THE CONSISTENCY OF ARBITRARILY LARGE SPREAD BETWEEN THE BOUNDING AND THE SPLITTING NUMBERS

VERA V. FISCHER

A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
 IN PARTIAL FULFILMENT OF THE REQUIREMENTS
 FOR THE DEGREE OF
 DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN MATHEMATICS
YORK UNIVERSITY
TORONTO, ONTARIO

copyright material
copyright material
copyright material

Abstract

In the following κ and λ are arbitrary regular uncountable cardinals.

\section*{What was known?}

Theorem 1 (Balcar-Pelant-Simon, [2]). It is relatively consistent with ZFC that $\mathfrak{s}=\omega_{1}<\mathfrak{b}=\kappa$.

Theorem 2 (Shelah, [31]). It is relatively consistent with ZFC that $\mathfrak{s}=\kappa<\mathfrak{b}=\lambda$.

Theorem 3 (Baumgartner and Dordal, [7]). Adding к Hechler reals to a model of GCH gives a generic extension in which $\mathfrak{s}=\omega_{1}<\mathfrak{b}=\kappa$.

Theorem 4 (Shelah, [31]). There is a proper forcing notion of size continuum, which is almost ${ }^{\omega} \omega$-bounding and adds a real not split by the ground model reals.

Theorem 5 (Shelah, [31]). Assume CH. There is a proper forcing extension in which $\mathfrak{b}=\omega_{1}<\mathfrak{s}=\omega_{2}$.

Theorem 6 (Brendle, [11]). Assume GCH. Then there is a ccc generic extension in which $\mathfrak{b}=\omega_{1}<\mathfrak{s}=\kappa$.

Theorem 7 (M. Canjar, [14]). If $\mathfrak{d}=\mathfrak{c}$, then there is an ultafilter U such that \mathbb{M}_{U} does not add a dominating real.

Theorem 8 (Velickovic, [36]). Let $\kappa>\aleph_{1}$ be a regular cardinal. Then there is a ccc generic extension satisfying $M A+2^{\aleph_{0}}=\kappa$ together with the following statement: For every family D of $2^{\aleph_{0}}$ dense subsets of the partial order \mathcal{I} of all perfect trees, there is a ccc perfect suborder \mathcal{P} of \mathcal{I} such that $D \cap \mathcal{P}$ is dense in \mathcal{P}, for all $D \in \mathcal{D}$.

What is new?

Theorem 9. If $\operatorname{cov}(\mathcal{M})=\kappa$ and $\mathcal{H} \subseteq{ }^{\omega} \omega$ is an unbounded, $<^{*}$ directed family of size $\kappa, \forall \lambda<\kappa\left(2^{\lambda} \leq \kappa\right)$, then there is a σ-centered suborder of Shelah's proper poset from Teorem 4, which preserves \mathcal{H} unbounded and adds a real not split by the ground model reals.

Theorem 10. Assume GCH. Then there is a cce generic extension in which $\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}$.

The above result is an improvement of S. Shelah's consistency of $\mathfrak{b}=\omega_{1}<\mathfrak{s}=\omega_{2}$. In chapter V, see Definition 5.4.2, we suggest a countably closed, \aleph_{2}-c.c. forcing notion \mathbb{P} which adds a σ-centered forcing notion of $\mathbb{C}\left(\omega_{2}\right)$-names for pure conditions $Q(C)$, such that $Q(C)$ preserves all unbounded families unbounded and adds a real not split by $V^{\mathbb{C}\left(\omega_{2}\right)} \cap[\omega]^{\omega}$. An appropriate iteration of the forcing notion could provide the consistency of $\mathfrak{b}=\kappa<\mathfrak{s}=\lambda$.

To my parents, Teodora and Velizar

Acknowledgement

Special thanks are due to my supervisor, Dr. Juris Steprans for his support throughout my doctoral studies, enthusiasm and encouragement regarding the work on my dissertation. I would like to thank also Dr. Paul Szeptycki, Dr. Mike Zabrocki and Dr. Ilijas Farah, for helpful comments and suggestions during earlier discussions of this work. Special thanks are due also to my external examiner Dr. Claude Laflamme, as well as to the other members of the examining committee Dr. Stephen Watson and Dr. Jimmy Huang.

Last, but not least, I would like to thank Arthur and my family for their love and support.

Contents

Abstract iv
Dedication vi
Acknowledgement vii
Chapter 1. Introduction 1
1.1. The Bounding and the Splitting Numbers 2
1.2. Forcing 7
1.3. A proper forcing argument 17
Chapter 2. Centered Families of Pure Conditions 27
2.1. Logarithmic Measures 27
2.2. Centered Families of Pure Conditions 31
2.3. Partitioning of Pure Conditions 33
2.4. Good Names for Reals 36
2.5. Generic Extensions of Centered Families 38
2.6. Preprocessed Conditions 40
2.7. Generic Preprocessed Conditions 42
Chapter 3. $\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}$ 46
3.1. Induced Logarithmic Measures 46
3.2. Good Extensions 49
3.3. Mimicking the Almost Bounding Property 51
3.4. Adding an Ultrafilter 53
3.5. Some preservation theorems 56
3.6. $\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}$ 60
Chapter 4. Symmetry 64
4.1. $\quad Q(C)$ which preserves unboundedness 64
4.2. Symmetric Names for Sets of Integers 69
4.3. Symmetric Names for Pure Conditions 73
4.4. An ultrafilter of Symmetric Names 75
4.5. Extending Different Evaluations 81
Chapter 5. Preserving small unbounded families 86
5.1. Preprocessed Names for Pure Conditions 86
5.2. Induced Logarithmic Measure 91
5.3. Good Names for Pure Conditions 93
5.4. Unboundedness 94
Chapter 6. A look ahead 101
6.1. General Definition of Symmetric Names 101
6.2. The \aleph_{2}-chain condition 103
6.3. Conclusion and open questions 106
Bibliography 110

CHAPTER 1

Introduction

Before proceeding with a brief account of the historical development of mathematical ideas which lead to the establishment of the cardinal invariants of the continuum as a separate subject, we will introduce some basic notions and give the contemporary definitions of the bounding and the splitting numbers since they present the main object of study of this work. Following standard notation we denote by ${ }^{\omega} \omega$ the set of all functions from the natural numbers to the natural numbers and by $[\omega]^{\omega}$ the set of all infinite subsets of ω. Let f and g be functions in ${ }^{\omega} \omega$. The function f is said to be dominated by the function g if there is a natural number n such that $f \leq_{n} g$, i.e. $(\forall i \geq n)(f(i) \leq g(i))$. Then $<^{*}=\bigcup_{n \in \omega} \leq_{n}$ is called the bounding relation on ${ }^{\omega} \omega$. A family of functions \mathcal{F} in ${ }^{\omega} \omega$ is said to be dominated by the function g, denoted $\mathcal{F}<^{*} g$ if for every $f \in \mathcal{F}, f<^{*} g$. Also \mathcal{F} is said to be unbounded (equiv. not dominated) if there is no function g which dominates it. Then the bounding number is defined as the minimal size of an unbounded family. That is

$$
\mathfrak{b}=\min \left\{|\mathcal{B}|: \mathcal{B} \subseteq{ }^{\omega} \omega \text { and } \mathcal{B} \text { is unbounded }\right\} .
$$

If $A, B \in[\omega]^{\omega}$ and both of the sets $A \cap B$ and $A \cap B^{c}$ are infinite, then A is said to be split by the set B. A family S of infinite subsets of ω is
said to be splitting if for every $A \in[\omega]^{\omega}$ there is $B \in S$ which splits A. Then the splitting number is defined as the minimal size of a splitting family. That is

$$
\mathfrak{s}=\min \left\{|S|: S \subseteq[\omega]^{\omega} \text { and } S \text { is splitting }\right\} .
$$

Recall also that if A, B are subsets of ω, then the set A is said to be almost contained in the set B, denoted $A \subseteq^{*} B$ if $A \backslash B$ is finite.

1.1. The Bounding and the Splitting Numbers

With the development of analysis in the nineteenth century, emerged a necessity of better understanding of the set of irrational numbers and the properties of the real line. In 1871 answering a question of Riemann, Georg Cantor obtained uniqueness of the trigonometric series representation of a function. That is he showed that if two trigonometric series converge to the same function, except on finitely many points, then they must be equal everywhere. A year later, he generalized his result to infinite sets of exceptional points. Recall that if $S \subseteq \mathbb{R}$, then the derived set S^{\prime} of S consists of all limit points of S. Cantor showed that if two trigonometric series converge to the same function except on a set S such that for some $n \in \mathbb{N}$ the n-th derived set $S^{(n)}$ is finite, then the series must be equal everywhere. Although results concerning infinite sets of exceptional points were already presented in the literature by that time, for example in 1829 Dirichlet suggested that a function whose point of discontinuity form a nowhere dense set is integrable, Cantor's generalized uniqueness theorem was one of the
first results that took extensive use of the structure of an infinite set (see [25]). The result was followed in 1874 by Cantor's proof that the real numbers can not be placed in bijective correspondence with the natural numbers, the surprising fact in 1878 as Cantor himself admits, that n-dimensional Euclidean space is in bijective correspondence with the real line and the continuum hypothesis, that is the hypothesis that every infinite subset of \mathbb{R} is either in bijective correspondence with the natural numbers or the real line. By 1879 the study of combinatorial structure of infinite sets of reals has already emerged as an important direction in further studies of the properties of the continuum. For example, Cantor defined and studied perfect sets of reals, i.e. sets which contain all of their accumulation points [25], and showed that every perfect set is in bijective correspondence with the real line. However later Bernstein constructed an uncountable set, such that neither it nor its complement contained a perfect set, thus it became clear that the study of perfect sets was insufficient to settle the continuum hypothesis.

The cardinal invariants of the continuum arise from various combinatorial structures on the real line. Of particular interest for this work is the covering number of the meager ideal $\operatorname{cov}(\mathcal{M})$. Let \mathcal{M} denote the family of all meager subsets of \mathbb{R}. Then $\operatorname{cov}(\mathcal{M})$ is the minimal size of a family $\mathcal{F} \subseteq \mathcal{M}$ such that $\bigcup \mathcal{F}=\mathcal{M}$. In 1899 Rene Baire showed that countably many meager sets do not cover the real line. Under the CH the minimal size of a family of meager sets which covers the real line is $\aleph_{1}=\mathfrak{c}$. However if CH fails and for example $\mathfrak{c}=\aleph_{2}$, then it is consistent with ZFC that $\operatorname{cov}(\mathcal{M})=\aleph_{1}$ and also it is consistent that
$\operatorname{cov}(\mathcal{M})=\aleph_{2}$. Another cardinal invariant which should be mentioned is the dominating number \mathfrak{d}. A family $D \subseteq{ }^{\omega} \omega$ is said to be dominating if for every function $f \in{ }^{\omega} \omega$ there is $d \in D$ such that $f \leq^{*} d$. The dominating number \mathfrak{d} is the minimal size of a dominating family. Note that every dominating family is unbounded and so $\mathfrak{b} \leq \mathfrak{d}$.

In his "Calculus of Infinity" (see [18]) Paul du Bois-Reymond in the late 1870's studied the collection of continuous, monotone increasing positive valued functions and suggested to rank them according to their rate of divergence, or convergence to zero. That is he wanted to find a linear order \prec on this set of functions, and an equivalence relation \sim such that $f \prec g$ provided that the "rate of growth of f is smaller than the rate of growth of $g "$ and $f \sim g$ provided they have the same rate of growth, and such that the equivalence \sim respects \prec (see [29]). He defines $f \prec g$ if

$$
\lim _{x \rightarrow \infty} f(x) / g(x)=0 \text { or } \lim _{x \rightarrow \infty} g(x) / f(x)=\infty
$$

and $f \sim g$ if

$$
0<\lim _{x \rightarrow \infty} f(x) / g(x)<\infty
$$

The major problem in this ranking is the existence of incomparable infinities, that is the existence of functions for which the above limit does not exist. Cantor considered this a significant drawback of du Bois-Reymond's idea, a drawback which under the axiom of choice his cardinal arithmetic did not have. However, Hausdorff further pursued the study of maximal linearly ordered subsets of (${ }^{\mathbb{N}} \mathbb{R}, \leq^{*}$). In 1909 Hausdorff ([22]) showed that these maximal linearly ordered subsets
have the cardinality of the continuum and established his main result the existence of $\left(\omega_{1}, \omega_{1}\right)$-gaps. However it was not until 1936 (see [23]), that Hausdorff published the proof for binary sequences, i.e. established that in $\left(2^{\omega}, \leq^{*}\right)$ there is a $\left(\omega_{1}, \omega_{1}\right)$-gap, but there are no (ω, ω) gaps and no ω-limits, which leads to the contemporary concepts of scale, unboundedness, tower, pseudo-intersection and correspondingly to the cardinal invariants $\mathfrak{d}, \mathfrak{b}, \mathfrak{t}$ and \mathfrak{p}.

