AXIOMATIC SET THEORY I: 09.03.2018

Exercise 1. Justify the existence of each of the following:

- (1) Let A, B be sets. Then $A \times B = \{(x, y) : x \in A, y \in B\}$ is a set.
- (2) Let R be a set. Then dom $(R) = \{x : \exists y((x, y) \in R)\}$ and ran $(R) = \{y : \exists x((x, y) \in R)\}$ are sets.
- (3) Let A, B be sets. Then the collection of all functions with domain A and range contained in B is a set.

Exercise 2. Prove that for all ordinals α, β, γ :

(1) if $\alpha \leq \beta$, then $\alpha + \gamma \leq \beta + \gamma$, (2) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$

Exercise 3. Show that ordinal multiplication is not commutative.

Exercise 4. Let α, β, γ be ordinals. Show that

(1) $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$ (2) $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$

Kurt Gödel Research Center, University of Vienna, Währingerstrasse 25, 1090 Vienna, Austria

E-mail address: vera.fischer@univie.ac.at