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Abstract

In the following κ and λ are arbitrary regular uncountable cardinals.

What was known?

Theorem 1 (Balcar-Pelant-Simon, [2]). It is relatively consistent

with ZFC that s = ω1 < b = κ.

Theorem 2 (Shelah, [31]). It is relatively consistent with ZFC that

s = κ < b = λ.

Theorem 3 (Baumgartner and Dordal, [7]). Adding κ Hechler reals

to a model of GCH gives a generic extension in which s = ω1 < b = κ.

Theorem 4 (Shelah, [31]). There is a proper forcing notion of size

continuum, which is almost ωω-bounding and adds a real not split by

the ground model reals.

Theorem 5 (Shelah, [31]). Assume CH. There is a proper forcing

extension in which b = ω1 < s = ω2.

Theorem 6 (Brendle, [11]). Assume GCH. Then there is a ccc

generic extension in which b = ω1 < s = κ.

Theorem 7 (M. Canjar, [14]). If d = c, then there is an ultafilter

U such that MU does not add a dominating real.

iv



ABSTRACT v

Theorem 8 (Velickovic, [36]). Let κ > ℵ1 be a regular cardinal.

Then there is a ccc generic extension satisfying MA+2ℵ0 = κ together

with the following statement: For every family D of 2ℵ0 dense subsets

of the partial order I of all perfect trees, there is a ccc perfect suborder

P of I such that D ∩ P is dense in P, for all D ∈ D.

What is new?

Theorem 9. If cov(M) = κ and H ⊆ ωω is an unbounded, <∗-

directed family of size κ, ∀λ < κ(2λ ≤ κ), then there is a σ-centered

suborder of Shelah’s proper poset from Teorem 4, which preserves H

unbounded and adds a real not split by the ground model reals.

Theorem 10. Assume GCH. Then there is a ccc generic extension

in which b = κ < s = κ+.

The above result is an improvement of S. Shelah’s consistency of

b = ω1 < s = ω2. In chapter V , see Definition 5.4.2, we suggest a

countably closed, ℵ2-c.c. forcing notion P which adds a σ-centered

forcing notion of C(ω2)-names for pure conditions Q(C), such that

Q(C) preserves all unbounded families unbounded and adds a real not

split by V C(ω2) ∩ [ω]ω. An appropriate iteration of the forcing notion

could provide the consistency of b = κ < s = λ.
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CHAPTER 1

Introduction

Before proceeding with a brief account of the historical develop-

ment of mathematical ideas which lead to the establishment of the

cardinal invariants of the continuum as a separate subject, we will in-

troduce some basic notions and give the contemporary definitions of

the bounding and the splitting numbers since they present the main

object of study of this work. Following standard notation we denote

by ωω the set of all functions from the natural numbers to the nat-

ural numbers and by [ω]ω the set of all infinite subsets of ω. Let f

and g be functions in ωω. The function f is said to be dominated by

the function g if there is a natural number n such that f ≤n g, i.e.

(∀i ≥ n)(f(i) ≤ g(i)). Then <∗=
⋃

n∈ω ≤n is called the bounding re-

lation on ωω. A family of functions F in ωω is said to be dominated

by the function g, denoted F <∗ g if for every f ∈ F , f <∗ g. Also F

is said to be unbounded (equiv. not dominated) if there is no function

g which dominates it. Then the bounding number is defined as the

minimal size of an unbounded family. That is

b = min{|B| : B ⊆ ωω and B is unbounded}.

If A,B ∈ [ω]ω and both of the sets A∩B and A∩Bc are infinite, then

A is said to be split by the set B. A family S of infinite subsets of ω is

1



1.1. THE BOUNDING AND THE SPLITTING NUMBERS 2

said to be splitting if for every A ∈ [ω]ω there is B ∈ S which splits A.

Then the splitting number is defined as the minimal size of a splitting

family. That is

s = min{|S| : S ⊆ [ω]ω and S is splitting}.

Recall also that if A,B are subsets of ω, then the set A is said to be

almost contained in the set B, denoted A ⊆∗ B if A\B is finite.

1.1. The Bounding and the Splitting Numbers

With the development of analysis in the nineteenth century, emerged

a necessity of better understanding of the set of irrational numbers and

the properties of the real line. In 1871 answering a question of Rie-

mann, Georg Cantor obtained uniqueness of the trigonometric series

representation of a function. That is he showed that if two trigonomet-

ric series converge to the same function, except on finitely many points,

then they must be equal everywhere. A year later, he generalized his

result to infinite sets of exceptional points. Recall that if S ⊆ R,

then the derived set S ′ of S consists of all limit points of S. Cantor

showed that if two trigonometric series converge to the same function

except on a set S such that for some n ∈ N the n-th derived set S(n)

is finite, then the series must be equal everywhere. Although results

concerning infinite sets of exceptional points were already presented in

the literature by that time, for example in 1829 Dirichlet suggested

that a function whose point of discontinuity form a nowhere dense set

is integrable, Cantor’s generalized uniqueness theorem was one of the
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first results that took extensive use of the structure of an infinite set

(see [25]). The result was followed in 1874 by Cantor’s proof that the

real numbers can not be placed in bijective correspondence with the

natural numbers, the surprising fact in 1878 as Cantor himself admits,

that n-dimensional Euclidean space is in bijective correspondence with

the real line and the continuum hypothesis, that is the hypothesis that

every infinite subset of R is either in bijective correspondence with the

natural numbers or the real line. By 1879 the study of combinatorial

structure of infinite sets of reals has already emerged as an important

direction in further studies of the properties of the continuum. For ex-

ample, Cantor defined and studied perfect sets of reals, i.e. sets which

contain all of their accumulation points [25], and showed that every

perfect set is in bijective correspondence with the real line. However

later Bernstein constructed an uncountable set, such that neither it nor

its complement contained a perfect set, thus it became clear that the

study of perfect sets was insufficient to settle the continuum hypothesis.

The cardinal invariants of the continuum arise from various combi-

natorial structures on the real line. Of particular interest for this work

is the covering number of the meager ideal cov(M). Let M denote the

family of all meager subsets of R. Then cov(M) is the minimal size

of a family F ⊆ M such that
⋃
F = M. In 1899 Rene Baire showed

that countably many meager sets do not cover the real line. Under the

CH the minimal size of a family of meager sets which covers the real

line is ℵ1 = c. However if CH fails and for example c = ℵ2, then it is

consistent with ZFC that cov(M) = ℵ1 and also it is consistent that
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cov(M) = ℵ2. Another cardinal invariant which should be mentioned

is the dominating number d. A family D ⊆ ωω is said to be dominating

if for every function f ∈ ωω there is d ∈ D such that f ≤∗ d. The

dominating number d is the minimal size of a dominating family. Note

that every dominating family is unbounded and so b ≤ d.

In his “Calculus of Infinity” (see [18]) Paul du Bois-Reymond in the

late 1870’s studied the collection of continuous, monotone increasing

positive valued functions and suggested to rank them according to their

rate of divergence, or convergence to zero. That is he wanted to find a

linear order ≺ on this set of functions, and an equivalence relation ∼

such that f ≺ g provided that the “rate of growth of f is smaller than

the rate of growth of g” and f ∼ g provided they have the same rate

of growth, and such that the equivalence ∼ respects ≺ (see [29]). He

defines f ≺ g if

lim
x→∞

f(x)/g(x) = 0 or lim
x→∞

g(x)/f(x) = ∞

and f ∼ g if

0 < lim
x→∞

f(x)/g(x) <∞.

The major problem in this ranking is the existence of incomparable

infinities, that is the existence of functions for which the above limit

does not exist. Cantor considered this a significant drawback of du

Bois-Reymond’s idea, a drawback which under the axiom of choice his

cardinal arithmetic did not have. However, Hausdorff further pursued

the study of maximal linearly ordered subsets of (NR,≤∗). In 1909

Hausdorff ([22]) showed that these maximal linearly ordered subsets



1.1. THE BOUNDING AND THE SPLITTING NUMBERS 5

have the cardinality of the continuum and established his main result

the existence of (ω1, ω1)-gaps. However it was not until 1936 (see [23]),

that Hausdorff published the proof for binary sequences, i.e. estab-

lished that in (2ω,≤∗) there is a (ω1, ω1)-gap, but there are no (ω, ω)-

gaps and no ω-limits, which leads to the contemporary concepts of

scale, unboundedness, tower, pseudo-intersection and correspondingly

to the cardinal invariants d, b, t and p.

In fact, the first to give the contemporary definition of the bound-

ing number is Rothberger. A subset A of the n-dimensional Euclidean

space Rn is said to have the property λ, if each of its countable sub-

sets is relative Gδ. A subset A of Rn is said to have the property

λ′ if A ∪ B has the property λ for every countable subset B of Rn.

Answering a question of Sierpinski, Rothberger constructs a set which

has the property λ, and at the same time does not have property λ′.

In [28] he defines B(ℵξ) to be the proposition that all sequences of

natural numbers of cardinality ℵξ are bounded , and then defines ℵη

to be the minimal cardinal for which B(ℵξ) does not hold . Thus in

contemporary notation ℵη is the cardinal invariant b and Rothberger’s

result states that a subset A of Rn has the property λ′ if and only if

the cardinality of A is less than the bounding number. By the time

the splitting number appeared in the literature, the dependence of the

topological, measure theoretic properties of the continuum and its car-

dinal combinatorial characteristics was well established. In fact the

splitting number appeared as an algebraic characteristic of sequential
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compactness. In [10] David Booth states that for every regular un-

countable cardinal λ, the space 2λ is sequentially compact if and only if

for every sequence 〈aα : α ∈ λ〉 of infinite subsets of N there is b ⊆ N

such that for all α ∈ λ, b ⊆∗ aα or b ⊆∗ N − aα. In contemporary

notation that is, 2λ is sequentially compact if and only if λ is smaller

than the splitting number.

Below is a list of the known consistency relations between the

bounding and the splitting numbers, as well as the main results of

this work; κ and λ denote arbitrary regular uncountable cardinals.

Theorem 1.1.1 (Balcar-Pelant-Simon, [2]). It is relatively consis-

tent with ZFC that s = ω1 < b = κ.

Theorem 1.1.2 (Shelah, [31]). It is relatively consistent with ZFC

that s = κ < b = λ.

Theorem 1.1.3 (Shelah, [31]). It is relatively consistent with ZFC

that b = ω1 < s = ω2.

Theorem 1.1.4 (Brendle, [11]). It is relatively consistent with ZFC

that b = ω1 < s = κ.

Our main result, is the following.

Theorem 1.1.5 (Main result). It is relatively consistent with ZFC

that b = κ < s = κ+.

In chapters IV -V I we give a first step towards the proof of the

relative consistency of b = κ < s = λ.



1.2. FORCING 7

1.2. Forcing

In 1963 Paul Cohen introduced the method of forcing (see [15])

to obtain the independence of the continuum hypothesis. Since then

the method of forcing is largely used to obtain different relative con-

sistency results, including results regarding the combinatorial cardinal

characteristics of the real line. This is a general method for obtaining

models of large finite fragments of ZFC, which satisfy some additional

axioms. Excellent exposition of the method of forcing can be found

in [24], [20]. I will give some basic notions and outline some of the

fundamental properties of the method of forcing, since this is a major

technique for the presented work. A forcing notion is a partially or-

dered set, that is a set P together with a reflexive and transitive relation

≤ on P. We will work with strong forcing notions, i.e. partial orders

which are also antisymmetric. That is for all p, q ∈ P if p ≤ q and q ≤ p

then p = q. The elements of the forcing notion are called conditions .

If p ≤ q then p is said to be an extension of q, also to be stronger

than q and q is said to be weaker than p. The intuitive idea is that

stronger conditions have more information about the intended model

than weaker conditions. Conditions which do not have common ex-

tensions are said to be incompatible and respectively conditions which

have a common extensions are said to be compatible. A set D ⊆ P is

dense if every condition p ∈ P has an extension in D. A set A ⊆ P is

an antichain if its elements are pairwise incompatible. A set D ⊆ P

is pre-dense if every element of the forcing notion is compatible with

some d ∈ D. A set C ⊆ P is centered if for all p, q ∈ C there is r ∈ C



1.2. FORCING 8

which is their common extension. A centered G ⊆ P which is closed

with respect to weaker conditions is a filter . In the following c.t.m. ab-

breviates “countable transitive model of sufficiently large finite portion

of ZFC”.

Definition. Let V be a c.t.m., P ∈ V a forcing notion. A filter

G ⊆ P is generic over V , if G ∩D 6= ∅ for all dense D ⊆ P, D ∈ V .

Equivalently, in the above definition one can require that the filter

G meets all pre-dense sets, or all maximal antichains, or all dense open

sets which belong to the model V . Recall that a dense open set, is a

dense subset which is closed with respect to stronger conditions.

Theorem. Let V be a c.t.m., P ∈ V a forcing notion and G ⊆ P

a filter generic over V . Then there is a countable transitive extension

V [G] of V which contains G, has the same ordinals as V and is minimal,

in the sense that if W is a transitive extension of V such that G ∈ W ,

then V [G] ⊆ W .

The model V is called the ground model and V [G] the generic ex-

tension. We will be working with forcing notions, which have the

property that every element has incompatible extensions. Such posets

are known to provide generic extensions which are distinct from the

ground model. Indeed, it is not hard to verify that for such forcing

notions the generic set does not belong to the ground model (see [24]).

The elements of the generic extension have names in the ground model,

which are recursively defined relations.
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Definition. Let P be a forcing notion. Then Ẋ is a P-name if Ẋ

is a relation and for all 〈Ẏ , p〉 ∈ Ẋ, Ẏ is a P-name and p ∈ P.

The collection of all P-names is a proper class. However if V is

a c.t.m. and P ∈ V , then the collection V P of all P-names in V

is a set. The notion of a P-name is absolute and so V P = {Ẋ :

(Ẋ is a P name)V }. The generic filter determines an evaluation of

the names. More precisely if Ẋ is a P-name and G is a P-generic filter

then the set Ẋ[G] = {Ẏ [G] : ∃p ∈ G(〈Ẏ , p〉 ∈ Ẋ)} is the evaluation

of Ẋ determined by G. Furthermore V [G] = {Ẋ[G] : Ẋ ∈ V P}. With

the forcing notion we associate a forcing language which is an exten-

sion of the language of set theory. An important characteristics of the

forcing extension is the fact that there is a clear relationship between

its semantic properties and the forcing notion, given by the forcing re-

lation. The forcing relation 
 is a relation between the elements of the

forcing notion and the sentences of the forcing language. This relation

is definable in the ground model and gives a description of the generic

extension within the ground model. The following statement is known

as the forcing theorem.

Theorem. If V is a c.t.m., P ∈ V is a forcing notion, φ is a sentence

in the forcing language and G ⊆ P is a filter generic over V then

V [G] � φ iff ∃p ∈ G(p 
 φ).
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We would like to obtain generic extensions in which ω1 < b < s.

Note that prior to this work, the existence of such models was un-

known. In 1984, see [31], S. Shelah obtains a generic extension in which

b = ω1 < s = ω2. About 15 years later modifying a model of A. Blass

and S. Shelah which gives an arbitrarily large spread between u and d,

J. Brendle obtains the consistency of b = ω1 < s = κ for κ arbitrary

regular uncountable cardinal (see [31] and [11]). For our purposes, it is

particularly important to obtain generic extensions in which cardinals

are not collapsed. Observe that the notion of a cardinal is not absolute.

For example forcing with the partial order of all finite partial functions

from ω to ω1 with extension relation reverse inclusion, over a model M

of CH, produces a generic extension in which ωM
1 is a countable ordinal.

In between the partial orders known to produce generic extensions in

which cardinals are not collapsed, are the ccc forcing notions and the

proper forcing notions. A forcing notion is said to be ccc, that is to

satisfy the countable chain condition, if it does not contain uncountable

antichains. A forcing notion is proper , if for every uncountable cardi-

nal λ, every stationary subset of [λ]ω from the ground model remains

stationary in the generic extension. The class of ccc forcing notions is

contained in the class of proper forcing notions (see [30]). The method

of forcing can be repeated in the generic extensions, which leads to the

theory of iterated forcing, an excellent exposition of which can be found

in [6]. There are certain preservation theorems concerning finite sup-

port iterations of ccc forcing notions, which present key points in the

construction of models of ω1 < b < s. For example, the finite support
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iteration of ccc forcing notion is ccc and so finite support iterations of

ccc forcing notions do not collapse cardinals. In particular the finite

support iteration of ccc forcing notions can be used to obtain generic

extensions in which cardinals are not collapsed and the continuum is

arbitrarily large. Another important fact is that if H is an unbounded

family of functions in ωω, every countable subfamily of which is dom-

inated by an element of H, then in order to preserve H unbounded

along an iteration with finite supports of ccc forcing notions, it is suffi-

cient to preserve H unbounded at each successor stage of the iteration

(see Theorem 3.5.2). Note that iterations of proper forcing notions of

length > ω2 are known to collapse the continuum. In general, there are

few available iteration techniques leading to generic extension in which

2ℵ0 ≥ ℵ3 (or even 2ℵ0 ≥ ℵ2) and on the other hand there are many

longstanding open questions about the combinatorial properties of the

real line, whose solution would require models with continuum ≥ ℵ3.

In between those are (see for example [33])

• the consistency of p < t

• the consistency of no P -point and no Q-point

• the consistency of s being singular

Thus to a certain degree, results about the combinatorial charac-

teristics of R leading to generic extensions with large continuum, might

be considered test results for developing new iteration techniques.

The bounding and the splitting numbers are independent, that is

it is consistent with ZFC that b < s as well as s < b. The consistency

of s < b is first mentioned by Balcar, Pelant and Simon [2] in 1980.
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In 1984 S. Shelah obtains a different model of s < b (see [31]) and in

1985, [7] J. Baumgartner and P. Dordal show that in the Hechler model

(i.e. a model obtained as a finite support iteration of Hechler forcing of

length κ, for κ regular uncountable cardinal over a model of GCH) the

bounding number is κ while the splitting number remains ω1. In order

to obtain a generic extension in which b < s one has to accomplish

two major tasks: preserve a given unbounded family unbounded and

increase the splitting number. By the preservation theorem mentioned

above, in order to preserve an unbounded family unbounded along a

finite support iteration of ccc forcing notions, it is sufficient to preserve

the family unbounded at successor stages of the iteration. On the other

hand in order to increase the splitting number along such an iteration,

it is sufficient cofinally often to add reals which are not split by the

ground model reals. A forcing notion which is known to add a real not

split by the ground model reals is Mathias forcing [26].

Definition. Mathias forcing M consists of all pairs (s, A) where s

is a finite subset of ω and A ∈ [ω]ω such that max s < minA. We say

that p1 = (s1, A1) ≤ p2 = (s2, A2) if s1 end-extends s2, s1\s2 ⊆ A2 and

A1 ⊆ A2. If s1 = s2 then p1 is said to be a pure extension of p2.

If p = (s, A) is a Mathias condition, then the infinite set A is called

the pure part of p and the finite set s the stem of p. Having in mind

the notion of preprocessed conditions, observe that every extension

can be obtained in two steps: extension of the stem followed by a pure

extension. To see that M adds a real not split by the ground model

reals, consider any A ∈ [ω]ω ∩M and p = (s, B) ∈ M. Then B ∩ A or
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B ∩ Ac is infinite. That is for every A ∈ [ω]ω ∩M , the set

DA = {(s, B) : B ⊆ A or B ⊆ Ac}

is dense. Let G be M-generic and let UG =
⋃
{s : ∃B(s, B) ∈ G}. Since

the conditions in G are pairwise compatible, the extension relation of M

implies that for every B which appears as the pure part of a condition

in G, the set UG is almost contained in B. Mathias forcing notion

satisfies Axiom A (see 1.3.6) and so is proper ([5]). Thus an iteration

of M with countable supports over a model of CH, would produce a

generic extension in which s = c = ℵ2. However Mathias forcing notion

is also known to add a dominating real, that is a function in ωω which

dominates all ground model reals. For every A ∈ [ω]ω, the enumerating

function of A, which will be denoted also by A, is obtained by defining

for every j ∈ ω, A(j) to be the j-th element of A. Let G be M-

generic filter and let UG be defined as above. It will be shown that the

enumerating function fG of UG dominates all ground model reals. To

see this consider any f ∈ ωω ∩M . The set

Df = {(s, A) : ∀` ∈ ωA(`) ≥ f(|s|+ `)}

is dense in M. Indeed, given (s, B) ∈ M, one can recursively define an

infinite subset A of B so that (s, A) ∈ Df . Then G∩Df contains some

condition (s, A). Since UG\s ⊆ A and s is an initial segment of UG, for

every ` ∈ ω

fG(`+ |s|) ≥ A(`) ≥ f(|s|+ `).
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That is f ≤∗ fG. Therefore an iteration of M with countable supports

of length ω2, as suggested above, would produce a generic extension in

which the bounding number is also ω2.

By adding additional combinatorial structure on the pure Mathias

conditions, in [31] S. Shelah obtains a forcing notion Q′ (see defini-

tion 1.3.5) of size c which is proper, in fact Axiom A, which adds a real

not split by the ground model reals and satisfies a strong combinatorial

property. This property guarantees that under an iteration of the forc-

ing notion Q′ with countable supports over a model of CH, the ground

model reals will remain unbounded and so a witness to b = ω1. There-

fore an iteration with countable supports of length ω2 over a model of

CH of Shelah’s forcing notion Q′ produces a generic extension in which

b = ω1 < s = ω2. The additional combinatorial structure on the pure

Mathias conditions, is given in the form of logarithmic measure on the

finite subsets of ω.

Definition. Let x ∈ [ω]<ω. A function h : P(x) → ω is a finite

logarithmic measure if whenever x = x0 ∪ x1 then h(x0) ≥ h(x)− 1 or

h(x1) ≥ h(x) − 1 unless h(x) = 0. The value h(x) = ‖x‖ is called the

level of the measure.

The partial order Q′ consists of pairs p = (u, T ) where u is a finite

subset of ω and T = 〈(xi, hi) : i ∈ ω〉 is an infinite sequence of finite

logarithmic measures of strictly increasing levels. The sequence T is

similarly to Mathias forcing called a pure condition, also pure part of

p. Note that if int(T ) = ∪{xi : i ∈ ω}, then (u, int(T )) is a Mathias

condition. The properties of the finite logarithmic measure imply that
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if T = 〈(xi, hi) : i ∈ ω〉 is a pure condition and A ⊆ ω is infinite,

then either 〈hi(xi ∩ A) : i ∈ ω〉 or 〈hi(xi ∩ Ac) : i ∈ ω〉 is unbounded.

Therefore T has a pure extension R such that int(R) ⊆ A or int(R) ⊆

Ac and so for every A ∈ [ω]ω ∩M the set DA = {(u, T ) : int(T ) ⊆

A or int(T ) ⊆ Ac} is dense. This implies that Q′ adds a real not split

by the ground model reals.

However, we would like to obtain a model of ω1 < b < s and

so we would need to produce a generic extension in which cardinals

are not collapsed and c = 2ℵ0 ≥ ℵ3. A partial order P which can

be presented in the form P =
⋃

n∈ω Xn where for all n ∈ ω, Xn is a

centered subset of P is called σ-centered . Note that every σ-centered

forcing notion has the countable chain condition. For every ultrafilter

U let MU denote the suborder of Mathias forcing notion M consisting

of all conditions whose pure part belongs to U . Conditions in MU with

equal stems are compatible and so MU is σ-centered. Using the fact

that U is an ultrafilter, one can easily show that MU adds a real not

split by the ground model reals. Therefore MU can be used to obtain

generic extensions in which the splitting number is arbitrarily large.

However MU might add a dominating real. In fact if U is selective,

then forcing with MU does add a real dominating the ground model

reals. In [14] M. Canjar shows that if U is an ultrafilter such that

MU does not add a dominating real, then U is necessarily a P -point

with no Q-points below it in the Rudin-Keisler order. In [14] it is also

shown that if d = c then there is an ultrafilter U such that MU does not

add a dominating real. One may expect that an appropriate iteration
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of such MU ’s would produce a generic extension in which b < s. For

example given regular uncountable cardinals κ < λ begin with a model

of GCH, add κ Hechler reals to obtain a generic extension M in which

b = d = c = κ and iterate with finite support of length λ Canjar’s

MU which do not add dominating reals. Note that along this iteration

small dominating families are not introduced and in fact in each initial

stage of the iteration d = c. Then in the final generic extension d =

s = c = λ. However preserving the ground model reals unbounded is

not sufficient to preserve a given unbounded family unbounded along

such an iteration and so one can not preserve a witness for b = κ.

In chapters II and III of this work we generalize Shelah’s result to

models of b = κ < s = κ+ for κ arbitrary regular uncountable cardinal.