In fact, the first to give the contemporary definition of the bounding number is Rothberger. A subset A of the n-dimensional Euclidean space \mathbb{R}^{n} is said to have the property λ, if each of its countable subsets is relative G_{δ}. A subset A of \mathbb{R}^{n} is said to have the property λ^{\prime} if $A \cup B$ has the property λ for every countable subset B of \mathbb{R}^{n}. Answering a question of Sierpinski, Rothberger constructs a set which has the property λ, and at the same time does not have property λ^{\prime}. In [28] he defines $B\left(\aleph_{\xi}\right)$ to be the proposition that all sequences of natural numbers of cardinality \aleph_{ξ} are bounded, and then defines \aleph_{η} to be the minimal cardinal for which $B\left(\aleph_{\xi}\right)$ does not hold. Thus in contemporary notation \aleph_{η} is the cardinal invariant \mathfrak{b} and Rothberger's result states that a subset A of \mathbb{R}^{n} has the property λ^{\prime} if and only if the cardinality of A is less than the bounding number. By the time the splitting number appeared in the literature, the dependence of the topological, measure theoretic properties of the continuum and its cardinal combinatorial characteristics was well established. In fact the splitting number appeared as an algebraic characteristic of sequential
compactness. In [10] David Booth states that for every regular uncountable cardinal λ, the space 2^{λ} is sequentially compact if and only if for every sequence $\left\langle a_{\alpha}: \alpha \in \lambda\right\rangle$ of infinite subsets of \mathbb{N} there is $b \subseteq \mathbb{N}$ such that for all $\alpha \in \lambda, b \subseteq^{*} a_{\alpha}$ or $b \subseteq^{*} \mathbb{N}-a_{\alpha}$. In contemporary notation that is, 2^{λ} is sequentially compact if and only if λ is smaller than the splitting number.

Below is a list of the known consistency relations between the bounding and the splitting numbers, as well as the main results of this work; κ and λ denote arbitrary regular uncountable cardinals.

Theorem 1.1.1 (Balcar-Pelant-Simon, [2]). It is relatively consistent with ZFC that $\mathfrak{s}=\omega_{1}<\mathfrak{b}=\kappa$.

Theorem 1.1.2 (Shelah, [31]). It is relatively consistent with ZFC that $\mathfrak{s}=\kappa<\mathfrak{b}=\lambda$.

Theorem 1.1.3 (Shelah, [31]). It is relatively consistent with ZFC that $\mathfrak{b}=\omega_{1}<\mathfrak{s}=\omega_{2}$.

Theorem 1.1.4 (Brendle, [11]). It is relatively consistent with ZFC that $\mathfrak{b}=\omega_{1}<\mathfrak{s}=\kappa$.

Our main result, is the following.

Theorem 1.1.5 (Main result). It is relatively consistent with ZFC that $\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}$.

In chapters $I V-V I$ we give a first step towards the proof of the relative consistency of $\mathfrak{b}=\kappa<\mathfrak{s}=\lambda$.

1.2. Forcing

In 1963 Paul Cohen introduced the method of forcing (see [15]) to obtain the independence of the continuum hypothesis. Since then the method of forcing is largely used to obtain different relative consistency results, including results regarding the combinatorial cardinal characteristics of the real line. This is a general method for obtaining models of large finite fragments of ZFC, which satisfy some additional axioms. Excellent exposition of the method of forcing can be found in $[\mathbf{2 4}],[\mathbf{2 0}]$. I will give some basic notions and outline some of the fundamental properties of the method of forcing, since this is a major technique for the presented work. A forcing notion is a partially ordered set, that is a set \mathbb{P} together with a reflexive and transitive relation \leq on \mathbb{P}. We will work with strong forcing notions, i.e. partial orders which are also antisymmetric. That is for all $p, q \in \mathbb{P}$ if $p \leq q$ and $q \leq p$ then $p=q$. The elements of the forcing notion are called conditions. If $p \leq q$ then p is said to be an extension of q, also to be stronger than q and q is said to be weaker than p. The intuitive idea is that stronger conditions have more information about the intended model than weaker conditions. Conditions which do not have common extensions are said to be incompatible and respectively conditions which have a common extensions are said to be compatible. A set $D \subseteq \mathbb{P}$ is dense if every condition $p \in \mathbb{P}$ has an extension in D. A set $A \subseteq \mathbb{P}$ is an antichain if its elements are pairwise incompatible. A set $D \subseteq P$ is pre-dense if every element of the forcing notion is compatible with some $d \in D$. A set $C \subseteq \mathbb{P}$ is centered if for all $p, q \in C$ there is $r \in C$
which is their common extension. A centered $G \subseteq \mathbb{P}$ which is closed with respect to weaker conditions is a filter. In the following c.t.m. abbreviates "countable transitive model of sufficiently large finite portion of $Z F C^{\prime \prime}$.

Definition. Let V be a c.t.m., $\mathbb{P} \in V$ a forcing notion. A filter $G \subseteq \mathbb{P}$ is generic over V, if $G \cap D \neq \emptyset$ for all dense $D \subseteq \mathbb{P}, D \in V$.

Equivalently, in the above definition one can require that the filter G meets all pre-dense sets, or all maximal antichains, or all dense open sets which belong to the model V. Recall that a dense open set, is a dense subset which is closed with respect to stronger conditions.

Theorem. Let V be a c.t.m., $\mathbb{P} \in V$ a forcing notion and $G \subseteq \mathbb{P}$ a filter generic over V. Then there is a countable transitive extension $V[G]$ of V which contains G, has the same ordinals as V and is minimal, in the sense that if W is a transitive extension of V such that $G \in W$, then $V[G] \subseteq W$.

The model V is called the ground model and $V[G]$ the generic extension. We will be working with forcing notions, which have the property that every element has incompatible extensions. Such posets are known to provide generic extensions which are distinct from the ground model. Indeed, it is not hard to verify that for such forcing notions the generic set does not belong to the ground model (see [24]). The elements of the generic extension have names in the ground model, which are recursively defined relations.

Definition. Let \mathbb{P} be a forcing notion. Then \dot{X} is a \mathbb{P}-name if \dot{X} is a relation and for all $\langle\dot{Y}, p\rangle \in \dot{X}, \dot{Y}$ is a \mathbb{P}-name and $p \in \mathbb{P}$.

The collection of all \mathbb{P}-names is a proper class. However if V is a c.t.m. and $\mathbb{P} \in V$, then the collection $V^{\mathbb{P}}$ of all \mathbb{P}-names in V is a set. The notion of a \mathbb{P}-name is absolute and so $V^{\mathbb{P}}=\{\dot{X}$: $\left.(\dot{X} \text { is a } \mathbb{P} \text { name })^{V}\right\}$. The generic filter determines an evaluation of the names. More precisely if \dot{X} is a \mathbb{P}-name and G is a \mathbb{P}-generic filter then the set $\dot{X}[G]=\{\dot{Y}[G]: \exists p \in G(\langle\dot{Y}, p\rangle \in \dot{X})\}$ is the evaluation of \dot{X} determined by G. Furthermore $V[G]=\left\{\dot{X}[G]: \dot{X} \in V^{\mathbb{P}}\right\}$. With the forcing notion we associate a forcing language which is an extension of the language of set theory. An important characteristics of the forcing extension is the fact that there is a clear relationship between its semantic properties and the forcing notion, given by the forcing relation. The forcing relation \Vdash is a relation between the elements of the forcing notion and the sentences of the forcing language. This relation is definable in the ground model and gives a description of the generic extension within the ground model. The following statement is known as the forcing theorem.

Theorem. If V is a c.t.m., $\mathbb{P} \in V$ is a forcing notion, ϕ is a sentence in the forcing language and $G \subseteq \mathbb{P}$ is a filter generic over V then

$$
V[G] \vDash \phi \text { iff } \exists p \in G(p \Vdash \phi) .
$$

We would like to obtain generic extensions in which $\omega_{1}<\mathfrak{b}<\mathfrak{s}$. Note that prior to this work, the existence of such models was unknown. In 1984, see [31], S. Shelah obtains a generic extension in which $\mathfrak{b}=\omega_{1}<\mathfrak{s}=\omega_{2}$. About 15 years later modifying a model of A. Blass and S. Shelah which gives an arbitrarily large spread between \mathfrak{u} and \mathfrak{d}, J. Brendle obtains the consistency of $\mathfrak{b}=\omega_{1}<\mathfrak{s}=\kappa$ for κ arbitrary regular uncountable cardinal (see [31] and [11]). For our purposes, it is particularly important to obtain generic extensions in which cardinals are not collapsed. Observe that the notion of a cardinal is not absolute. For example forcing with the partial order of all finite partial functions from ω to ω_{1} with extension relation reverse inclusion, over a model M of CH , produces a generic extension in which ω_{1}^{M} is a countable ordinal. In between the partial orders known to produce generic extensions in which cardinals are not collapsed, are the ccc forcing notions and the proper forcing notions. A forcing notion is said to be $c c c$, that is to satisfy the countable chain condition, if it does not contain uncountable antichains. A forcing notion is proper, if for every uncountable cardinal λ, every stationary subset of $[\lambda]^{\omega}$ from the ground model remains stationary in the generic extension. The class of $c c c$ forcing notions is contained in the class of proper forcing notions (see [30]). The method of forcing can be repeated in the generic extensions, which leads to the theory of iterated forcing, an excellent exposition of which can be found in [6]. There are certain preservation theorems concerning finite support iterations of $c c c$ forcing notions, which present key points in the construction of models of $\omega_{1}<\mathfrak{b}<\mathfrak{s}$. For example, the finite support
iteration of $c c c$ forcing notion is $c c c$ and so finite support iterations of ccc forcing notions do not collapse cardinals. In particular the finite support iteration of $c c c$ forcing notions can be used to obtain generic extensions in which cardinals are not collapsed and the continuum is arbitrarily large. Another important fact is that if \mathcal{H} is an unbounded family of functions in ${ }^{\omega} \omega$, every countable subfamily of which is dominated by an element of \mathcal{H}, then in order to preserve \mathcal{H} unbounded along an iteration with finite supports of $c c c$ forcing notions, it is sufficient to preserve \mathcal{H} unbounded at each successor stage of the iteration (see Theorem 3.5.2). Note that iterations of proper forcing notions of length $>\omega_{2}$ are known to collapse the continuum. In general, there are few available iteration techniques leading to generic extension in which $2^{\aleph_{0}} \geq \aleph_{3}$ (or even $2^{\aleph_{0}} \geq \aleph_{2}$) and on the other hand there are many longstanding open questions about the combinatorial properties of the real line, whose solution would require models with continuum $\geq \aleph_{3}$. In between those are (see for example [33])

- the consistency of $\mathfrak{p}<\mathfrak{t}$
- the consistency of no P-point and no Q-point
- the consistency of \mathfrak{s} being singular

Thus to a certain degree, results about the combinatorial characteristics of \mathbb{R} leading to generic extensions with large continuum, might be considered test results for developing new iteration techniques.

The bounding and the splitting numbers are independent, that is it is consistent with ZFC that $\mathfrak{b}<\mathfrak{s}$ as well as $\mathfrak{s}<\mathfrak{b}$. The consistency of $\mathfrak{s}<\mathfrak{b}$ is first mentioned by Balcar, Pelant and Simon [2] in 1980.

In 1984 S. Shelah obtains a different model of $\mathfrak{s}<\mathfrak{b}$ (see [31]) and in 1985, [7] J. Baumgartner and P. Dordal show that in the Hechler model (i.e. a model obtained as a finite support iteration of Hechler forcing of length κ, for κ regular uncountable cardinal over a model of $G C H$) the bounding number is κ while the splitting number remains ω_{1}. In order to obtain a generic extension in which $\mathfrak{b}<\mathfrak{s}$ one has to accomplish two major tasks: preserve a given unbounded family unbounded and increase the splitting number. By the preservation theorem mentioned above, in order to preserve an unbounded family unbounded along a finite support iteration of ccc forcing notions, it is sufficient to preserve the family unbounded at successor stages of the iteration. On the other hand in order to increase the splitting number along such an iteration, it is sufficient cofinally often to add reals which are not split by the ground model reals. A forcing notion which is known to add a real not split by the ground model reals is Mathias forcing [26].

Definition. Mathias forcing \mathbb{M} consists of all pairs (s, A) where s is a finite subset of ω and $A \in[\omega]^{\omega}$ such that $\max s<\min A$. We say that $p_{1}=\left(s_{1}, A_{1}\right) \leq p_{2}=\left(s_{2}, A_{2}\right)$ if s_{1} end-extends $s_{2}, s_{1} \backslash s_{2} \subseteq A_{2}$ and $A_{1} \subseteq A_{2}$. If $s_{1}=s_{2}$ then p_{1} is said to be a pure extension of p_{2}.

