ dom(hσ)}. To see that p is in the quotient,
consider an arbitrary q ∈ G. It is easy to check that q ∪ {(τ, (sτ, fτ, hτ)) | τ ∈ dom(p) \ dom(q)} ≤ p, q. By
definition, ι(p) = (sσ, A′), where A′ =

⋂
τ∈dom( fσ)

(aτ ∪ fσ(τ)) ∩
⋂

ρ∈dom(hσ)
((ω \ aρ) ∪ hσ(ρ)) \ |sσ|. It follows

11It is possible (see the base step β∗ = 0 of the proof of Lemma 6.3(3)) that only sets aτ with τ ∈ Tη for some η < α are used.
This is the case if ρ is pre-Tα-minimal and i = 0.
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that A′
(∗)
=

⋂
τ∈dom( fσ)

aτ ∩
⋂

ρ∈dom(hσ)
(ω \ aρ) \ |sσ| ⊆

⋂
j<l

aτ j ∩
⋂
i<m

(ω \ aρi) \ N ⊆ A, where (*) holds because

|sσ| ≥ fσ(τ), hσ(ρ) for every τ, ρ in the respective domains. Therefore sσ D s, A′ ⊆ A and sσ(n) = 0 for all
n ≥ |s|. So ι(p) = (sσ, A′) ≤ (s, A).

We prove (2) by showing the contrapositive. Assume ι(p) and ι(p′) are compatible. Define q as follows.
Let dom(q) = dom(p)∪dom(p′). For every τ ∈ dom(q), let sq

τ = sp
τ ∪ sp′

τ , dom( f q
τ ) = dom( f p

τ )∪dom( f p′
τ )

and for ρ ∈ dom( f q
τ ) let f q

τ (ρ) = min( f p
τ (ρ), f p′

τ (ρ)), and the same for h: dom(hq
τ) = dom(hp

τ ) ∪ dom(hp′
τ )

and for ρ ∈ dom(hq
τ) let hq

τ(ρ) = min(hp
τ (ρ), hp′

τ (ρ)). It is easy to check that q is in the quotient, q ≤ p, p′.
To show (3), let p′ ≤ p. By definition, sp′

σ D sp
σ, dom(hp′

σ ) ⊇ dom(hp
σ), dom( f p′

σ ) ⊇ dom( f p
σ ), and

f p′
σ (τ) ≤ f p

σ (τ) for τ ∈ dom( f p
σ ), hp′

σ (ρ) ≤ hp
σ(ρ) for ρ ∈ dom(hp

σ). Then

A′ =
⋂

τ∈dom( f p′
σ )

(aτ ∪ f p′
σ (τ)) ∩

⋂
ρ∈dom(hp′

σ )

((ω \ aρ) ∪ hp′
σ (ρ)) \ |sp′

σ |

is a subset of
A :=

⋂
τ∈dom( f p

σ )

(aτ ∪ f p
σ (τ)) ∩

⋂
ρ∈dom(hp

σ)

((ω \ aρ) ∪ hp
σ(ρ)) \ |sp

σ|.

By definition, ι(p) = (sp
σ, A) and ι(p′) = (sp′

σ , A′). To show that (sp′
σ , A′) ≤ (sp

σ, A), it remains to show that
for n ≥ |sp

σ| with sp′
σ (n) = 1, we have n ∈ A. First fix ρ ∈ dom(hp

σ) and show that n ∈ (ω \ aρ) ∪ hp
σ(ρ). If

n < hp
σ(ρ), this is clear. If n ≥ hp

σ(ρ), we know that sp′
σ respects hp

σ, and so n ∈ ω \ aρ. So in both cases,
n ∈ (ω \ aρ) ∪ hp

σ(ρ). To show that for τ ∈ dom( f p
σ ), n ∈ aτ ∪ f p

σ (τ) argue in the same way as for h. If
n < f p

σ (τ), this is clear. If n ≥ f p
σ (τ), we know that sp′

σ respects f p
σ , and so n ∈ aτ. Thus in both cases,

n ∈ aτ ∪ f p
σ (τ) finishing the proof. �

The following facts will be used in the proof of Claim 6.4. Item (2) below generalizes a well-known
fact about trees (see [25, Lemma 3.8]); for a proof, see [14].

Lemma 6.2.
(1) Pα is σ-centered for each α ≤ λ and more generally, the same holds for Pα /Pη for η < α.
(2) If P × P has the c.c.c. and cf(δ) > ω, then, in V[P], every new function from δ to the ordinals has

an initial segment which is new.