In fact given an unbounded family H of functions in ωω such that every

subfamily H′ of cardinality strictly smaller than |H| is dominated by

an element of H (such families are called <∗-directed) we will obtain

a centered family CH of pure conditions in Shelah’s partial order Q′

and a ccc suborder Q(CH) of Q′, which generalizes the relativization

MU of Mathias forcing to an ultrafilter U . The forcing Q(CH) has the

advantage to Canjar’s non-dominating MU that it not only adds a real

which is not split by the ground model reals and preserves the ground

model reals unbounded, but also preserves the given unbounded family

H unbounded. Then under an appropriate finite support iteration of

ccc forcing notions we obtain the consistency of b = κ < s = κ+. There

are certain conditions on the existence of the forcing notion Q(CH), one

of which is that |H| = 2ℵ0 and so this method can not be used to obtain
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generic extension in which ω1 < b = κ < κ++ ≤ s. In the second half

of this work, we suggest a generic analogue of MU , in fact a generic

analogue of Q(C), which has the countable chain condition, adds a real

not split by the ground model reals and preserves a chosen unbounded

family H of cardinality strictly smaller than 2ℵ0 unbounded (in fact

we will obtain slightly more). Thus the suggested forcing notion has

the potential of providing a generic extension in which the splitting

number s is arbitrarily larger than b > ω1.

1.3. A proper forcing argument

Having in mind certain analogies between Shelah’s model of b =

ω1 < s = ω2 and the model of b = κ < s = κ+ (sections 2.1 - 3.6), in

this section we give a more detailed outline of Shelah’s proof. Apart

from the original paper [31] (and [30]) an excellent presentation of this

material is given in [1]. The section is self-contained and the rest of

the work does not depend on it.

Recall that a forcing notion P is weakly bounding if the ground

model reals remain an unbounded family in every generic extension

via P. However, the iteration of weakly bounding forcing notions is

not necessarily weakly bounding (see [1]) and so a stronger notion of

unboundedness is needed - see [31]:

Definition 1.3.1 (Shelah, [31]). The partial order P is almost ωω-

bounding if for every P-name ḟ for a function in ωω and every condition

p ∈ P there is a ground model function g ∈ ωω such that for every
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infinite subset A of ω, there is an extension qA of p such that

qA 
 ∃∞k ∈ A(ḟ(k) ≤ ǧ(k)).

As mentioned in [31], the Cohen forcing notion is almost ωω-bounding.

By [30] the countable support iteration of proper almost ωω-bounding

forcing notions is weakly bounding, and so in such iterations the ground

model reals remain an unbounded family. It remains to observe the fol-

lowing preservation theorems (see [30] or [1]):

Theorem 1.3.2 (Shelah, [30]). Assume CH. Let 〈〈Pi : i ≤ δ〉, 〈Q̇i :

i < δ〉〉 where δ < ω2, be a countable support iteration of proper forcing

notions of size ℵ1. Then CH holds in V Pδ .

Theorem 1.3.3 (Shelah, [30]). Assume CH. Let 〈Pi : i ≤ δ〉 where

δ ≤ ω2, be a countable support iteration of proper forcing notions of

size ℵ1. Then Pδ satisfies the ℵ2-chain conditions.

Therefore beginning with a model of CH and iterating with count-

able support (of length ω2) proper forcing notions of size continuum,

which satisfy the almost ωω-bounding property, one can obtain a generic

extension in which cardinals are not collapsed and the ground model

reals remain an unbounded family. Furthermore if the forcing notion

adds a real which is not split by the ground model reals, such an it-

eration would give the consistency of b = ω1 < s = ω2. Thus it is

sufficient to obtain the following theorem.

Theorem 1.3.4 (Shelah, [31]). Assume CH. There is a proper,

almost ωω-bounding forcing notion Q′ of size ℵ1 such that in every
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(V,Q′)-generic extension there is an infinite subset of ω which is not

split by the ground model reals.

For completeness we give the definition of Shelah’s partial order

Q′. The partial order (defined in section 2.2) differs slightly from the

forcing notion given below.

Definition 1.3.5 (Shelah). Let Q′ be the set of all pairs (u, T )

where u is a finite subset of ω and T = 〈(si, hi) : i ∈ ω〉 is a sequence

of finite logarithmic measures such that

(1) maxu < min s0

(2) max si < min si+1

(3) hi(si) < hi+1(si+1).

Also int(T ) = ∪{si : i ∈ ω} denotes the underlying subset of ω.

We say that (u1, T1) is extended by (u2, T2) where T` = 〈t`i : i ∈ ω〉

for ` = 1, 2, t`i = (s`
i , h

`
i) and denote this by (u2, T2) ≤ (u1, T1) if the

following conditions hold:

(1) u2 is an end-extension of u1 and u2\u1 ⊆ int(T1)

(2) int(T2) ⊆ int(T1) and there is a sequence 〈Bi : i ∈ ω〉 of

finite subsets of ω such that maxu2 < min s1
j for j = minB0,

maxBi < minBi+1 and s2
i ⊆ ∪{s1

j : j ∈ Bi}

(3) for every e ⊆ s2
i such that h2

i (e) > 0 there is j ∈ Bi such that

h1
j(e ∩ s1

j) > 0.

Whenever (u, T ) ∈ Q′ the finite set u is called the stem of the condition

and T the pure part. Conditions with empty stem are called pure
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conditions and are often denoted by their pure part. If q extends p,

and q has the same stem as p, then q is called a pure extension of p.

Observe that if (u, T ) is a condition in Q′, then (u, int(T )) is a

condition in the Mathias forcing notion. In fact the reason that Q′

adds a real not split by the ground model reals is the same as for

Mathias forcing. To see that Q′ adds a real not split by the ground

model reals, note that if T ∈ Q′ is a pure condition and A is an infinite

subset of ω, then there is a condition T ′ ∈ Q′ extending T such that

int(T ′) ⊆ A or int(T ′) ⊆ Ac. But then for every ground model infinite

subset A of ω the set

DA = {(u, T ) ∈ Q′ : int(T ) ⊆ A or int(T ) ⊆ Ac}

is dense in Q′ and so the real

UG =
⋃
{u : ∃T (u, T ) ∈ G}

where G is Q′-generic filter is not split by the ground model reals.

Note that if 〈Pα : α ≤ δ〉 is a countable support iteration of proper

forcing notions, where δ is of uncountable cofinality, then any new real

is obtained at some initial stage δ0 < δ of the iteration. Furthermore if

〈Pα : α ≤ ω2〉 is a countable support iteration of proper forcing notions,

then any set of reals of cardinality ω1 is added at some (proper) initial

stage of the iteration. Therefore, assuming Q′ is proper, an iteration of

Q′ over a model of CH of length ω2, would result in a model of s = ω2.
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Definition 1.3.6 (Baumgartner, [5]). A forcing notion P = (P,≤)

is said to satisfy Axiom A, if the following holds:

(1) There is a sequence of partial orders {≤n}n∈ω on P, where

≤0=≤, such that ≤n⊆≤m for every m ≤ n. That is, whenever

m ≤ n and p, q are conditions in P such that p ≤n q, then

p ≤m q.

(2) If {pn}n∈ω is a sequence of conditions in P such that pn+1 ≤n+1

pn for every n, then there is a condition p such that p ≤n+1 pn

for every n. The sequence {pn}n∈ω is called a fusion sequence

and p is called the fusion of the sequence.

(3) For every D ⊆ P which is dense, and every condition p, for

every n ∈ ω there is a condition p′ such that p′ ≤n p and a

countable subset D0 of D which is predense below p′.

The forcing notion Q′ satisfies Axiom A and so is proper (see [5]).

To see that indeed Q′ satisfies Axiom A, define a sequence of suborders

{≤i}i∈ω of ≤ as follows. Let (u`, T`) where T` = 〈t`i : i ∈ ω〉 for ` = 1, 2

be conditions in Q′. Define

(u2, T2) ≤1 (u1, T1)

if u1 = u2 and (u2, T2) ≤0 (u1, T1) where ≤0=≤ is the partial order

given in Definition 1.3.5. For i ≥ 1 let

(u2, T2) ≤i+1 (u1, T1)

if u1 = u2 and for every j ∈ i t1j = t2j . Then {≤i}i∈ω is a decreasing se-

quence of partial orders on Q. Furthermore if {pn}n∈ω = {(u, Tn)}n∈ω,
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where Tn = 〈tnj : j ∈ ω〉 is a fusion sequence, then the condition

p = (u, T ) where T = 〈tj : j ∈ ω〉 and for every j ∈ ω, tj = tj+1
j is a

fusion of the given sequence.

In order to establish part (3) of Axiom A as well as the almost

ωω-bounding property, one needs the notion of preprocessed conditions

(see [6], Section 8). Note that in Section 2.6 we work with a slight

modification of this notion.

Definition 1.3.7. Suppose D ⊆ Q′ is a dense open set. We say

that p = (u, T ) where T = 〈ti : i ∈ ω〉 is preprocessed for D and k ∈ ω

if for every subset v of k which end-extends u, (v, 〈tj : j ≥ k〉) has a

pure extension in D if and only if (v, 〈tj : j ≥ k〉) belongs to D.

The following three Lemmas show that, whenever D is a dense open

set and p ∈ Q′ there is a pure extension q of p such that for every i ∈ ω,

q is preprocessed for D and i.

Lemma 1.3.8. Let D be a dense open subset of Q′ and k ∈ ω. If

(u, T ) is preprocessed for D and k, then any extension of (u, T ) is also

preprocessed for D and k.

Proof. Consider any extension (w,R) of (u, T ) where R = 〈ri :

i ∈ ω〉. Let v be a subset of k, which end-extends w and such that

(v, 〈rj : j ≥ k〉) has a pure extension in D. Since R extends T , by

definition of the extension relation on Q 〈rj : j ≥ k〉) is an extension

of 〈tj : j ≥ k〉. Therefore (v, 〈tj : j ≥ k〉) has a pure extension

in D and since (u, T ) is preprocessed for D and k, (v, 〈tj : j ≥ k〉)

belongs to D (note that v also end-extends u). But D is open and
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since (v, 〈rj : j ≥ k〉) extends (v, 〈tj : j ≥ k〉), (v, 〈rj : j ≥ k〉) also

belongs to D. �

Lemma 1.3.9. Let (u, T ) ∈ Q′, k ∈ ω. Then (u, T ) has a ≤k+1

extension which is preprocessed for D and k.

Proof. Let T = 〈ti : i ∈ ω〉. Fix an enumeration v1, . . . , vj of

all subsets of k which end-extend u. Consider (v1, 〈ti : i ≥ k〉). If

(v1, 〈ti : i ≥ k〉) has a pure extension in D, denote it (v1, 〈t1i : i ≥ k〉).

If there is no such pure extension, let t1i = ti for every i ≥ k. In the

next step consider (v2, 〈t1i : i ≥ k〉). If it has a pure extension in D,

denote it (v2, 〈t2i : i ≥ k〉. If there is no such pure extension, then

for every i ≥ k let t2i = t1i . At the j-th step we will obtain condition

(vj, 〈tji : i ≥ k〉). Then (u, 〈tji : i ∈ ω〉) where for every i < k, tji = ti is

a ≤k+1-extension of (u, T ) which is preprocessed for D and k.

To see this, suppose (v, 〈tji : i ≥ k〉) has a pure extension in D where

v ⊆ k, v end-extends u. Then v = vm for some m, 1 ≤ m ≤ j. Then at

step m, we must have had that (vm, 〈tm−1
i : i ≥ k) has a pure extension

in D, and so we have fixed such a pure extension (vm, 〈tmi : i ≥ k〉) ∈ D.

However since m− 1 < j, we have 〈tji : i ≥ k〉 ≤ 〈tmi : i ≥ k〉. But D is

open and so (v, 〈tji : i ≥ k〉) is an element of D itself. �

Lemma 1.3.10. Let D be a dense open set. Then any condition has

a pure extension which is preprocessed for D and every i ∈ ω.

Proof. Let p = (u, T ) be an arbitrary condition. By Lemma 1.3.9

there is a fusion sequence {pi}i∈ω such that p0 = p, pi+1 ≤i+1 pi and

pi+1 is preprocessed for D and i. Let q be the fusion of the sequence.
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Then for every i ∈ ω we have that q ≤i+1 pi+1 and so in particular

q ≤ pi+1. Therefore by Lemma 1.3.8 q is preprocessed for D and i. �

Observe that q is obtained as the fusion of a sequence. This fact will

appear very important in obtaining the almost-ωω bounding property,

and in particular Lemma 1.3.11. With this we are ready to show that

the forcing notion Q satisfies Axiom A, part (3). Let D be a dense

open set and p an arbitrary condition. By Lemma 1.3.10 there is a

pure extension q = (u, T ) for T = 〈tj : j ∈ ω〉 which is preprocessed for

D and every i ∈ ω. Since q is obtained as a fusion of a fusion sequence

below p, for every n ∈ ω, q ≤n p. Furthermore the set

D0 = {(v, 〈tj : j ≥ i〉) ∈ D : v ⊆ i, i ∈ ω, v end-extends u}

is a countable subset of D which is pre-dense below q. To see this

consider an arbitrary extension (v,R) of q. Since D is dense, (v,R) has

an extension (v∪w,R′) in D. Note that (v∪w,R′) is a pure extension

of (v ∪ w, 〈tj : j ≥ k〉) for some k ∈ ω such that w ⊆ k. However q

is preprocessed for D and k, and so (v ∪ w, 〈tj : j ≥ k〉) ∈ D. Thus

in particular (v ∪ w, 〈tj : j ≥ k〉) belongs to D0 and is compatible

with (v,R). This establishes axiom A and so properness. The main

technical tool in obtaining the almost ωω-bounding property is the

following Lemma - compare with section 3.3.

Lemma 1.3.11. Let ḟ be a Q′-name for a function in ωω and let p =

(u, T ) be an arbitrary condition in Q′. Then there is a pure extension

(u,R) of p where R = 〈ri : i ∈ ω〉, ri = (xi, gi) such that ∀i ∈ ω, ∀v ⊆ i
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which end-extend u and ∀s ⊆ xi such that gi(s) > 0 there is wv ⊆ s

such that (v ∪ wv, 〈rj : j ≥ i+ 1〉) 
 ḟ(i) = ǩ for some k ∈ ω.

In order to obtain the pure condition R of the above Lemma, one

has to consider logarithmic measures induced by positive sets (see De-

finition 2.1.4) and in particular to show that the logarithmic measure

induced by the family Pk(T,D) where T = 〈t` : ` ∈ ω〉 is a pure con-

dition preprocessed for a given dense open set D and k ∈ ω consisting

of all finite subsets x of int(T ) such that for some ` ∈ ω, x ∩ int(t`) is

positive and ∀v ⊆ k∃w ⊆ x such that (v ∪w, T ) ∈ D, takes arbitrarily

high values - compare with section 3.1. Because of the analogy with

Theorem 3.3.2 we give a proof of the almost ωω-bounding property of

Q′ - see [1].

Theorem 1.3.12. The forcing notion Q′ is almost ωω-bounding.

Proof. Let ḟ be arbitrary Q-name of a function and p a condition

in Q. Let q = (u, T ), where T = 〈ti : i ∈ ω〉 and ti = (xi, gi), be a pure

extension of p which satisfies Lemma 1.3.11. Then for every i ∈ ω let

g(i) be the maximal k such that there are v ⊆ i and w ⊆ int(ti) such

that (v ∪w, 〈tj : j ≥ i+ 1〉) 
 ḟ(i) = ǩ. Consider any A ∈ [ω]ω and let

qA = (u, 〈ti : i ∈ A〉). We claim that qA 
 ∃∞k ∈ A(ḟ(k) ≤ g(k)).

Let n ∈ ω and let (v,R) be an arbitrary extension of qA. Then by

definition of the extension relation there is i ∈ A such that i0 > n,

v ⊆ i and s = int(R) ∩ int(ti) is such that gi(s) > 0. But then by

Lemma 1.3.11 there is w ⊆ s such that (v ∪ w, 〈tj : j ≥ i0 + 1〉) 


ḟ(i) = ǩ and so (v ∪ w, 〈tj : j ≥ i + 1〉) 
 ḟ(i) ≤ g(i). However
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(v ∪ w,R) extends (v ∪ w, 〈tj : j ≥ i + 1〉) and so (v ∪ w,R) 
 ḟ(i) ≤

g(i). Note also that (v ∪ w,R) extends (v,R). Then, since (v,R)

was an arbitrary extension of qA, the set of conditions which force

“∃k ∈ A(k > n ∧ ḟ(k) ≤ g(k))” is dense below qA. Since n was

arbitrary as well, we obtain qA 
 ∃∞k ∈ A(ḟ(k) ≤ g(k)). �



CHAPTER 2

Centered Families of Pure Conditions

2.1. Logarithmic Measures

The notion of logarithmic measure is due to S. Shelah. In our

presentation of logarithmic measures and their basic properties (Defin-

itions 2.1.1, 2.1.4 and Lemmas 2.1.3, 2.1.7, 2.1.9, 2.1.10) we follow [1].

Definition 2.1.1 (Shelah). Let s be a subset of ω and h : [s]<ω →

ω, where [s]<ω is the family of all finite subsets of s. The function h

is called a logarithmic measure, if for every A ∈ [s]<ω and for every

A0, A1 such that A = A0 ∪ A1, h(Ai) ≥ h(A) − 1 for i = 0 or i =

1 unless h(A) = 0. Whenever s is a finite set and h a logarithmic

measure on s, the pair x = (s, h) is called a finite logarithmic measure.

The value h(s) = ‖x‖ is called the level of x.

Definition 2.1.2. Whenever h is a finite logarithmic measure on

x and e ⊆ x is such that h(e) > 0, we will say that e is h-positive.

Lemma 2.1.3 (Shelah). If h is a logarithmic measure and h(A0 ∪

· · · ∪ An−1) ≥ `+ 1 then h(Aj) ≥ `− j for some j, 0 ≤ j ≤ n− 1.

Definition 2.1.4 (Shelah). Let P ⊆ [ω]<ω be an upwards closed

family. Then P induces a logarithmic measure h on [ω]<ω defined

inductively on |s| for s ∈ [ω]<ω in the following way:

27
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(1) h(e) ≥ 0 for every e ∈ [ω]<ω

(2) h(e) > 0 iff e ∈ P

(3) for ` ≥ 1, h(e) ≥ `+1 iff e ∈ P , |e| > 1 and whenever e0, e1 ⊆ e

are such that e = e0 ∪ e1, then h(e0) ≥ ` or h(e1) ≥ `.

Then h(e) = ` iff ` is the maximal natural number for which h(e) ≥ `.

The elements of P are called positive sets and h is said to be induced

by the positive sets P .

Definition 2.1.5. Let h be an induced logarithmic measure. Then

h is said to be atomic, if there is a singleton {n} such that h({n}) > 0.

Remark 2.1.6. From now on we assume that all logarithmic mea-

sures are non-atomic.

Lemma 2.1.7 (Shelah). If h is a logarithmic measure induced by

positive sets and h(e) ≥ `, then for every a such that e ⊆ a, h(a) ≥ `.

Example 2.1.8 (Shelah, [1] or [32]). Let P be the family of all sets

containing at least two points and h the logarithmic measure induced

by P on [ω]<ω. Then for every x ∈ P , h(x) = i where i is the minimal

natural number such that |x| ≤ 2i. This logarithmic measure is also

called a standard measure.

An easy application of König’s Lemma gives the following:

Lemma 2.1.9 (Abraham, [1]). Let P be an upwards closed family of

finite non-empty subsets of ω and h the induced logarithmic measure.

Let ` ≥ 1. Then for every subset A of ω, if A does not contain a set
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of measure ≥ ` + 1, then there are A0, A1 such that A = A0 ∪ A1 and

neither of A0, A1 contains a set of measure greater or equal `.

Proof. If A is a finite set, then the given statement is the contra-

positive of part 3 of Definition 2.1.4. Thus assume A is infinite. For

every natural number k, let Ak = A ∩ k and let T be the family of all

functions f : m →
⋃

0≤k≤mP(Ak) × P(Ak), where m ∈ ω, such that

for every k,

f(k) = (ak
0, a

k
1) ∈ P(Ak)× P(Ak)

where ak
0 ∪ ak

1 = Ak, h(a
k
0) � `, h(ak

1) � ` and for every k : 1 ≤ k ≤ m,

ak−1
0 ⊆ ak

0, a
k−1
1 ⊆ ak

1.

Then T together with the end-extension relation is a tree. Fur-

thermore for every m ∈ ω, the m-th level of T is nonempty. Really

consider an arbitrary natural number m. Then A∩m = Am is a finite

set which is not of measure greater or equal `+ 1. By Definition 2.1.4,

part (3), there are sets am
0 , am

1 such that Am = am
0 ∪am

1 and h(am
0 ) � `,

h(am
1 ) � `. Let am−1

0 = Am−1 ∩ am
0 and am−1

1 = Am−1 ∩ am
1 . Then by

Lemma 2.1.7 the measure of each of am−1
0 , am−1

1 is not greater or equal

to ` and Am−1 = A∩(m−1) = am−1
0 ∪am−1

1 . Therefore inm steps we can

define finite sequences 〈ak
0 : 0 ≤ k ≤ m〉, 〈ak

1 : 0 ≤ k ≤ m〉 such that

for every k, Ak = ak
0 ∪ ak

1, h(a
k
0) � `, h(ak

1) � ` and ∀k : 0 ≤ k ≤ m− 1

ak
0 ⊆ ak+1

0 , ak
1 ⊆ ak+1

1 . Therefore f : m →
⋃

0≤k≤mP(Ak) × P(Ak)

defined by f(k) = (ak
0, a

k
1) is a function in the m’th level of T .

Therefore by König’s Lemma there is an infinite branch through T .

Let f : ω →
⋃

k∈ω P(Ak)×P(Ak) where f(k) = (ak
0, a

k
1), a

k
0 ∪ ak

1 = Ak,

etc., be such an infinite branch. Then if B0 =
⋃

k∈ω a
k
0, B1 =

⋃
k∈ω a

k
1
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we have that A = B0 ∪ B1 and none of the sets B0, B1 contains a set

of measure greater or equal `. Consider an arbitrary finite subset x of

B0. Then x ⊆ ak
0 for some k ∈ ω. But h(ak

0) � ` and so h(x) � `. The

same argument applies to B1. �

Lemma 2.1.10 (Abraham, [1]). (Sufficient Condition for High Val-

ues) Let P be an upwards closed family of finite subsets of ω and h the

logarithmic measure induced by P . Then if for every n ∈ ω and every

partition of ω into n sets ω = A0 ∪ · · · ∪An−1 there is some j ≤ n− 1

such that Aj contains a positive set x (such that |x| ≥ 2), then for

every natural number k, for every n ∈ ω and partition of ω into n sets

ω = A0 ∪ · · · ∪ An−1 there is some j ≤ n − 1 such that Aj contains a

set of measure greater or equal k.

Remark. Note that if the measure of x is ≥ 2, then |x| ≥ 2.

However for non-atomic measures, ‖x‖ > 0 implies that |x| ≥ 2.

Proof. The proof proceeds by induction on k. If k = 1 this is just

the assumption of the Lemma. So suppose we have proved the claim

for k = ` and furthermore that it is false for k = ` + 1. Then there is

some n ∈ ω and partition of ω into n sets ω = A0∪· · ·∪An−1 such that

none of A0, . . . , An−1 contains a set of measure greater or equal ` + 1.

By Lemma 2.1.9 for each j ∈ n− s there are sets A0
j , A

1
j none of which

contains a set of measure greater or equal ` and such that Aj = A0
j∪A1

j .

Then ω = A0
0∪A1

0∪ · · · ∪A0
n−1∪A1

n−1 is a finite partition of ω, none of

the elements of which contains a set of measure ≥ `. This contradicts

the inductive hypothesis for k = `. �



2.2. CENTERED FAMILIES OF PURE CONDITIONS 31

2.2. Centered Families of Pure Conditions

Definition 2.2.1 (Shelah). Let Q be the set of all pairs (u, T )

where u is a finite subset of ω and T = 〈(si, hi) : i ∈ ω〉 is a sequence

of finite logarithmic measures such that

(1) maxu < min s0

(2) max si < min si+1 for all i ∈ ω

(3) 〈hi(si) : i ∈ ω〉 is unbounded.

The finite part u is called the stem of the condition p = (u, T ), and T

the pure part of p. Also int(T ) = ∪{si : s ∈ ω}. In case that u = ∅ we

say that (∅, T ) is a pure condition and usually denote it simply by T .

We say that (u1, T1) is extended by (u2, T2), where T` = 〈t`i : i ∈ ω〉

and t`i = (s`
i , h

`
s) for ` = 1, 2, and denote it by (u2, T2) ≤ (u1, T1) if the

following conditions hold:

(1) u2 is an end-extension of u1 and u2\u1 ⊆ int(T1)

(2) int(T2) ⊆ int(T1) and furthermore there is an infinite sequence

〈Bi : i ∈ ω〉 of finite subsets of ω such that maxu2 < min s1
j for

j = minB0, max(Bi) < min(Bi+1) and s2
i ⊆ ∪{s1

j : j ∈ Bi}.

(3) for every subset e of s2
i such that h2

i (e) > 0 there is j ∈ Bi

such that h1
j(e ∩ s1

j) > 0.

If u1 = u2, then (u2, T2) is called a pure extension of (u1, T1).

The partial order Q′ in Definition 1.3.5 differs with Q, in the re-

quirement that the sequence 〈hi(si) : i ∈ ω〉 is strictly increasing rather

then simply unbounded. However from every unbounded sequence one
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can choose a strictly increasing subsequence and so the partial order

Q′ (see Definition 1.3.5) is dense in Q.