If $p=(s, A)$ is a Mathias condition, then the infinite set A is called the pure part of p and the finite set s the stem of p. Having in mind the notion of preprocessed conditions, observe that every extension can be obtained in two steps: extension of the stem followed by a pure extension. To see that \mathbb{M} adds a real not split by the ground model reals, consider any $A \in[\omega]^{\omega} \cap M$ and $p=(s, B) \in \mathbb{M}$. Then $B \cap A$ or
$B \cap A^{c}$ is infinite. That is for every $A \in[\omega]^{\omega} \cap M$, the set

$$
D_{A}=\left\{(s, B): B \subseteq A \text { or } B \subseteq A^{c}\right\}
$$

is dense. Let G be \mathbb{M}-generic and let $U_{G}=\bigcup\{s: \exists B(s, B) \in G\}$. Since the conditions in G are pairwise compatible, the extension relation of \mathbb{M} implies that for every B which appears as the pure part of a condition in G, the set U_{G} is almost contained in B. Mathias forcing notion satisfies Axiom A (see 1.3.6) and so is proper ([5]). Thus an iteration of \mathbb{M} with countable supports over a model of CH , would produce a generic extension in which $\mathfrak{s}=\mathfrak{c}=\aleph_{2}$. However Mathias forcing notion is also known to add a dominating real, that is a function in ${ }^{\omega} \omega$ which dominates all ground model reals. For every $A \in[\omega]^{\omega}$, the enumerating function of A, which will be denoted also by A, is obtained by defining for every $j \in \omega, A(j)$ to be the j-th element of A. Let G be \mathbb{M} generic filter and let U_{G} be defined as above. It will be shown that the enumerating function f_{G} of U_{G} dominates all ground model reals. To see this consider any $f \in{ }^{\omega} \omega \cap M$. The set

$$
D_{f}=\{(s, A): \forall \ell \in \omega A(\ell) \geq f(|s|+\ell)\}
$$

is dense in \mathbb{M}. Indeed, given $(s, B) \in \mathbb{M}$, one can recursively define an infinite subset A of B so that $(s, A) \in D_{f}$. Then $G \cap D_{f}$ contains some condition (s, A). Since $U_{G} \backslash s \subseteq A$ and s is an initial segment of U_{G}, for every $\ell \in \omega$

$$
f_{G}(\ell+|s|) \geq A(\ell) \geq f(|s|+\ell)
$$

That is $f \leq^{*} f_{G}$. Therefore an iteration of \mathbb{M} with countable supports of length ω_{2}, as suggested above, would produce a generic extension in which the bounding number is also ω_{2}.

By adding additional combinatorial structure on the pure Mathias conditions, in [31] S. Shelah obtains a forcing notion Q^{\prime} (see definition 1.3.5) of size \mathfrak{c} which is proper, in fact Axiom A, which adds a real not split by the ground model reals and satisfies a strong combinatorial property. This property guarantees that under an iteration of the forcing notion Q^{\prime} with countable supports over a model of CH , the ground model reals will remain unbounded and so a witness to $\mathfrak{b}=\omega_{1}$. Therefore an iteration with countable supports of length ω_{2} over a model of CH of Shelah's forcing notion Q^{\prime} produces a generic extension in which $\mathfrak{b}=\omega_{1}<\mathfrak{s}=\omega_{2}$. The additional combinatorial structure on the pure Mathias conditions, is given in the form of logarithmic measure on the finite subsets of ω.

Definition. Let $x \in[\omega]^{<\omega}$. A function $h: \mathcal{P}(x) \rightarrow \omega$ is a finite logarithmic measure if whenever $x=x_{0} \cup x_{1}$ then $h\left(x_{0}\right) \geq h(x)-1$ or $h\left(x_{1}\right) \geq h(x)-1$ unless $h(x)=0$. The value $h(x)=\|x\|$ is called the level of the measure.

The partial order Q^{\prime} consists of pairs $p=(u, T)$ where u is a finite subset of ω and $T=\left\langle\left(x_{i}, h_{i}\right): i \in \omega\right\rangle$ is an infinite sequence of finite logarithmic measures of strictly increasing levels. The sequence T is similarly to Mathias forcing called a pure condition, also pure part of p. Note that if $\operatorname{int}(T)=\cup\left\{x_{i}: i \in \omega\right\}$, then $(u, \operatorname{int}(T))$ is a Mathias condition. The properties of the finite logarithmic measure imply that
if $T=\left\langle\left(x_{i}, h_{i}\right): i \in \omega\right\rangle$ is a pure condition and $A \subseteq \omega$ is infinite, then either $\left\langle h_{i}\left(x_{i} \cap A\right): i \in \omega\right\rangle$ or $\left\langle h_{i}\left(x_{i} \cap A^{c}\right): i \in \omega\right\rangle$ is unbounded. Therefore T has a pure extension R such that $\operatorname{int}(R) \subseteq A$ or $\operatorname{int}(R) \subseteq$ A^{c} and so for every $A \in[\omega]^{\omega} \cap M$ the set $D_{A}=\{(u, T): \operatorname{int}(T) \subseteq$ A or $\left.\operatorname{int}(T) \subseteq A^{c}\right\}$ is dense. This implies that Q^{\prime} adds a real not split by the ground model reals.

However, we would like to obtain a model of $\omega_{1}<\mathfrak{b}<\mathfrak{s}$ and so we would need to produce a generic extension in which cardinals are not collapsed and $\mathfrak{c}=2^{\aleph_{0}} \geq \aleph_{3}$. A partial order \mathbb{P} which can be presented in the form $\mathbb{P}=\bigcup_{n \in \omega} X_{n}$ where for all $n \in \omega, X_{n}$ is a centered subset of \mathbb{P} is called σ-centered. Note that every σ-centered forcing notion has the countable chain condition. For every ultrafilter U let \mathbb{M}_{U} denote the suborder of Mathias forcing notion \mathbb{M} consisting of all conditions whose pure part belongs to U. Conditions in \mathbb{M}_{U} with equal stems are compatible and so \mathbb{M}_{U} is σ-centered. Using the fact that U is an ultrafilter, one can easily show that \mathbb{M}_{U} adds a real not split by the ground model reals. Therefore \mathbb{M}_{U} can be used to obtain generic extensions in which the splitting number is arbitrarily large. However \mathbb{M}_{U} might add a dominating real. In fact if U is selective, then forcing with \mathbb{M}_{U} does add a real dominating the ground model reals. In $[\mathbf{1 4}] \mathrm{M}$. Canjar shows that if U is an ultrafilter such that \mathbb{M}_{U} does not add a dominating real, then U is necessarily a P-point with no Q-points below it in the Rudin-Keisler order. In [14] it is also shown that if $\mathfrak{d}=\mathfrak{c}$ then there is an ultrafilter U such that \mathbb{M}_{U} does not add a dominating real. One may expect that an appropriate iteration
of such \mathbb{M}_{U} 's would produce a generic extension in which $\mathfrak{b}<\mathfrak{s}$. For example given regular uncountable cardinals $\kappa<\lambda$ begin with a model of GCH, add κ Hechler reals to obtain a generic extension M in which $\mathfrak{b}=\mathfrak{d}=\mathfrak{c}=\kappa$ and iterate with finite support of length λ Canjar's \mathbb{M}_{U} which do not add dominating reals. Note that along this iteration small dominating families are not introduced and in fact in each initial stage of the iteration $\mathfrak{d}=\mathfrak{c}$. Then in the final generic extension $\mathfrak{d}=$ $\mathfrak{s}=\mathfrak{c}=\lambda$. However preserving the ground model reals unbounded is not sufficient to preserve a given unbounded family unbounded along such an iteration and so one can not preserve a witness for $\mathfrak{b}=\kappa$.

In chapters II and III of this work we generalize Shelah's result to models of $\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}$for κ arbitrary regular uncountable cardinal. In fact given an unbounded family \mathcal{H} of functions in ${ }^{\omega} \omega$ such that every subfamily \mathcal{H}^{\prime} of cardinality strictly smaller than $|\mathcal{H}|$ is dominated by an element of \mathcal{H} (such families are called $<^{*}$-directed) we will obtain a centered family $C_{\mathcal{H}}$ of pure conditions in Shelah's partial order Q^{\prime} and a ccc suborder $Q\left(C_{\mathcal{H}}\right)$ of Q^{\prime}, which generalizes the relativization \mathbb{M}_{U} of Mathias forcing to an ultrafilter U. The forcing $Q\left(C_{\mathcal{H}}\right)$ has the advantage to Canjar's non-dominating \mathbb{M}_{U} that it not only adds a real which is not split by the ground model reals and preserves the ground model reals unbounded, but also preserves the given unbounded family \mathcal{H} unbounded. Then under an appropriate finite support iteration of $c c c$ forcing notions we obtain the consistency of $\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}$. There are certain conditions on the existence of the forcing notion $Q\left(C_{\mathcal{H}}\right)$, one of which is that $|\mathcal{H}|=2^{\aleph_{0}}$ and so this method can not be used to obtain
generic extension in which $\omega_{1}<\mathfrak{b}=\kappa<\kappa^{++} \leq \mathfrak{s}$. In the second half of this work, we suggest a generic analogue of \mathbb{M}_{U}, in fact a generic analogue of $Q(C)$, which has the countable chain condition, adds a real not split by the ground model reals and preserves a chosen unbounded family \mathcal{H} of cardinality strictly smaller than $2^{\aleph_{0}}$ unbounded (in fact we will obtain slightly more). Thus the suggested forcing notion has the potential of providing a generic extension in which the splitting number \mathfrak{s} is arbitrarily larger than $\mathfrak{b}>\omega_{1}$.

1.3. A proper forcing argument

Having in mind certain analogies between Shelah's model of $\mathfrak{b}=$ $\omega_{1}<\mathfrak{s}=\omega_{2}$ and the model of $\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}$(sections 2.1-3.6), in this section we give a more detailed outline of Shelah's proof. Apart from the original paper [31] (and [30]) an excellent presentation of this material is given in [1]. The section is self-contained and the rest of the work does not depend on it.

Recall that a forcing notion \mathbb{P} is weakly bounding if the ground model reals remain an unbounded family in every generic extension via \mathbb{P}. However, the iteration of weakly bounding forcing notions is not necessarily weakly bounding (see [1]) and so a stronger notion of unboundedness is needed - see [31]:

Definition 1.3.1 (Shelah, [31]). The partial order \mathbb{P} is almost ${ }^{\omega} \omega$ bounding if for every \mathbb{P}-name f for a function in ${ }^{\omega} \omega$ and every condition $p \in \mathbb{P}$ there is a ground model function $g \in{ }^{\omega} \omega$ such that for every
infinite subset A of ω, there is an extension q_{A} of p such that

$$
q_{A} \Vdash \exists^{\infty} k \in A(\dot{f}(k) \leq \check{g}(k)) .
$$

As mentioned in [31], the Cohen forcing notion is almost ${ }^{\omega} \omega$-bounding.
By [30] the countable support iteration of proper almost ${ }^{\omega} \omega$-bounding forcing notions is weakly bounding, and so in such iterations the ground model reals remain an unbounded family. It remains to observe the following preservation theorems (see [30] or [1]):

Theorem 1.3.2 (Shelah, [30]). Assume CH. Let $\left\langle\left\langle\mathbb{P}_{i}: i \leq \delta\right\rangle,\left\langle\dot{\mathbb{Q}}_{i}\right.\right.$: $i<\delta\rangle\rangle$ where $\delta<\omega_{2}$, be a countable support iteration of proper forcing notions of size \aleph_{1}. Then $C H$ holds in $V^{\mathbb{P}_{\delta}}$.

Theorem 1.3.3 (Shelah, [30]). Assume CH. Let $\left\langle\mathbb{P}_{i}: i \leq \delta\right\rangle$ where $\delta \leq \omega_{2}$, be a countable support iteration of proper forcing notions of size \aleph_{1}. Then \mathbb{P}_{δ} satisfies the \aleph_{2}-chain conditions.

Therefore beginning with a model of CH and iterating with countable support (of length ω_{2}) proper forcing notions of size continuum, which satisfy the almost ${ }^{\omega} \omega$-bounding property, one can obtain a generic extension in which cardinals are not collapsed and the ground model reals remain an unbounded family. Furthermore if the forcing notion adds a real which is not split by the ground model reals, such an iteration would give the consistency of $\mathfrak{b}=\omega_{1}<\mathfrak{s}=\omega_{2}$. Thus it is sufficient to obtain the following theorem.

Theorem 1.3.4 (Shelah, [31]). Assume CH. There is a proper, almost ${ }^{\omega} \omega$-bounding forcing notion Q^{\prime} of size \aleph_{1} such that in every
$\left(V, Q^{\prime}\right)$-generic extension there is an infinite subset of ω which is not split by the ground model reals.