Proof. To see item (1), note that since Mathias forcing with respect to a filter isσ-centered andQ≤βα /Q
<β
α is

densely embeddable into such a forcing by the above lemma, also Q≤βα /Q
<β
α is σ-centered. Since Λη < c

+

for every η < α, and α ≤ λ ≤ c, Pα is a finite support iteration of σ-centered forcings of length strictly
less than c+. It is well-known that such iterations are σ-centered (see [31, proof of Lemma 2] or [5]). �

6.2. The filters are B-Canjar. To finish the proof of Main Theorem 1.2, we still have to show that
b = ω1 holds true in the final extension. Recall that the ground model V0 satisfies CH. Let B = ωω ∩ V0.
We add µ many Cohen reals to obtain V . Thus in V , B is still unbounded. In Section 6.1, we have defined
filters F β

α for α < λ and β < Λα and have shown that Qα is equivalent to the finite support iteration
of the Mathias forcings M(F β

α ). In particular, Pα ∗Q
<β
α ∗ M(F β

α ) = Pα ∗Q
≤β
α , and Pα ∗Q

<Λα
α = Pα+1. As

clearly B is countably directed, by Theorem 5.3 it suffices to show that for each α < λ and β < Λα the
unboundedness of B is preserved by M(F β

α ). More precisely, we will make use of the following Lemma.
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Lemma 6.3. For all α < λ, β∗ < Λα the following holds:

(1) B is unbounded in V[Pα ∗Q
<β∗

α ],
(2) if m ∈ ω, β0, . . . , βm−1 < Λα and Fβk

α ∈ V[Pα ∗Q
<β∗

α ] for every k < m, then
⊕

k<m F
βk
α is B-Canjar

in V[Pα ∗Q
<β∗

α ]. In particular F β∗

α is B-Canjar in V[Pα ∗Q
<β∗

α ].

Proof. We prove (1) and (2) by simultaneous induction on (α, β∗). Suppose the Lemma holds for each
(α′, β′) <lex (α, β∗).

Proof of (1): For α = β∗ = 0, this is clear since B is unbounded in V[P0 ∗Q
<0
0 ] = V . In case β∗ = β′ + 1

is a successor ordinal, we use the fact that (1) holds for α and β′ by induction; By Lemma 6.1, Q≤β
′

α /Q
<β′

α

is forcing equivalent to M(F β′

α ). Since by induction (2) holds for β′, M(F β′

α ) preserves the unboundedness
of B, hence the same is true for Pα ∗Q

<β∗

α , as desired. In case (α, β∗) is a limit point of the lexicographic
order, use the fact that Pα ∗Q

<β∗

α is the limit of a finite support iteration of c.c.c. forcings and that (1) holds
for each (α′, β′) <lex (α, β∗) to apply Theorem 5.3 and conclude (1) for (α, β∗).

Proof of (2): Fix α. By (1), B is unbounded in V[Pα]. We say that ρ ∈ λ<λ is pre-Tα-minimal if it is
the predecessor of a minimal node of Tα. It is straightforward to check that this is the case if and only if

• ρ ∈ V[Pα],
• ρ < V[Pη] for any η < α, and
• for every γ < |ρ|, there exists η < α with ρ � γ ∈ V[Pη].

Note that for α = 0, the only pre-Tα-minimal node is the root 〈〉 and for α > 0 all pre-Tα-minimal nodes
have limit length. We proceed by induction on β∗.

Base step: β∗ = 0. Let β0, . . . , βm−1 be such that Fβk
α ∈ V[Pα ∗Q<0

α ] = V[Pα] for each k < m. Therefore
σ
βk
α = ρak 0 for some pre-Tα-minimal node ρk: Indeed, observe that Fβα contains elements which are only

added by Qα (and hence Fβα < V[Pα]) whenever σβα = ρai with ρ not pre-Tα-minimal or i > 0. If cf(|ρk|)
is countable for all k < m, the filter

⊕
k<m F

βk
α is countably generated and hence by Lemma 5.2.(3) it is

B-Canjar. In particular, for α = 0, the only pre-Tα-minimal node is ρ = 〈〉, which completes the proof for
α = β∗ = 0. So assume α > 0 for the rest of the proof of the base step. If cf(α) ≤ ω all pre-Tα-minimal
nodes ρ have cf(|ρ|) = ω:

Claim 6.4. Let ρ be a pre-Tα-minimal node and cf(|ρ|) > ω. Then

(1) cf(α) > ω, and
(2) there exists no η < α such that ρ � γ ∈ V[Pη] for all γ < |ρ|.