Definition 2.2.2. Let T = 〈ti : i ∈ ω〉 be a pure condition. Then

for every k ∈ ω, let iT (k) = min{i : k < min int(ti)} and let T\k =

TiT (k) = 〈ti : i ≥ iT (k)〉. Whenever u is a finite subset of ω let T\u =

TiT (max u) and (u, T ) = (u, T\u).

Definition 2.2.3. Let F be a family of pure conditions. Then

Q(F) is the suborder of Q of all (u, T ) ∈ Q such that ∃R ∈ F(R ≤ T ).

Definition 2.2.4. A family of pure conditions C is centered if

whenever X, Y ∈ C there is R ∈ C which is their common extension.

We will be interested in centered families C of pure conditions and

the associated partial order Q(C).

Lemma 2.2.5. Let C be a centered family of pure conditions. Then

Q(C) is σ-centered.

Proof. Any two conditions in Q(C) with equal stems have a com-

mon extension in Q(C). �

From now on by centered family we mean a centered family of pure

conditions, unless otherwise specified. Furthermore we assume that all

centered families are closed with respect to final sequences, that is if

C is a centered family and T ∈ C then T\v ∈ C for every v ∈ [ω]<ω.

Note that Q(C) is the upwards closure of {(u, T ) : T ∈ C}.

Lemma 2.2.6. Any two conditions of Q(C) are compatible as con-

ditions in Q(C) if and only if they are compatible in Q.
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Proof. Let p = (u, T ) and q = (v,R). Suppose that p, q are

compatible as conditions in Q. Let (w,Z) be their common extension

in Q. Then in particular w is a common end-extension of u and v,

which implies that u is an end-extension of v or v is an end-extension

of u. Say u is an end-extension of v. Then u\v ⊆ w\v ⊂ int(R). Since

p and q belong to Q(C), by definition there are pure conditions T ′, R′

in C such that T ′ ≤ T and R′ ≤ R. However C is centered, and so

there is a pure condition Z ′ ∈ C which is a common extension of T ′

and R′ and so a common extension of T and R. But then (u, Z ′) is a

common extension of p and q from Q(C). �

A pure condition, which is compatible with every element of a cen-

tered family, is said to be compatible with the centered family. If C ′ is

a centered family which contains a centered family C in its downwards

closure, i.e. C ⊆ Q(C ′), then C ′ is said to extend C. In particular if

C ⊆ Q(C ′) and there is R ∈ Q(C ′) such that ∀X ∈ C ′(X ≤ R) we say

that C ′ extends C below R.

2.3. Partitioning of Pure Conditions

Lemma 2.3.1. Let (x, h) be a finite logarithmic measure and h(x) ≤

n. Then x = ∪{xi : i ∈ 2n} where for every i ∈ 2n, h(xi) = 0.

Proof. We give a proof by induction on n. Let n = 1. Then

by definition of logarithmic measure there are sets x0, x1 such that

x = x0 ∪ x1 and h(x0) 6≥ 1 and h(x1) 6≥ 1, that is x0 and x1 are not

positive. Suppose we have proved the claim for every measure of level

≤ n, where n ≥ 2. Let (x, h) be a logarithmic measure of level ≤ n+1.
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Then, there are sets x0, x1 such that x = x0 ∪ x1 and h(x0) ≤ n,

h(x1) ≤ n. By inductive hypothesis for ` ∈ 2 x` = ∪{xi
` : i ∈ 2n}

where for all i ∈ 2n h(xi
`) = 0. But then it is clear, that x can be

presented as the union of 2×2n sets, each of which is of measure 0. �

Lemma 2.3.2. Let T = 〈(si, hi) : i ∈ ω〉 be a pure condition and

let A be an infinite subset of ω. If the sequence 〈hi(si ∩ A) : i ∈ ω〉 is

bounded, then T has no pure extension R with int(R) ⊆ A.

Proof. Suppose to the contrary that R is a pure condition in Q

extending T such that int(R) ⊆ A. Then there is 〈Bi : i ∈ ω〉 ⊆ [ω]<ω

such that ∀i ∈ ω xi ⊆ ∪{sj : j ∈ Bi} where R = 〈(xi, gi) : i ∈ ω〉.

Since int(R) ⊆ A we have xi = xi ∩ A ⊆ ∪{sj ∩ A : j ∈ Bi}. Let

M ∈ ω be such that hi(si ∩ A) ≤ M for every i ∈ ω. Since, R is

a pure condition, the sequence 〈gi(xi) : i ∈ ω〉 is unbounded, and so

there is ` ∈ ω for which g`(x`) ≥ 2M + 1. For simplicity denote (x`, g`)

by (x, g). By definition x ⊆ ∪{sj ∩ A : j ∈ B`}. However for each

j ∈ B`, hj(sj ∩ A) ≤ M and so ∀j ∈ B` there is a family of sets {sm
j :

m ∈ 2M} such that sj ∩ A = ∪{sm
j : m ∈ 2M} and for every m ∈ 2M ,

hj(s
m
j ) = 0. Then for every m ∈ 2M let am = x ∩ (∪{sm

j : j ∈ B`}).

Then x = ∪{am : m ∈ 2M} and so by Lemma 2.1.3 there is m ∈ 2M

such that g(am) ≥ (2M + 1) − m ≥ 1. But then ∃j ∈ B` such that

hj(am ∩ sj) > 0. However sm
j = am ∩ sj and so hj(s

m
j ) > 0 which is a

contradiction. �

Remark 2.3.3. It is essential to work with non-atomic measures.

If P = [ω]<ω and h is the induced logarithmic measure, then T =
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〈({2n}, h � {2n}) : n ∈ ω〉 is a sequence of finite logarithmic measures

of measure 1, however amalgamating successive measures of T one can

obtain a pure condition, and so in particular an unbounded sequence

of finite logarithmic measures.

Definition 2.3.4. Whenever T = 〈(si, hi) : i ∈ ω〉 be a pure

condition and A ⊆ ω, let T � A = 〈(si ∩ A, hi � P(si ∩ A)) : i ∈ ω〉.

Lemma 2.3.5. Let T = 〈ti : i ∈ ω〉, where ti = (si, hi), be a pure

condition and ω = A0 ∪ · · · ∪ An−1 a finite partition of ω. Then there

is j ∈ n such that T � Aj is a pure condition.

Proof. Suppose not. That is, for every j ∈ n there is Mj ∈ ω

such that hi(si ∩ Aj) ≤ Mj for every i ∈ ω. Let M = maxj∈nMj and

let ti = (si, hi) be a measure from T with hi(si) ≥ M + (n + 1). Let

sj
i = si∩Aj for every j ∈ n. Then si = s0

i ∪s1
i ∪· · ·∪sn−1

i is a partition

of si into n sets and so there is j ∈ n such that hi(s
j
i ) ≥ hi(si) − j =

M + (n+ 1)− j ≥M + 1 > Mj which is a contradiction. �

Lemma 2.3.6. Let R be a pure extension of T and let A be an

infinite subset of ω, such that R � A and T � A are pure conditions.

Then R � A is a pure extension of T � A.

Proof. Let R = 〈(xi, gi) : i ∈ ω〉, T = 〈(si, hi) : i ∈ ω〉. Since

R is a pure extension of T , there is a sequence 〈Bi : i ∈ ω〉 ⊆ [ω]<ω

such that ∀i ∈ ω, xi ⊆ ∪{sj : j ∈ Bi}. Note that for every i ∈ ω,

xi ∩A ⊆ ∪{sj ∩A : j ∈ Bi} and furthermore if e ⊆ xi ∩A is such that

hi(e) > 0, by definition of the extension relation there is j ∈ Bi such
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that gj(e∩sj) > 0. It remains to observe that e∩sj = e∩sj ∩A. Thus

R � A is a pure extension of T � A. �

Lemma 2.3.7. Let C be a centered family, T a pure condition com-

patible with C and ω = A0 ∪ · · · ∪ An−1 a finite partition of ω. Then

there is j ∈ n such that T � Aj is a pure condition compatible with C.

Proof. Suppose the claim is not true and let I ⊆ n be the set

of all indexes j ∈ n for which T � Aj is a pure condition in Q. By

Lemma 2.3.5, I 6= ∅. By hypothesis, ∀j ∈ I there is Tj ∈ C such

that Tj is incompatible with T � Aj. However I is finite, C is centered

and so there is X ∈ C which is a common extension of 〈Tj : j ∈ I〉.

By assumption X and T have a common extension R ∈ Q. Again by

Lemma 2.3.5 there is an i ∈ n such that R � Ai is a pure condition.

Furthermore by Lemma 2.3.6 R � Ai ≤ T � Ai and so by Lemma 2.3.2

i ∈ I. Also R � Ai ≤ R ≤ X ≤ Ti and so Ti and T � Ai are compatible

which is a contradiction. �

2.4. Good Names for Reals

Remark 2.4.1. We will use the fact that whenever f ∈ V P ∩ ωω

for some forcing notion P, then f has a P-name of the form ḟ =

∪{〈〈i, ji
p〉, p〉 : p ∈ Ai, i ∈ ω, ji

p ∈ ω} where for every i ∈ ω, Ai = Ai(ḟ)

is a maximal antichain.

Definition 2.4.2. Let C be a centered family of pure conditions

and let ḟ be a Q(C)-name for a real. Then ḟ is a good name if for

every centered family C ′ extending C, ḟ is a Q(C ′)-name for a real.
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Remark 2.4.3. That is ḟ is a good Q(C)-name for a real if and

only if for every centered family C ′ extending C and for every i ∈ ω,

Ai(ḟ) remains a maximal antichain in Q(C ′).

Lemma 2.4.4. Let C be a centered family of pure conditions and let

ḟ be a Q(C)-name for a real. Then the following are equivalent:

(1) ḟ is a good Q(C)-name for a real.

(2) For every centered family C ′ extending C such that |C ′| = |C|,

ḟ is a Q(C ′)-name for a real.

Proof. The implication from (1) to (2) is straightforward. To

obtain that (2) implies (1) consider any centered family C ′ extending

C such that |C ′| > |C| and suppose that ḟ is not a Q(C ′)-name. Then

there is condition p = (u, T ) ∈ Q(C ′) which is incompatible with all

elements of Ai = Ai(ḟ) for some i ∈ ω. Note that C ∪ {T} ⊆ Q(C ′).

Inductively we will construct a centered family C ′′ contained in Q(C ′)

such that C ∪ {T} ⊆ C ′′ and |C ′′| = |C|. Let C0 = C ∪ {T}. Since

C0 ⊆ Q(C ′) for all X, Y ∈ C0 there is ZX,Y ∈ Q(C ′) such that ZX,Y ≤

X and ZX,Y ≤ Y . Let C ′0 = {ZX,Y : X, Y ∈ C0} and let C1 = C0 ∪C ′0.

Suppose we have defined Cn = Cn−1 ∪ C ′n−1 ⊆ Q(C ′) where n ≥ 1,

such that for every X, Y ∈ Cn−1 there is Z ∈ Cn such that Z ≤ X,

Z ≤ Y and |Cn−1| = |Cn|. Then since Cn ⊆ Q(C ′) for all X, Y ∈ Cn

there is ZX,Y ∈ Q(C ′) such that ZX,Y ≤ X and ZX,Y ≤ Y . Then let

C ′n = {ZX,Y : X, Y ∈ Cn} and let Cn+1 = Cn ∪ C ′n. With this the

inductive construction is complete. Then C ′′ = ∪n∈ωCn is a centered

family of pure conditions containing C∪{T} and such that |C ′′| = |C|,
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C ′′ ⊆ Q(C ′). Note that C is infinite, since by assumption C is closed

with respect to final subsequences.

By the hypothesis of (2), ḟ is a Q(C ′′)-name for a real and so Ai(ḟ)

is a maximal antichain in Q(C ′′). Since C ∪ {T} ⊆ C ′′, p ∈ Q(C ′′) and

so there is a condition q ∈ Q(C ′′) which is a common extension of p

and an element q of Ai. But Q(C ′′) ⊆ Q(C ′) and so q ∈ Q(C ′), which

is a contradiction to p being incompatible with all elements of Ai. �

Corollary 2.4.5. Let C be a centered family of pure conditions

and let ḟ be a Q(C)-name for a real. If there is a centered family C ′

extending C such that ḟ is not a Q(C ′)-name for a real, then there is

a centered family C ′′ extending C which has the same cardinality as C ′

and such that ḟ is not a Q(C ′)-name for a real.

2.5. Generic Extensions of Centered Families

Definition 2.5.1. Let Qfin denote the partial order of all finite

sequences of strictly increasing finite logarithmic measures with the

end-extension relation. That is, Qfin is the set of all sequences r̄ =

〈r0, . . . , rn〉, n ∈ ω such that for every i ≤ n, ri = (si, hi) is a finite

logarithmic measure and for every i ≤ n− 1

max(si) < min(si+1) and hi(si) < hi+1(si+1).

The level of the sequence r̄ = 〈r0, . . . , rn〉 is the level of the highest

measure rn, denoted also ‖r̄‖. Whenever r̄1 and r̄2 are sequences in

Qfin define r̄1 ≤ r̄2 if r̄2 is an initial segment of r̄1.
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Definition 2.5.2. Let r̄ = 〈r0, . . . , rn−1〉 be a sequence in Qfin

where for every i ∈ n ri = (si, hi). Then r̄ extends the pure condition

T = 〈ti : i ∈ ω〉, ti = (xi, gi) denoted r̄ ≤ T , if

(1) int(r̄) = ∪{si : i ∈ n} ⊆ int(T ) and there is a sequence

〈B0, . . . , Bn−1〉 of finite subsets of ω such that maxBi < minBi+1

for every i ∈ n− 1, and si ⊆ ∪{xj : j ∈ Bi} for all i ∈ n

(2) for every i ∈ n and e ⊆ si such that hi(e) > 0 there is j ∈ Bi

such that gj(e ∩ xj) > 0.

The finite logarithmic measure r = (s, h) extends the pure condition

T = 〈ti : i ∈ ω〉, denoted by r ≤ T , if the sequence r̄ = 〈r〉 extends the

pure condition T .

Definition 2.5.3. Let T be a pure condition. Then P(T ) is the

suborder of Qfin consisting of all finite sequences r̄ extending T .

Lemma 2.5.4. Let T be a pure condition. Then

(1) ∀k ∈ ω the set Ek = {r̄ ∈ P(T ) : |r̄| ≥ k} is dense in P(T ) .

(2) For every pure condition X compatible with T and every n ∈ ω,

the set DT (X,n) = {r̄ ∈ P(T ) : ∃rj ∈ r̄(rj ≤ X and ‖rj‖ ≥

n)} is dense in P(T ).

Proof. Let r̄ ∈ P(T ). Since T\int(r̄) and X are compatible, there

is a finite logarithmic measure z of level higher than ‖r̄‖ and n, which is

their common extension. Then r̄a〈z〉 extends r̄ and is in DT (X,n). �

Corollary 2.5.5. Let C be a centered family of pure conditions, T

a pure condition compatible with C and G a P(T )-generic filter. Then
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in V [G] there is a centered family C ′ extending C below RG = ∪G =

〈ri : i ∈ ω〉 (and so below T ) which is of the same cardinality as C.

Proof. By Lemma 2.5.4.1 RG is a pure condition of strictly in-

creasing finite logarithmic measures. For every X ∈ C, n ∈ ω the

set DT (X,n) is dense in P(T ) and so G ∩ DT (X,n) 6= ∅. Then

IX = 〈i : ri ≤ X〉 is infinite and so RG ∧ X = 〈ri : i ∈ IX〉 is pure

condition which is a common extension of RG and X. Furthermore if

Y ≤ X then IY ⊆ IX which implies RG ∧ Y ≤ RG ∧X. Therefore the

family {RG ∧X}X∈C is centered. �

2.6. Preprocessed Conditions

Definition 2.6.1. Let C be a centered family of pure conditions,

ḟ a good Q(C)-name for a real, k, i ∈ ω and T a pure condition in

Q(C) such that k < min int(T ). Then T is preprocessed for ḟ(i), k, C

if for every v ⊆ k the following holds:

If there are a centered family C ′, a pure condition T ′ ∈ Q(C ′) and

q ∈ Ai(ḟ) such that C ′ extends C, |C ′| = |C|, T ′ ≤ T and (v, T ′) ≤ q,

then there is p ∈ Ai(ḟ) such that (v, T ) ≤ p.

Lemma 2.6.2. Let C be a centered family, ḟ a good Q(C)-name for

a real, i, k ∈ ω, T ∈ Q(C) a pure condition, preprocessed for ḟ(i), k,

C. Let C ′ be a centered family extending C, |C ′| = |C| and T ′ ∈ Q(C ′)

a pure extension of T . Then T ′ is preprocessed for ḟ(i), k, C ′.

Proof. Let C ′′ be a centered family extending C ′, |C ′′| = |C ′|

and T ′′ ∈ Q(C ′′) a pure condition extending T ′ such that for some
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p ∈ Ai(ḟ), (v, T ) ≤ p where v ⊆ k. Then C ′′ extends C, |C ′′| = |C|,

T ′′ ≤ T and since T is preprocessed for ḟ(i), k, C there is q ∈ Ai(ḟ)

such that (v, T ) ≤ q. However T ′ ≤ T and so (v, T ′) ≤ q. �

Remark 2.6.3. In particular, if T is preprocessed for ḟ(i), k, C

and C ′ is a centered family extending C such that |C ′| = |C|, then T

is preprocessed for ḟ(i), k, C ′.

Lemma 2.6.4. Let C be a centered family, ḟ a good Q(C)-name for

a real, i, k ∈ ω, T a pure condition in Q(C). Then there is a centered

family C ′ extending C, |C ′| = |C| and a pure condition T ′ extending

T , T ′ ∈ Q(C ′) such that T ′ is preprocessed for ḟ(i), k, C ′.

Proof. Let v1, . . . , vs enumerate the subsets of k. In finitely many

steps we will obtain the family C ′ and pure condition T ′. Consider

(v1, T\k). If there is a centered family C ′1 extending C, |C ′1| = |C|

and a pure condition T ′1 ∈ Q(C ′1) such that T ′1 ≤ T\k and for some

p1 ∈ A1(ḟ), (v1, T
′
1) ≤ p1, let T1 = T ′1 and C1 = C ′1. Otherwise

let T1 = T , C1 = C. Proceed inductively. At step (s − 1) consider

(vs, Ts−1) and Cs−1. If there is a centered family C ′s extending Cs−1,

|C ′s| = |Cs−1| such that for some pure condition T ′s ∈ Q(Cs) extending

Ts−1, there is ps ∈ Ai(ḟ) such that (vs, T
′
s) ≤ ps let T ′s = Ts and

Cs = C ′s. Otherwise let Ts = Ts−1, Cs = Cs−1. It will be shown that

T ′ = Ts is preprocessed for ḟ(i), k, C ′ = Cs.

Let v ⊆ k, C ′′ a centered family extending C ′, |C ′′| = |C|, T ′′ a pure

condition in Q(C ′′) extending T ′ and such that for some p ∈ Ai(ḟ),

(v, T ′′) ≤ p. Then v = vj for some j ∈ s+ 1. Since C ′′ extends C ′, C ′′
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extends Cj−1 and furthermore T ′′ ≤ T ′ ≤ Tj−1. Therefore at stage j we

have chosen a centered family Cj and a pure condition Tj ∈ Q(Cj) such

that (vj, Tj) ≤ pj for pj ∈ Ai(ḟ). But T ′ ≤ Tj and so (vj, T
′) ≤ pj. �

Corollary 2.6.5. Let C be a centered family, T a pure condition

in Q(C) and k ∈ ω. Then there is a centered family C ′ extending C,

|C ′| = |C| and a pure condition T ′ ∈ Q(C ′) extending T , such that for

every i ≤ k, T ′ is preprocessed for ḟ(i), k, C ′.

Proof. By Lemma 2.6.4 there is a centered family C0 extending

C, |C0| = |C| and a pure extension T0 ∈ Q(C0) of T\k, which is

preprocessed for ḟ(0), k, C0. Applying Lemma 2.6.4 at each step,

obtain a finite sequence 〈Ti : i ≤ k〉 of pure conditions such that

∀i ∈ k Ti+1 ≤ Ti and a finite sequence of centered families 〈Ci : i ≤ k〉

Ci ⊆ Q(Ci+1), |Ci+1| = |Ci|, Ti ∈ Q(Ci) and Ti is preprocessed for

ḟ(i), k, Ci. Let T ′ = Tk, C
′ = Ck. Then Ck extends C, |C ′| = |C|,

T ′ ∈ Q(C ′) is an extension of C and since for every i ≤ k T ′ ≤ Ti, by

Lemma 2.6.2 for every i ≤ k, T ′ is preprocessed for ḟ(i), k, C ′. �

2.7. Generic Preprocessed Conditions

Lemma 2.7.1. Let C be a centered family of pure conditions, ḟ a

good Q(C)-name for a real and let T be a pure condition in Q(C). Then

there is a centered family C ′ extending C, |C ′| = |C| and a sequence of

pure conditions 〈Tn : n ∈ ω〉 ⊆ Q(C ′), such that

(1) T0 ≤ T and ∀n ≥ 1(Tn ≤ Tn−1)

(2) ∀n ∈ ω∀i ≤ n, Tn is preprocessed for ḟ(i), n, C ′.
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Proof. By Lemma 2.6.4 there is a centered family C0 extending C,

|C0| = |C| and a pure extension T0 of T in Q(C0) which is preprocessed

for ḟ(0), 0, C0. Proceed inductively. Suppose we have defined Cn,

such that |Cn| = |Cn−1|, Tn ∈ Q(Cn) such that for all i ≤ n, Tn

is preprocessed for ḟ(i), n, Cn. Then by Corollary 2.6.5 there is a

centered family Cn+1 extending Cn, |Cn+1| = |Cn| and a pure condition

Tn+1 ∈ Q(Cn+1) extending Tn such that for all i ≤ n + 1, Tn+1 is

preprocessed for ḟ(i), n+1, Cn+1. With this the inductive construction

is complete. Then C ′ = ∪n∈ωCn is a centered family extending C,

|C ′| = |C|, which contains the sequence 〈Tn : n ∈ ω〉. For every n ∈ ω

by construction Tn, for all i ≤ n, Tn is preprocessed for ḟ(i), n, Cn.

Since C ′ extends Cn, |C ′| = |Cn| by Lemma 2.6.2, for all i ≤ n, Tn is

preprocessed for ḟ(i), n, C ′. �

Remark 2.7.2. The sequence τ = 〈Tn : n ∈ ω〉 is not uniquely

determined. Also τ is not formally a fusion sequence. Until the end of

the section fix a centered family of pure conditions C, a good Q(C)-

name ḟ for a real, T ∈ Q(C) and a sequence of pure conditions τ = 〈Tn :

n ∈ ω〉 contained in Q(C) which satisfies the conclusion of Lemma 2.7.1

for C, T and ḟ .

Definition 2.7.3. Let Pτ (C, T, ḟ) be the suborder of P(T ) consist-

ing of all finite sequences r̄ = 〈r0, . . . , r`〉, ` ∈ ω such that r0 ≤ T0 and

for all i : 1 ≤ i ≤ ` and ji = max int(ri−1), ri ≤ Tji
.

Lemma 2.7.4. The following sets are dense in Pτ (T,C, ḟ):

(1) ∀k ∈ ω, Ek = {r̄ ∈ Pτ (C, T, ḟ) : |r̄| ≥ k},
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(2) for all X ∈ C, n ∈ ω, Dτ (X,n) = {r̄ ∈ Pτ (C, T, ḟ) : ∃rj ∈

r̄(rj ≤ X and ‖rj‖ ≥ n)}.

Proof. Let r̄ = 〈ri : i ∈ `〉 be a given sequence in Pτ (C, T, ḟ). Let

j` = max int(r`−1). Since Tj`
\int(r̄) and X are compatible, there is a

finite logarithmic measure r of level higher than the measure of r`−1

and n, which is a common extension of Tj`
\int(r̄) and X. Then r̄a〈r〉

is an extension of r̄ in Dτ (X,n). �

Corollary 2.7.5. Let G be a Pτ (C, T, ḟ)-generic filter. Then

(1) RG = ∪G = 〈ri : i ∈ ω〉 is a pure condition of strictly increas-

ing logarithmic measures such that for every n ∈ ω, Rn = 〈ri :

i ≥ n〉 is a pure extension of Tjn where jn = max int(rn−1).

(2) In V [G] there is a centered family C ′ extending C below RG

(and so below T ) such that |C ′| = |C|. Then in particular for

all n ∈ ω, x ∈ [int(Rn)]<ω, Rn\x is preprocessed for ḟ(n),

maxx, C ′.

Proof. By Lemma 2.7.4 RG is a pure condition of strictly increas-

ing finite logarithmic measures such that ∀n ∈ ω Rn is a pure extension

of Tjn . To obtain the second part note for every X in C and n ∈ ω, the

generic filter G meets Dτ (X,n) and so the sequence IX = 〈i : ri ≤ X〉

is infinite. Then RG ∧X = 〈ri : i ∈ IX〉 is a common extension of RG

and X. Furthermore if X ≤ Y , then IX ⊆ IY and so RG∧X ≤ RG∧Y .