For completeness we give the definition of Shelah's partial order Q^{\prime}. The partial order (defined in section 2.2) differs slightly from the forcing notion given below.

Definition 1.3.5 (Shelah). Let Q^{\prime} be the set of all pairs (u, T) where u is a finite subset of ω and $T=\left\langle\left(s_{i}, h_{i}\right): i \in \omega\right\rangle$ is a sequence of finite logarithmic measures such that
(1) $\max u<\min s_{0}$
(2) $\max s_{i}<\min s_{i+1}$
(3) $h_{i}\left(s_{i}\right)<h_{i+1}\left(s_{i+1}\right)$.

Also $\operatorname{int}(T)=\cup\left\{s_{i}: i \in \omega\right\}$ denotes the underlying subset of ω.
We say that $\left(u_{1}, T_{1}\right)$ is extended by $\left(u_{2}, T_{2}\right)$ where $T_{\ell}=\left\langle t_{i}^{\ell}: i \in \omega\right\rangle$ for $\ell=1,2, t_{i}^{\ell}=\left(s_{i}^{\ell}, h_{i}^{\ell}\right)$ and denote this by $\left(u_{2}, T_{2}\right) \leq\left(u_{1}, T_{1}\right)$ if the following conditions hold:
(1) u_{2} is an end-extension of u_{1} and $u_{2} \backslash u_{1} \subseteq \operatorname{int}\left(T_{1}\right)$
(2) $\operatorname{int}\left(T_{2}\right) \subseteq \operatorname{int}\left(T_{1}\right)$ and there is a sequence $\left\langle B_{i}: i \in \omega\right\rangle$ of finite subsets of ω such that $\max u_{2}<\min s_{j}^{1}$ for $j=\min B_{0}$, $\max B_{i}<\min B_{i+1}$ and $s_{i}^{2} \subseteq \cup\left\{s_{j}^{1}: j \in B_{i}\right\}$
(3) for every $e \subseteq s_{i}^{2}$ such that $h_{i}^{2}(e)>0$ there is $j \in B_{i}$ such that $h_{j}^{1}\left(e \cap s_{j}^{1}\right)>0$.

Whenever $(u, T) \in Q^{\prime}$ the finite set u is called the stem of the condition and T the pure part. Conditions with empty stem are called pure
conditions and are often denoted by their pure part. If q extends p, and q has the same stem as p, then q is called a pure extension of p.

Observe that if (u, T) is a condition in Q^{\prime}, then $(u, \operatorname{int}(T))$ is a condition in the Mathias forcing notion. In fact the reason that Q^{\prime} adds a real not split by the ground model reals is the same as for Mathias forcing. To see that Q^{\prime} adds a real not split by the ground model reals, note that if $T \in Q^{\prime}$ is a pure condition and A is an infinite subset of ω, then there is a condition $T^{\prime} \in Q^{\prime}$ extending T such that $\operatorname{int}\left(T^{\prime}\right) \subseteq A$ or $\operatorname{int}\left(T^{\prime}\right) \subseteq A^{c}$. But then for every ground model infinite subset A of ω the set

$$
D_{A}=\left\{(u, T) \in Q^{\prime}: \operatorname{int}(T) \subseteq A \text { or } \operatorname{int}(T) \subseteq A^{c}\right\}
$$

is dense in Q^{\prime} and so the real

$$
U_{G}=\bigcup\{u: \exists T(u, T) \in G\}
$$

where G is Q^{\prime}-generic filter is not split by the ground model reals. Note that if $\left\langle\mathbb{P}_{\alpha}: \alpha \leq \delta\right\rangle$ is a countable support iteration of proper forcing notions, where δ is of uncountable cofinality, then any new real is obtained at some initial stage $\delta_{0}<\delta$ of the iteration. Furthermore if $\left\langle\mathbb{P}_{\alpha}: \alpha \leq \omega_{2}\right\rangle$ is a countable support iteration of proper forcing notions, then any set of reals of cardinality ω_{1} is added at some (proper) initial stage of the iteration. Therefore, assuming Q^{\prime} is proper, an iteration of Q^{\prime} over a model of $C H$ of length ω_{2}, would result in a model of $\mathfrak{s}=\omega_{2}$.

Definition 1.3.6 (Baumgartner, [5]). A forcing notion $\mathbb{P}=(\mathbb{P}, \leq)$ is said to satisfy Axiom A, if the following holds:
(1) There is a sequence of partial orders $\left\{\leq_{n}\right\}_{n \in \omega}$ on \mathbb{P}, where $\leq_{0}=\leq$, such that $\leq_{n} \subseteq \leq_{m}$ for every $m \leq n$. That is, whenever $m \leq n$ and p, q are conditions in \mathbb{P} such that $p \leq_{n} q$, then $p \leq_{m} q$.
(2) If $\left\{p_{n}\right\}_{n \in \omega}$ is a sequence of conditions in \mathbb{P} such that $p_{n+1} \leq_{n+1}$ p_{n} for every n, then there is a condition p such that $p \leq_{n+1} p_{n}$ for every n. The sequence $\left\{p_{n}\right\}_{n \in \omega}$ is called a fusion sequence and p is called the fusion of the sequence.
(3) For every $D \subseteq \mathbb{P}$ which is dense, and every condition p, for every $n \in \omega$ there is a condition p^{\prime} such that $p^{\prime} \leq_{n} p$ and a countable subset D_{0} of D which is predense below p^{\prime}.

The forcing notion Q^{\prime} satisfies Axiom A and so is proper (see [5]). To see that indeed Q^{\prime} satisfies Axiom A, define a sequence of suborders $\left\{\leq_{i}\right\}_{i \in \omega}$ of \leq as follows. Let $\left(u_{\ell}, T_{\ell}\right)$ where $T_{\ell}=\left\langle t_{i}^{\ell}: i \in \omega\right\rangle$ for $\ell=1,2$ be conditions in Q^{\prime}. Define

$$
\left(u_{2}, T_{2}\right) \leq_{1}\left(u_{1}, T_{1}\right)
$$

if $u_{1}=u_{2}$ and $\left(u_{2}, T_{2}\right) \leq_{0}\left(u_{1}, T_{1}\right)$ where $\leq_{0}=\leq$ is the partial order given in Definition 1.3.5. For $i \geq 1$ let

$$
\left(u_{2}, T_{2}\right) \leq_{i+1}\left(u_{1}, T_{1}\right)
$$

if $u_{1}=u_{2}$ and for every $j \in i t_{j}^{1}=t_{j}^{2}$. Then $\left\{\leq_{i}\right\}_{i \in \omega}$ is a decreasing sequence of partial orders on Q. Furthermore if $\left\{p_{n}\right\}_{n \in \omega}=\left\{\left(u, T_{n}\right)\right\}_{n \in \omega}$,
where $T_{n}=\left\langle t_{j}^{n}: j \in \omega\right\rangle$ is a fusion sequence, then the condition $p=(u, T)$ where $T=\left\langle t_{j}: j \in \omega\right\rangle$ and for every $j \in \omega, t_{j}=t_{j}^{j+1}$ is a fusion of the given sequence.

In order to establish part (3) of Axiom A as well as the almost ${ }^{\omega} \omega$-bounding property, one needs the notion of preprocessed conditions (see [6], Section 8). Note that in Section 2.6 we work with a slight modification of this notion.

Definition 1.3.7. Suppose $D \subseteq Q^{\prime}$ is a dense open set. We say that $p=(u, T)$ where $T=\left\langle t_{i}: i \in \omega\right\rangle$ is preprocessed for D and $k \in \omega$ if for every subset v of k which end-extends $u,\left(v,\left\langle t_{j}: j \geq k\right\rangle\right)$ has a pure extension in D if and only if $\left(v,\left\langle t_{j}: j \geq k\right\rangle\right)$ belongs to D.

The following three Lemmas show that, whenever D is a dense open set and $p \in Q^{\prime}$ there is a pure extension q of p such that for every $i \in \omega$, q is preprocessed for D and i.

Lemma 1.3.8. Let D be a dense open subset of Q^{\prime} and $k \in \omega$. If (u, T) is preprocessed for D and k, then any extension of (u, T) is also preprocessed for D and k.

Proof. Consider any extension (w, R) of (u, T) where $R=\left\langle r_{i}\right.$: $i \in \omega\rangle$. Let v be a subset of k, which end-extends w and such that $\left(v,\left\langle r_{j}: j \geq k\right\rangle\right)$ has a pure extension in D. Since R extends T, by definition of the extension relation on $Q\left\langle r_{j}: j \geq k\right\rangle$) is an extension of $\left\langle t_{j}: j \geq k\right\rangle$. Therefore $\left(v,\left\langle t_{j}: j \geq k\right\rangle\right)$ has a pure extension in D and since (u, T) is preprocessed for D and $k,\left(v,\left\langle t_{j}: j \geq k\right\rangle\right)$ belongs to D (note that v also end-extends u). But D is open and
since $\left(v,\left\langle r_{j}: j \geq k\right\rangle\right)$ extends $\left(v,\left\langle t_{j}: j \geq k\right\rangle\right),\left(v,\left\langle r_{j}: j \geq k\right\rangle\right)$ also belongs to D.

Lemma 1.3.9. Let $(u, T) \in Q^{\prime}, k \in \omega$. Then (u, T) has $a \leq_{k+1}$ extension which is preprocessed for D and k.

Proof. Let $T=\left\langle t_{i}: i \in \omega\right\rangle$. Fix an enumeration v_{1}, \ldots, v_{j} of all subsets of k which end-extend u. Consider ($v_{1},\left\langle t_{i}: i \geq k\right\rangle$). If $\left(v_{1},\left\langle t_{i}: i \geq k\right\rangle\right)$ has a pure extension in D, denote it ($\left.v_{1},\left\langle t_{i}^{1}: i \geq k\right\rangle\right)$. If there is no such pure extension, let $t_{i}^{1}=t_{i}$ for every $i \geq k$. In the next step consider ($v_{2},\left\langle t_{i}^{1}: i \geq k\right\rangle$). If it has a pure extension in D, denote it $\left(v_{2},\left\langle t_{i}^{2}: i \geq k\right\rangle\right.$. If there is no such pure extension, then for every $i \geq k$ let $t_{i}^{2}=t_{i}^{1}$. At the j-th step we will obtain condition $\left(v_{j},\left\langle t_{i}^{j}: i \geq k\right\rangle\right)$. Then $\left(u,\left\langle t_{i}^{j}: i \in \omega\right\rangle\right)$ where for every $i<k, t_{i}^{j}=t_{i}$ is a \leq_{k+1}-extension of (u, T) which is preprocessed for D and k.

To see this, suppose ($v,\left\langle t_{i}^{j}: i \geq k\right\rangle$) has a pure extension in D where $v \subseteq k, v$ end-extends u. Then $v=v_{m}$ for some $m, 1 \leq m \leq j$. Then at step m, we must have had that ($v_{m},\left\langle t_{i}^{m-1}: i \geq k\right.$) has a pure extension in D, and so we have fixed such a pure extension $\left(v_{m},\left\langle t_{i}^{m}: i \geq k\right\rangle\right) \in D$. However since $m-1<j$, we have $\left\langle t_{i}^{j}: i \geq k\right\rangle \leq\left\langle t_{i}^{m}: i \geq k\right\rangle$. But D is open and so ($v,\left\langle t_{i}^{j}: i \geq k\right\rangle$) is an element of D itself.

Lemma 1.3.10. Let D be a dense open set. Then any condition has a pure extension which is preprocessed for D and every $i \in \omega$.

Proof. Let $p=(u, T)$ be an arbitrary condition. By Lemma 1.3.9 there is a fusion sequence $\left\{p_{i}\right\}_{i \in \omega}$ such that $p_{0}=p, p_{i+1} \leq_{i+1} p_{i}$ and p_{i+1} is preprocessed for D and i. Let q be the fusion of the sequence.

Then for every $i \in \omega$ we have that $q \leq_{i+1} p_{i+1}$ and so in particular $q \leq p_{i+1}$. Therefore by Lemma $1.3 .8 q$ is preprocessed for D and i.