Proof. Let us first show (2). Fix some η < α. Since ρ is pre-Tα-minimal, ρ ∈ V[Pα] \ V[Pη]. By
Lemma 6.2.(1), Pα /Pη is σ-centered, hence in particular (Pα /Pη) × (Pα /Pη) has the c.c.c.. Therefore,
by Lemma 6.2.(2), the new function ρ has an initial segment which is not in V[Pη]. Now let us show (1).
Assume towards a contradiction that cf(α) ≤ ω and let 〈αn | n ∈ ω〉 be increasing cofinal in α (in case α is
a successor, let αn be its predecessor for every n). For every γ < |ρ|, let n ∈ ω be such that ρ � γ ∈ V[Pαn].
Since cf(|ρ|) > ω, there exists n∗ ∈ ω such that ρ � γ ∈ V[Pαn∗ ] for cofinally many γ < |ρ| (and hence for
all γ < |ρ|), contradicting (2). �

Thus we can assume cf(α) > ω. We argue that cf(|ρ|) > ω for all pre-Tα-minimal nodes ρ. Suppose ρ
is a counterexample. Let 〈γn | n ∈ ω〉 be increasing cofinal in |ρ|. For every n < ω, let αn < α be such that
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ρ � γn ∈ V[Pαn]. Fix α′ < α such that αn < α′ for every n. As there are no new countable sequences of
elements of V[Pα′] in V[Pα], we conclude that ρ ∈ V[Gα′′] for some α′′ < α, a contradiction.

Now we will show that
⊕

k<m F
βk
α is B-Canjar in V[Pα], using the characterization from Theorem 5.1.

Let 〈Xn | n ∈ ω〉 ∈ V[Pα] be positive for
⊕

k<m F
βk
α . We want to show that there exists f ∈ B such

that X̄ f is positive for
⊕

k<m F
βk
α . Clearly there exists η < α with 〈Xn | n ∈ ω〉 ∈ V[Pη]. Moreover,

let η be large enough such that for all j < k < m with ρ j , ρk, there exists a successor δ < |ρ j|, |ρk|

such that ρ j � δ , ρk � δ and aρ j�δ, aρk�δ ∈ V[Pη]. For every k < m, let γk < |ρk| be such that aρk�γk <

V[Pη]. Such γk exist, because the ρk are pre-Tα-minimal, using Claim 6.4.(2). Clearly aρk�γk ∈ V[Pα] for
every k < m. The filter

⊕
k<m 〈aρk�γk〉Fr is countably generated and hence B-Canjar in V[Pα]. Clearly⊕

k<m 〈aρk�γk〉Fr ⊆
⊕

k<m F
βk
α , hence 〈Xn | n ∈ ω〉 is positive for

⊕
k<m 〈aρk�γk〉Fr. Therefore we can

fix f ∈ B such that X̄ f is positive for
⊕

k<m 〈aρk�γk〉Fr. Note that X̄ f ∈ V[Pη]. We will use a genericity
argument to show that X̄ f is positive for

⊕
k<m F

βk
α . It is enough to show that for all successors δk < |ρk|,

for all lk ∈ ω there exists s ∈ X̄ f with s ⊆
⊕

k<m(aρk�δk \ lk), because sets of this form are a basis for the
filter. If δk ≤ γk for all k, this holds by the choice of f .

We show by induction on η ≤ η′ < α that for all successors δk < |ρk| and all lk < ω, if all aρk�δk ∈ V[Pη′]
then V[Pη′] |= “∃s ∈ X̄ f s ⊆

⊕
k<m(aρk�δk \ lk)”. Note that this holds for η′ = η by choice of f , and that at

limit steps of the induction no new aρk�δk appear, so we only have to show it for successors. Assume that it
holds for η′ and show it for η′+1. For every k < m, let δk < |ρk|with aρk�δk ∈ V[Pη′+1] and lk ∈ ω be given.
Let p ∈ Qη′ . We will show that there exists q ≤ p and s ∈ X̄ f such that q s ⊆

⊕
k<m(aρk�δk \ lk). Without

loss of generality ρk � δk ∈ dom(p) for all k < m with ρk � δk ∈ Tη′ and p is a full condition. For every
k < m, define Σk as follows: If ρk � δk ∈ Tη′ , let Σk =

⋃
{dom( f p

ρk�γ
) ∩ T ′η′ | γ ≤ δk ∧ ρk � γ ∈ dom(p)}. If

ρk � δk < Tη′ , let Σk = {ρk � δk}. Let Σ =
⋃

k<m Σk. For every k < m, let σk be the longest initial segment
of ρk which belongs to Σ in case there exists such and let12 σk = ρk � 1 otherwise. Note that σk = σ j if
ρk = ρ j and that aσk ∈ V[Pη′] for every k < m. Now let N ∈ ω be large enough such that

• N ≥ lk for every k < m,
• N ≥ |sp

σ| for every σ ∈ dom(p),
• aσk \ N ⊆ aτ for all τ ∈ Σk, for all k < m.

By hypothesis, in V[Pη′] we can fix s ∈ X̄ f with s ⊆
⊕

k<m(aσk \ N). To get q extend p as follows. For
every k < m and γ ≤ δk with ρk � γ ∈ dom(p), let sq

ρk�γ
= sp

ρk�γ
a(0 � [|sp

ρk�γ
|,N))a(aσk � [N,max(s)]).