Thus C ′ = {RG ∧ X : X ∈ C} is centered and extends C below RG,

|C ′| = |C|.
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Let n ∈ ω, x ∈ [int(Rn)]<ω. Note that Rn\x = Rk where k =

iRG
(max x) = min{j : maxx < min int(rj)}. However x ⊆ int(Rn) and

so maxx ≤ max int(rk−1) = jk. Since Rk ≤ Tjk
and for every i ≤ jk,

Tjk
is preprocessed for ḟ(i), jk, C

′, and so by Lemma 2.6.2 for every

i ≤ jk, Rk is preprocessed for ḟ(i), jk, C
′. However maxx ≤ jk and

n ≤ jk. Therefore Rk is preprocessed for ḟ(n), maxx, C ′. �



CHAPTER 3

b = κ < s = κ+

3.1. Induced Logarithmic Measures

In the following κ is an uncountable regular cardinal. For complete-

ness we state MAcountable(κ) (see [24]).

Definition 3.1.1. MAcountable(κ) is the statement: for every count-

able partial order P and every family D, |D| < κ of dense subsets of P

there is a filter G ⊆ P such that ∀D ∈ D(G ∩D 6= ∅).

Let M be the ideal of meager subsets of the real line. Recall that

the covering number of M, cov(M) is the minimal size of a family of

meager sets which covers the real line. For every regular uncountable

cardinal κ, cov(M) ≥ κ if and only if MAcountable(κ) (see [3]).

Lemma 3.1.2. Let C be a centered family of pure conditions, |C| <

cov(M), ḟ a good Q(C)-name for a real, n ∈ ω, T = 〈ti : i ∈ ω〉 pure

condition in Q(C) such that for all x ∈ [int(T )]<ω, T\x is preprocessed

for ḟ(n), maxx, C. Then the logarithmic measure induced by the family

Pv(C, T, ḟ(n)) where v ∈ [ω]<ω, of all x ∈ [int(T )]<ω such that:

(1) ∃i ∈ ω such that hi(x ∩ si) > 0 where ti = (si, hi)

(2) ∃w ⊆ x∃p ∈ An(ḟ) such that (v ∪ w, T\x) ≤ p,

takes arbitrarily high values.

46
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Proof. To see that the logarithmic measure induced by the family

Pv(C, T, ḟ(n)) takes arbitrarily high values, consider an arbitrary finite

partition ω = A0∪· · ·∪AM−1. By Lemma 2.3.7 there is a pure extension

T ′ of T which is compatible with C and such that int(T ′) ⊆ Aj for some

j ∈M . By |C| < cov(M) and Corollary 2.5.5 there is a centered family

of pure conditions C ′ extending C, |C ′| = |C| and a pure condition

R = 〈ri : i ∈ ω〉 ∈ Q(C ′) of finite logarithmic measures of strictly

increasing levels, which extends T ′, and so T . Then ḟ is a Q(C ′)-name

for a real and so An(ḟ) is a maximal antichain in Q(C ′). Therefore

there is a condition (v ∪ w,R′) ∈ Q(C ′) which is a common extension

of (v,R) and some q ∈ An(ḟ). By definition of the extension relation

there is a finite subsequence 〈ri : i ∈ [m1,m2]〉 of R, such that w ⊆ x =

∪m2
i=m1

int(ri). We can assume that m2 ≥ 1 and so there is i ∈ [m1,m2]

such that ‖ri‖ > 0. However R ≤ T and so there is i ∈ ω such that

hi(x ∩ si) > 0. Therefore (1) holds for x.

Since R is pure extension of T and T is preprocessed for ḟ(n),

maxx, C, there is p ∈ An(ḟ) such that (v ∪ w, T\x) ≤ p and so part

(2) holds as well. It remains to observe that x ⊆ int(R) ⊆ Aj and so

by Lemma 2.1.10 the logarithmic measure induced by Pv(C, T, ḟ(n))

takes arbitrarily high values. �

Corollary 3.1.3. Let C be a centered family of pure conditions,

|C| < cov(M), ḟ a good Q(C)-name for a real, n, k ∈ ω, T = 〈ti : i ∈

ω〉 a pure condition in Q(C) such that for all finite subsets x of int(T ),

T\x is preprocessed for ḟ(n), maxx, C. Then the logarithmic measure

induced by the family Pk(C, T, ḟ(n)) of all x ∈ [int(T )]<ω such that
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(1) ∃i ∈ ω such that hi(si ∩ x) > 0 where ti = (si, hi),

(2) ∀v ⊆ k∃w ⊆ x∃p ∈ An(ḟ) such that (v ∪ w, T\x) ≤ p,

takes arbitrarily high values.

Proof. Let v0, . . . , vL−1 enumerate all subsets of k. Then if for

all j ∈ L, xj ∈ Pvj
(T, ḟ(n)), the set x = x0 ∪ · · · ∪ xL−1 belongs

to Pk(C, T, ḟ(n)). To see that the logarithmic measure induced by

Pk(C, T, ḟ(n)) takes arbitrarily high values consider an arbitrary finite

partition ω = A0∪· · ·∪AM−1. By Lemma 2.3.7 there is a pure extension

T ′ of T which is compatible with C and such that int(T ′) ⊆ Aj for some

j ∈M . By |C| < cov(M) and Corollary 2.5.5 there is a centered family

of pure conditions C ′ extending C, |C ′| = |C| and a pure condition R =

〈ri : i ∈ ω〉 ∈ Q(C ′) of finite logarithmic measures of strictly increasing

levels, which extends T ′ and so T . Then in particular for every x ∈

[int(R)]<ω, R\x ≤ T\x and so R is preprocessed for ḟ(n), maxx, C.

By Lemma 3.1.2 for every i ∈ L there is xi ∈ Pvi
(C ′, R, ḟ(n)). It will

be shown that x = ∪{xi : i ∈ L} belongs to Pk(C, T, ḟ(n)). It is clear

that (1) holds for x.

To obtain (2) consider any v ⊆ k. Then v = vi for some i ∈ L. Since

xi(xi ⊆ x) belongs to Pvi
(C ′, R, ḟ(n)) there is wi ⊆ xi and qi ∈ An(ḟ)

such that (vi ∪ wi, R\xi) ≤ qi, and so in particular (vi ∪ wi, R\x) ≤ qi.

However R ≤ T , C ′ extends C, |C ′| = |C| and T is preprocessed

for ḟ(n), maxx, C. But then ∀v ⊆ k ∃p ∈ An(ḟ) such that (v ∪

w, T\x) ≤ p. Therefore x ∈ Pk(C, T, ḟ(n)). It remains to observe that

x ⊆ int(R) ⊆ Aj and so by Lemma 2.1.10 the logarithmic measure

induced by Pk(C, T, ḟ(n)) takes arbitrarily high values. �
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3.2. Good Extensions

Until the end of the section let C be a centered family, |C| <

cov(M), ḟ a good Q(C)-name for a real, T = 〈ti : i ∈ ω〉 a pure

condition in Q(C) such that for all n ∈ ω and all x ∈ [int(Tn)]<ω,

where Tn = 〈ti : i ≥ n〉, T\x is preprocessed for ḟ(n), maxx, C.

Definition 3.2.1. Let P(C, T, ḟ) be the suborder of P(T ) of all

sequences r̄ = 〈ri : i ∈ `〉 such that ∀i∀v ⊆ i∀s ⊆ int(ri) which is

ri-positive, there are w ⊆ s and p ∈ Ai(ḟ) such that (v ∪ w, T\s) ≤ p.

Lemma 3.2.2. For every k ∈ ω the set Ek(C, T, ḟ) = {r̄ ∈ P(C, T, ḟ) :

|r̄| ≥ k} is dense in P(C, T, ḟ).

Proof. Let r̄ = 〈r0, . . . , rm−1〉 be a condition in P(C, T, ḟ) and

let ` = max int(r̄). We can assume that m ≤ k. Then iT (`) ≥

m and so T\int(r̄) is an extension of Tm. Then by Corollary 3.1.3

(and |C| < cov(M)) the logarithmic measure h induced by Pm =

Pm(C, T\int(r̄), ḟ(m)) takes arbitrarily high values and so there is x

such that h(x) > ‖rm−1‖. Let rm = (x, h � P(x)). We claim that

r̄a〈rm〉 is an extension of r̄ which belongs to Em(C, T, ḟ).

Let v ⊆ m and s ⊆ int(rm) = x, h(s) > 0. Then by definition of h

there is w ⊆ s and p ∈ Am(ḟ) such that (v ∪ w, T\s) ≤ p. In finitely

many steps obtain an end-extension of r̄ which belongs to Ek. �

Lemma 3.2.3. For every X ∈ C, n ∈ ω the set DX,n(C, T, ḟ) =

{r̄ ∈ P(C, T, ḟ) : ∃rj ∈ r̄(rj ≤ X and ‖rj‖ ≥ n)} is dense in P(C, T, ḟ).
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Proof. Let r̄ = 〈r0, . . . , rm−1〉 be a condition in P(C, T, ḟ) and

let ` = max int(r̄). Then iT (`) ≥ m and so T\int(r̄) is an extension of

Tm. Furthermore since both X and T\int(r̄) are in the centered family,

there is Y ∈ C which is their common extension. Then in particular

∀x ∈ [int(Y )]<ω Y is preprocessed for ḟ(m), maxx and C. Then by

Corollary 3.2.2 and |C| < cov(M) the logarithmic measure h induced

by Pm(C, Y, ḟ(m)) takes arbitrarily high values and so we can choose

x ⊆ int(Y ) such that h(x) > max{‖rm−1‖, n}. Let rm = (x, h � P(x)).

It is sufficient to show that r̄a〈rm〉 belongs to P(C, T, ḟ).

Let v ⊆ m, s ⊆ x and h(s) > 0. By definition of h there is w ⊆ s

and a condition q ∈ Am(ḟ) such that (v ∪ w, Y \s) ≤ q. Since T is

preprocessed for ḟ(m), max s and C, there is p ∈ Am(ḟ) such that

(v ∪ w, T\s) ≤ p. �

Corollary 3.2.4. Let G be a filter in P(C, T, ḟ) which meets all

DX,n(C, T, ḟ) and Ek(C, T, ḟ) for X ∈ C, n, k ∈ ω.

(1) Then RG = ∪G = 〈ri : i ∈ ω〉 is a pure condition of fi-

nite logarithmic measures of strictly increasing levels such that

∀i∀v ⊆ i∀s ⊆ int(ri) which is ri-positive, there is w ⊆ s and

p ∈ Ai(ḟ) such that (v ∪ w,RG\s) ≤ p.

(2) Furthermore there is a centered family C ′ extending C below

RG (and so below T ) such that |C ′| = |C|.

Proof. By Lemmas 3.2.2 and 3.2.3 RG is a pure condition of finite

logarithmic measures of strictly increasing levels which is compatible

with C. Let i ∈ ω, v ⊆ i and s ⊆ int(ri) which is ri-positive. Then

by definition of the partial order, there is w ⊆ s and p ∈ Ai(ḟ) such
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that (v ∪ w, T\s) ≤ p. However RG ≤ T and so (v ∪ w,RG\s) ≤ p.

To obtain part (2) repeat the proof of Corollary 2.5.5 to get a centered

family C ′ = {RG ∧X : X ∈ C} extending C below RG. �

3.3. Mimicking the Almost Bounding Property

Definition 3.3.1. A family H ⊆ ωω is <∗-directed if for every

subfamily H′ such that |H′| < |H| there is h ∈ H such that H′ <∗ h.

Theorem 3.3.2. Let κ be a regular uncountable cardinal, cov(M) =

κ and H an unbounded, <∗-directed family of reals of size κ. Let C be a

centered family, |C| < κ, ḟ a good Q(C)-name for a real and T ∈ Q(C).

Then there is a centered family C ′, a pure condition R ∈ Q(C ′) and a

real h ∈ H such that C ⊆ Q(C ′), |C| = |C ′|, R ≤ T and such that for

every centered family C ′′ extending C ′, for every a ∈ [ω]<ω,

(a,R) 
Q(C′′) ∃∞i ∈ ω(ḟ(i) < h(i)).

Proof. By Corollary 2.7.5 and |C| < cov(M), there is a centered

family C1 extending C below T , which is of the same cardinality as C

and such that there is a pure condition T1 ∈ Q(C1), T1 ≤ T with the

property that if T1 = 〈t1i : i ∈ ω〉 then for every n ∈ ω and every finite

subset x of int(T1\int(t1n−1)), T1\x is preprocessed for ḟ(n), maxx,

C1. By |C1| < cov(M) there is a filter G ⊆ P(C1, T1, ḟ) meeting

Ek(C1, T1, ḟ) and DX,n(C1, T1, ḟ) for all k, n ∈ ω and X ∈ C1. Then

by Corollary 3.2.4 the pure condition T2 = ∪G = 〈ri : i ∈ ω〉 extends

T1, consists of finite logarithmic measures of strictly increasing levels

and for all ∀i ∈ ω∀v ⊆ i∀s ⊆ int(ri) which is ri-positive, there is w ⊆ s



3.3. MIMICKING THE ALMOST BOUNDING PROPERTY 52

and p ∈ Ai(ḟ) such that (v ∪ w, T2\s) ≤ p. For all i ∈ ω let g(i)

be the maximal k such that there are v ⊆ i, w ⊆ int(ri), p ∈ Ai(ḟ)

such that (v ∪ w, T2) ≤ p and p 
 ǩ = ḟ(i). We can assume that g is

nondecreasing. Otherwise redefine g(i) = max{g(j) : j ≤ i}. For every

X ∈ C1 let JX = {i : ri ≤ X} and let FX be a step function defined as

follows: FX(`) = g(JX(i+ 1)) iff ` ∈ (JX(i), JX(i+ 1)] where JX(m) is

the m-th element of JX . Since H is unbounded for all X in C1 there is

hX ∈ H such that hX 6≤∗ FX . The cardinality of {hX : X ∈ C1} does

not exceed |C1| and so is less than κ. By the hypothesis on H there is

h ∈ H such that hX ≤∗ h for every X ∈ C1. We can assume that h is

nondecreasing. Note that:

(1) ∀X ∈ C1∀i ∈ ω(g(i) ≤ FX(i))

(2) Since ∃∞i ∈ ω(FX(i) < hX(i)) and ∀∞i ∈ ω(hX(i) ≤ h(i)) we

have ∃∞i ∈ ω(FX(i) < h(i)). That is h 6≤∗ FX .

(3) By part (1) and (2) the set J = {i ∈ ω : g(i) < h(i)} is infinite.

(4) Furthermore ∃∞i ∈ JX(FX(i) < h(i)). Suppose not. Then

∀∞i ∈ JX(h(i) ≤ FX(i)) and so there is m0 ∈ ω such that

∀i ∈ JX if i > m0 then (h(i) ≤ FX(i)). Let m ∈ ω be such that

JX(m) = min JX −m0. Then ω − JX(m) = ∪{(JX(i), JX(i +

1)] : i ≥ m} and so if ` ∈ ω − JX(m), then there is i ≥ m

such that ` ∈ (JX(i), JX(i + 1)]. Then h(`) ≤ h(JX(i + 1)) ≤

FX(JX(i+1)) = FX(`) and so h(`) ≤ FX(`). This implies that

h ≤∗ FX which is a contradiction to part 2.

(5) However ∀i ∈ JX(FX(i) = g(i)) and so by part 4 the set

IX = JX ∩ J is infinite.
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Let R = 〈ri : i ∈ J〉. Then for every X ∈ C1 the pure condition

R∧X = 〈ri : i ∈ IX〉 is a common extension ofR andX. Furthermore if

X ≤ Y then IX ⊆ IY since JX ⊆ JY . Therefore C ′ = {R∧X : X ∈ C1}

is a centered family which extends C1 below R which is of the same

cardinality as C1. Let C ′′ be an arbitrary centered family which extends

C ′. We will show that ∀a ∈ [ω]<ω(a,R) 
Q(C′′) ∃∞i ∈ ω(ḟ(i) < ȟ(i)).

Fix any a ∈ [ω]<ω and k ∈ ω. Let (b, R′) be an arbitrary extension

of (a,R) in Q(C ′′). There is i ∈ J , i > k such that b ⊆ i and s =

int(R′) ∩ int(ri) is ri-positive. But then, there is w ⊆ s such that

(b ∪ w, T2\s) ≤ p for some p ∈ Ai(ḟ). However R′\s ≤ R\s ≤ T2\s.

Therefore (b ∪ w,R′\s) ≤ (b, R′) and (b ∪ w,R′\s) ≤ p. Let j ∈ ω be

such that p 
 ǰ = ḟ(i). Then by definition of g we have that j ≤ g(i).

Since i ∈ J , g(i) < h(i) and so

(b ∪ w,R′\s) 
Q(C′′) “ḟ(i) = ǰ ≤ ǧ(i) < ȟ(i)”.

However (b, R′) was an arbitrary extension of (a,R) in Q(C ′′). There-

fore (a,R) 
Q(C′′) “∃i ∈ ω(i > k ∧ ḟ(i) < ȟ(i))”. Since k was arbitrary

as well (a,R) 
Q(C′′) “∃∞i ∈ ω(ḟ(i) < ȟ(i))”. �

3.4. Adding an Ultrafilter

Lemma 3.4.1. Let κ be a regular uncountable cardinal, cov(M) = κ,

H ⊆ ωω an unbounded <∗-directed family, |H| = κ, ∀λ < κ(2λ ≤ κ).

Then there is a centered family C such that |C| = κ and

(1) 
Q(C) “H is unbounded”,

(2) Q(C) adds a real not split by the ground model reals.
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Proof. Let N = {ḟα}α<κ be an enumeration of all names for func-

tions in ωω for partial orders Q(C ′) where C ′ is a centered family of

pure conditions of size < κ. Furthermore letA = {Aα+1}α<κ be an enu-

meration of [ω]ω. The centered family C will be obtained by transfinite

induction of length κ.

Begin with arbitrary pure condition T in Q and C0 = {T\v : v ∈

[ω]<ω}. If α is a successor, α = β+1 and we have defined the centered

family Cβ, let ġβ+1 be the name with least index in N\{ġγ+1}γ<β which

is a Q(Cβ)-name for a real. Suppose ġβ+1 is a good Q(Cβ)-name. Then

let T ′ ∈ Q(Cβ) be arbitrary. By Lemma 2.3.7 there is a pure extension

T ′′ of T ′ such that int(T ′′) ⊆ Aβ+1 or int(T ′′) ⊆ Ac
β+1 and T ′′ is compat-

ible with Cβ. By Corollary 2.5.5 there is a centered family C ′β+1 extend-

ing Cβ below T ′′ such that |C ′β+1| = |Cβ+1|. Then by Theorem 3.3.2

there is a centered family Cβ+1 which extends C ′β+1, |Cβ+1| = |C ′β+1|

and a pure condition Tβ+1 ∈ Q(Cβ+1) such that Tβ+1 ≤ T ′′ (and so in

particular int(Tβ+1) ⊆ Aβ+1 or int(Tβ+1) ⊆ Ac
β+1) and such that for

some function hβ+1 from the unbounded family H, for every centered

family C ′′ extending Cβ+1,

∀a ∈ [ω]<ω(a, Tβ+1) 
Q(C′′) ∃∞i ∈ ω(ġβ+1(i) ≤ ȟβ+1(i)).

If ġβ+1 is not a good Q(Cβ)-name, then by Corollary 2.4.5 there is

a centered family C ′β+1 extending Cβ, |C ′β+1| = |Cβ| such that ġβ+1

is not a Q(C ′β+1)-name for a real. Let T ′ ∈ Q(C ′β+1) be arbitrary.

By Lemma 2.3.7 there is a pure condition Tβ+1 extending T ′ which is

compatible with C ′β+1 and such that int(Tβ+1) ⊆ Aβ+1 or int(Tβ+1) ⊆
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Ac
β+1. By |C ′β+1| < cov(M) and Corollary 2.5.5 there is a centered

family Cβ+1 extending C ′β+1 below Tβ+1 such that |Cβ+1| = |C ′β+1|.

If α is a limit let Cα = ∪β<αCβ. Then Cα is of cardinality less than

κ and extends Cβ for every β < α. With this the inductive construction

is complete. Let C = ∪α<κCα. Then C is centered, of cardinality κ

and extends Cα for every α < κ.

(1) Let ḟ be a Q(C)-name for a real. Then

ḟ = ∪{〈〈i, ji
p〉, p〉 : p ∈ Ai(ḟ), i ∈ ω, ji

p ∈ ω}

where for every i ∈ ω, Ai(ḟ) is a maximal antichain in Q(C) and so

|Ai(ḟ)| = ℵ0. For every i ∈ ω, p ∈ Ai(ḟ) let αi(p) = min{γ : p ∈

Q(Cγ)}. Since κ is regular uncountable sup{αi(p) : p ∈ Ai(ḟ)} =

αi < κ and furthermore α = supi∈ω αi < κ is minimal such that ḟ is

a Q(Cα)-name for a function in ωω. Then ḟ is a name in the list N .

Note that for every β ≥ α, ḟ is a Q(Cβ)-name and so there is δ < κ

such that ḟ is the name with least index in N\{ġγ+1}γ<δ which is a

Q(Cδ)-name (note α ≤ δ). That is ḟ = ġδ+1. If ḟ is not a good Q(Cδ)-

name, then we would have chosen the centered family Cδ+1 such that

ḟ is not Q(Cδ+1)-name for a real. Then in particular there is i ∈ ω

and p ∈ Q(Cδ+1) such that p is incompatible with all elements of Ai(ḟ)

as conditions in Q(Cδ+1). But then by Lemma 2.2.6 Ai(ḟ) ∪ {p} is

an antichain in Q and so Ai(ḟ) ∪ {p} remains an antichain in Q(C).

Then in particular Ai(ḟ) is not maximal in Q(C), i.e. ḟ is not a Q(C)-

name for a real, which is a contradiction. Therefore ḟ = ġδ+1 is a good
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Q(Cδ)-name. But then by the choice of Tδ+1 in Cδ+1

∀a ∈ [ω]<ω(a, Tδ+1) 
Q(C) ∃∞i ∈ ω(ḟ(i) ≤ ȟδ+1(i)).

It remains to observe that {(a, Tδ+1) : a ∈ [ω]<ω} is predense in Q(C)

which implies 
Q(C) ȟδ+1 6≤∗ ḟ .

(2) Let G be a Q(C) generic filter and ∪G = ∪{u : ∃T (u, T ) ∈ G}.

For every γ ∈ κ the set Dγ+1 = {(u, T ) ∈ Q(C) : T ≤ Tγ+1} is dense

and so ∪G ⊆∗ int(Tγ+1), which implies that ∪G is almost contained in

Aγ+1 or in Ac
γ+1. �

3.5. Some preservation theorems

We will use the following well known fact about ccc forcing notions.

Remark 3.5.1. Note that if H a <∗-directed family, then for every

ccc forcing notion P, (H is <∗ -directed)V P
.

The preservation theorem below will be of importance for the con-

sistency result to be presented. The proof of Theorem 3.5.2 can be

found in Judah and Shelah, [21], Theorem 2.2 (see also [13]).

Theorem 3.5.2. Let H ⊆ ωω be unbounded such that every count-

able subset of H is dominated by an element of H. If 〈Pγ, Q̇γ : γ ∈ α〉 is

a finite support iteration, cf(α) = ω, such that ∀γ ∈ α, 
Pγ “Q̇γ is ccc”

and 
Pγ “Ȟ is unbounded”. Then 
Pα “Ȟ is unbounded”.

Proof. Suppose there is a Pα-generic filter G such that in V [G]

there is ∃f ∈ ωω dominating H. Let ḟ a P-name for the real f . Let

{αn}n∈ω be increasing and cofinal sequence in α and for every n ∈ ω let
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fn be a function in V [Gαn ], where Gαn = G ∩ Pαn such that for every

i ∈ ω, fn(i) = j iff ∃q ∈ Pα(q � αn ∈ Gαn and q 
α ḟ(i) = ǰ). Then for

every n ∈ ω there is a function hn ∈ H such that V [Gαn ] � (hn 6≤∗ fn).

Since Pα is ccc, there is C ∈ [H]ω ∩V such that {hn : n ∈ ω} ⊆ C and a

function h ∈ H∩ V (C ≤∗ h). Then in particular for every n ∈ ω, there

is kn such that ∀i ≥ kn(hn(i) ≤ h(i)).

By assumption V [G] � H ≤∗ f . Then there are p ∈ G and k ∈ ω

such that ∀i ≥ k, p 
 ȟ(i) ≤ ḟ(i). Fix αn such that support(p) ⊆ αn.

Then, since V [Gαn ] � hn 6≤ fn we have in particular

V [Gαn ] � ∃i > max(kn, k)(fn(i) < hn(i))

and so there is i > max(kn, k) and condition p′ ∈ Gαn such that p′ 


ḟn(i) < ȟn(i) where ḟn is a Pαn-name for fn. By definition of fn there

is a condition q ∈ Pα such that q � αn ∈ Gαn and q 
α ḟn(i) = ḟ(i).

Since p � αn, p′ and q � αn belong to the generic filter Gαn there is

q′ ∈ Pα which is a common extension of p, p′ and q. Then

q′ 
α ḟn(i) = ḟ(i) < ȟn(i) ≤ ȟ(i) ≤ ḟ(i)

which is a contradiction. �

Lemma 3.5.3. Let H be an unbounded family of reals and let C be

the Cohen forcing notion. Then 
C “H is unbounded”.