Observe that q is obtained as the fusion of a sequence. This fact will appear very important in obtaining the almost- ${ }^{\omega} \omega$ bounding property, and in particular Lemma 1.3.11. With this we are ready to show that the forcing notion Q satisfies Axiom A, part (3). Let D be a dense open set and p an arbitrary condition. By Lemma 1.3.10 there is a pure extension $q=(u, T)$ for $T=\left\langle t_{j}: j \in \omega\right\rangle$ which is preprocessed for D and every $i \in \omega$. Since q is obtained as a fusion of a fusion sequence below p, for every $n \in \omega, q \leq_{n} p$. Furthermore the set

$$
D_{0}=\left\{\left(v,\left\langle t_{j}: j \geq i\right\rangle\right) \in D: v \subseteq i, i \in \omega, v \text { end-extends } u\right\}
$$

is a countable subset of D which is pre-dense below q. To see this consider an arbitrary extension (v, R) of q. Since D is dense, (v, R) has an extension $\left(v \cup w, R^{\prime}\right)$ in D. Note that $\left(v \cup w, R^{\prime}\right)$ is a pure extension of $\left(v \cup w,\left\langle t_{j}: j \geq k\right\rangle\right)$ for some $k \in \omega$ such that $w \subseteq k$. However q is preprocessed for D and k, and so $\left(v \cup w,\left\langle t_{j}: j \geq k\right\rangle\right) \in D$. Thus in particular $\left(v \cup w,\left\langle t_{j}: j \geq k\right\rangle\right)$ belongs to D_{0} and is compatible with (v, R). This establishes axiom A and so properness. The main technical tool in obtaining the almost ${ }^{\omega} \omega$-bounding property is the following Lemma - compare with section 3.3.

Lemma 1.3.11. Let \dot{f} be a Q^{\prime}-name for a function in ${ }^{\omega} \omega$ and let $p=$ (u, T) be an arbitrary condition in Q^{\prime}. Then there is a pure extension (u, R) of p where $R=\left\langle r_{i}: i \in \omega\right\rangle, r_{i}=\left(x_{i}, g_{i}\right)$ such that $\forall i \in \omega, \forall v \subseteq i$
which end-extend u and $\forall s \subseteq x_{i}$ such that $g_{i}(s)>0$ there is $w_{v} \subseteq s$ such that $\left(v \cup w_{v},\left\langle r_{j}: j \geq i+1\right\rangle\right) \Vdash \dot{f}(i)=\check{k}$ for some $k \in \omega$.

In order to obtain the pure condition R of the above Lemma, one has to consider logarithmic measures induced by positive sets (see Definition 2.1.4) and in particular to show that the logarithmic measure induced by the family $\mathcal{P}_{k}(T, D)$ where $T=\left\langle t_{\ell}: \ell \in \omega\right\rangle$ is a pure condition preprocessed for a given dense open set D and $k \in \omega$ consisting of all finite subsets x of $\operatorname{int}(T)$ such that for some $\ell \in \omega, x \cap \operatorname{int}\left(t_{\ell}\right)$ is positive and $\forall v \subseteq k \exists w \subseteq x$ such that $(v \cup w, T) \in D$, takes arbitrarily high values - compare with section 3.1. Because of the analogy with Theorem 3.3.2 we give a proof of the almost ${ }^{\omega} \omega$-bounding property of Q^{\prime} - see [1].

Theorem 1.3.12. The forcing notion Q^{\prime} is almost ${ }^{\omega} \omega$-bounding.

Proof. Let \dot{f} be arbitrary Q-name of a function and p a condition in Q. Let $q=(u, T)$, where $T=\left\langle t_{i}: i \in \omega\right\rangle$ and $t_{i}=\left(x_{i}, g_{i}\right)$, be a pure extension of p which satisfies Lemma 1.3.11. Then for every $i \in \omega$ let $g(i)$ be the maximal k such that there are $v \subseteq i$ and $w \subseteq \operatorname{int}\left(t_{i}\right)$ such that $\left(v \cup w,\left\langle t_{j}: j \geq i+1\right\rangle\right) \Vdash \dot{f}(i)=\check{k}$. Consider any $A \in[\omega]^{\omega}$ and let $q_{A}=\left(u,\left\langle t_{i}: i \in A\right\rangle\right)$. We claim that $q_{A} \Vdash \exists^{\infty} k \in A(\dot{f}(k) \leq g(k))$.

Let $n \in \omega$ and let (v, R) be an arbitrary extension of q_{A}. Then by definition of the extension relation there is $i \in A$ such that $i_{0}>n$, $v \subseteq i$ and $s=\operatorname{int}(R) \cap \operatorname{int}\left(t_{i}\right)$ is such that $g_{i}(s)>0$. But then by Lemma 1.3.11 there is $w \subseteq s$ such that $\left(v \cup w,\left\langle t_{j}: j \geq i_{0}+1\right\rangle\right) \Vdash$ $\dot{f}(i)=\check{k}$ and so $\left(v \cup w,\left\langle t_{j}: j \geq i+1\right\rangle\right) \Vdash \dot{f}(i) \leq g(i)$. However $(v \cup w, R)$ extends $\left(v \cup w,\left\langle t_{j}: j \geq i+1\right\rangle\right)$ and so $(v \cup w, R) \Vdash \dot{f}(i) \leq$ $g(i)$. Note also that $(v \cup w, R)$ extends (v, R). Then, since (v, R) was an arbitrary extension of q_{A}, the set of conditions which force " $\exists k \in A(k>n \wedge \dot{f}(k) \leq g(k))$ " is dense below q_{A}. Since n was arbitrary as well, we obtain $q_{A} \Vdash \exists^{\infty} k \in A(\dot{f}(k) \leq g(k))$.

CHAPTER 2

Centered Families of Pure Conditions

2.1. Logarithmic Measures

The notion of logarithmic measure is due to S . Shelah. In our presentation of logarithmic measures and their basic properties (Definitions 2.1.1, 2.1.4 and Lemmas 2.1.3, 2.1.7, 2.1.9, 2.1.10) we follow [1].

Definition 2.1.1 (Shelah). Let s be a subset of ω and $h:[s]^{<\omega} \rightarrow$ ω, where $[s]^{<\omega}$ is the family of all finite subsets of s. The function h is called a logarithmic measure, if for every $A \in[s]^{<\omega}$ and for every A_{0}, A_{1} such that $A=A_{0} \cup A_{1}, h\left(A_{i}\right) \geq h(A)-1$ for $i=0$ or $i=$ 1 unless $h(A)=0$. Whenever s is a finite set and h a logarithmic measure on s, the pair $x=(s, h)$ is called a finite logarithmic measure. The value $h(s)=\|x\|$ is called the level of x.

Definition 2.1.2. Whenever h is a finite logarithmic measure on x and $e \subseteq x$ is such that $h(e)>0$, we will say that e is h-positive.

Lemma 2.1.3 (Shelah). If h is a logarithmic measure and $h\left(A_{0} \cup\right.$ $\left.\cdots \cup A_{n-1}\right) \geq \ell+1$ then $h\left(A_{j}\right) \geq \ell-j$ for some $j, 0 \leq j \leq n-1$.

Definition 2.1.4 (Shelah). Let $P \subseteq[\omega]^{<\omega}$ be an upwards closed family. Then P induces a logarithmic measure h on $[\omega]^{<\omega}$ defined inductively on $|s|$ for $s \in[\omega]^{<\omega}$ in the following way:
(1) $h(e) \geq 0$ for every $e \in[\omega]^{<\omega}$
(2) $h(e)>0$ iff $e \in P$
(3) for $\ell \geq 1, h(e) \geq \ell+1$ iff $e \in P,|e|>1$ and whenever $e_{0}, e_{1} \subseteq e$ are such that $e=e_{0} \cup e_{1}$, then $h\left(e_{0}\right) \geq \ell$ or $h\left(e_{1}\right) \geq \ell$.

Then $h(e)=\ell$ iff ℓ is the maximal natural number for which $h(e) \geq \ell$. The elements of P are called positive sets and h is said to be induced by the positive sets P.

Definition 2.1.5. Let h be an induced logarithmic measure. Then h is said to be atomic, if there is a singleton $\{n\}$ such that $h(\{n\})>0$.

Remark 2.1.6. From now on we assume that all logarithmic measures are non-atomic.

Lemma 2.1.7 (Shelah). If h is a logarithmic measure induced by positive sets and $h(e) \geq \ell$, then for every a such that $e \subseteq a, h(a) \geq \ell$.

Example 2.1.8 (Shelah, [1] or [32]). Let P be the family of all sets containing at least two points and h the logarithmic measure induced by P on $[\omega]^{<\omega}$. Then for every $x \in P, h(x)=i$ where i is the minimal natural number such that $|x| \leq 2^{i}$. This logarithmic measure is also called a standard measure.

An easy application of König's Lemma gives the following:

Lemma 2.1.9 (Abraham, [1]). Let P be an upwards closed family of finite non-empty subsets of ω and h the induced logarithmic measure. Let $\ell \geq 1$. Then for every subset A of ω, if A does not contain a set
of measure $\geq \ell+1$, then there are A_{0}, A_{1} such that $A=A_{0} \cup A_{1}$ and neither of A_{0}, A_{1} contains a set of measure greater or equal ℓ.

Proof. If A is a finite set, then the given statement is the contrapositive of part 3 of Definition 2.1.4. Thus assume A is infinite. For every natural number k, let $A_{k}=A \cap k$ and let T be the family of all functions $f: m \rightarrow \bigcup_{0 \leq k \leq m} \mathcal{P}\left(A_{k}\right) \times \mathcal{P}\left(A_{k}\right)$, where $m \in \omega$, such that for every k,

$$
f(k)=\left(a_{0}^{k}, a_{1}^{k}\right) \in \mathcal{P}\left(A_{k}\right) \times \mathcal{P}\left(A_{k}\right)
$$

where $a_{0}^{k} \cup a_{1}^{k}=A_{k}, h\left(a_{0}^{k}\right) \nsupseteq \ell, h\left(a_{1}^{k}\right) \nsupseteq \ell$ and for every $k: 1 \leq k \leq m$, $a_{0}^{k-1} \subseteq a_{0}^{k}, a_{1}^{k-1} \subseteq a_{1}^{k}$.

Then T together with the end-extension relation is a tree. Furthermore for every $m \in \omega$, the m-th level of T is nonempty. Really consider an arbitrary natural number m. Then $A \cap m=A_{m}$ is a finite set which is not of measure greater or equal $\ell+1$. By Definition 2.1.4, part (3), there are sets a_{0}^{m}, a_{1}^{m} such that $A_{m}=a_{0}^{m} \cup a_{1}^{m}$ and $h\left(a_{0}^{m}\right) \nsupseteq \ell$, $h\left(a_{1}^{m}\right) \nsupseteq \ell$. Let $a_{0}^{m-1}=A_{m-1} \cap a_{0}^{m}$ and $a_{1}^{m-1}=A_{m-1} \cap a_{1}^{m}$. Then by Lemma 2.1.7 the measure of each of a_{0}^{m-1}, a_{1}^{m-1} is not greater or equal to ℓ and $A_{m-1}=A \cap(m-1)=a_{0}^{m-1} \cup a_{1}^{m-1}$. Therefore in m steps we can define finite sequences $\left\langle a_{0}^{k}: 0 \leq k \leq m\right\rangle,\left\langle a_{1}^{k}: 0 \leq k \leq m\right\rangle$ such that for every $k, A_{k}=a_{0}^{k} \cup a_{1}^{k}, h\left(a_{0}^{k}\right) \nsupseteq \ell, h\left(a_{1}^{k}\right) \nsupseteq \ell$ and $\forall k: 0 \leq k \leq m-1$ $a_{0}^{k} \subseteq a_{0}^{k+1}, a_{1}^{k} \subseteq a_{1}^{k+1}$. Therefore $f: m \rightarrow \bigcup_{0 \leq k \leq m} \mathcal{P}\left(A_{k}\right) \times \mathcal{P}\left(A_{k}\right)$ defined by $f(k)=\left(a_{0}^{k}, a_{1}^{k}\right)$ is a function in the m 'th level of T.

Therefore by König's Lemma there is an infinite branch through T. Let $f: \omega \rightarrow \bigcup_{k \in \omega} \mathcal{P}\left(A_{k}\right) \times \mathcal{P}\left(A_{k}\right)$ where $f(k)=\left(a_{0}^{k}, a_{1}^{k}\right), a_{0}^{k} \cup a_{1}^{k}=A_{k}$, etc., be such an infinite branch. Then if $B_{0}=\bigcup_{k \in \omega} a_{0}^{k}, B_{1}=\bigcup_{k \in \omega} a_{1}^{k}$
we have that $A=B_{0} \cup B_{1}$ and none of the sets B_{0}, B_{1} contains a set of measure greater or equal ℓ. Consider an arbitrary finite subset x of B_{0}. Then $x \subseteq a_{0}^{k}$ for some $k \in \omega$. But $h\left(a_{0}^{k}\right) \nsupseteq \ell$ and so $h(x) \nsupseteq \ell$. The same argument applies to B_{1}.

Lemma 2.1.10 (Abraham, [1]). (Sufficient Condition for High Values) Let P be an upwards closed family of finite subsets of ω and h the logarithmic measure induced by P. Then if for every $n \in \omega$ and every partition of ω into n sets $\omega=A_{0} \cup \cdots \cup A_{n-1}$ there is some $j \leq n-1$ such that A_{j} contains a positive set x (such that $|x| \geq 2$), then for every natural number k, for every $n \in \omega$ and partition of ω into n sets $\omega=A_{0} \cup \cdots \cup A_{n-1}$ there is some $j \leq n-1$ such that A_{j} contains a set of measure greater or equal k.