Observe that by the choice of η and since η′ ≥ η, if ρk , ρ j then there is no τ ∈ dom(p) with τ E ρk and
τ E ρ j. Now if ρ0 = ρ j then σk = σ j and so the above is well-defined. Note that η was chosen large
enough such that for all γk ≤ δk, γ j ≤ δ j, if ρ j � γ j , ρk � γk then they are not in the same block. In
particular, ρ j � γ j < dom(hp

ρk�γk
) and ρk � γk < dom(hp

ρ j�γ j
). Therefore Definition 3.1.(8) holds for q. The

rest of Definition 3.1 is easy to verify and so q is a condition. Moreover q forces s ⊆
⊕

k<m(aρk�δk \ lk).
Successor step Let us say that a filter F β

α and the associated Fβα is new in V[Pα ∗Q
<β∗

α ] if Fβα ∈
V[Pα ∗Q

<β∗

α ] and Fβα < V[Pα ∗Q<δ
∗

α ] for all δ∗ < β∗. Now assume that we have shown (2) for β∗. We
will show it for β∗ + 1.

12We just have to choose any initial segment of ρk which belongs to T ′η′ and make sure that σk = σ j if ρk = ρ j. Alternatively,
in such cases, we could replace aσk by ω below.
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If Fβk
α ∈ V[Pα ∗Q

<β∗

α ] for every k < m, then by induction hypothesis
(⊕

k<m F
βk
α

)
⊕F

β∗

α is B-Canjar in

V[Pα ∗Q
<β∗

α ]. Hence, by Lemma 5.8.(1),
⊕

k<m F
βk
α isB-Canjar in V[Pα ∗Q

<β∗

α ∗M(F β∗

α )] = V[Pα ∗Q
<β∗+1
α ].

It is easy to check that there are exactly two new filters in V[Pα ∗Q
<β∗+1
α ]: F β

α where β is such that
σ
β
α = σ

β∗

α

a
0 and F β′

α where β′ = β∗ + 1 (i.e., σβ
′

α = ρa(i + 1) and σ
β∗

α = ρai). Both Fβα and Fβ
′

α are
extensions of Fβ

∗

α by one new set. Therefore the filter
⊕

k<m F
βk
α is an extension of

⊕
k<m F

β̃k
α by finitely

many sets, where β̃k = β∗ if βk = β or βk = β′, and β̃k = βk otherwise. By the above,
⊕

k<m F
β̃k
α is

B-Canjar in V[Pα ∗Q
<β∗+1
α ]. Then by Lemma 5.2.(2), also

⊕
k<m F

βk
α is B-Canjar in V[Pα ∗Q

<β∗+1
α ].

Limit step Now assume that β∗ is a limit and that we have shown (2) for all δ∗ < β∗. Let us prove it
for β∗. If for each k < m there exists δ∗k < β∗ such that Fβk

α ∈ V[Pα ∗Q
<δ∗k
α ] then there exists δ̄∗ < β∗ such

that Fβk
α ∈ V[Pα ∗Q<δ̄

∗

α ] for all k < m. By induction hypothesis
⊕

k<m F
βk
α is B-Canjar in V[Pα ∗Q<δ

∗

α ] for
every δ̄∗ ≤ δ∗ < β∗ and so by Lemma 5.8.(2) it is B-Canjar in V[Pα ∗Q

<β∗

α ].
Now we have to consider new filters. There are two cases: either β∗ is such that σβ

∗

α has 0 as its last
entry, or is such that σβ

∗

α has a limit ordinal i as its last entry.
First case: σβ

∗

α = ρa0 for some ρ. Let us first argue that there are no new filters unless |ρ| is a limit
and σβ

∗

α is the first node of its level in the enumeration (i.e., |σδα| < |ρ| for each δ < β∗). If σβ
∗

α is not the
first node of its level, then there are no new filters in V[Pα ∗Q

<β∗

α ]: If Fβα ∈ V[Pα ∗Q
<β∗

α ], then there exists
δ∗ < β∗ such that Fβα ∈ V[Pα ∗Q<δ

∗

α ], because Fβα contains – from the sets of this level – only boundedly
many sets within only one block. Similarly, if |ρ| is a successor and σβ

∗

α is the first node of its level then
there are no new filters in V[Pα ∗Q

<β∗

α ] because any Fβα contains only boundedly many sets from level |ρ|.
So we assume from now on that |ρ| is a limit and σβ

∗

α is the first node of its level. In this case, there
are many new filters F β

α in V[Pα ∗Q
<β∗

α ]. Moreover, it is easy to check that F β
α is new if and only if the

following holds: σβα = ρ̄a0 for some ρ̄ with |ρ̄| = |ρ| and ρ̄ not pre-Tα-minimal. Observe that Fβα =

{aρ̄�γ | γ < |ρ|}. Let β0, . . . , βm−1 be such that Fβk
α ∈ V[Pα ∗Q

<β∗

α ] for each k < m. We want to show that⊕
k<m F

βk
α is B-Canjar in V[Pα ∗Q

<β∗

α ].
In case cf(|ρ|) = ω, we can use Lemma 5.8 and the remark thereafter to finish the proof:

⊕
k<m F

βk
α is

a sum of filters, in which the new filters are countably generated, whereas the sum of the filters which are
not new is B-Canjar (see the first paragraph of the limit step).