Proof. Let ḟ be a H-name for a function in ωω. It will be shown

that there is h ∈ H such that 
 ȟ 6≤∗ ḟ . For every p ∈ C let

gp(i) = min{j : ∃q ≤ p(q 
 ḟ(i) = j)}.
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Then {gp : p ∈ C} is countable and so there is g ∈ ωω ∩ V such that

∀p ∈ C(gp ≤∗ g). That is for all p ∈ C there is mp ∈ ω such that

∀i ≥ mp(gp(i) ≤ g(i)). Since H is unbounded there is h ∈ H which

is not dominated by g, that is the set A = {i ∈ ω : g(i) < h(i)} is

infinite. It is sufficient to show that 
 ∃∞i ∈ A(ḟ(i) ≤ g(i)), since

then 
 ∃∞i ∈ ω(ḟ(i) < ȟ(i)).

Let p ∈ C. Suppose there is no q ≤ p such that q 
 ∃∞i ∈ Ǎ(ḟ(i) ≤

ǧ(i)). That is p 
 ¬(∃∞i ∈ A(ḟ(i) ≤ ǧ(i))) and so p 
 ∀∞i ∈ A(ǧ(i) <

ḟ(i)). That is there is m ∈ ω and and extension q of p such that for

all i ∈ A, i > m, q 
 ǧ(i) < ḟ(i). Let i ∈ A be greater than m and

mq. Let q′ be an extension of q and let j ∈ ω such that q′ 
 ḟ(i) = ǰ

and j = gq(i). Then q′ 
 “ḟ(i) = ǧq(i) ≤ ǧ(i) < ḟ(i)”, which is a

contradiction. �

Corollary 3.5.4. Let H ⊆ ωω be unbounded and let C(κ) be the

forcing notion for adding κ Cohen reals. Then (H is unbounded)V C(κ)
.

Proof. By Lemma 3.5.3, Theorem 3.5.2 and Lemma 3.5.6. �

The proof of Lemma 3.5.5 can be found in Bartoszynski, Judah, [4].

Lemma 3.5.5. Let H ⊆ ωω be an unbounded, <∗-directed family,

|H| = κ, P a forcing notion, |P| < κ. Then (H is unbounded)V P
.

Proof. Let ḟ be a P-name for a function in ωω. For every p ∈

P and i ∈ ω let gp(i) = min{j : ∃q ≤ p(q 
 ḟ(i) = ǰ)}. Since

(H is unbounded)V P
for every p ∈ P there is a function hp ∈ H ∩ V

which is not dominated by gp. However |{hp : p ∈ P}| < κ and so there
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is h ∈ H∩ V which dominates all hp’s. That is for every p ∈ P there is

np ∈ ω such that ∀i ≥ np(hp(i) ≤ h(i)).

Suppose p ∈ P such that p 
 “H <∗ ḟ”. Then there is p0 ≤ p

and n0 ∈ ω such that ∀i ≥ n0, p0 
 ȟ(i) ≤ ḟ(i). Let i > max{n0, np}

be such that gp0(i) < hp0(i) and let q be an extension of p0 such that

q 
 gp0(i) = ḟ(i). Then q 
 “ḟ(i) = gp0(i) < hp0(i) ≤ h(i) ≤ ḟ(i)”

which is a contradiction. �

The last two Lemmas in this section summarize some well known

facts of finite support iterations of ccc forcing notions.

Lemma 3.5.6. Let κ be an ordinal of uncountable cofinality and let

〈Pα, Q̇α : α < κ〉 be a finite support iteration of ccc forcing notions.

Then every real in V Pκ is obtained at some initial stage of the iteration

of countable cofinality. That is

ωω ∩ V Pκ = ∪{ωω ∩ V Pα : α < κ, cf(α) = ω}.

Proof. Let ḟ be a Pκ-name for a real. We can assume that ḟ is

of the form ḟ = ∪{〈〈i, ji
p〉, p〉 : p ∈ Ai, i ∈ ω, ji

p ∈ ω} where each Ai is

a maximal antichain of conditions in Pκ deciding ḟ(i). Since Pκ is ccc

every Ai is countable. Furthermore P is a finite support iteration and

so in particular for every p ∈ Ai, the support of p is finite. Therefore

for all i ∈ ω, αi = sup{αp
i : p ∈ Ai} where αp

i = max support(p) is of

countable cofinality and so is smaller than κ. But then α = supi∈ω αi

is also of countable cofinality (thus α < κ) and ḟ is a Pα-name. �



3.6. b = κ < s = κ+ 60

Lemma 3.5.7. Let κ be a regular uncountable cardinal. Let 〈Pα, Q̇α :

α < κ〉 be a finite support iteration of ccc forcing notions of length κ.

Let G be a Pκ-generic filter and let A ⊆ V [G] ∩ ωω, |A| < κ. Then A

is obtained at some proper initial stage of the iteration.

Proof. For every f inA let ḟ be a Pκ-name for f . By Lemma 3.5.6

for every ḟ there is an ordinal αf of countable cofinality such that ḟ is a

Pαf
-name for a real. Let α = sup{αf : f ∈ A}. Then cf(α) ≤ |A| < κ

and so α < κ. It remains to observe that A is contained in V [Gα]

where Gα = G ∩ Pα. �

3.6. b = κ < s = κ+

Definition 3.6.1 (Hechler, [20]). Let A be an infinite set of func-

tions in ωω. Then H(A) is the forcing notion consisting of all pairs

(s, F ) where s ∈ ∪n∈ω
nω and F ∈ [A]<ω with extension relation de-

fined as follows. We say that (s1, F1) extends (s2, F2) (and denote this

by (s1, F1) ≤ (s2, F2)) if

(1) s2 ⊆ s1, F2 ⊆ F1,

(2) ∀f ∈ F2∀k ∈ dom(s1)\dom(s2) we have s1(k) ≥ f(k).

The following is a well known fact about Hechler forcing, see [20].

Lemma 3.6.2. Let A be an infinite set of functions in ωω. Then

the partial order H(A) is σ-centered, adds a real dominating A and is

of the same cardinality as the set A.

Proof. Note that if (s1, F1) and (s2, F2) are elements of H(A) such

that s1 = s2 = s, then (s, F1∪F2) is their common extension. To obtain
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the second part of claim, it is sufficient to observe that for every f ∈ A

the set Df = {(s, F ) : f ∈ F} is dense. Now let G be a H(A)-generic

filter and let fG = ∪{s : ∃F ∈ [A]<ω(s, F ) ∈ G}. If f ∈ A and

(s, F ) ∈ G ∩Df then by definition of the extension relation, for every

i ≥ |s|+ 1 we have f(i) ≤ fG(i). �

Theorem 3.6.3 (GCH). Let κ be a regular uncountable cardinal.

Then there is a ccc generic extension in which b = κ < s = κ+.

Proof. Obtain a model V of b = c = κ by adding κ-many Hechler

reals (i.e. do a finite support iteration of length κ of Hechler forcing,

see [19] and [8]). Let H = V ∩ ωω. Then H is unbounded and every

subfamily of H of cardinality less than κ is dominated by an element

of H. Furthermore in V for every λ < κ, 2λ = κ. By transfinite

induction of length κ+ define a finite support iteration of ccc forcing

notions 〈〈Pα : α ≤ κ+〉, 〈Q̇α : α < κ〉〉 as follows.

Suppose α is a limit and for every β < α we have defined a ccc

forcing notion Pβ and a Pβ-name Q̇β such that in V Pβ the family H is

unbounded and 
Pβ
“Q̇β is ccc ”. Let Pα be the finite support iteration

of 〈Pβ, Q̇β : β < α〉. Then:

(1) By Theorem 3.5.2 the family H remains unbounded in V Pα .

(2) Since Pα is ccc, by Remark 3.5.1 H is <∗-directed in V Pα .

(3) In V Pα for every λ < κ, 2λ ≤ κ.

If α is a successor, α = β + 1 and Pβ-has been defined, then:

(1) Let Q̇β be a Pβ name for C(κ), i.e. the forcing notion for

adding κ Cohen reals and let Pβ+1 = Pα = Pβ ∗ Q̇β. Then
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(a) By Corollary 3.5.4 the family H is unbounded in V Pα .

(b) Since Pα is ccc, by Remark 3.5.1 H is <∗-directed in V Pα .

(c) Forcing notions with the countable chain condition do not

collapse cardinals and so ∀λ < κ(2λ ≤ κ).

(d) In V Pα the covering number of the meager ideal M is κ.

(2) Therefore in V Pα the hypothesis of Lemma 3.4.1 holds and so

there is a centered family of pure conditions C such that Q(C)

preserves H unbounded and adds a real not spit by [ω]ω∩V Pα .

Let Q̇α be a Pα-name for Q(C) and Pα+1 = Pα ∗ Q̇α. Then:

(a) By part (2) of Lemma 3.4.1, H is unbounded in V Pα+1 .

(b) Since Pα+1 is ccc, H remains <∗-directed in V Pα+1 .

(c) Also by the ccc of Pα+1 ∀λ < κ(2λ ≤ κ).

(3) In V Pα+1 let A ⊆ ωω be an unbounded family, |A| < κ and let

Q̇α+1 be a Pα+1-name for H(A). Let Pα+2 = Pα+1 ∗ Q̇α+1.

(a) Then since |H(A)| = |A| < κ, by Lemma 3.5.5 the family

H remains unbounded in V Pα+2 .

(b) Since H(A) is ccc, by Remark 3.5.1 every subfamily of H

of size less than κ is dominated by an element of H.

(c) Again by the ccc of Pα+2, in V Pα+2 for all λ < κ(2λ ≤ κ).

(d) Furthermore A is bounded in V Pα+2 .

With this the inductive construction is complete. Let P = Pκ+ be

the finite support iteration 〈〈Pα : α ≤ κ+〉, 〈Q̇α : α < κ+〉〉. Then P

is a ccc forcing notion and in V P we have that 2ω = κ+. Let A be a

subfamily of [ω]ω∩V P of cardinality less than κ+. Then by Lemma 3.5.7

there is α < κ+ such that A ⊆ V [Gα] where Gα = G ∩ Pα and G is
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a P-generic filter over V . Then by the inductive construction of P, in

V [Gα+3] there is a real which is not split by A. Therefore V P � s = κ+.

By Theorem 3.5.2 and the construction of P the family H is unbounded

in V P. Since every family of reals in V P of size less than κ is obtained at

some initial stage of the iteration, using a suitable bookkeeping device

(by step (3) of the successor case in the inductive construction of P)

one can guarantee that any such subfamily is bounded in V P and so

V P � b = κ. �

Remark 3.6.4. Alternatively in the model V defined in the proof

of Theorem 3.6.3 one can define a finite support iterated forcing con-

struction 〈〈Pα : α ≤ κ+〉, 〈Q̇α : α < κ+〉〉 such that for every α < κ+,


Pα “Q̇α is ccc and |Q̇α| = c” as follows.

If α is a limit and Pβ, Q̇β have been defined for every β < α let

Pα be the finite support iteration of 〈Pβ, Q̇β : β < α〉. If α = β + 1

and Pβ has been defined, then let Vβ = V Pβ and let H1 be the forcing

notion for adding κ Cohen reals. Then in V H1
β by Lemma 3.5.4, H is

unbounded and ∀λ < κ(2λ ≤ κ), cov(M) = κ. Therefore in V H1
β the

hypothesis of Lemma 3.4.1 hold and so there is a centered family of

pure conditions C such that Q(C) adds a real not split by V H1
β ∩ [ω]ω

(and so not split by Vβ∩[ω]ω) and preserves H unbounded. Then let Ḣ2

be a H1-name for Q(C) and in V H1∗Ḣ2
β let A ⊆ Vβ∩ωω be an unbounded

family of cardinality less than κ. Let Ḣ3 be a H1 ∗ Ḣ2 name for H(A).

Then in V
(H1∗Ḣ2)∗Ḣ3

β the family A is dominated. Since |H(A)| < κ, by

Lemma 3.5.5 the family H is unbounded. Let Q̇β be a Pβ-name for

(H1 ∗ Ḣ2) ∗ Ḣ3, and let Pα = Pβ ∗ Q̇β.



CHAPTER 4

Symmetry

4.1. Q(C) which preserves unboundedness

Suppose for every unbounded family of reals H ⊆ ωω there is a

centered family of pure conditions C = CH in the partial order Q such

that Q(C) adds a real not split by the ground model reals and at the

same time preserves H unbounded. Then let V be a model of GCH

and V1 a generic extension obtained by adding κ Hechler reals H (for κ-

regular uncountable cardinal). Proceed with a finite support iteration

〈Qα : α ≤ λ〉 of length λ over V1 where

(1) for every even α, Qα = Q(Cα) for Cα a centered family of pure

conditions such that Q(Cα) preserves H unbounded and adds

a real not split by the ground model reals, and

(2) for every odd α, Qα = H(Aα) is the Hechler forcing associated

with a family of reals Aα obtained at a previous stage of the

iteration which is of cardinality less than κ.

Then V Qλ
1 would satisfy b = κ < s = λ. However there are certain

difficulties in obtaining such centered family of pure conditions. One

may try to proceed along the lines of Theorem 3.3.2, dropping the

requirement that |C| < |H|. Then it would be sufficient to guarantee

that for every X ∈ C1 the intersection IX = JX ∩ J is infinite, where

C1, JX , J are defined as in the proof of Theorem 3.3.2. For this it

64
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would be sufficient to provide a filter G in P = P(C1, T1, ḟ) meeting

DJ(X,n) = {r̄ ∈ P : ∃ri ∈ r̄ s.t. i ∈ J, ri ≤ X and ‖ri‖ ≥ n}

for all X ∈ C1, n ∈ ω. It is not difficult to show that for all A ∈ [ω]ω,

X ∈ C1 the corresponding set DA(X,n) is dense in P(C1, T1, ḟ). There-

fore the existence of such a filter would require meeting continuum

many dense sets which is not possible. One way to sidestep this diffi-

culty is exactly what is done in Theorem 3.3.2, namely to require that

every subfamily of H of cardinality smaller than |H| is dominated by

an element of H and to consider only centered families of cardinality

less than the cardinality of the unbounded family H. As is established

in chapter III this leads to the consistency of b = κ < s = κ+ for

arbitrary regular uncountable κ. Observe that the restrictions on the

unbounded family H as well as the centered family C, prevent further

iteration and so also further generalization of the same construction.

Another way to sidestep the difficulty in preserving a small un-

bounded family unbounded, is to consider generic centered families,

that is centered families of names for pure conditions (see Theorem 5.4.1).

Let Γ be a set of ordinals. Then C(Γ) denotes the forcing notion of all

partial functions from Γ×ω to ω with extension relation reverse inclu-

sion. That is p ≤ q if q ⊆ p and so in particular C(ω2) is the forcing

notion for adding ω2 Cohen reals. In the last three chapters we will

examine the existence of a countably closed forcing notion which has

the ℵ2-chain condition and which adds a centered family C of C(ω2)-

names for pure conditions, such that Q(C) preserves the first ω1 Cohen
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reals unbounded and adds a real not split by V C(ω2) ∩ [ω]ω. Consider

the following partial order.

Definition 4.1.1. Let P′ be the forcing notion of all pairs p =

(Γp, Cp) where Γp is a countable subset of ω2 and Cp is a countable

centered family of C(Γp)-names for pure conditions with extension re-

lation defined as follows. For every p and q in P′ let p ≤ q if Γq ⊆ Γp

and 
C(Γp) “Cq ⊆ Q(Cp)”.

Then in particular P′ is countably closed. Note that if G is P′-

generic then CG = ∪{Cp : p ∈ G} is centered family of C(ω2)-names

for pure conditions. Let G0 be C(ω2)-generic filter. Then it would be

sufficient to guarantee that

UH = ∪{u : ∃X s.t. (u,X) ∈ H}

where H is Q(CG)-generic over V [G0][G] is not split by

V C(ω2) ∩ [ω]ω = V C(ω2)×P′ ∩ [ω]ω.

This amounts to obtaining the following Lemma:

Lemma 4.1.2. Let Γ be a countable subset of ω2, C a countable

centered family of C(Γ)-names for pure conditions. Let Ȧ be a C(Γ)-

name for an infinite subset of ω. Let G be a C(Γ)-generic filter. Then

in V [G] there is a pure condition X such that int(X) ⊆ A or int(X) ⊆

Ac and a countable centered family C ′ extending C below X.

The second task is to preserve the collection of the first ω1 Cohen

reals unbounded. Note that equivalently we might aim in preserving
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unbounded any subfamily of the Cohen reals of size ω1. Let ḟ be a

C(ω2) ∗ Q(CG)-name for a real in V [G]. Then there is a countable

subset Γ of ω2 and a countable centered family C ⊆ CG of C(Γ)-names

for pure conditions such that ḟ is a C(Γ)∗Q(C)-name for a real. Then

it would be sufficient to show the following.

Lemma 4.1.3. Let ḟ be a C(Γp) ∗ Q(Cp)-name for a real, let δ ∈

ω1\Γp and let ḣ = ∪Ġδ where Ġδ is the C({δ})-canonical name for

the generic filter. Then there is a countable centered family C ′ of

C(Γ ∪ {δ})-names for pure conditions extending C such that for every

centered family C ′′ of C(ω2)-names for pure condition which extends

C ′, 
C(ω2)∗Q(C′′) “ḣ 6≤∗ ḟ”.

Observe that if ḟ is a C(Γ) ∗ Q(C)-name for a real, where Γ is a

countable subset of ω2, C is a countable centered family of C(Γ)-names

for pure conditions, then for every Γ′ ∈ [ω2]
ω, such that Γ ⊆ Γ′, ḟ is also

a C(Γ′) ∗ Q(C)-name for a real. However if C ′ is a centered family of

C(Γ′)-names for pure conditions extending C, that is 
C(Γ′) C ⊆ Q(C ′)

then it is not necessarily the case that ḟ is a C(Γ′) ∗ Q(C ′)-name for

a real. Lemma 4.1.3 holds, as it will be shown later, for names ḟ

which are good in the sense that whenever C ′ is as above, ḟ is also a

C(Γ′) ∗Q(C ′)-name. An important point in preservation of the first ω1

Cohen reals is the fact that for every C(ω1) ∗Q(CG)-name for a real ḟ ,

there is a ∈ G such that ḟ is a good C(Γa)∗Q(Ca)-name for a real (see

discussion following Definition 5.4.2).

The main difficulty in realizing this project is the ℵ2-chain condi-

tion. Work in a model of CH and consider a collection {pα : α ∈ I}
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of ℵ2-many elements of P′. For every α ∈ I let Γα = Γpα , Cα = Cpα .

By CH and passing to a subset we can assume that for all α, β ∈ I

the order types of Γα and Γβ are the same. Furthermore by the

Delta System Lemma we can choose a subfamily {pα : α ∈ J} for

some J ⊆ I, |J | = ℵ2 such that for all α, β ∈ J , Γα ∩ Γβ = ∆,

sup ∆ < min Γα\∆ and for all α < β in J , sup Γα\∆ < min Γβ\∆.

Also we can assume that there is an isomorphism iα,β : Γα
∼= Γβ such

that iα,β � ∆ = id and {iα,β(X) : X ∈ Cα} = Cβ. Therefore it is

sufficient to obtain:

Lemma 4.1.4. Let p, q be conditions in P′ such that ∆ = Γp ∩ Γq,

sup ∆ < min Γp\∆ < sup Γp\∆ < min Γq\∆ and there is an isomor-

phism i : Γp
∼= Γq, such that i � ∆ = id and Cq = {i(X) : X ∈ Cp}.

Then there is r ∈ P′ such that r ≤ p and r ≤ q.

The main argument of Lemma 4.1.4 is the claim below.

Lemma 4.1.5. Let X ∈ Cp. Then there is a C(Γp ∪ Γq)-name for a

pure condition X̃ such that 
C(Γp∪Γq) X̃ ≤ Ẋ and X̃ ≤ i(Ẋ).

Indeed if 4.1.5 holds, then r = (Γr, Cr) where Γr = Γp ∪ Γq and

Cr = Cp ∪ Cq ∪ {X̃X : X ∈ Cp} where for every X ∈ Cp, X̃X is

C(Γp ∪ Γq)-name for a pure condition extending X and i(X) would be

a common extension of p and q. In order to guarantee Lemma 4.1.5,

we have to impose certain combinatorial property on the names for

pure conditions (see Definition 4.3.2 and Definition 6.1.3). We refer to

names that have this property as symmetric since one of its defining

characteristics is that different evaluations of the name are compatible
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pure conditions (see Lemma 4.5.1). The same combinatorial property

can be imposed on names for infinite sets of integers (Definition 4.2.2).

What might be considered of independent interest is the fact that in

every Cohen generic extension the collection of subsets of ω which do

not have symmetric names forms an ideal (see Corollary 4.2.10). Fur-

thermore we have to accomplish the entire construction, in particular

define a partial order analogous to 4.1.1 and obtain statements anal-

ogous to Lemmas 4.1.2, 4.1.3, 4.1.4 and 4.1.5 remaining within the

class of names for pure conditions which have the given combinato-

rial property. In chapters IV and V we develop a particular case of

this combinatorial property, which completes the ℵ2-chain condition

in case that the root of the Delta system is empty and establish the

construction within the class of names for pure conditions which have

this property - see Lemma 4.4.6, Theorem 5.4.1 and Lemma 5.4.3. In

the last chapter we give a generalization of this combinatorial property

(Definitions 6.1.3 and 6.1.1) and demonstrate the chain condition for

non-empty root (Lemma 6.2.2).

4.2. Symmetric Names for Sets of Integers

Definition 4.2.1. Let Ẋ be a Cohen name for an infinite subset

of ω. Then for every p ∈ C let hullpẊ = {j : ∃q ≤ p(q 
 ǰ ∈ Ẋ)}.

Definition 4.2.2. A Cohen name Ẋ for an infinite subset of ω is

said to be symmetric if for every finite number of conditions p1, . . . , pk in

C and every M ∈ ω, there is m > M and extensions p̄1 ≤ p1, . . . , p̄n ≤

pn such that for every i ≤ k, p̄i 
 m̌ ∈ Ẋ.
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Lemma 4.2.3. Let Ẋ be a Cohen name for an infinite subset of ω.

Then Ẋ is symmetric if and only if for every finite number of conditions

p1, . . . , pn in C the set
⋂k

i=1 hullpi
(Ẋ) is infinite.

Example 4.2.4. Every check name for an infinite subset of ω is

symmetric.

Lemma 4.2.5. The Cohen generic real has a symmetric name. That

is if Ġ is the canonical name for the generic filter, then Ẋ =
⋃
Ġ is a

symmetric name.

Proof. Let p1, . . . , pk be a finite number of conditions and n ∈ ω.

Then there is j > n which does not belong to the domain of of the

given conditions. Then for all ` = 1, . . . , k, q` = p` ∪ {(j, 1)} extends

of p` and q` 
 j ∈ Ẋ. That is j ∈
⋂k

i=1 hullpi
(Ẋ). �

In the remainder of this section it will be shown that in the Cohen

extension the family of subsets of ω which do not have symmetric names

forms an ideal.

Lemma 4.2.6. Suppose Ẋ and Ẏ are C-names for subsets of ω such

that 
 Ẋ ⊆ Ẏ and Ẏ is not symmetric. Then Ẋ is not symmetric.

Proof. Suppose Ẋ is symmetric. Since Ẏ is not symmetric there

are conditions p1, . . . , pn in C such that
⋂n

i=1 hullpi
(Ẏ ) ⊆ M for some

M ∈ ω. Since Ẋ is symmetric there are extensions p̄i ≤ pi and m > M

such that for every i ≤ n, p̄i 
 m̌ ∈ Ẋ. Then for every i ≤ n p̄i 
 m̌ ∈

Ẏ and so m ∈
⋂n

i=1 hullpi
(Ẋ) which is a contradiction. �
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Definition 4.2.7. A Cohen name Ẋ is symmetric below a condi-

tion p if for every finite family p1, . . . , pn of extensions of p and M ∈ ω

there are extensions p̄i ≤ pi for all i and m > M such that p̄i 
 m̌ ∈ Ẋ.

Lemma 4.2.8. Let Ẋ be a symmetric name for a subset of ω and

let Ẏ , Ż be Cohen names such that 
 Ẋ = Ẏ ∪ Ż. Then for every

p ∈ C either there is q ≤ p such that Ẏ is symmetric below q or there

is q ≤ p such that Ż is symmetric below q.

Proof. Suppose not. That is there is p ∈ C such that for every

q ≤ p, Ẏ and Ż are not symmetric below q. Then in particular there

are extensions p1, . . . , pk of p and n0 ∈ ω such that
⋂k

i=1 hullpi
(Ẏ ) ⊆ n0.

Similarly for every i there are extensions qij ≤ pi for j = 1, . . . , ki and

ni ∈ ω such that
⋂kj

ij=1 hullqij
(Ż) ⊆ ni. Let M = maxi≤k ni. Since Ẋ

is symmetric there is m > M and extensions tij ≤ qij such that for all

ij, tij 
 m̌ ∈ Ẋ. However 
 Ẋ = Ẏ ∪ Ż and so for every ij there is an

extension aij of tij such that aij 
 m̌ ∈ Ẏ or aij 
 m̌ ∈ Ż. If there is

i ∈ {1, . . . , k} such that for every aij (ij = 1, . . . , kj) aij 
 m̌ ∈ Ż we

reach a contradiction with the choice of qi,j and m > ni, since aij ≤ qij

for all ij. Otherwise for every i = 1, . . . , k there is ij ∈ {1, . . . , kj} such

that aij 
 m̌ ∈ Ẏ , which is a contradiction with the choice of p1, . . . , pk

and m > n0, since aij ≤ pi for all i. �

Remark 4.2.9. Whenever Ẋ is a P-name for a pure condition and

p ∈ P, let Ẋ � p = {〈x̌, q〉 : q ≤ p and q 
 x̌ ∈ Ẋ}. For poset P and

condition p ∈ P denote by P+(p) the set of all extensions of p and by

P(p) denote the set of all conditions compatible with p.