Remark. Note that if the measure of x is ≥ 2, then $|x| \geq 2$. However for non-atomic measures, $\|x\|>0$ implies that $|x| \geq 2$.

Proof. The proof proceeds by induction on k. If $k=1$ this is just the assumption of the Lemma. So suppose we have proved the claim for $k=\ell$ and furthermore that it is false for $k=\ell+1$. Then there is some $n \in \omega$ and partition of ω into n sets $\omega=A_{0} \cup \cdots \cup A_{n-1}$ such that none of A_{0}, \ldots, A_{n-1} contains a set of measure greater or equal $\ell+1$. By Lemma 2.1.9 for each $j \in n-s$ there are sets A_{j}^{0}, A_{j}^{1} none of which contains a set of measure greater or equal ℓ and such that $A_{j}=A_{j}^{0} \cup A_{j}^{1}$. Then $\omega=A_{0}^{0} \cup A_{0}^{1} \cup \cdots \cup A_{n-1}^{0} \cup A_{n-1}^{1}$ is a finite partition of ω, none of the elements of which contains a set of measure $\geq \ell$. This contradicts the inductive hypothesis for $k=\ell$.

2.2. Centered Families of Pure Conditions

Definition 2.2.1 (Shelah). Let Q be the set of all pairs (u, T) where u is a finite subset of ω and $T=\left\langle\left(s_{i}, h_{i}\right): i \in \omega\right\rangle$ is a sequence of finite logarithmic measures such that
(1) $\max u<\min s_{0}$
(2) $\max s_{i}<\min s_{i+1}$ for all $i \in \omega$
(3) $\left\langle h_{i}\left(s_{i}\right): i \in \omega\right\rangle$ is unbounded.

The finite part u is called the stem of the condition $p=(u, T)$, and T the pure part of p. Also $\operatorname{int}(T)=\cup\left\{s_{i}: s \in \omega\right\}$. In case that $u=\emptyset$ we say that (\emptyset, T) is a pure condition and usually denote it simply by T.

We say that $\left(u_{1}, T_{1}\right)$ is extended by $\left(u_{2}, T_{2}\right)$, where $T_{\ell}=\left\langle t_{i}^{\ell}: i \in \omega\right\rangle$ and $t_{i}^{\ell}=\left(s_{i}^{\ell}, h_{s}^{\ell}\right)$ for $\ell=1,2$, and denote it by $\left(u_{2}, T_{2}\right) \leq\left(u_{1}, T_{1}\right)$ if the following conditions hold:
(1) u_{2} is an end-extension of u_{1} and $u_{2} \backslash u_{1} \subseteq \operatorname{int}\left(T_{1}\right)$
(2) $\operatorname{int}\left(T_{2}\right) \subseteq \operatorname{int}\left(T_{1}\right)$ and furthermore there is an infinite sequence $\left\langle B_{i}: i \in \omega\right\rangle$ of finite subsets of ω such that $\max u_{2}<\min s_{j}^{1}$ for $j=\min B_{0}, \max \left(B_{i}\right)<\min \left(B_{i+1}\right)$ and $s_{i}^{2} \subseteq \cup\left\{s_{j}^{1}: j \in B_{i}\right\}$.
(3) for every subset e of s_{i}^{2} such that $h_{i}^{2}(e)>0$ there is $j \in B_{i}$ such that $h_{j}^{1}\left(e \cap s_{j}^{1}\right)>0$.

If $u_{1}=u_{2}$, then $\left(u_{2}, T_{2}\right)$ is called a pure extension of $\left(u_{1}, T_{1}\right)$.

The partial order Q^{\prime} in Definition 1.3.5 differs with Q, in the requirement that the sequence $\left\langle h_{i}\left(s_{i}\right): i \in \omega\right\rangle$ is strictly increasing rather then simply unbounded. However from every unbounded sequence one
can choose a strictly increasing subsequence and so the partial order Q^{\prime} (see Definition 1.3.5) is dense in Q.

Definition 2.2.2. Let $T=\left\langle t_{i}: i \in \omega\right\rangle$ be a pure condition. Then for every $k \in \omega$, let $i_{T}(k)=\min \left\{i: k<\operatorname{minint}\left(t_{i}\right)\right\}$ and let $T \backslash k=$ $T_{i_{T}(k)}=\left\langle t_{i}: i \geq i_{T}(k)\right\rangle$. Whenever u is a finite subset of ω let $T \backslash u=$ $T_{i_{T}(\max u)}$ and $(u, T)=(u, T \backslash u)$.

Definition 2.2.3. Let \mathcal{F} be a family of pure conditions. Then $Q(\mathcal{F})$ is the suborder of Q of all $(u, T) \in Q$ such that $\exists R \in \mathcal{F}(R \leq T)$.

Definition 2.2.4. A family of pure conditions C is centered if whenever $X, Y \in C$ there is $R \in C$ which is their common extension.

We will be interested in centered families C of pure conditions and the associated partial order $Q(C)$.

Lemma 2.2.5. Let C be a centered family of pure conditions. Then $Q(C)$ is σ-centered.

Proof. Any two conditions in $Q(C)$ with equal stems have a common extension in $Q(C)$.

From now on by centered family we mean a centered family of pure conditions, unless otherwise specified. Furthermore we assume that all centered families are closed with respect to final sequences, that is if C is a centered family and $T \in C$ then $T \backslash v \in C$ for every $v \in[\omega]^{<\omega}$. Note that $Q(C)$ is the upwards closure of $\{(u, T): T \in C\}$.

Lemma 2.2.6. Any two conditions of $Q(C)$ are compatible as conditions in $Q(C)$ if and only if they are compatible in Q.

Proof. Let $p=(u, T)$ and $q=(v, R)$. Suppose that p, q are compatible as conditions in Q. Let (w, Z) be their common extension in Q. Then in particular w is a common end-extension of u and v, which implies that u is an end-extension of v or v is an end-extension of u. Say u is an end-extension of v. Then $u \backslash v \subseteq w \backslash v \subset \operatorname{int}(R)$. Since p and q belong to $Q(C)$, by definition there are pure conditions T^{\prime}, R^{\prime} in C such that $T^{\prime} \leq T$ and $R^{\prime} \leq R$. However C is centered, and so there is a pure condition $Z^{\prime} \in C$ which is a common extension of T^{\prime} and R^{\prime} and so a common extension of T and R. But then $\left(u, Z^{\prime}\right)$ is a common extension of p and q from $Q(C)$.

A pure condition, which is compatible with every element of a centered family, is said to be compatible with the centered family. If C^{\prime} is a centered family which contains a centered family C in its downwards closure, i.e. $C \subseteq Q\left(C^{\prime}\right)$, then C^{\prime} is said to extend C. In particular if $C \subseteq Q\left(C^{\prime}\right)$ and there is $R \in Q\left(C^{\prime}\right)$ such that $\forall X \in C^{\prime}(X \leq R)$ we say that C^{\prime} extends C below R.

2.3. Partitioning of Pure Conditions

Lemma 2.3.1. Let (x, h) be a finite logarithmic measure and $h(x) \leq$ n. Then $x=\cup\left\{x_{i}: i \in 2^{n}\right\}$ where for every $i \in 2^{n}, h\left(x_{i}\right)=0$.

Proof. We give a proof by induction on n. Let $n=1$. Then by definition of logarithmic measure there are sets x_{0}, x_{1} such that $x=x_{0} \cup x_{1}$ and $h\left(x_{0}\right) \nsupseteq 1$ and $h\left(x_{1}\right) \nsupseteq 1$, that is x_{0} and x_{1} are not positive. Suppose we have proved the claim for every measure of level $\leq n$, where $n \geq 2$. Let (x, h) be a logarithmic measure of level $\leq n+1$.

Then, there are sets x_{0}, x_{1} such that $x=x_{0} \cup x_{1}$ and $h\left(x_{0}\right) \leq n$, $h\left(x_{1}\right) \leq n$. By inductive hypothesis for $\ell \in 2 x_{\ell}=\cup\left\{x_{\ell}^{i}: i \in 2^{n}\right\}$ where for all $i \in 2^{n} h\left(x_{\ell}^{i}\right)=0$. But then it is clear, that x can be presented as the union of 2×2^{n} sets, each of which is of measure 0 .

Lemma 2.3.2. Let $T=\left\langle\left(s_{i}, h_{i}\right): i \in \omega\right\rangle$ be a pure condition and let A be an infinite subset of ω. If the sequence $\left\langle h_{i}\left(s_{i} \cap A\right): i \in \omega\right\rangle$ is bounded, then T has no pure extension R with $\operatorname{int}(R) \subseteq A$.

Proof. Suppose to the contrary that R is a pure condition in Q extending T such that $\operatorname{int}(R) \subseteq A$. Then there is $\left\langle B_{i}: i \in \omega\right\rangle \subseteq[\omega]^{<\omega}$ such that $\forall i \in \omega x_{i} \subseteq \cup\left\{s_{j}: j \in B_{i}\right\}$ where $R=\left\langle\left(x_{i}, g_{i}\right): i \in \omega\right\rangle$. Since $\operatorname{int}(R) \subseteq A$ we have $x_{i}=x_{i} \cap A \subseteq \cup\left\{s_{j} \cap A: j \in B_{i}\right\}$. Let $M \in \omega$ be such that $h_{i}\left(s_{i} \cap A\right) \leq M$ for every $i \in \omega$. Since, R is a pure condition, the sequence $\left\langle g_{i}\left(x_{i}\right): i \in \omega\right\rangle$ is unbounded, and so there is $\ell \in \omega$ for which $g_{\ell}\left(x_{\ell}\right) \geq 2^{M}+1$. For simplicity denote $\left(x_{\ell}, g_{\ell}\right)$ by (x, g). By definition $x \subseteq \cup\left\{s_{j} \cap A: j \in B_{\ell}\right\}$. However for each $j \in B_{\ell}, h_{j}\left(s_{j} \cap A\right) \leq M$ and so $\forall j \in B_{\ell}$ there is a family of sets $\left\{s_{j}^{m}\right.$: $\left.m \in 2^{M}\right\}$ such that $s_{j} \cap A=\cup\left\{s_{j}^{m}: m \in 2^{M}\right\}$ and for every $m \in 2^{M}$, $h_{j}\left(s_{j}^{m}\right)=0$. Then for every $m \in 2^{M}$ let $a_{m}=x \cap\left(\cup\left\{s_{j}^{m}: j \in B_{\ell}\right\}\right)$. Then $x=\cup\left\{a_{m}: m \in 2^{M}\right\}$ and so by Lemma 2.1.3 there is $m \in 2^{M}$ such that $g\left(a_{m}\right) \geq\left(2^{M}+1\right)-m \geq 1$. But then $\exists j \in B_{\ell}$ such that $h_{j}\left(a_{m} \cap s_{j}\right)>0$. However $s_{j}^{m}=a_{m} \cap s_{j}$ and so $h_{j}\left(s_{j}^{m}\right)>0$ which is a contradiction.

Remark 2.3.3. It is essential to work with non-atomic measures. If $P=[\omega]^{<\omega}$ and h is the induced logarithmic measure, then $T=$
$\langle(\{2 n\}, h \upharpoonright\{2 n\}): n \in \omega\rangle$ is a sequence of finite logarithmic measures of measure 1, however amalgamating successive measures of T one can obtain a pure condition, and so in particular an unbounded sequence of finite logarithmic measures.

Definition 2.3.4. Whenever $T=\left\langle\left(s_{i}, h_{i}\right): i \in \omega\right\rangle$ be a pure condition and $A \subseteq \omega$, let $T \upharpoonright A=\left\langle\left(s_{i} \cap A, h_{i} \upharpoonright \mathcal{P}\left(s_{i} \cap A\right)\right): i \in \omega\right\rangle$.

Lemma 2.3.5. Let $T=\left\langle t_{i}: i \in \omega\right\rangle$, where $t_{i}=\left(s_{i}, h_{i}\right)$, be a pure condition and $\omega=A_{0} \cup \cdots \cup A_{n-1}$ a finite partition of ω. Then there is $j \in n$ such that $T \upharpoonright A_{j}$ is a pure condition.

Proof. Suppose not. That is, for every $j \in n$ there is $M_{j} \in \omega$ such that $h_{i}\left(s_{i} \cap A_{j}\right) \leq M_{j}$ for every $i \in \omega$. Let $M=\max _{j \in n} M_{j}$ and let $t_{i}=\left(s_{i}, h_{i}\right)$ be a measure from T with $h_{i}\left(s_{i}\right) \geq M+(n+1)$. Let $s_{i}^{j}=s_{i} \cap A_{j}$ for every $j \in n$. Then $s_{i}=s_{i}^{0} \cup s_{i}^{1} \cup \cdots \cup s_{i}^{n-1}$ is a partition of s_{i} into n sets and so there is $j \in n$ such that $h_{i}\left(s_{i}^{j}\right) \geq h_{i}\left(s_{i}\right)-j=$ $M+(n+1)-j \geq M+1>M_{j}$ which is a contradiction.