Assume from now on that cf(|ρ|) > ω. Let new ⊆ m be the set of k < m such that F βk
α is a new filter and

old = m \ new. For each k ∈ new, fix ρk such that σβk
α = ρak 0 (with |ρk| = |ρ| and ρk not pre-Tα-minimal).

Let 〈Xn | n ∈ ω〉 ∈ V[Pα ∗Q
<β∗

α ] be positive for
⊕

k<m F
βk
α . Clearly there exists a hereditarily countable

name for 〈Xn | n ∈ ω〉. Let γ < |ρ| be a successor ordinal large enough such that the following hold:

• 〈Xn | n ∈ ω〉 ∈ V[Pα ∗Qλ
≤γ

α ] (this is possible due to cf(|ρ|) > ω).
• For all j, k ∈ new, if ρ j , ρk, then ρ j and ρk split before γ.
• For all k ∈ old, either |σβk

α | < γ or13 |σ
βk
α | > |ρ|.

• aρk�γ < V[Pα] for all k ∈ new, i.e., ρk � γ ∈ Tα (possible since ρk is not pre-Tα-minimal).

For k < m with k ∈ old, Fβk
α ∈ V[Pα ∗Qλ

≤γ

α ] by the choice of γ and we define F̃βk
α = F

βk
α . For k ∈ new,

let F̃βk
α = {aρk�γ}. Now, we can use Lemma 5.8 and the remark thereafter to show that

⊕
k<m 〈F̃

βk
α 〉Fr is

13Note that |σβk
α | > |ρ| is only possible if σβk

α = ρ̃a0 for a pre-Tα-minimal node ρ̃.



REFINING SYSTEMS OF MAD FAMILIES 23

B-Canjar in V[Pα ∗Q
<β∗

α ]. Indeed,
⊕

k∈old 〈F̃
βk
α 〉Fr is B-Canjar in V[Pα ∗Q

<β∗

α ] by the first paragraph of the
limit step and for each k ∈ new, 〈F̃βk

α 〉Fr is countably generated. Moreover, 〈Xn | n ∈ ω〉 is positive for⊕
k<m F

βk
α and

⊕
k<m 〈F̃

βk
α 〉Fr ⊆

⊕
k<m F

βk
α , hence 〈Xn | n ∈ ω〉 is positive for

⊕
k<m 〈F̃

βk
α 〉Fr. So we

can fix f ∈ B such that X̄ f is positive for
⊕

k<m 〈F̃
βk
α 〉Fr. Since 〈Xn | n ∈ ω〉 and

⊕
k<m 〈F̃

βk
α 〉Fr are in

V[Pα ∗Qλ
≤γ

α ], and being positive is absolute, this holds in V[Pα ∗Qλ
≤γ

α ].
Now we use a genericity argument in Q<β

∗

α /Qλ
≤γ

α to show that X̄ f is positive for
⊕

k<m F
βk
α . We have

to show that for all 〈Ak | k < m〉 with Ak ∈ F
βk
α there is s ∈ X̄ f with s ⊆

⊕
k<m Ak. For k ∈ new, we can

assume that Ak = aρk�δk \ lk with γ < δk < |ρ| and lk ∈ ω, because these sets form filter bases. For k ∈ old
let Bk = Ak and for k ∈ new (in this case |σβk

α | = |ρ| + 1 > γ) let Bk = aρk�γ. By the choice of f for all
N ∈ ω there is an s ∈ X̄ f with s ⊆

⊕
k<m(Bk \ N).

Let p ∈ Q<β
∗

α /Qλ
≤γ

α . Without loss of generality ρk � δk ∈ dom(p) if k ∈ new. For every k ∈ new, define
Σk =

⋃
{dom( f p

ρk�δ
) ∩ λ≤γ | δ ≤ δk ∧ ρk � δ ∈ dom(p)}. Now let N ∈ ω be large enough such that

• N ≥ lk for every k ∈ new; N ≥ |sp
σ| for every σ ∈ dom(p);

• aρk�γ \ N ⊆ aτ for all τ ∈ Σk, for all k ∈ new.