4.2. SYMMETRIC NAMES FOR SETS OF INTEGERS 72

Corollary 4.2.10. Let G ba a Cohen generic filter. Then the

collection Insym ∈ V [G] of subsets of ω which do not have symmetric

names forms an ideal.

Proof. Let 
 Ẋ = Ẏ ∪ Ż where Ẋ is a symmetric name for an

infinite subset of ω. Then the set D of all conditions p ∈ C such that

Ẏ is symmetric below p or Ż is symmetric below p is dense. Let E

be a maximal antichain contained in D and for every e ∈ E define

X∗ � e = Ẏ � e if Ẏ is symmetric below e and let X∗ � e = Ż � e if

Ż is symmetric below e. Then X∗ is a a Cohen name for an infinite

subset of ω such that 
 (X∗ ⊆ Ẋ) ∧ (X∗ = Ẏ ∨X∗ = Ż). With every

e ∈ E associate a symmetric name X∗
e for an infinite subset of ω as

follows. Let X∗
e � e = X∗ � e. Let e′ be a condition in E distinct

from e. There is an isomorphism iee′ : C+(e) → C+(e′) where for every

p ∈ C, C+(p) = {q ∈ C : q ≤ p}. Then for every e′ ∈ E\{e} let

X∗
e � e′ = iee′(X

∗
e � e).

Let G be a Cohen generic filter, X = Ẋ[G], Y = Ẏ [G] and Z =

Ż[G]. Then G ∩ E = {e} and so V [G] � X∗
e [G] = Y or X∗

e [G] = Z

depending on whether Ẏ or Ż is symmetric below e. Thus either Y or

Z has a symmetric name. �

Remark 4.2.11. Insym does not contain infinite subsets from the

ground model V , since every check name for an infinite subset of ω is

symmetric. Note also that a symmetric name is necessarily a name for

an infinite subset of ω and so every finite subset of ω belongs to Insym.
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4.3. Symmetric Names for Pure Conditions

In the following LM denotes the family of all finite logarithmic

measures. For every n ∈ ω let Ln be the set of all finite logarith-

mic measures x such that ‖x‖ ≥ n and min int(x) ≥ n. Just as in

Section 4.2 we can give the following definition:

Definition 4.3.1. Let Ẋ be a Cohen name for a pure condition.

Then for every p ∈ C let

hullp(Ẋ) = {x ∈ LM : ∃q(q ≤ p)(q 
 x̌ ≤ Ẋ)}.

Definition 4.3.2. Let Ẋ be a C-name for a pure condition. We

say that Ẋ is symmetric if for every n ∈ ω and every finite number of

conditions p1, . . . , pk there is x ∈ Ln and extensions p̄1 ≤ p1, . . . , p̄k ≤

pk such that for every ` = 1, . . . , k (p̄` 
 x̌ ≤ Ẋ).

Definition 4.3.3. A name for a pure condition Ẋ is symmetric

below a given condition p if for every M ∈ ω and finite number of

extensions p1, . . . , pn of p there are extensions p̄1 ≤ p1, . . . , p̄n ≤ pn and

a measure x ∈ LM such that for every ` = 1, . . . , n p̄` 
 “x̌ ≤ Ẋ”.

Proposition 4.3.4. Let Ẋ be a Cohen name for a pure condition.

The following are equivalent:

(1) Ẋ is symmetric.

(2) For every finite number of extension p1, . . . , pk of p and n ∈ ω

the intersection (
⋂k

i=1 hullpi
(Ẋ)) ∩ Ln is nonempty.

(3) For every finite number of extensions p1, . . . , pk of p the set⋂k
i=1 hullpi

(Ẋ) contains a pure condition.
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Proof. Part (2) is just a reformulation of part (1).

Assume (1) and let Ẋ be a symmetric name for a pure condition.

Let p1, . . . , pk be some finite number of conditions and n ∈ ω. Then

there is xn ∈ Ln and extensions p1,n ≤ p1, . . . , pk,n ≤ pk such that

pl,n 
 x̌n ≤ Ẋ (∀l ≤ k) and so xn ∈
⋂k

i=1 hullpi
(Ẋ)

⋂
Ln. Then for kn =

max{‖xn‖,max int(xn)} there is xn+1 ∈ Lkn , and extensions p1,n+1 ≤

p1, . . . , pk,n+1 ≤ pk such that p`,n+1 
 x̌n+1 ≤ Ẋ (∀` ≤ k) and so in

particular xn+1 belongs to
⋂k

i=1 hullpi
(Ẋ). Proceeding inductively we

can choose a pure condition 〈xn : n ∈ ω〉 contained in
⋂k

i=1 hullpi
(Ẋ).

To see that (3) implies (1) fix any p1, . . . , pk finite number of con-

ditions and let n ∈ ω. By assumption
⋂k

i=1 hullpi
(Ẋ) contains a pure

condition 〈xi : i ∈ ω〉 = R of logarithmic measures of strictly in-

creasing hight. However xn ∈ Ln

⋂
(
⋂k

i=1 hullpi
(Ẋ)) and so for some

p̄1 ≤ p1, . . . , p̄k ≤ pk we have p̄` 
 x̌n ≤ Ẋ (∀` ≤ k). �

Remark 4.3.5. Thus a C-name for a pure condition is not sym-

metric iff there are conditions p1, . . . , pk and M ∈ ω such that

(∩k
i=1hullpi

(Ẋ)) ∩ LM = ∅.

Remark 4.3.6. If a finite logarithmic measure x does not belong

to ∩k
i=1hullpi

(Ẋ) then there is an index i ≤ k such that pi 
 x̌ � Ẋ.

Lemma 4.3.7. Let Ẋ and Ẏ be C-names for pure conditions such

that 
 Ẋ ≤ Ẏ . If Ẏ is not symmetric, then Ẋ is not symmetric.

Proof. Suppose that Ẋ is symmetric, but Ẏ is not symmetric.

Then there are conditions p1, . . . , pk such that
⋂k

i=1 hullpi
(Ẏ ) does not
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contain measures of level greater than M for some M ∈ ω. Let j > M .

Since Ẋ is symmetric there are extensions q1 ≤ p1, . . . , qk ≤ pk and

x ∈ LM such that for every ` ≤ k, q` 
 x̌ ≤ Ẋ. But then q` 
 x̌ ≤ Ẏ

and so x belongs to
⋂k

i=1 hullpi
(Ẏ ) which is a contradiction. �

4.4. An ultrafilter of Symmetric Names

Definition 4.4.1. The finite logarithmic measure x is said to be

stronger than the finite logarithmic measure y if x is of measure greater

than the measure of y and min int(x) > max int(y). We will denote the

fact that x is stronger than y with x > y.

Remark 4.4.2. Whenever p and q are incompatible conditions we

will denote this by p⊥q.

Lemma 4.4.3. Let Ẋ be a symmetric Cohen name for a pure con-

dition and let Ȧ be a name for an infinite subset of ω. Then for every

p1, . . . , pk in C and every M ∈ ω there is a finite logarithmic measure

z ∈ LM and extensions p̄1 ≤ p1, . . . , p̄k ≤ pk such that ∀i ≤ n,

p̄i 
 “ž ≤ Ẋ and ž ⊆ Ȧ” or p̄i 
 “ž ≤ Ẋ and ž ⊆ Ȧc”.

Proof. Let s0 = 2k+M . Since Ẋ is symmetric there are extensions

p1,1 ≤ p1, . . . , p1,k ≤ pk and x ∈ Ls0 such that for every i ≤ k, p1,i 


x̌ ≤ Ẋ. Let s = maxx+1. Extend p1,i to a condition p2,i such that for

some ai ⊆ s, p2,i 
 (Ȧ � s) = ǎi and so in particular if bi = s\ai then

p2,i 
 (Ȧc � s) = b̌i.

In the ground model we can partition x into 2k subsets {zj : j ≤ 2k}

such that ∀j ≤ 2k∀i ≤ k zj is contained in ai or bi. Furthermore by
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Lemma 2.1.3 there is j0 ≤ 2k such that the measure of z = zj0 is at

least M . Then for every i ≤ k we have

p2,i 
 “(ž ≤ Ẋ and ž ⊆ Ȧ) or (ž ≤ Ẋ and ž ⊆ Ȧc)”.

Then for every i ≤ k there is a further extension p̄i ≤ p2,i such that

p̄i 
 “ž ≤ Ẋ and ž ⊆ Ȧ” or p̄i 
 “ž ≤ Ẋ and ž ⊆ Ȧc”. �

Lemma 4.4.4. Let Ẋ be a C-symmetric name for a pure condition

and Ȧ a C-name for an infinite subset of ω. Then there is a Cohen

symmetric name for a pure condition Ẏ such that 
 Ẏ ≤ Ẋ and ∀i ∈ ω


 “int(Ẏ (i)) ⊆ Ȧ or int(Ẏ (i)) ⊆ Ȧc”.

Proof. Fix an enumeration {pn : n ∈ ω} of C. Find an extension

p0,0 of p0 and a finite measure x0 such that p0,0 
 “x̌0 ≤ Ẋ ∧ int(x̌0) ⊆

Ȧ” or “p0,0 
 x̌0 ≤ Ẋ ∧ int(x̌0) ⊆ Ȧc”. Let A0 = {a0,s : s ∈ ω} be

a maximal antichain in C − C(p0,0) such that for every s ∈ ω there is

a measure x0,s such that a0,s 
 “x̌0,s ≤ Ẋ ∧ int(x̌0,s) ⊆ Ȧ” or a0,s 


“x̌0,s ≤ Ẋ ∧ int(x̌0,s) ⊆ Ȧc”. Let R0 = {〈p0,0, x̌0〉} ∪ {〈a0,s, x̌0,s〉 :

s ∈ ω}. Proceed inductively. Suppose we have defined conditions

{pn−1,`}`∈n and a finite logarithmic measure xn−1 such that for every

` ∈ n, pn−1,` ≤ pn−1 and pn−1,` 
 “x̌n−1 ≤ Ẋ ∧ int(x̌n−1) ⊆ Ȧ” or

pn−1,` 
 “x̌n−1 ≤ Ẋ ∧ int(x̌n−1) ⊆ Ȧc”. Furthermore suppose we

have defined a maximal antichain An−1 = {an−1,s : s ∈ ω} in C −

C({pn−1,`}`∈n) such that for every s ∈ ω there is a finite logarithmic

measure xn−1,s such that an−1,s 
 “x̌n−1,s ≤ Ẋ ∧ int(x̌n−1,s) ⊆ Ȧ” or
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an−1,s 
 “x̌n−1,s ≤ Ẋ ∧ int(x̌n−1,s) ⊆ Ȧ” and finally we have defined

Rn−1 = {〈x̌n−1, pn−1,`〉}`∈n ∪ {〈x̌n−1,s, an−1,s〉 : s ∈ ω}.

If pn⊥{pn−1,i}i≤n−1 then there is an−1,s ∈ An−1 compatible with pn

and we can fix a common extension bn and let yn = xn−1,s. Other-

wise let bn be a common extension of pn and some pn−1,j for j ∈ n

and let yn = xn−1. By the Lemma 4.4.3 there are extensions pn,0 ≤

pn−1,0, . . . , pn,n−1 ≤ pn−1,n−1, pn,n ≤ bn and a finite measure xn stronger

than xn−1 and yn such that ∀i ≤ n

(pn,i 
 x̌n ≤ Ẋ ∧ int(x̌n) ⊆ Ȧ) or (pn,i 
 x̌n ≤ Ẋ ∧ int(x̌n) ⊆ Ȧc).

Fix a maximal antichain An = 〈an,s : s ∈ ω〉 in C − C({pn,i}i≤n) such

that for all s ∈ ω

(1) ∃is ∈ ω such that an,s ≤ an−1,is

(2) ∃xn,s measure stronger than xn−1,is such that

an,s 
 “x̌n,s ≤ Ẋ ∧ int(x̌n,s) ⊆ Ȧ” or an,s 
 “x̌n,s ≤ Ẋ ∧

int(x̌n,s) ⊆ Ȧc”.

Let Rn = {〈pn,i, x̌n〉}i≤n∪{〈an,s, x̌n,s〉 : s ∈ ω}. With this the inductive

construction in complete and Ẏ =
⋃

n∈ω Rn is the desired symmetric

name for a pure condition. �

Remark 4.4.5. Note that Ri is a name for the i-th measure of Ẏ .

Lemma 4.4.6. Let G be a Cohen generic filter. In V [G] let X be a

pure condition with symmetric name Ẋ and let A ∈ V [G] be an infinite

subset of ω. Then in V [G] there is a pure condition Z extending X,

which has a symmetric name and such that int(Z) ⊆ A or int(Z) ⊆ Ac.
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Proof. Let Ẏ be the name constructed in Lemma 4.4.4. Then

there are C names Ṙ and Ṫ such that 
 Ṙ = 〈Ẏ (i) : Ẏ (i) ⊆ Ȧ〉 and


 Ṫ = 〈Ẏ (i) : Ẏ (i) ⊆ Ȧc〉. Then 
 Ṙ∪ Ṫ = Ẏ . We claim that for every

p ∈ C there is an extension q ≤ p such that Ṙ is symmetric below q or

Ṫ is symmetric below q.

Suppose not and let p be a condition which does not have an exten-

sion with the desired properties. Then there are extensions p1, . . . , pk

of p such that for some n0, (
⋂k

i=1 hullpi
(Ṙ)

⋂
Ln0 = ∅ and respectively

for every i ≤ k there are {qi,j}`i
j=1 ⊆ C+(pi) such that for some ni,

(
⋂`i

j=1 hullqi,j
(Ṫ ))

⋂
Lni

= ∅. By construction of Ẏ there are extensions

q̄i,j ≤ qi,j and a measure x of level higher than {n0, . . . , nk} such that

q̄i,j 
 x̌ ∈ Ẏ . Then for all i, j qi,j 
 x̌ ∈ Ṙ∪ Ṫ and so there is a further

extension ti,j ≤ qi,j such that ti,j 
 x̌ ∈ Ṙ or ti,j 
 x̌ ∈ Ṫ .

If for every i ≤ k there is some j ≤ `i such that ti,j 
 x̌ ∈ Ṙ,

then since ti,j ≤ pi we obtain that x is in
⋂k

i=1 hullpi
(Ṙ) which is a

contradiction since x is of measure greater than n0. Otherwise, there

is some i ≤ k such that ∀j = 1, . . . , `i ti,j 
 x̌ ∈ Ṫ . But then x is in⋂`i

j=1 hullqi,j
Ṫ which is a contradiction since the measure of x is greater

than ni.

Therefore the set D of all p ∈ C such that Ṙ or Ṫ is symmetric

below p is dense in C. Fix a maximal antichain E contained in D.

Define Y ∗ as follows: for every e ∈ E let Y ∗ � e = Ṙ � e if Ṙ is

symmetric below e and let Y ∗ � e = Ṫ � e otherwise. Then


 (Y ∗ ≤ Y ) ∧ (int(Y ∗) ⊆ Ȧ ∨ int(Y ∗) ⊆ Ȧc).
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Furthermore for every e ∈ E let Ye be a symmetric name defined as

follows. Let Ye � e = Ṙ � e if Ṙ is symmetric below e and let Ye � e′ =

iee′(Ye � e) for every e′ ∈ E\{e}, where iee′ is an isomorphism of C+(e)

and C+(e′). Note that for every e ∈ E, 
 Ye = Ṙ ∨ Ye = Ṫ . Now,

since G is Cohen generic there is e ∈ G ∩ E. Then Ye is a symmetric

name for Ṙ[G] or Ṫ [G], and so in particular for an extension of X the

underlying infinite set of which is contained in A or in Ac. �

As a straightforward generalization of the above one obtains:

Corollary 4.4.7. Let G be a Cohen generic filter. If, in V [G] X

is a pure condition with a symmetric name and A0 ∪ · · · ∪ An−1 is a

partition of ω into finitely many sets, then there is a pure condition Y

extending X which has a symmetric name and such that int(Y ) ⊆ Aj

for some j ∈ ω.

In particular we obtain the following result:

Corollary 4.4.8. Let G be a Cohen generic filter and let X be a

pure condition in V [G] with symmetric name Ẋ. Let A ∈ V [G] ∩ [ω]ω

which does not have a symmetric name. Then in V [G] there is a pure

condition Y extending X such that int(Y ) ⊆ Ac.

Proof. By Lemma 4.4.6 there is a symmetric name Ẏ for a pure

condition such that in V [G], Ẏ [G] = Y ≤ X and int(Y ) ⊆ A or

int(Y ) ⊆ Ac. Suppose V [G] � int(Y ) ⊆ A. Let Ȧ be a Cohen name for

A and let p ∈ G be a condition in G such that p 
 int(Ẏ ) ⊆ Ȧ. If Ȧ is

symmetric below p then the set A does have a symmetric name, which
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is a contradiction to the hypothesis of the lemma. Therefore there is

a finite set of extensions of p, p1, . . . , pk such that
⋂k

i=1 hullpi
(Ȧ) ⊆ M

for some M ∈ ω. However Ẏ is symmetric and so there is x ∈ LM and

extensions qi ≤ pi such that for every i qi 
 x̌ ≤ Ẏ . Then for every

i, qi 
 x̌ ⊆ Ȧ which implies that int(x) ⊆
⋂k

i=1 hullpi
(Ȧ). This is a

contradiction, since x ∈ LM implies that min int(x) ≥M . �

In his original work from 1984 S. Shelah works with a restriction

of the partial order Q to a suborder Q[I], where I is an ideal on P(ω)

containing all finite subsets, which consists of all conditions (a, T ) in

Q, where T = 〈ti : i ∈ ω〉, having the property that for every A in I

the sequence T ∩ Ac = 〈ti : int(ti) ∩ A = ∅〉 is a pure condition. If

G is a Cohen generic filter, in V [G] the collection Insym of subsets of

ω which do not have symmetric names forms an ideal (containing all

finite subsets of ω) and so in V [G] we can consider the analogous partial

order Qs[Insym] where Qs is the suborder of Q consisting of conditions

with symmetric name for the pure part.

Corollary 4.4.9. Let G be a Cohen generic filter. Then

V [G] � (Qs = Qs[Insym]).

Proof. In V [G] let X = 〈xi : i ∈ ω〉 be a pure condition with

symmetric name Ẋ and let A be a subset of ω which does not have a

symmetric name. Let Ż be a name for Z = 〈xi : int(xi) ∩ A = ∅〉. By

Lemma 4.4.8 there is a pure condition Y ≤ X which has a symmetric

name Ẏ such that int(Y ) ⊆ A. Then Y ≤ Z and so there is a condition



4.5. EXTENDING DIFFERENT EVALUATIONS 81

p ∈ G such that p 
 Ẏ ≤ Ż. By Lemma 4.3.7 Ż is symmetric below p,

which implies that Z has a symmetric name. �

Whenever Ẋ is a P-name for an infinite subset of ω (resp. a P-

name for a pure condition) where P is a forcing notion, such that for

every finite set of conditions p1, . . . , pn in P and integer M there are

extensions p̄1 ≤ p1, . . . , p̄n ≤ pn and m > M (resp. a finite logarithmic

measure x ∈ LM) such that for all j = 1, . . . , n p̄j 
 m̌ ∈ Ẋ (resp.

p̄j 
 x̌ ≤ Ẋ) we will say that the name Ẋ is symmetric. Also if we want

to emphasize that Ẋ is a P-name, we will say that Ẋ is P-symmetric.

4.5. Extending Different Evaluations

Lemma 4.5.1. Let Ẋ be a Cohen symmetric name for a pure con-

dition. Let Cn = C × · · · × C be the product of n-copies of C. Then

there is a Cn-symmetric name for a pure condition X̃ such that for all

Cn-generic filters G, for all j = 1, . . . , n V [G] � X̃[G] ≤ Ẋ[Gj], where

Gj is the j-th projection of G.

Proof. Let {pm}m∈ω be an enumeration of Cn. Then for every

m ∈ ω, pm = (p1
m, . . . , p

n
m) where pj

m ∈ C. Consider p1. Since Ẋ is

C-symmetric name there are extensions p1
1,1 ≤ p1

1, . . . , p
n
1,1 ≤ pn

1 and a

finite logarithmic measure x1 such that for every j = 1, . . . , n, pj
1,1 


x̌1 ≤ Ẋ. Let p1,1 = (p1
1,1, . . . , p

n
1,1) and let R′1 = {〈p1,1, x̌1〉}. Fix a

maximal antichain of conditions A1 = {a1,s : s ∈ ω} in Cn − C+
n (p1,1)

such that ∀s ∈ ω, there is a finite logarithmic measure x1,s such that

for every j = 1, . . . , n, aj
1,s 
 x̌1,s ≤ Ẋ. Let R′′1 = {〈a1,s, x̌1,s〉 : s ∈ ω}

and let R1 = R′1 ∪R′′1.
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Suppose we have defined Rm−1. Consider pm−1,1, . . . , pm−1,m−1 and

pm. If pm⊥{pm−1,`}m−1
`=1 , then there is am−1,s ∈ Am−1 such that am−1,s 6⊥

pm with common extension bm. Let ym = xm−1,s. Otherwise there is

j ∈ {1, . . . ,m − 1} such that pm−1,j 6⊥ pm with common extension

which we again denote bm. In this case let ym = xm−1. By symmetry

of Ẋ there are extensions pj
m,` ≤ pj

m−1,l for 1 ≤ ` ≤ m − 1, 1 ≤ j ≤ n

and pj
m,m ≤ bjm (∀j : 1 ≤ j ≤ n) and a finite logarithmic measure xm

which is stronger than {xm−1, ym} such that for all j, ` pj
m,` 
 x̌m ≤ Ẋ.

Then for every ` = 1, . . . ,m let pm,` = (p1
m,`, . . . , p

n
m,`) and let R′m =

{〈pm,`, x̌m〉}m
`=1. Just as in the base case let Am = {am,s : s ∈ ω} be a

maximal antichain in Cn − C+
n ({pm,`}m

`=1) such that for all s ∈ ω

(1) ∃is ∈ ω such that am,s ≤ am−1,is

(2) ∃xm,s stronger than xm−1,is such that for all j = 1, . . . , n,

aj
m,s 
 x̌m,s ≤ Ẋ.

Let R′′m = {〈am,s, x̌m,s〉}s∈ω and let Rm = R′m ∪ R′′m. With this the

inductive construction id complete and we can define X̃ = ∪m∈ωRm.

Let G be Cn-generic. Then G∩A1 contains some a1,s (or p1,1) and so

X̃[G](1) = x1,s (resp. X̃[G](1) = x1). However for every j = 1, . . . , n,

aj
1,s ∈ Gj and so since aj

1,s 
 x̌1,s ≤ Ẋ we have x1,s ≤ Ẋ[Gj] (similarly

x1 ≤ Ẋ[Gj]). The same argument holds for every m ∈ ω. Indeed if

am,s ∈ G ∩ Am, then X̃[G](m) = xm,s. But for all j = 1, . . . , n, aj
m,s ∈

Gj and since aj
m,s 
 (x̌m,s ≤ Ẋ) we obtain x̌m,s = X̃[G](m) ≤ Ẋ[Gj].

Therefore X̃[G] is a pure condition which is a common extension of

Ẋ[G1], . . . , Ẋ[Gn].
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The name X̃ is Cn-symmetric. Consider any finite number of con-

ditions p1, . . . , pn and M ∈ ω. In the fixed enumeration of Cn for every

j = 1, . . . , n there is ij such that pj = pij . Then there is k ∈ ω such

that k > ij for all j and k > M . Then pk,i1 ≤ p1, . . . , pk,in ≤ pin and

for xk ∈ Lk ⊆ LM for all j we have pk,ij 
 “x̌k ∈ X̃”. That is given

any finite number of conditions p1, . . . , pn and M ∈ ω there are exten-

sions q1 ≤ p1, . . . , qn ≤ pn and a finite logarithmic measure x ∈ LM

such that ∀l : 1 ≤ l ≤ n, ql 
 x̌ ≤ X̃. Therefore the name X̃ is

Cn-symmetric. �

Lemma 4.5.2. Let Ẋ = 〈Ẋ(i) : i ∈ ω〉 be a Cohen symmetric

name for a pure condition, A an infinite subset of ω and G0 a Cn-

generic filter. Then there is a Cn-symmetric name for a pure condition

X∗ = 〈X∗(i) : i ∈ ω〉 such that

(1) int(X∗[G0]) ⊆ A or int(X∗[G0]) ⊆ Ac and

(2) ∀m ∈ ω, j ≤ n X∗
m[G0] ≤ Ẋm[Gj

0], where Ẋm = 〈Ẋ(i) : i ≥

m〉 and X∗
m = 〈X∗(i) : i ≥ m〉.