Lemma 2.3.6. Let R be a pure extension of T and let A be an infinite subset of ω, such that $R \upharpoonright A$ and $T \upharpoonright A$ are pure conditions. Then $R \upharpoonright A$ is a pure extension of $T \upharpoonright A$.

Proof. Let $R=\left\langle\left(x_{i}, g_{i}\right): i \in \omega\right\rangle, T=\left\langle\left(s_{i}, h_{i}\right): i \in \omega\right\rangle$. Since R is a pure extension of T, there is a sequence $\left\langle B_{i}: i \in \omega\right\rangle \subseteq[\omega]^{<\omega}$ such that $\forall i \in \omega, x_{i} \subseteq \cup\left\{s_{j}: j \in B_{i}\right\}$. Note that for every $i \in \omega$, $x_{i} \cap A \subseteq \cup\left\{s_{j} \cap A: j \in B_{i}\right\}$ and furthermore if $e \subseteq x_{i} \cap A$ is such that $h_{i}(e)>0$, by definition of the extension relation there is $j \in B_{i}$ such
that $g_{j}\left(e \cap s_{j}\right)>0$. It remains to observe that $e \cap s_{j}=e \cap s_{j} \cap A$. Thus $R \upharpoonright A$ is a pure extension of $T \upharpoonright A$.

Lemma 2.3.7. Let C be a centered family, T a pure condition compatible with C and $\omega=A_{0} \cup \cdots \cup A_{n-1}$ a finite partition of ω. Then there is $j \in n$ such that $T \upharpoonright A_{j}$ is a pure condition compatible with C.

Proof. Suppose the claim is not true and let $I \subseteq n$ be the set of all indexes $j \in n$ for which $T \upharpoonright A_{j}$ is a pure condition in Q. By Lemma 2.3.5, $I \neq \emptyset$. By hypothesis, $\forall j \in I$ there is $T_{j} \in C$ such that T_{j} is incompatible with $T \upharpoonright A_{j}$. However I is finite, C is centered and so there is $X \in C$ which is a common extension of $\left\langle T_{j}: j \in I\right\rangle$. By assumption X and T have a common extension $R \in Q$. Again by Lemma 2.3.5 there is an $i \in n$ such that $R \upharpoonright A_{i}$ is a pure condition. Furthermore by Lemma 2.3.6 $R \upharpoonright A_{i} \leq T \upharpoonright A_{i}$ and so by Lemma 2.3.2 $i \in I$. Also $R \upharpoonright A_{i} \leq R \leq X \leq T_{i}$ and so T_{i} and $T \upharpoonright A_{i}$ are compatible which is a contradiction.

2.4. Good Names for Reals

Remark 2.4.1. We will use the fact that whenever $f \in V^{\mathbb{P}} \cap{ }^{\omega} \omega$ for some forcing notion \mathbb{P}, then f has a \mathbb{P}-name of the form $\dot{f}=$ $\cup\left\{\left\langle\left\langle i, j_{p}^{i}\right\rangle, p\right\rangle: p \in \mathcal{A}_{i}, i \in \omega, j_{p}^{i} \in \omega\right\}$ where for every $i \in \omega, \mathcal{A}_{i}=\mathcal{A}_{i}(\dot{f})$ is a maximal antichain.

Definition 2.4.2. Let C be a centered family of pure conditions and let \dot{f} be a $Q(C)$-name for a real. Then \dot{f} is a good name if for every centered family C^{\prime} extending C, \dot{f} is a $Q\left(C^{\prime}\right)$-name for a real.

Remark 2.4.3. That is \dot{f} is a good $Q(C)$-name for a real if and only if for every centered family C^{\prime} extending C and for every $i \in \omega$, $\mathcal{A}_{i}(\dot{f})$ remains a maximal antichain in $Q\left(C^{\prime}\right)$.

Lemma 2.4.4. Let C be a centered family of pure conditions and let \dot{f} be a $Q(C)$-name for a real. Then the following are equivalent:
(1) \dot{f} is a good $Q(C)$-name for a real.
(2) For every centered family C^{\prime} extending C such that $\left|C^{\prime}\right|=|C|$, \dot{f} is a $Q\left(C^{\prime}\right)$-name for a real.

Proof. The implication from (1) to (2) is straightforward. To obtain that (2) implies (1) consider any centered family C^{\prime} extending C such that $\left|C^{\prime}\right|>|C|$ and suppose that \dot{f} is not a $Q\left(C^{\prime}\right)$-name. Then there is condition $p=(u, T) \in Q\left(C^{\prime}\right)$ which is incompatible with all elements of $\mathcal{A}_{i}=\mathcal{A}_{i}(\dot{f})$ for some $i \in \omega$. Note that $C \cup\{T\} \subseteq Q\left(C^{\prime}\right)$. Inductively we will construct a centered family $C^{\prime \prime}$ contained in $Q\left(C^{\prime}\right)$ such that $C \cup\{T\} \subseteq C^{\prime \prime}$ and $\left|C^{\prime \prime}\right|=|C|$. Let $C_{0}=C \cup\{T\}$. Since $C_{0} \subseteq Q\left(C^{\prime}\right)$ for all $X, Y \in C_{0}$ there is $Z_{X, Y} \in Q\left(C^{\prime}\right)$ such that $Z_{X, Y} \leq$ X and $Z_{X, Y} \leq Y$. Let $C_{0}^{\prime}=\left\{Z_{X, Y}: X, Y \in C_{0}\right\}$ and let $C_{1}=C_{0} \cup C_{0}^{\prime}$. Suppose we have defined $C_{n}=C_{n-1} \cup C_{n-1}^{\prime} \subseteq Q\left(C^{\prime}\right)$ where $n \geq 1$, such that for every $X, Y \in C_{n-1}$ there is $Z \in C_{n}$ such that $Z \leq X$, $Z \leq Y$ and $\left|C_{n-1}\right|=\left|C_{n}\right|$. Then since $C_{n} \subseteq Q\left(C^{\prime}\right)$ for all $X, Y \in C_{n}$ there is $Z_{X, Y} \in Q\left(C^{\prime}\right)$ such that $Z_{X, Y} \leq X$ and $Z_{X, Y} \leq Y$. Then let $C_{n}^{\prime}=\left\{Z_{X, Y}: X, Y \in C_{n}\right\}$ and let $C_{n+1}=C_{n} \cup C_{n}^{\prime}$. With this the inductive construction is complete. Then $C^{\prime \prime}=\cup_{n \in \omega} C_{n}$ is a centered family of pure conditions containing $C \cup\{T\}$ and such that $\left|C^{\prime \prime}\right|=|C|$,
$C^{\prime \prime} \subseteq Q\left(C^{\prime}\right)$. Note that C is infinite, since by assumption C is closed with respect to final subsequences.

By the hypothesis of (2), \dot{f} is a $Q\left(C^{\prime \prime}\right)$-name for a real and so $\mathcal{A}_{i}(\dot{f})$ is a maximal antichain in $Q\left(C^{\prime \prime}\right)$. Since $C \cup\{T\} \subseteq C^{\prime \prime}, p \in Q\left(C^{\prime \prime}\right)$ and so there is a condition $q \in Q\left(C^{\prime \prime}\right)$ which is a common extension of p and an element q of \mathcal{A}_{i}. But $Q\left(C^{\prime \prime}\right) \subseteq Q\left(C^{\prime}\right)$ and so $q \in Q\left(C^{\prime}\right)$, which is a contradiction to p being incompatible with all elements of \mathcal{A}_{i}.

Corollary 2.4.5. Let C be a centered family of pure conditions and let \dot{f} be a $Q(C)$-name for a real. If there is a centered family C^{\prime} extending C such that \dot{f} is not a $Q\left(C^{\prime}\right)$-name for a real, then there is a centered family $C^{\prime \prime}$ extending C which has the same cardinality as C^{\prime} and such that \dot{f} is not a $Q\left(C^{\prime}\right)$-name for a real.

2.5. Generic Extensions of Centered Families

Definition 2.5.1. Let $Q_{\text {fin }}$ denote the partial order of all finite sequences of strictly increasing finite logarithmic measures with the end-extension relation. That is, $Q_{f i n}$ is the set of all sequences $\bar{r}=$ $\left\langle r_{0}, \ldots, r_{n}\right\rangle, n \in \omega$ such that for every $i \leq n, r_{i}=\left(s_{i}, h_{i}\right)$ is a finite logarithmic measure and for every $i \leq n-1$

$$
\max \left(s_{i}\right)<\min \left(s_{i+1}\right) \text { and } h_{i}\left(s_{i}\right)<h_{i+1}\left(s_{i+1}\right) .
$$

The level of the sequence $\bar{r}=\left\langle r_{0}, \ldots, r_{n}\right\rangle$ is the level of the highest measure r_{n}, denoted also $\|\bar{r}\|$. Whenever \bar{r}_{1} and \bar{r}_{2} are sequences in $Q_{f i n}$ define $\bar{r}_{1} \leq \bar{r}_{2}$ if \bar{r}_{2} is an initial segment of \bar{r}_{1}.

Definition 2.5.2. Let $\bar{r}=\left\langle r_{0}, \ldots, r_{n-1}\right\rangle$ be a sequence in $Q_{f i n}$ where for every $i \in n r_{i}=\left(s_{i}, h_{i}\right)$. Then \bar{r} extends the pure condition $T=\left\langle t_{i}: i \in \omega\right\rangle, t_{i}=\left(x_{i}, g_{i}\right)$ denoted $\bar{r} \leq T$, if
(1) $\operatorname{int}(\bar{r})=\cup\left\{s_{i}: i \in n\right\} \subseteq \operatorname{int}(T)$ and there is a sequence $\left\langle B_{0}, \ldots, B_{n-1}\right\rangle$ of finite subsets of ω such that max $B_{i}<\min B_{i+1}$ for every $i \in n-1$, and $s_{i} \subseteq \cup\left\{x_{j}: j \in B_{i}\right\}$ for all $i \in n$
(2) for every $i \in n$ and $e \subseteq s_{i}$ such that $h_{i}(e)>0$ there is $j \in B_{i}$ such that $g_{j}\left(e \cap x_{j}\right)>0$.

The finite logarithmic measure $r=(s, h)$ extends the pure condition $T=\left\langle t_{i}: i \in \omega\right\rangle$, denoted by $r \leq T$, if the sequence $\bar{r}=\langle r\rangle$ extends the pure condition T.

Definition 2.5.3. Let T be a pure condition. Then $\mathbb{P}(T)$ is the suborder of $Q_{f i n}$ consisting of all finite sequences \bar{r} extending T.

Lemma 2.5.4. Let T be a pure condition. Then
(1) $\forall k \in \omega$ the set $E_{k}=\{\bar{r} \in \mathbb{P}(T):|\bar{r}| \geq k\}$ is dense in $\mathbb{P}(T)$.
(2) For every pure condition X compatible with T and every $n \in \omega$, the set $D_{T}(X, n)=\left\{\bar{r} \in \mathbb{P}(T): \exists r_{j} \in \bar{r}\left(r_{j} \leq X\right.\right.$ and $\left\|r_{j}\right\| \geq$ $n)\}$ is dense in $\mathbb{P}(T)$.

Proof. Let $\bar{r} \in \mathbb{P}(T)$. Since $T \backslash \operatorname{int}(\bar{r})$ and X are compatible, there is a finite logarithmic measure z of level higher than $\|\bar{r}\|$ and n, which is their common extension. Then $\bar{r}^{\wedge}\langle z\rangle$ extends \bar{r} and is in $D_{T}(X, n)$.

Corollary 2.5.5. Let C be a centered family of pure conditions, T a pure condition compatible with C and G a $\mathbb{P}(T)$-generic filter. Then
in $V[G]$ there is a centered family C^{\prime} extending C below $R_{G}=\cup G=$ $\left\langle r_{i}: i \in \omega\right\rangle$ (and so below T) which is of the same cardinality as C.

Proof. By Lemma 2.5.4.1 R_{G} is a pure condition of strictly increasing finite logarithmic measures. For every $X \in C, n \in \omega$ the set $D_{T}(X, n)$ is dense in $\mathbb{P}(T)$ and so $G \cap D_{T}(X, n) \neq \emptyset$. Then $I_{X}=\left\langle i: r_{i} \leq X\right\rangle$ is infinite and so $R_{G} \wedge X=\left\langle r_{i}: i \in I_{X}\right\rangle$ is pure condition which is a common extension of R_{G} and X. Furthermore if $Y \leq X$ then $I_{Y} \subseteq I_{X}$ which implies $R_{G} \wedge Y \leq R_{G} \wedge X$. Therefore the family $\left\{R_{G} \wedge X\right\}_{X \in C}$ is centered.