By the above, we can fix s ∈ X̄ f with s ⊆
⊕

k<m(Bk \N). To get q, extend p as follows. For every k ∈ new,
for every δ ≤ δk with ρk � δ ∈ dom(p), let sq

ρk�δ
= sp

ρk�δ
a(0 � [|sp

ρk�δ
|,N))a(aρk�γ � [N,max(s)]). By the

choice of γ, for j, k ∈ new, for each γ < δ < |ρ| either ρk � δ = ρ j � δ or they are not in the same block.
In particular ρ j � δ < dom(hp

ρk�δ
) and ρk � δ < dom(hp

ρ j�δ
). Therefore Definition 3.1.(8) holds for q. The

rest of Definition 3.1, as well as the fact that q forces s ⊆
⊕

k<m Ak, are easy to check.
Second case: σβ

∗

α = ρai with i > 0 limit. In this case, F β∗

α is the only new filter in V[Pα ∗Q
<β∗

α ]. Let
β0, . . . , βm−1 be such that Fβk

α ∈ V[Pα ∗Q
<β∗

α ] for each k < m. We want to show that
⊕

k<m F
βk
α is B-

Canjar in V[Pα ∗Q
<β∗

α ]. Let 〈Xn | n ∈ ω〉 ∈ V[Pα ∗Q
<β∗

α ] be positive for
⊕

k<m F
βk
α . Let Ẋ be a hereditarily

countable name for 〈Xn | n ∈ ω〉 and let D be countable containing all the domains of conditions occurring
in the name Ẋ. Let β∗∗ < β∗ be such that ρa0 = σ

β∗∗

α Let D̄ = {τ ∈ D | ∃ j < i (τ = ρa j)}. and let
C = {σνα | ν < β

∗∗}∪ D̄. Clearly, {σνα | |σ
ν
α| ≤ |ρ|} ⊆ C ⊆ {σνα | |σ

ν
α| ≤ |ρ|+1}, hence C is α-upwards closed.

Lemma 3.11 implies that QC
α l Qα and QC

α ⊆ Q
<β∗

α . Since Q<β
∗

α l Qα, by Lemma 4.1.(1), QC
α l Q

<β∗

α .
Observe that for all k < m either Fβk

α ∩ V[Pα ∗Q
<β∗∗

α ] = F
βk
α or Fβk

α ∩ V[Pα ∗Q
<β∗∗

α ] = F
β∗∗

α . In particular,
for every k < m there exists β′k such that Fβk

α ∩ V[Pα ∗Q
<β∗∗

α ] = F
β′k
α and F

β′k
α ∈ V[Pα ∗Q

<β∗∗

α ]. Hence⊕
k<m 〈F

βk
α ∩ V[Pα ∗Q

<β∗∗

α ]〉Fr is B-Canjar in V[Pα ∗Q
<β∗

α ]. For every k < m, Fβk
α ∩ V[Pα ∗QC

α ] is the set
F
βk
α ∩ V[Pα ∗Q

<β∗∗

α ] together with countably many new sets (some of the sets ω \ aτ with τ ∈ D̄), therefore⊕
k<m 〈F

βk
α ∩ V[Pα ∗QC

α ]〉Fr is a filter generated by
⊕

k<m 〈F
βk
α ∩ V[Pα ∗Q

<β∗∗

α ]〉Fr together with countably
many new sets. Hence, by Lemma 5.2.(2),

⊕
k<m 〈F

βk
α ∩ V[Pα ∗QC

α ]〉Fr is B-Canjar in V[Pα ∗Q
<β∗

α ]. Since
the sets 〈Xn | n ∈ ω〉 are positive for

⊕
k<m F

βk
α and

⊕
k<m 〈F

βk
α ∩ V[Pα ∗QC

α ]〉Fr ⊆
⊕

k<m F
βk
α , the sets

〈Xn | n ∈ ω〉 are also positive for
⊕

k<m 〈F
βk
α ∩V[Pα ∗QC

α ]〉Fr. So we can fix f ∈ B such that X̄ f is positive
for

⊕
k<m 〈F

βk
α ∩V[Pα ∗QC

α ]〉Fr. Since 〈Xn | n ∈ ω〉 and
⊕

k<m 〈F
βk
α ∩V[Pα ∗QC

α ]〉Fr are in V[Pα ∗QC
α ], and

being positive is absolute, this holds in V[Pα ∗QC
α ].

Now use a genericity argument in Q<β
∗

α /QC
α to show that X̄ f is positive for

⊕
k<m F

βk
α . Fix 〈Ak | k < m〉

with Ak ∈ F
βk
α . For simplicity of notation assume there is m′ ≤ m such that Ak ∈ V[Pα ∗QC

α ] if and only
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if k < m′. For m′ ≤ k < m there exists Bk ∈ 〈F
βk
α ∩ V[Pα ∗QC

α ]〉Fr, `k ∈ ω and 〈 jkr | r < `k〉 ⊆ i such that
Ak = Bk∩

⋂
r<`k (ω\aρa jkr ). So

⊕
k<m Ak =

⊕
k<m′ Ak ⊕

⊕
m′≤k<m(Bk∩

⋂
r<`k (ω\aρa jkr )). Let p ∈ Q<β

∗

α /QC
α .