Proof. Let {pm}m∈ω be a fixed enumeration of Cn. Consider p1 =

(p1
1, . . . , p

n
1 ). Since Ẋ1 is C-symmetric there is x1 ∈ L1 and extensions

pj
1,1 ≤ pj

1 (for j = 1, . . . , n) such that int(x1) ⊆ A or int(x1) ⊆ Ac

and for all j, pj
1,1 
 x̌1 ≤ Ẋ1. Let A1 = {a1,s : s ∈ ω} be a maximal

antichain in Cn − C+
n (p1,1) such that for all s ∈ ω there is a finite

logarithmic measure x1,s such that int(x1,s) ⊆ A or int(x1,s) ⊆ Ac and

for all j = 1, . . . , n, aj
1,s 
 x̌1,s ≤ Ẋ1 where a1,s = (a1

1,s, . . . , a
n
1,s). Let

R1 = {〈p1,1, x̌1〉} ∪ {〈a1,s, x̌1,s〉 : s ∈ ω}. Suppose we have defined

Rm−1. Consider pm−1,1, . . . , pm−1,m−1 and pm. If pm⊥{pm−1,`}m−1
`=1 then
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there is s ∈ ω such that pm 6⊥ am−1,s. In this case let bm be their

common extension and let ym = xm−1,s. If there is j ≤ m − 1 such

that pm 6⊥ pm−1,j let bm be their common extension and let ym = xm−1.

Then there are extensions pm,` ≤ pm−1,` for every ` = 1, . . . ,m − 1

and pm,m ≤ bm, and a finite logarithmic measure xm stronger than

{xm−1, ym} such that xm ⊆ A or xm ⊆ Ac and for all ` = 1, . . . ,m, for

all j = 1, . . . , n, pj
m,` 
 x̌m ≤ Ẋm where pm,` = (p1

m,`, . . . , p
n
m,`). Let

Am = {am,s : s ∈ ω} be a maximal antichian in Cn − C+
n ({pm,`}m

`=1)

such that for all s ∈ ω

(1) ∃is ∈ ω s.t. am,s ≤ am−1,is ,

(2) ∃xm,s stronger than xm−1,is such that xm,s ⊆ A or xm,s ⊆ Ac

and for all j = 1, . . . , n, aj
m,s 
 x̌m,s ≤ Ẋm where am,s =

(a1
m,s, . . . , a

n
m,s)

Let Rm = {〈pm,`, x̌m〉}m
`=1 ∪ {〈am,s, x̌m,s〉 : s ∈ ω}. With this the

inductive construction is complete and we can define X̃ = ∪m∈ωRm.

To see that X̃ is symmetric consider any finite number of conditions

p1, . . . , pm in Cn and some M ∈ ω. Then ∀j ≤ m, ∃ij ∈ ω such that

pj = pij (in the fixed enumeration of Cn). There is k > M s.t. k > ij

for all j ≤ m. Then pk,i1 ≤ pi1 , . . . , pk,im ≤ pim and xk ∈ Lk ⊆ LM

are such that pk,` 
 x̌k ≤ X̃ for all ` ∈ {1, . . . , k} and so in particular

pk,` 
 x̌k ≤ X̃ (∀` ∈ {i1, . . . , im}).

Let G be Cn-generic. We will show that for every j ≤ n, X̃[G] ≤

Ẋ[Gj]. Then G∩({p1,1}∪A1) contains some condition a1,s (or contains

p1,1). Then for every j ≤ n, aj
1,s 
 (x̌1,s ≤ Ẋ) (resp. pj

1,1 
 (x̌1 ≤ Ẋ))

and since aj
1,s ∈ Gj (resp. pj

1,1 ∈ Gj) x1,s = X̃[G](1) ≤ Ẋ[Gj] for
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every j ≤ n (resp. x1 = X̃[G](1) ≤ Ẋ[Gj]). The same argument holds

for every Ak ∪ {pk,1, . . . , pk,k}) and so X̃[G] is a common extension

of Ẋ[G1], . . . , Ẋ[Gn]. Furthermore X̃m = ∪k≥mRk is symmetric and

for every Cn-generic filter in V [G] for every j ≤ n we have X̃m[G] ≤

Ẋm[Gj]. Observe that ∀i ∈ ω


Cn “int(X̃(i)) ⊆ Ǎ or int(X̃(i)) ⊆ Ǎc”.

Let H̃, T̃ be Cn-names such that 
 “H̃ = 〈X̃(i) : int(X̃(i)) ⊆ Ǎ〉”

and 
 “T̃ = 〈X̃(i) : int(X̃(i)) ⊆ Ǎc〉”. Then following the proof of

Lemma 4.4.6 obtain that for every p ∈ Cn there is q ≤ p such that H̃

or T̃ is symmetric below q. Let E be a maximal antichian of conditions

with this property. Then for every e ∈ E let X∗
e � e = H̃ � e if H̃ is

symmetric below e and let X∗
e � e = T̃ � e if T̃ is symmetric below

e. For every e′ ∈ E\{e} let iee′ : C+
n (e) ∼= C+

n (e′) be a partial order

isomorphism. Then for every e′ ∈ E\{e} let X∗
e � e′ = ie,e′(X

∗
e � e).

Then for every e ∈ E, X∗
e is a symmetric name for a pure condition

such that 1 
 “int(X∗
e ) ⊆ Ǎ or int(X∗

e ) ⊆ Ǎc”. Furthermore e 


X∗
e ≤ X̃ and so in particular for all m ∈ ω, e 
 X∗

e,m ≤ X̃m, where


 X∗
e,m = 〈X∗

e (i) : i ≥ m〉. Then X∗ = X∗
e0

where {e0} = G0 ∩E is the

desired symmetric name for a pure condition. �

Remark 4.5.3. Note that in V [G] the centered family

C∗ = {(X∗
e )m[G]}m∈ω

extends the centered family Cj = {Ẋm[Gj]}m∈ω for every j = 1, . . . , n.



CHAPTER 5

Preserving small unbounded families

5.1. Preprocessed Names for Pure Conditions

Definition 5.1.1. Let Γ ∈ [ω2]
ω and let C be a centered family of

C(Γ)-symmetric names for pure conditions. We say that ḟ is a good

C(Γ)∗Q(C)-name for a real if for every subset Γ′ of ω2 such that Γ ⊆ Γ′

and centered family C ′ of C(Γ′)-symmetric names for pure conditions

extending C, ḟ is a C(Γ′) ∗Q(C ′)-name for a real.

Definition 5.1.2. Let C be a countable centered family of C(Γ)-

names for pure conditions, let ḟ be a good C(Γ)∗Q(C)-name for a real,

i, k ∈ ω, p ∈ C(Γ), Ẋ a symmetric name for a pure condition in Q(C)

such that 
 ǩ < min int(Ẋ). The name Ẋ is preprocessed for ḟ(i), k,

p and C where i, k ∈ ω if for every v ⊆ k the following holds:

If there is a countable centered family C ′ of C(Γ)-symmetric names

extending C, a symmetric name for a pure condition Ẏ in Q(C ′) ex-

tending Ẋ and a condition A ∈ Ai(ḟ) such that (p, (v, Ẏ )) ≤ A then

there is B ∈ Ai(ḟ) such that (p, (v, Ẋ)) ≤ B.

Lemma 5.1.3. Let C be a countable centered family of C(Γ)-symmetric

names for pure conditions, ḟ a good C(Γ) ∗Q(C)-name for a real, Ẋ a

symmetric name for a pure condition in Q(C). Let C ′ be a countable

centered family of symmetric names for pure conditions extending C

86
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and Ẏ a symmetric name for a pure condition in Q(C ′) extending Ẋ.

If Ẋ is preprocessed for ḟ(i), k, p and C then Ẏ is preprocessed for

ḟ(i), k, p and C ′.

Proof. Let C ′′ be a countable centered family of symmetric names

for pure conditions extending C ′ and let Ż be a symmetric name for an

extension of Ẏ such that for some A ∈ Ai(ḟ) (p, (v, Ż)) ≤ A. However

C ′′ extends C, Ż extends Ẋ, Ẋ is preprocessed for ḟ(i), k, p and C,

and so there is B ∈ Ai(ḟ) such that (p, (v, Ẋ)) ≤ B. But 
 Ẏ ≤ Ẋ

and so (p, (v, Ẏ )) ≤ (p, (v, Ẋ)) ≤ B. Therefore Ẏ is preprocessed for

ḟ(i), k, p and C ′. �

Lemma 5.1.4. Let C be a countable centered family of C(Γ)-symmetric

names for pure conditions, ḟ a good C(Γ) ∗ Q(C)-name for a real,

i, k ∈ ω, p ∈ C(Γ), Ẋ a symmetric name for a pure condition in Q(C).

Then there is a countable centered family of symmetric names for pure

conditions C ′ extending C and a symmetric name for a pure condition

T ′ extending Ẋ, T ′ ∈ Q(C ′) such that T ′ is preprocessed for ḟ(i), k, p

and C ′.

Proof. Let v1, . . . , vs enumerate the subsets of k. The name Ẏ

and the centered family C ′ will be obtained at finitely many steps.

Consider (p1, (v1, Ẋ)). If there is a countable centered family C ′1 of

symmetric names for pure conditions extending C and a symmetric

name for a pure condition T ′1 ∈ Q(C ′1) extending Ẋ\k such that for

some A1 ∈ Ai(ḟ), (p, (v1, T
′
1)) ≤ A1 let T1 = T ′1, C1 = C ′1. Otherwise

let T1 = Ẋ, C1 = C. At step (s− 1) consider (p, (vs, Ts−1)) and Cs−1.
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If there is a centered family of symmetric names for pure conditions C ′s

extending Cs−1, |C ′s| = |Cs−1| such that for some pure condition T ′s ∈

Q(C ′s) extending Ts−1, there is As ∈ Ai(ḟ) such that (p, (vs, T
′
s)) ≤ As

let Ts = T ′s, Cs = C ′s. Otherwise let Ts = Ts−1, Cs = Cs−1. It will be

shown that T ′ = Ts is preprocessed for ḟ(i), k, p and C ′ = Cs.

Let v ⊆ k, C ′′ a countable centered family of C(Γ)-symmetric

names for pure conditions extending C ′, T ′′ a symmetric name for a

pure condition in Q(C ′′) extending T ′ such that for some A ∈ Ai(ḟ),

(p, (v, T ′′\k)) ≤ A. Then v = vj for some j ∈ s + 1. Since C ′′

extends C ′, C ′′ extends Cj−1 and furthermore T ′′ is a name for an

extension of Tj−1. Therefore at stage j we have chosen a centered

family Cj and a symmetric name for a pure condition Tj ∈ Q(Cj)

such that (p, (vj, Tj)) ≤ Aj ∈ Ai(ḟ). However 
 T ′ ≤ Tj and so

(p, (vj, T
′)) ≤ Aj. �

Corollary 5.1.5. Let Ẋ be a C(Γ)-symmetric name for a pure

condition in Q(C), where C is a countable centered family of C(Γ)-

symmetric names for pure conditions and let ḟ be a good C(Γ) ∗Q(C)-

name for a real. Let {pj}j∈` be a finite number of conditions in C(Γ),

k, n ∈ ω. Then there is a countable centered family C ′ of C(Γ)-

symmetric names extending C, a symmetric name Ẏ for a pure exten-

sion of Ẋ in Q(C ′) such that for all j ≤ ` and i ≤ n, Ẏ is preprocessed

for ḟ(i), k, pj and C ′.

Proof. By Lemma 5.1.4 there is a countable centered family C0

of C(Γ)-symmetric names for pure conditions, a C(Γ)-symmetric name

Ẋ0 for an extension of Ẋ in Q(C0) which is preprocessed for ḟ(0), k, p0
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and C1. Again by Lemma 5.1.4 there is a countable centered family C1

of C(Γ)-symmetric names extending C0 and a symmetric name for a

pure condition Ẋ1 extending Ẋ0, 
 Ẋ1 ∈ Q(C1) which is preprocessed

for ḟ(0), k, p1 and C1. By Lemma 5.1.3 Ẋ1 is also preprocessed for

ḟ(0), k, p0 and C1. Repeating the argument `-times obtain a centered

family of symmetric names for pure conditions C`−1 and a symmetric

name Ẋ`−1 ∈ Q(C`−1) such that for all j ∈ `, Ẋ`−1 is preprocessed for

ḟ(0), k, pj and C`−1. Repeating the argument above successively for

ḟ(1), . . . , ḟ(n− 1) obtain a centered family C ′ of symmetric names for

pure conditions and a symmetric name for a pure condition Ẏ ∈ Q(C ′)

extending Ẋ such that for all j ∈ `, i ∈ n, Ẏ is preprocessed for ḟ(i),

k, pj and C ′. �

Corollary 5.1.6. Let {pn}n∈ω enumerate C(Γ). Let C be a count-

able centered family of C(Γ)-symmetric names for pure conditions, Ẋ a

C(Γ)-symmetric name for a pure condition in Q(C) and let ḟ be a good

C(Γ)∗Q(C)-name for a real. Then there is a countable centered family

C ′ of C(Γ)-symmetric names for pure conditions extending C and a

sequence 〈Ẏn : n ∈ ω〉 of C(Γ)-symmetric names for pure conditions in

Q(C ′) such that

(1) 
 Ẏ0 ≤ Ẋ and ∀n ∈ ω 
 Ẏn+1 ≤ Ẏn

(2) ∀n ∈ ω∀i, j ≤ n Ẏn is preprocessed for ḟ(i), n, pj and C ′.

Proof. By Corollary 5.1.5 there is a C(Γ)-symmetric name for a

pure condition Ẏ0 extending Ẋ, such that Ẏ0 ∈ Q(C ′0) where C ′0 is

a countable centered family of C(Γ)-symmetric names for pure con-

ditions extending C, which is preprocessed for ḟ(0), p0, 0 and C0.
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Suppose Ẏn, Cn have been defined. Then by Corollary 5.1.5 there is

a countable centered family Cn+1 of C(Γ)-symmetric names for pure

conditions extending Cn and a symmetric name for a pure condition

Ẏn+1 extending Ẏn such that for all i, j ≤ n + 1, Ẏn+1 is preprocessed

for ḟ(i), n, pj and Cn+1. Then C ′ = ∪n∈ωCn is a countable centered

family of C(Γ)-symmetric names for pure conditions extending C, such

that 〈Ẏn : n ∈ ω〉 is contained in Q(C ′) and ∀n ∈ ω, ∀i, j ≤ n, Ẏn is

preprocessed for ḟ(i), n, pj, and C ′. �

Corollary 5.1.7. Let C be a countable centered family of C(Γ)-

symmetric names for pure conditions, ḟ a good C(Γ)∗Q(C)-name for a

real and Ẋ a C(Γ)-symmetric name for a pure condition in Q(C). Then

there is a countable centered family C ′ of C(Γ)-symmetric names for

pure conditions extending C and a C(Γ)-symmetric name Ż = 〈Ż(i) :

i ∈ ω〉 for a pure condition in Q(C ′) such that ∀n ∈ ω, ∀i, j ≤ n

Żn = 〈Ż(i) : i ≥ n〉 is preprocessed for ḟ(i), pj, n and C ′, where

{pn}n∈ω is a fixed enumeration of C(Γ).

Proof. Let C ′ be a countable centered family extending C, 〈Ẏn :

n ∈ ω〉 a sequence of C(Γ)-symmetric names contained in Q(C ′) sat-

isfying Corollary 5.1.6. Passing to a subfamily we can assume that

C ′ = {Ẋn}n∈ω where for all n ∈ ω, 
 Ẋn+1 ≤ Ẋn. Then using the fixed

enumeration of C(Γ) obtain a C(Γ)-symmetric name for a pure condi-

tion Ż = 〈Ż(i) : i ∈ ω〉 such that for all n ∈ ω, 
 Żn ≤ Ẋn ∧ Żn ≤ Ẏn

where 
 Żn = 〈Ż(i) : i ∈ ω〉. Then Ż and C ′ = {Żn}n∈ω are the desired

pure condition and centered family of C(Γ)-symmetric names. �
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5.2. Induced Logarithmic Measure

Lemma 5.2.1. Let {pi}i∈ω be a fixed enumeration of C(Γ) and let

Ẋ = 〈Ẋ(i) : i ∈ ω〉 be a C(Γ)-symmetric name for a pure condition

such that ∀m ∈ ω, ∀i, j ≤ m the name Ẋm = 〈Ẋ(i) : i ≥ m〉 is

preprocessed for ḟ(i), m, pj and C = {Ẋm}m∈ω, where ḟ is a good

C(Γ)∗Q(C)-name for a real. Then for every i, k ∈ ω and finite number

of conditions p1, . . . , pn in C(Γ) the logarithmic measure induced by the

set Pk(ḟ(i), Ẋ, {pj}n
j=1) which consists of all x ∈ [ω]<ω such that for all

j = 1, . . . , n there is p̄j ≤ pj such that

(1) p̄j 
 (x̌ ⊆ int(Ẋ)) ∧ (∃j ∈ ω(x ∩ int(X(j)) ∈ X(j)+)),

(2) ∀v ⊆ k∃wj
v ⊆ x∃Av,j ∈ Ai(ḟ) s.t. (p̄j, (v ∪ wj

v, X
∗)) ≤ Av,j

where X∗ is a symmetric name for some final segment of Ẋ, takes

arbitrarily high values. The conditions {p̄j}n
j=1 are said to witness the

fact that x is positive.

Proof. Let G be C∗ =
∏n

i=1 C(Γi)-generic filter where ∀i 6= j,

Γi ∩ Γj = ∅ and Γi
∼= Γj, such that (p1, . . . , pn) ∈ G. Let ω = A0 ∪

· · ·∪AM−1 be a partition of ω into finitely many sets. By Lemma 4.5.2

there is a C∗-symmetric name X̃ = 〈X̃(i) : i ∈ ω〉 such that for some

j0 ∈ M int(X̃[G]) ⊆ Aj0 and for all m ∈ ω, j = 1, . . . , n, X̃m[G] =

〈X̃(i)[G] : i ≥ m〉 ≤ Ẋm[Gj]. Then in particular for all j = 1, . . . , n,

Cj = {Ẋm[Gj]}m∈ω ⊆ Q(C̃) where C̃ = {X̃m[G]}m∈ω. Since ḟ is a good

name, ḟ is also a C∗ ∗Q(C̃)-name for a real. Let v1, . . . , vL enumerate

the subsets of k. Fix j ∈ {1, . . . , n} and s ∈ {1, . . . , L}. Since fj =

ḟ/Gj isQ(C̃)-name for a real, there is qjs ∈ Gj, a C(Γ)-symmetric name
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for a pure condition Ṙjs in Q(C) and a finite subset ujs of ω, such that

Ajs = (qjs, (ujs, Ṙjs)) ∈ Ai(ḟ) and in V [G] the conditions (ujs, Rjs[G
j])

and (vs, X̃[G]) are compatible with common extension (vs ∪wjs, T̃ [G])

(from Q(C̃)). Then in particular wjs ⊆ int(X̃[G]) and vs ∪ wjs\ujs ⊆

int(Ṙjs[G
j]). Since Ṙjs and Ẋ are names in Q(C), there is a C(Γ)-

symmetric name for a pure condition Żjs (in fact a name for a final

subsequence of Ẋ) in Q(C) which is their common extension. Then

there is tjs ∈ Gj extending qjs and pj such that (tjs, (vs ∪ wjs, Żjs)) ≤

Ajs and (tjs, (vs∪wjs, Żjs)) ≤ (tjs, (vs∪wjs, Ẋ)). In finitely many steps

find a finite subset x of int(X̃[G]) such that for every s = 1, . . . , L and

every j = 1, . . . , n there is wjs ⊆ x, a C(Γ)-symmetric name for a pure

condition Żjs in Q(C) such that 
 Żjs ≤ Ẋ, a Cohen condition tjs ∈ Gj

and a condition Ajs ∈ Ai(ḟ) such that (tjs, (vs ∪ wjs, Żjs)) ≤ Ajs and

such that for some l ∈ ω, x ∩ int(X̃(l)[G]) is X̃(l)-positive. Since

X̃[G] ≤ Ẋ[Gj] (for all j = 1, . . . , n) we have that x ⊆ int(Ẋ[Gj])

and furthermore for every j = 1, . . . , n there is `j ∈ ω such that x ∩

int(Ẋ(`j)[G
j]) is a positive subset of Ẋ(`j)[G

j]. Then for every j =

1, . . . , n there is a condition p̄j ∈ Gj extending pj and {tjs}l
s=1 which

forces “x ⊆ int(Ẋ)” and “x∩ int(Ẋ(`j)) is a positive subset of Ẋ(`j)”.

Since p̄j ≤ tjs, then also we have that (p̄j, (vs ∪ wjs, Żjs)) ≤ Ajs for all

s = 1, . . . , `.

Let N be an integer greater than the indexes of p̄j for j = 1, . . . , n

in the fixed enumeration of C(Γ) and also greater than i and maxx. Let

X∗ = ẊN . Recall that Żjs is a C(Γ)-symmetric name for a pure con-

dition extending Ẋ and Żjs ∈ Q(C). Then there is a C(Γ)-symmetric
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name for a pure condition Z∗js in Q(C) such that


 “Z∗js ≤ Zjs and Z∗js ≤ X∗”

(in fact Z∗js is a name for some final subsequence of Ẋ). However X∗

is preprocessed for ḟ(i), maxx, {p̄j}j≤n and C. Therefore for all j, s

there is a condition Bjs ∈ Ai(ḟ) such that (p̄j, (vs∪wj
s, X

∗)) ≤ Bjs and

so x is a positive set. It remains to observe that x ⊆ Aj0 and so by

the sufficient condition for arbitrarily high values (Lemma 2.1.10) the

logarithmic measure induced by Pk(ḟ(i), Ẋ, {pj}n
j=1) takes arbitrarily

high values. �

5.3. Good Names for Pure Conditions

Corollary 5.3.1. Let {pi}i∈ω enumerate C(Γ) and let Ẋ = 〈Ẋ(i) :

i ∈ ω〉 be a C(Γ)-symmetric name for a pure condition such that ∀m ∈

ω∀i, j ≤ m the name Ẋm = 〈Ẋ(i) : i ≥ m〉 is preprocessed for ḟ(i),

m, pj and C = {Ẋm}m∈ω where ḟ is a good C(Γ) ∗ Q(C)-name for

a real. Then there is a C(Γ)-symmetric name for a pure condition

Ẏ = 〈Ẏ (i) : i ∈ ω〉 such that

(1) ∀m ∈ ω, Ẏm = 〈Ẏ (i) : i ≥ m〉 extends Ẋm, and

(2) for all i ∈ ω, v ⊆ i, p ∈ C(Γ), s ∈ [ω]<ω such that p 


s ∈ Ẏ (i)+ there is wv ⊆ s and A ∈ Ai(ḟ) such that (p, (v ∪

wv, Ẏi+1)) ≤ A.

Proof. For every p ∈ C(Γ) let C(p) = C(Γ)(p). By Lemma 5.2.1

there is x1 ∈ P1(Ẋ1, ḟ(1), p1) with witness p1,1. Fix a maximal an-

tichain A1 = {a1,s : s ∈ ω} in P − C(p1,1) such that for every s ∈ ω,
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a1,s witnesses that x1,s is in P1(Ẋ1, ḟ(1), a1s). Let

R1 = {〈p11, x̌1〉} ∪ {〈a1s, x̌1s : s ∈ ω}.

Suppose Rm−1 is defined. If pm⊥{pm−1,l}l≤m−1 then there is some

am−1,s ∈ Am−1 compatible with pm with common extension bm and

let ym = xm−1,s. Otherwise there is j ≤ m − 1 such that pm 6⊥

pm−1,j with common extension which we again denote bn. In this

case let ym = xm−1. Then by Lemma 5.2.1 there is a measure xm

in Pm(Ẋm, ḟ(m), {pm−1,l}m−1
l=1 ∪{bm}) which is stronger than xm−1 and

ym. Thus in particular there are extensions pm,l ≤ pm−1,l for l ≤ m− 1

and pm,m ≤ bm ≤ pm witnessing this fact. Just as in the base case fix a

maximal antichain Am = {am,s : s ∈ ω} in P− C({pm,l}m
l=1) such that

for all s ∈ ω

(1) ∃is ∈ ω(am,s ≤ am−1,is)

(2) there is a finite logarithmic measure xm,s stronger than xm−1,is

such that am,s witness that xm,s is in Pm(Ẋm, ḟ(m), ams).

Let Rm = {〈pml, x̌m〉}m
l=1 ∪ {〈ams, x̌ms〉 : s ∈ ω} and let Ẏ = ∪m∈ωRm.

Then ∀m ∈ ω, Ẏm = 〈Ẏ (i) : i ≥ m〉 extends Ẋm and has the desired

properties. �

5.4. Unboundedness

Theorem 5.4.1. Let C be a countable centered family of C(Γ)-

symmetric names for pure conditions, let Γ be a countable subset of ω2,

let ḟ be a good C(Γ)∗Q(C)-name for a real and δ ∈ ω1\Γ. Let ḣ = ∪Ġδ

where Ġδ is the canonical name for the C({δ})-generic filter. Then
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there is a countable centered family C ′ of C(Γ∪{δ})-symmetric names

for pure conditions which extends C and such that for every centered

family C ′′ of C(ω2)-symmetric names for pure conditions which extends

C ′, 
C(ω2)∗Q(C′′) “ḣ 6≤∗ ḟ”.