Without loss of generality assume that ρa jkr ∈ dom(p) if ρa jkr < C. Let N > |sp
τ | for every τ ∈ dom(p). We

can fix s ∈ X̄ f with s ⊆
⊕

k<m′ Ak ⊕
⊕

m′≤k<m(Bk \ N). To get q, extend each sp
ρa jkr

with 0’s to have length

max(s) + 1. It is easy to check that q is a condition forcing s ⊆
⊕

k<m Ak, as desired. �

By Lemma 6.3, B is unbounded in V[Pα] for every α < λ, so by Theorem 5.3, B is unbounded in
V[Pλ]. Thus in V[Pλ], b = ω1 and so h = ω1 as well. This concludes the proof of Main Theorem 1.2.

7. Further discussion and questions

In this section, we discuss the structure of refining matrices, as well as a notion of spectrum of refining
systems of mad families. For basic definitions and facts, see Section 2.

7.1. Possible variants of the main theorem. It is possible to derive a bit more from the proof of Main
Theorem 1.2 than what is stated in the theorem. Our forcing construction is based on the tree λ<λ and
therefore results in a specific kind of refining matrix of height λ: first, all its maximal branches are cofinal,
and second, the underlying tree has λ-splitting everywhere; more precisely, its underlying tree structure is
λ<λ ∩ succ. In particular, it immediately follows that λ ∈ spec(a) and hence a ≤ λ.

We can modify the construction (by changing the underlying tree) to obtain different kinds of refining
matrices of height λ. In fact, the following generalization of Main Theorem 1.2 holds true:

Generalized Main Theorem 7.1. Let V0 be a model of ZFC satisfying GCH. In V0, let ω1 ≤ λ ≤ cf(θ)
and θ ≤ µ be cardinals such that λ is regular and cf(µ) > ω. Then there is a c.c.c. extension W of V0 in
which there exists a refining matrix whose underlying tree structure is θ<λ ∩ succ and ω1 = h = b ≤ c = µ.

In this model, clearly θ ∈ spec(a). For the proof of the generalization, the forcing construction is
based on the tree θ<λ instead of λ<λ, and sets aσ are generically added to its nodes of successor length. In
Definition 4.5 and Definition 4.6, we need a pair of ordinals (ε, δ) in place of γ, where ε < θ and δ < λ,
and γ<γ has to be replaced by ε<δ.

The reason why we have to require λ ≤ cf(θ) is Lemma 4.10: a nice name for a node in θ<λ contains
less than λmany conditions r, and the corresponding εr have to be bounded in θ. It would even be possible
to have different splitting at different nodes, provided that all the splitting sizes have cofinality at least λ.
This way, we can get more values into spec(a) (compare with Hechler’s paper [21]).

Observe that it is always possible to turn a refining matrix with θ-splitting into a refining matrix with
c-splitting (of the same height), by just taking every ωth level and deleting all other levels. It is not
clear whether it is possible to do it the other way round, i.e., to get a refining matrix with θ-splitting (for
θ ∈ spec(a)) from a refining matrix with c-splitting.

The Cohen model satisfies spec(a) = {ω1, c} (see, e.g., [6, Proposition 3.1]). Thus, if ω1 < θ < c, there
are no mad families of size θ in the Cohen model, and hence no refining matrices with θ-splitting. To
obtain a model with such a matrix, one can apply Generalized Main Theorem 7.1 for λ = ω1 < θ < µ.
On the other hand, the model of Generalized Main Theorem 7.1 with λ = θ = ω1 < µ coincides with the
Cohen model with c = µ: this can be seen by representing the iteration as an iteration of Mathias forcings
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with respect to filters, as described in Section 6.1; since λ = θ = ω1, all the filters are countably generated,
therefore the respective Mathias forcings are equivalent to Cohen forcing. Thus we obtain:

Observation 7.2. Let µ > ω1. Then, in the Cohen model with c = µ (i.e., in the extension of a GCH model
by Cµ) there exists a refining matrix whose underlying tree structure is ω<ω1

1 ∩ succ.

7.2. Branches through refining matrices. We will now discuss the structure of refining matrices with
respect to cofinal branches. It is straightforward to check that every maximal branch which is not cofinal
is a tower. We call a refining matrix normal if no element of [ω]ω intersects it. Recall from Section 2 that
whenever there is a refining matrix of height λ, then there is also a normal refining matrix of height λ.

In case t = h (so in particular under h = ω1) there are no towers of length strictly less than h, hence all
maximal branches of a refining matrix of height h are cofinal.

On the other hand, it is possible to have a refining matrix of height h which has no cofinal branches. In
fact, it was shown by Dow that this is the case in the Mathias model (see [13, Lemma 2.17]):

Theorem 7.3. Assume CH. In the extension by the countable support iteration of Mathias forcing of
length ω2, there is a refining matrix of height h without cofinal branches14 (and ω1 = t < h = c = ω2).

We do not know whether there is a normal15 refining matrix of height h with cofinal branches in the
Mathias model; this would imply that h = ω2 ∈ spec(t). We also do not know whether ω2 ∈ spec(t) in the
Mathias model.

It is actually consistent that no normal refining matrix of height h has cofinal branches. This was proved
by Dordal by constructing a model in which h < spec(t) (see [11] or16 [12, Corollary 2.6]):

Theorem 7.4. It is consistent with ZFC that spec(t) = {ω1} and h = ω2 = c.

Let us now discuss refining matrices of regular height strictly above h. Recall that ω1 = t = h holds
true in the model of Main Theorem 1.2; in particular, there are refining matrices of height ω1 (all whose
maximal branches are cofinal). All maximal branches through the generic refining matrix of height λ > ω1

are cofinal, because the forcing construction is based on the tree λ<λ. Moreover, as shown in Section 4.3,
all these maximal branches are actually towers (i.e., the matrix is normal). In particular, λ belongs to
spec(t).

In the Cohen model, the situation is different. Again, ω1 = t = h holds true, so there are refining
matrices of height ω1 (all whose maximal branches are cofinal). We do not know the following:

Question 7.5. Is there a refining matrix of regular height larger than h in the Cohen model?

In any case, there is a crucial difference to the model of our main theorem: in the Cohen model, there is
no normal refining matrix of regular height λ > ω1 with cofinal branches, due to the following well-known
fact.

14In fact, there is even a base matrix of this kind.
15Here and in similar cases, it is necessary to demand that the refining matrix is normal, due to the fact that there are always

trivial examples of refining matrices with constant cofinal branches.
16In fact, [12, Corollary 2.6]) also works for getting h = c larger than ω2, and for certain tower spectra which are more

complicated than {ω1}.
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Proposition 7.6. Assume CH, and let µ be a cardinal with cf(µ) > ω. Then spec(t) = {ω1} holds true17

in the extension by Cµ (where Cµ is the forcing for adding µ many Cohen reals).

Finally, let us remark that the generic refining matrix from Main Theorem 1.2 cannot be a base matrix.
This can be seen by a slight generalization of the proof of Lemma 3.7 which yields the following. For
each infinite ground model set b ⊆ ω, each aσ has infinitely many 1’s (and also infinitely many 0’s) within
b. If b is infinite and co-infinite, it follows that b splits aσ. In particular, aσ *∗ b, so b witnesses that the
generic matrix is not a base matrix.

7.3. The spectrum of refining systems of mad families. The study of refining matrices of various
heights naturally gives rise to the following notion. Let

spec(h) := {λ | λ is regular and there is a refining matrix of height λ}

be the spectrum of refining systems of mad families. Recall that the existence of refining matrices is only
a matter of cofinality. Clearly, the minimum of spec(h) is the distributivity number h.

Spectra have been considered for several cardinal characteristics, but not for h. For example, spectra for
the tower number t have been investigated in [21] and [12], spectra for the almost disjointness number a
in [21], [6], and [29], spectra for the bounding number b in [12], spectra for the ultrafilter number u
in [27], [28], and [17], and spectra for the independence number i in [16]. Furthermore, [3] develops a
framework for dealing with several spectra.

Let [h, c]Reg denote the set of regular cardinals δ with h ≤ δ ≤ c. As already mentioned, it is easy to
check that there can never be a refining matrix of regular height larger than c, hence spec(h) ⊆ [h, c]Reg.
Recall that the model of Main Theorem 1.2 satisfies {ω1, λ} ⊆ spec(h) (where λ > ω1 is the regular
cardinal chosen there). In particular, by choosing λ = µ = ω2, we obtain a model in which {ω1, ω2} =

spec(h) = [h, c]Reg.

Question 7.7. Is it consistent that spec(h) contains more than 2 elements?
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[20] Osvaldo Guzmán, Michael Hrušák, and Arturo Martı́nez-Celis. Canjar filters II. Proc. of the 2014 RIMS meeting on Reflec-

tion principles and set theory of large cardinals, Kyoto, Japan, 1895:59–67, 2014.
[21] Stephen H. Hechler. Short complete nested sequences in βN\N and small maximal almost-disjoint families. General Topol-

ogy and Appl., 2:139–149, 1972.
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