Proof. We can assume that C = {Ẏm}m∈ω, where Ẏm = 〈Ẏ (i) :

i ≥ m〉 and Ẏ = 〈Ẏ (i) : i ∈ ω〉 is the C(Γ)-symmetric name constructed

in Corollary 5.3.1. Let ġ be a C(Γ)-name for a function in ωω such that

∀p ∈ C(Γ)∀i ∈ ω, p 
 ġ(i) = ǩ if and only if

k = max{j : v ⊆ i, w ∈ [ω]<ω, p 
 “w̌ ⊆ Ẏ (i)”,

(p, (v ∪ w, Ẏ )) ≤ A for some A ∈ Ai(ḟ) and A 
 “ḟ(i) = ǰ”}.

Let J̇ be a C(Γ ∪ {δ})-name for a subset of ω such that


 J̇ = {i : ġ(i) < ḣ(i)}

and for every m ∈ ω let Żm be a C(Γ ∪ {δ})-name such that


 Żm = 〈Ẏ (i) : i > m and i ∈ J̇〉.

Claim. For all m ∈ ω the name Żm is C(Γ ∪ {δ})-symmetric.

Proof. Let p0, . . . , pn−1 be a finite number of conditions in C(Γ∪

{δ}) and let M ∈ ω be given. Then for every i ∈ n pi = p0
i ∪ p1

i where

p0
i = pi � Γ× ω and p1

i = pi � {δ} × ω. By construction of Ẏ there are

extensions q0
i ≤ p0

i and a finite logarithmic measure x ∈ LM such that
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∀i ∈ n, q0
i 
 x̌ = Ẏ (`) where ` > m, ` > M and

` > max{j : (δ, j) ∈ domain(p1
i ), i ∈ n}.

Furthermore for every i ∈ n there is t0i ∈ C(Γ) extending q0
i such that

t0i 
 ġ(`) = ǩi for some ki ∈ ω. Then let L > maxi∈n ki and for every

i ∈ n let

t1i = p1
i ∪ {〈(δ, `), Ľ〉}.

Then ti = t0i ∪ t1i ≤ pi and ti 
 “Ẏ (`) = x̌ ∧ ` > m ∧ ` ∈ J̇”. That is

ti 
 x̌ ≤ Żm. Therefore Żm is symmetric. �

Then let C ′ = {Żm}m∈ω and let Ż = Ż0. Consider arbitrary cen-

tered family C ′′ of C(ω2)-symmetric names such that 
 C ′ ⊆ Q(C ′′).

It is sufficient to show that ∀a ∈ [ω]<ω, ∀k ∈ ω


C(ω2) “(a, Ż) 
Q(C′′) “∃i > k(ḟ(i) < ḣ(i)””

since


C(ω2) “{(a, Ż) : a ∈ [ω]<ω} is predense in Q(C ′′)”.

Let a ∈ [ω]<ω, k ∈ ω be arbitrary. Consider any (p, (b, Ṙ)) ∈ C(ω2) ∗

Q(C ′′) such that p 
 “(b, Ṙ) ≤ (a, Ż)”. Then in particular p 
 b\a ⊆

int(Ż) and p 
 Ṙ ≤ Ż. By definition of the extension relation there is

` > k such that b ⊆ `, a finite subset s of ω and extension p̄ of p such

that

p̄ 
 “ˇ̀∈ J̇ and š = int(Ṙ) ∩ int(Ż(`)) is Ż(`)- positive”.
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By definition of Ż(`) there is w ⊆ s and A ∈ A`(ḟ) such that

(p̄, (b ∪ w, Ẏ )) ≤ A

and so (p̄, (b ∪ w, Ż)) ≤ A as well as (p̄, (b ∪ w,R)) ≤ A. Note that

p̄ 
 w̌ ⊆ int(Ṙ) and so (p̄, (b ∪ w,R)) ≤ (p, (b, Ṙ)). Furthermore

(p̄, (b ∪ w, Ṙ)) 
 “ḟ(`) ≤ ġ(`) < ḣ(`)”.

�

Definition 5.4.2. Let P be the partial order of all pairs p =

(Γp, Cp) where Γ is a countable subset of ω2, Cp is a countable centered

family of C(Γp)-symmetric names for pure conditions with extension

relation defined as follows: p ≤ q if Γq ⊆ Γp and 
C(Γp) Cq ⊆ Q(Cp).

The partial order P is countably closed and adds a centered family

of C(ω2)-symmetric names for pure conditions

CH = ∪{Cp : p ∈ H}

where H is P-generic. By Lemma 4.4.6, forcing with Q(CH) over

V P×C(ω2) adds a real not split by

V C(ω2) ∩ [ω]ω = BC(ω2)×P ∩ [ω]ω.

To see that the first ω1 Cohen reals remain an unbounded family con-

sider an arbitrary C(ω2) ∗ Q(CH)-name ḟ for a real. Then there is a

condition p ∈ H such that ḟ is a C(Γp) ∗Q(Cp)-name for a real. Then

for every q ≤ p either there is a further extension a such that ḟ is not
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a C(Γa) ∗ Q(Ca)-name for a real, or ḟ is a good C(Γa) ∗ Q(Ca)-name.

Then let A = A− ∪A+ be an antichian of conditions which is maximal

below p and such that ∀a ∈ A− ḟ is not a C(Γa) ∗ Q(Ca)-name for a

real and ∀a ∈ A+ ḟ is a good C(Γa) ∗Q(Ca)-name. Since p ∈ H and ḟ

is a C(ω2) ∗Q(CH)-name for a real, there is a ∈ H ∩A+. That is there

is a ∈ H such that ḟ is a good C(Γa) ∗ Q(Ca)-name for a real. Let H

be the collection of all names ḣ such that ḣ = ∪Ġδ where δ ∈ ω1 and

Ġδ is the canonical C({δ})-name for the C({δ})-generic filter (that is

H is the set of the first ω1 Cohen reals). Then by Theorem 5.4.1 the

set

Dḟ = {q ∈ P : ∃ḣ ∈ H(q 
P “ 
C(ω2)∗Q(CḢ) “ḣ 6≤∗ ḟ””)}

where Ḣ is the canonical P-name for the P-generic filer, is dense below

a. Therefore there is ḣ ∈ H such that

V [H] � (
C(ω2)∗Q(CH) “ḣ 6≤∗ ḟ”).

Lemma 5.4.3. Let Γ1,Γ2 be countable subsets of ω2 such that Γ1 ∩

Γ2 = ∅ and let i : Γ1
∼= Γ2 be an isomorphism. Let Ẋ be C(Γ1)-

symmetric name for a pure condition. Then there is C(Γ1 ∪ Γ2)-

symmetric name for a pure condition X̃ such that 
C(Γ1∪Γ2) “X̃ ≤

Ẋ and X̃ ≤ i(Ẋ)”. If Ẏ and Ż are C(Γ1)-symmetric names for pure

conditions such that 
 “Ẋ ≤ Ẏ and Ẋ ≤ Ż” then


C(Γ1∪Γ2) “X̃ ≤ Ẏ and X̃ ≤ i(Ż)”.

We will need the following claim.
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Claim. Let p1, . . . , pk be any finite number of conditions in C(Γ1∪

Γ2) and let M ∈ ω. Then there is a finite logarithmic measure x ∈ LM

and extensions q1 ≤ p1, . . . , qk ≤ pk such that ∀i ≤ k,

qi 
 “x̌ ≤ Ẋ and x̌ ≤ i(Ẋ)”.

Proof. Note that ∀i ≤ k, pi = p1
i ∪p2

i where p1
i = pi � Γ1, p

2
i = pi �

Γ2. Let q1
i = p1

i and q2
i = i−1(p2

i ). Then since Ẋ is C(Γ1)-symmetric

there is x ∈ LM and extensions q1
i,1 ≤ q1

i and q2
i,2 ≤ q2

i such that ∀i ≤ k,

q1
i,1 
 x̌ ≤ Ẋ and q2

i,1 
 x̌ ≤ Ẋ. But then i(q2
i,1) 
C(Γ2) x̌ ≤ i(Ẋ)

and so ri = q1
i,1 ∪ q2

i,1 is an extension of pi such that ri 
C(Γ1∪Γ2) “x̌ ≤

Ẋ and x̌ ≤ i(Ẋ). �

With this we can proceed with the proof of Lemma 5.4.3.

Proof. Fix an enumeration {pn}n∈ω of C(Γ1∪Γ2) and inductively

construct a C(Γ1 ∪ Γ2)-symmetric name X̃ such that for all n ∈ ω,


C(Γ1∪Γ2) X̃(n) ≤ Ẋ ∧ X̃(n) ≤ i(Ẋ).

Suppose Ẏ and Ż are C(Γ1)-symmetric names for pure conditions such

that 
C(Γ1) Ẋ ≤ Ẏ ∧ Ẋ ≤ Ż. Then 
C(Γ2) i(Ẋ) ≤ i(Ż) and so


C(Γ1∪Γ2) X̃ ≤ Ẏ ∧ X̃ ≤ i(Ż). �

Begin with a model of CH and consider a subset {pi : i ∈ I} of

P of size ℵ2. By the Delta System Lemma there is a subset J of I,

|J | = ℵ2 such that {Γi : i ∈ J} forms a delta system with root ∆

where ∀i ∈ I(Γi = Γpi
). Furthermore J might be chosen so that for all

i, j ∈ J there is an isomorphism αij : pi(1) ∼= pj(1), such that αij � ∆
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is the identity and such that Cj = Cpj
= {αij(Ẋ) : Ẋ ∈ Cpi

}. If

∆ = ∅ then by Lemma 5.4.3 for every Ẋ ∈ Ci where Ci = Cpi
, there is

C(Γi ∪ Γj)-symmetric name for a pure condition X̃X extending Ẋ and

αi,j(Ẋ) and so pk = (Γk, Ck) where Γk = Γi ∪ Γj and

Ck = Ci ∪ Cj ∪ {X̃X : X ∈ Ci}

is a common extension of pi and pj. However as mentioned in section

4.1 if the root of the delta system is non-empty the above argument

does not hold and a stronger combinatorial property on the names for

pure conditions is needed.



CHAPTER 6

A look ahead

6.1. General Definition of Symmetric Names

Definition 6.1.1. Let Ẋ be a C(Γ)-name for a subset of ω, where

Γ ∈ [ω2]
ω. Then Ẋ is symmetric if for all finite subsets Γ′ = {γ0, . . . , γn}

of ω2, where γ0 = min Γ < γ1 < · · · < γn = sup Γ, for all finite fami-

lies of conditions 〈pj
i 〉i≤kj

⊆ C(Γ ∩ γj\γj−1) for j = 1, . . . , n and every

M ∈ ω, there is m > M which belongs to

∩k1
i1=1hullp1

i1
,Γ∩γ1\γ0

(∩k2
i2=1hullp2

i2
,Γ∩γ2\γ1

(. . .∩kn
in=1hullpn

in
,Γ∩γn\γn−1(Ẋ) . . . )).

Remark 6.1.2. Note that Ẋ is a C(Γ)-symmetric name for a subset

of ω if and only if for all finite subsets Γ′ = {γ0, . . . , γn} of ω2, where

γ0 = min Γ < γ1 < · · · < γn = sup Γ,

for all finite families of conditions 〈pj
i 〉i≤kj

⊆ C(Γ ∩ γj\γj−1) for j =

1, . . . , n and every M ∈ ω, there is a tree of extensions

Φ = {φ̄(i1 . . . ij) : 1 ≤ j ≤ n, 1 ≤ ij ≤ kj}

where φ(i1 . . . ij) is an extension of pj
ij

in C(Γ∩ γj\γj−1), φ̄(i1) = φ(i1)

and for j ≥ 2 φ̄(i1 . . . ij) = (φ̄(i1 . . . ij−1), φ(i1 . . . ij)), and there is an

integer m > M such that for every maximal node φ̄ of Φ, φ̄ 
 m̌ ∈ Ẋ.

We will refer to the family of all Cohen conditions P = 〈pj
i 〉i,j as a

101
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matrix of conditions and to the tree Φ = Φ(P ) as an associated tree

of extensions. Note that definition 4.2.2 coincides with the particular

case of the above definition in which Γ is a singleton.

This definition generalizes to names for pure conditions.

Definition 6.1.3. Let Ẋ be a C(Γ)-name for a pure condition,

where Γ is a countable subset of ω2. Then Ẋ is symmetric if for all

finite subsets Γ′ = {γ0, . . . , γn} of ω2, where γ0 = min Γ < γ1 < · · · <

γn = sup Γ, for all finite families of conditions 〈pj
i 〉i≤kj

⊆ C(Γ∩γj\γj−1)

for j = 1, . . . , n and every M ∈ ω, there is a finite logarithmic measure

x ∈ LM such that x belongs to

∩k1
i1=1hullp1

i1
,Γ∩γ1\γ0

(∩k2
i2=1hullp2

i2
,Γ∩γ2\γ1

(. . .∩kn
in=1hullpn

in
,Γ∩γn\γn−1(Ẋ) . . . )).

Remark 6.1.4. Note that Ẋ is a C(Γ)-symmetric name for a pure

condition if and only if for all finite subsets Γ′ = {γ0, . . . , γn} of ω2,

where

γ0 = min Γ < γ1 < · · · < γn = sup Γ,

for all finite families of conditions 〈pj
i 〉i≤kj

⊆ C(Γ ∩ γj\γj−1) for j =

1, . . . , n and every M ∈ ω, there is a tree of extensions

Φ = {φ̄(i1 . . . ij) : 1 ≤ j ≤ n, 1 ≤ ij ≤ kj}

where φ(i1 . . . ij) is an extension of pj
ij

in C(Γ∩ γj\γj−1), φ̄(i1) = φ(i1)

and for j ≥ 2, φ̄(i1 . . . ij) = (φ̄(i1 . . . ij−1), φ(i1 . . . ij)) and there is a

finite logarithmic measure x ∈ LM such that for every maximal node

φ̄ of Φ, φ̄ 
 x̌ ≤ Ẋ. We will refer to the family of all Cohen conditions
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P = 〈pj
i 〉i,j as a matrix of conditions and to the tree Φ = Φ(P ) as an

associated tree of extensions. Note that definition 4.3.2 coincides with

the particular case of Definition 6.1.3 in which Γ is a singleton.

6.2. The ℵ2-chain condition

Having in mind the construction following Definitions 5.4.2 consider

the following Lemma:

Lemma 6.2.1. Let Γ and Θ be countable subsets of ω2, let ∆ = Γ∩Θ,

Ω = Γ ∪ Θ and let Ẋ be C(Γ)-symmetric name for a pure condition.

Suppose

sup ∆ < min Γ\∆ < sup Γ\∆ < min Θ\∆

and let i : Γ ∼= Θ be an isomorphism such that i � ∆ = id. Then for

every finite subset Γ′ = {γ0, . . . , γs} of ω2 where

γ0 = min Ω < γ1 < · · · < γs = sup Ω

and all finite families of conditions 〈pj
i 〉i≤kj

⊆ C(Ω ∩ γj\γj−1) for j =

1, . . . , s and every M ∈ ω there is x ∈ LM and an associated tree of

extensions

Φ(P ) = {φ̄(i1 . . . ij) : 1 ≤ j ≤ s, 1 ≤ ij ≤ kj}

for every maximal node φ̄ of which

φ̄ 
 “x̌ ≤ Ẋ and x̌ ≤ i(Ẋ)”

Here P denotes the collection 〈pj
i 〉i,j of the given Cohen conditions.
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Proof. Adding more ordinals if necessary we can assume that

Γ′ ∩∆ = {γj}j∈n+1, Γ′ ∩ Γ\∆ = {γj}j∈(n,2n], Γ′ ∩Θ\∆ = {γj}j∈(2n,3n].

Furthermore we can assume that i(γj) = γj+n for all j ∈ (n, 2n] and

γn = sup ∆, γ2n = sup Γ\∆, γ3n = sup Θ. Also for all j ∈ (0, 3n] let

kj = k. Let M ∈ ω be given. We have to obtain a tree of extensions

Φ(P ) associated with the matrix P and a finite logarithmic measure

x ∈ LM such that the maximal nodes of Φ force that x extends Ẋ and

the isomorphic copy i(Ẋ).

For every j ∈ (0, 2n], i ∈ (0, k] let rj
i = pj

i and for j ∈ (n, 2n],

i ∈ (k, 2k] let rj
i = i−1(pj+n

i−k ). Then R = (rj
i )i,j is a matrix of conditions

in C(Γ) and so by symmetry of Ẋ there is a finite logarithmic measure

x ∈ LM and a tree of extensions Ψ(R) = {ψ̄(i1 . . . ij) : 1 ≤ j ≤ 2n, 1 ≤

ij ≤ k′j} where for j ∈ (0, n] k′j = k and for j ∈ (n, 2n] k′j = 2k, the

maximal nodes of which force that x extends Ẋ. For j ∈ (0, 2n] let

φ(i1 . . . ij) = ψ(i1 . . . ij)

and for j ∈ (2n, 3n], say j = 2n+m let

φ(i1 . . . ij) = i(ψ(i1 . . . in; in+1 + k, . . . , in+m + k)).

Then let

Φ(P ) = {φ̄(i1 . . . ij) : 1 ≤ j ≤ 3n, 1 ≤ ij ≤ k}



6.2. THE ℵ2-CHAIN CONDITION 105

where φ̄(i1) = φ(i1) and φ̄(i1 . . . ij) = (φ̄(i1 . . . ij−1), φ(i1 . . . , ij)) is a

tree of extensions of the given matrix P . To see that Φ has the de-

sired properties, consider arbitrary maximal node φ̄ = φ̄(i1 . . . i3n).

Then φ̄ = (α0, α1, α2) where α0 = φ̄(i1 . . . in) = ψ̄(i1 . . . in), α1 =

〈φ(i1 . . . ij) : n < j ≤ 2n〉 and α2 = 〈φ(i1 . . . ij) : 2n < j ≤ 3n〉. Ob-

serve in particular that α0 ∈ C(∆), α1 ∈ C(Γ\∆) and α2 ∈ C(Θ\∆).

Furthermore (α0, α1) = ψ̄(i1 . . . i2n) and

(α0, i
−1(α2)) = ψ̄(i1 . . . in; i2n+1 + k, . . . , i3n + k)

are maximal nodes of Ψ(R) and so they force that x extends Ẋ. It

remains to observe that i(α0, i
−1(α2)) = (α0, α2) since i � ∆ = id and

so (α0, α2) 
 x̌ ≤ i(Ẋ). Therefore φ̄ 
 “x̌ ≤ Ẋ and x̌ ≤ i(Ẋ)”. �

Lemma 6.2.2. Let Γ and Θ be countable subsets of ω2, let ∆ = Γ∩Θ,

Ω = Γ ∪Θ,

sup ∆ < min Γ\∆ < sup Γ\∆ < min Θ\∆

and let i : Γ ∼= Θ be an isomorphism such that i � ∆ = id. Let Ẋ

be C(Γ)-symmetric name for a pure condition. Then i(Ẋ) is a C(Θ)-

symmetric name for a pure condition and there is a C(Ω)-symmetric

name for a pure condition X̃ such that


C(Ω) X̃ ≤ Ẋ and X̃ ≤ i(Ẋ).

Proof. Enumerate all finite subsets of ω2 and associated matrices

of conditions on Ω such that each pair is enumerated cofinally often. At
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stage n consider the n-th pair and let mn be an integer grater than the

measures and domains of all finite logarithmic measures that have been

defined up to this stage. Apply Lemma 6.2.1 to this n-th pair and the

integer mn to obtain a corresponding tree of extensions Tn and a finite

logarithmic measure x ∈ Lmn such that the maximal nodes of the tree

force “x̌ ≤ Ẋ∧x̌ ≤ i(Ẋ). Then let {(t, x̌) : t max node of Tn} ⊆ X̃. �

6.3. Conclusion and open questions

A family A of infinite subsets of ω, with pairwise finite intersection

is an almost disjoint family. An almost disjoint family which is maxi-

mal, is called a maximal almost disjoint family, usually abbreviated as

mad family. The almost disjointness number a is the minimal size of a

maximal almost disjoint family. The ultrafilter number u is the mini-

mal size of an ultrafilter base. A family F of subsets of ω has the strong

finite intersection property if the intersection of any finite subfamily of

F is infinite. A pseudo-intersection of a family F is an infinite set al-

most contained in every element of the family. The pseudo-intersection

number p is the minimal size of a family which has the strong finite

intersection property and no pseudo-intersection.

Theorem 6.3.1 (GCH). Let κ be a regular uncountable cardinal.

Then there is a ccc generic extension, in which b = κ < s = a = κ+.

Proof. In [12] J. Brendle shows that if V is a model of ZFC∗,

κ is a regular uncountable cardinal, 〈fα : α < κ〉 is a <∗-well ordered

sequence of strictly increasing functions from ω to ω and in V , c = κ,

2κ = κ+ and 〈fα : α < κ〉 is unbounded and A is a maximal almost
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disjoint family, then there is a ccc forcing notion P(A) of size c such

that 
P(A) “A is not mad and 〈fα : α < κ〉 is unbounded”. Using an

appropriate bookkeeping device, along the finite support iteration of

Theorem 3.6.3, one can destroy all mad families of size ≤ κ. �

Theorem 6.3.2 (GCH). Let κ be a regular uncountable cardinal.

Then there is a ccc generic extension in which p = b = κ < s = a = κ+.

Proof. Along the finite support iteration from the proof of Theo-

rem 3.6.3, one can force with all σ-centered forcing notions of size < κ,

and so provide that in the final generic extension MA<κ(σ-centered)

holds. Then by Bell’s theorem, V Pκ+ � p ≥ κ. However, it is a ZFC

theorem that p ≤ b and so V Pκ+ � p = κ. �

Theorem 6.3.3 (GCH). Let κ be a regular uncountable cardinal.

Then there is a ccc generic extension in which

p = b = κ < s = a = u = κ+.

Proof. Modifying an argument from A.Blass and S. Shelah [9], it

will be shown that in the model of Theorem 3.6.3 the ultrafilter number

u = κ+. Suppose u < κ+ and let F be an ultrafilter base of size u.

Then there is β < κ+ such that F ⊆ Vβ = V [Gβ] where as usual, for

every γ ≤ κ+ Gγ = G ∩ Pγ. We can assume that in Vβ, Qα = Q(Cα)

where α = β + 1 for an appropriate centered family of pure conditions

Cα. Let sα = ∪{u : ∃T (u, T ) ∈ G} where Gα = Gβ∗G, i.e. G is Q(Cα)-

generic over Vβ = V [Gβ] and let X = {n : |sα ∩ n| is even}. Then X ∈

V [Gα]∩ [ω]ω. Let Ẋ and ṡα be Q(Cα)-names for X and sα respectively,
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in V [Gβ]. It will be shown that neither X nor its complement contain

infinite set from Vβ, which contradicts the hypothesis that F is an

ultrafilter base. Suppose to the contrary, that there is Y ∈ Vβ ∩ [ω]ω

such that V [Gα] � Y ⊆ X or V [α] � Y ⊆ Xc. Without loss of

generality suppose V [Gα] � Y ⊆ X. Then there is (u, T ) ∈ Q(Cα)

such that (u, T ) 
 Y̌ ⊆ Ẋ. Let m = min int(T ) and let y ∈ Y such

that y > m. Then (u, T\y) and (u∪{m}, T\y) extend (u, T ). However

(u, T\y) 
 ṡα ∩ y = u and (u ∪ {m}, T\y) 
 ṡα ∩ y = u ∪ {m}. Then

one of those extensions forces “y̌ 6∈ Ẋ”, which is a contradiction. �

Corollary 6.3.4 (GCH). Let κ be regular uncountable cardinal.

Then there is a ccc generic extension, in which p = t = h = b = κ and

s = d = i = a = u = c = κ+.

Question 6.3.5. What can be said about r, e, g in this model?

In section 4.2, we showed that in the Cohen extension, the collection

of all subsets of ω which do not have symmetric names forms an ideal

Insym. This ideal has a very natural definition, and on the other hand

its properties seem to be distinct from the properties of known ideals.

Question 6.3.6. Find a generating set for Insym. Is there an ab-

solute analogue of Insym? What are the properties of P(ω)/Insym?

One can combine the techniques of chapter III with techniques of S.

Shelah, from his original paper [31] on the consistency of b = ω1 < s =

a = ω2 to obtain a forcing notion which preserves a given unbounded

family unbounded, which destroys a maximal almost disjoint family
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and adds a real not split by the ground model reals. Furthermore,

it seems reasonable to expect that the construction of the countably

closed, ℵ2-c.c. forcing notion from chapter V, see Definition 5.4.2, can

be modified to obtain a countably closed, ℵ2-c.c. forcing notion (or al-

ternatively κ-closed, κ+-c.c.) which adds a centered family C of C(λ)-

names for pure conditions, such that Q(C) preserves all unbounded

families unbounded, destroys V C(λ) ∩ [ω]ω as a splitting family, and

adds a real almost disjoint from the elements of a given maximal al-

most disjoint family in V C(λ). Then it becomes imperative to find an

appropriate way to iterate this forcing notion and obtain the consis-

tency of b = κ < s = a = λ, where κ and λ are arbitrary regular

uncountable cardinals.
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