2.6. Preprocessed Conditions

Definition 2.6.1. Let C be a centered family of pure conditions, \dot{f} a good $Q(C)$-name for a real, $k, i \in \omega$ and T a pure condition in $Q(C)$ such that $k<\min \operatorname{int}(T)$. Then T is preprocessed for $\dot{f}(i), k, C$ if for every $v \subseteq k$ the following holds:

If there are a centered family C^{\prime}, a pure condition $T^{\prime} \in Q\left(C^{\prime}\right)$ and $q \in \mathcal{A}_{i}(\dot{f})$ such that C^{\prime} extends $C,\left|C^{\prime}\right|=|C|, T^{\prime} \leq T$ and $\left(v, T^{\prime}\right) \leq q$, then there is $p \in \mathcal{A}_{i}(\dot{f})$ such that $(v, T) \leq p$.

Lemma 2.6.2. Let C be a centered family, \dot{f} a good $Q(C)$-name for a real, $i, k \in \omega, T \in Q(C)$ a pure condition, preprocessed for $\dot{f}(i), k$, C. Let C^{\prime} be a centered family extending $C,\left|C^{\prime}\right|=|C|$ and $T^{\prime} \in Q\left(C^{\prime}\right)$ a pure extension of T. Then T^{\prime} is preprocessed for $\dot{f}(i), k, C^{\prime}$.

Proof. Let $C^{\prime \prime}$ be a centered family extending $C^{\prime},\left|C^{\prime \prime}\right|=\left|C^{\prime}\right|$ and $T^{\prime \prime} \in Q\left(C^{\prime \prime}\right)$ a pure condition extending T^{\prime} such that for some
$p \in \mathcal{A}_{i}(\dot{f}),(v, T) \leq p$ where $v \subseteq k$. Then $C^{\prime \prime}$ extends $C,\left|C^{\prime \prime}\right|=|C|$, $T^{\prime \prime} \leq T$ and since T is preprocessed for $\dot{f}(i), k, C$ there is $q \in \mathcal{A}_{i}(\dot{f})$ such that $(v, T) \leq q$. However $T^{\prime} \leq T$ and so $\left(v, T^{\prime}\right) \leq q$.

Remark 2.6.3. In particular, if T is preprocessed for $\dot{f}(i), k, C$ and C^{\prime} is a centered family extending C such that $\left|C^{\prime}\right|=|C|$, then T is preprocessed for $\dot{f}(i), k, C^{\prime}$.

Lemma 2.6.4. Let C be a centered family, \dot{f} a good $Q(C)$-name for a real, $i, k \in \omega, T$ a pure condition in $Q(C)$. Then there is a centered family C^{\prime} extending $C,\left|C^{\prime}\right|=|C|$ and a pure condition T^{\prime} extending $T, T^{\prime} \in Q\left(C^{\prime}\right)$ such that T^{\prime} is preprocessed for $\dot{f}(i), k, C^{\prime}$.

Proof. Let v_{1}, \ldots, v_{s} enumerate the subsets of k. In finitely many steps we will obtain the family C^{\prime} and pure condition T^{\prime}. Consider $\left(v_{1}, T \backslash k\right)$. If there is a centered family C_{1}^{\prime} extending $C,\left|C_{1}^{\prime}\right|=|C|$ and a pure condition $T_{1}^{\prime} \in Q\left(C_{1}^{\prime}\right)$ such that $T_{1}^{\prime} \leq T \backslash k$ and for some $p_{1} \in \mathcal{A}_{1}(\dot{f}),\left(v_{1}, T_{1}^{\prime}\right) \leq p_{1}$, let $T_{1}=T_{1}^{\prime}$ and $C_{1}=C_{1}^{\prime}$. Otherwise let $T_{1}=T, C_{1}=C$. Proceed inductively. At step $(s-1)$ consider $\left(v_{s}, T_{s-1}\right)$ and C_{s-1}. If there is a centered family C_{s}^{\prime} extending C_{s-1}, $\left|C_{s}^{\prime}\right|=\left|C_{s-1}\right|$ such that for some pure condition $T_{s}^{\prime} \in Q\left(C_{s}\right)$ extending T_{s-1}, there is $p_{s} \in \mathcal{A}_{i}(\dot{f})$ such that $\left(v_{s}, T_{s}^{\prime}\right) \leq p_{s}$ let $T_{s}^{\prime}=T_{s}$ and $C_{s}=C_{s}^{\prime}$. Otherwise let $T_{s}=T_{s-1}, C_{s}=C_{s-1}$. It will be shown that $T^{\prime}=T_{s}$ is preprocessed for $\dot{f}(i), k, C^{\prime}=C_{s}$.

Let $v \subseteq k, C^{\prime \prime}$ a centered family extending $C^{\prime},\left|C^{\prime \prime}\right|=|C|, T^{\prime \prime}$ a pure condition in $Q\left(C^{\prime \prime}\right)$ extending T^{\prime} and such that for some $p \in \mathcal{A}_{i}(\dot{f})$, $\left(v, T^{\prime \prime}\right) \leq p$. Then $v=v_{j}$ for some $j \in s+1$. Since $C^{\prime \prime}$ extends $C^{\prime}, C^{\prime \prime}$
extends C_{j-1} and furthermore $T^{\prime \prime} \leq T^{\prime} \leq T_{j-1}$. Therefore at stage j we have chosen a centered family C_{j} and a pure condition $T_{j} \in Q\left(C_{j}\right)$ such that $\left(v_{j}, T_{j}\right) \leq p_{j}$ for $p_{j} \in \mathcal{A}_{i}(\dot{f})$. But $T^{\prime} \leq T_{j}$ and so $\left(v_{j}, T^{\prime}\right) \leq p_{j}$.

Corollary 2.6.5. Let C be a centered family, T a pure condition in $Q(C)$ and $k \in \omega$. Then there is a centered family C^{\prime} extending C, $\left|C^{\prime}\right|=|C|$ and a pure condition $T^{\prime} \in Q\left(C^{\prime}\right)$ extending T, such that for every $i \leq k, T^{\prime}$ is preprocessed for $\dot{f}(i), k, C^{\prime}$.

Proof. By Lemma 2.6.4 there is a centered family C_{0} extending $C,\left|C_{0}\right|=|C|$ and a pure extension $T_{0} \in Q\left(C_{0}\right)$ of $T \backslash k$, which is preprocessed for $\dot{f}(0), k, C_{0}$. Applying Lemma 2.6.4 at each step, obtain a finite sequence $\left\langle T_{i}: i \leq k\right\rangle$ of pure conditions such that $\forall i \in k T_{i+1} \leq T_{i}$ and a finite sequence of centered families $\left\langle C_{i}: i \leq k\right\rangle$ $C_{i} \subseteq Q\left(C_{i+1}\right),\left|C_{i+1}\right|=\left|C_{i}\right|, T_{i} \in Q\left(C_{i}\right)$ and T_{i} is preprocessed for $\dot{f}(i), k, C_{i}$. Let $T^{\prime}=T_{k}, C^{\prime}=C_{k}$. Then C_{k} extends $C,\left|C^{\prime}\right|=|C|$, $T^{\prime} \in Q\left(C^{\prime}\right)$ is an extension of C and since for every $i \leq k T^{\prime} \leq T_{i}$, by Lemma 2.6.2 for every $i \leq k, T^{\prime}$ is preprocessed for $\dot{f}(i), k, C^{\prime}$.

2.7. Generic Preprocessed Conditions

Lemma 2.7.1. Let C be a centered family of pure conditions, $\dot{f} a$ good $Q(C)$-name for a real and let T be a pure condition in $Q(C)$. Then there is a centered family C^{\prime} extending $C,\left|C^{\prime}\right|=|C|$ and a sequence of pure conditions $\left\langle T_{n}: n \in \omega\right\rangle \subseteq Q\left(C^{\prime}\right)$, such that
(1) $T_{0} \leq T$ and $\forall n \geq 1\left(T_{n} \leq T_{n-1}\right)$
(2) $\forall n \in \omega \forall i \leq n, T_{n}$ is preprocessed for $\dot{f}(i), n, C^{\prime}$.

Proof. By Lemma 2.6.4 there is a centered family C_{0} extending C, $\left|C_{0}\right|=|C|$ and a pure extension T_{0} of T in $Q\left(C_{0}\right)$ which is preprocessed for $\dot{f}(0), 0, C_{0}$. Proceed inductively. Suppose we have defined C_{n}, such that $\left|C_{n}\right|=\left|C_{n-1}\right|, T_{n} \in Q\left(C_{n}\right)$ such that for all $i \leq n, T_{n}$ is preprocessed for $\dot{f}(i), n, C_{n}$. Then by Corollary 2.6.5 there is a centered family C_{n+1} extending $C_{n},\left|C_{n+1}\right|=\left|C_{n}\right|$ and a pure condition $T_{n+1} \in Q\left(C_{n+1}\right)$ extending T_{n} such that for all $i \leq n+1, T_{n+1}$ is preprocessed for $\dot{f}(i), n+1, C_{n+1}$. With this the inductive construction is complete. Then $C^{\prime}=\cup_{n \in \omega} C_{n}$ is a centered family extending C, $\left|C^{\prime}\right|=|C|$, which contains the sequence $\left\langle T_{n}: n \in \omega\right\rangle$. For every $n \in \omega$ by construction T_{n}, for all $i \leq n, T_{n}$ is preprocessed for $\dot{f}(i), n, C_{n}$. Since C^{\prime} extends $C_{n},\left|C^{\prime}\right|=\left|C_{n}\right|$ by Lemma 2.6.2, for all $i \leq n, T_{n}$ is preprocessed for $\dot{f}(i), n, C^{\prime}$.

Remark 2.7.2. The sequence $\tau=\left\langle T_{n}: n \in \omega\right\rangle$ is not uniquely determined. Also τ is not formally a fusion sequence. Until the end of the section fix a centered family of pure conditions C, a good $Q(C)$ name \dot{f} for a real, $T \in Q(C)$ and a sequence of pure conditions $\tau=\left\langle T_{n}\right.$: $n \in \omega\rangle$ contained in $Q(C)$ which satisfies the conclusion of Lemma 2.7.1 for C, T and \dot{f}.

Definition 2.7.3. Let $\mathbb{P}_{\tau}(C, T, \dot{f})$ be the suborder of $\mathbb{P}(T)$ consisting of all finite sequences $\bar{r}=\left\langle r_{0}, \ldots, r_{\ell}\right\rangle, \ell \in \omega$ such that $r_{0} \leq T_{0}$ and for all $i: 1 \leq i \leq \ell$ and $j_{i}=\operatorname{maxint}\left(r_{i-1}\right), r_{i} \leq T_{j_{i}}$.

Lemma 2.7.4. The following sets are dense in $\mathbb{P}_{\tau}(T, C, \dot{f})$:

$$
\text { (1) } \forall k \in \omega, E_{k}=\left\{\bar{r} \in \mathbb{P}_{\tau}(C, T, \dot{f}):|\bar{r}| \geq k\right\}
$$

(2) for all $X \in C, n \in \omega, D_{\tau}(X, n)=\left\{\bar{r} \in \mathbb{P}_{\tau}(C, T, \dot{f}): \exists r_{j} \in\right.$ $\bar{r}\left(r_{j} \leq X\right.$ and $\left.\left.\left\|r_{j}\right\| \geq n\right)\right\}$.

Proof. Let $\bar{r}=\left\langle r_{i}: i \in \ell\right\rangle$ be a given sequence in $\mathbb{P}_{\tau}(C, T, \dot{f})$. Let $j_{\ell}=\operatorname{maxint}\left(r_{\ell-1}\right)$. Since $T_{j_{\ell}} \backslash \operatorname{int}(\bar{r})$ and X are compatible, there is a finite logarithmic measure r of level higher than the measure of $r_{\ell-1}$ and n, which is a common extension of $T_{j_{\ell}} \backslash \operatorname{int}(\bar{r})$ and X. Then $\bar{r} \curvearrowright\langle r\rangle$ is an extension of \bar{r} in $D_{\tau}(X, n)$.

Corollary 2.7.5. Let G be a $\mathbb{P}_{\tau}(C, T, \dot{f})$-generic filter. Then
(1) $R_{G}=\cup G=\left\langle r_{i}: i \in \omega\right\rangle$ is a pure condition of strictly increasing logarithmic measures such that for every $n \in \omega, R_{n}=\left\langle r_{i}\right.$: $i \geq n\rangle$ is a pure extension of $T_{j_{n}}$ where $j_{n}=\max \operatorname{int}\left(r_{n-1}\right)$.
(2) In $V[G]$ there is a centered family C^{\prime} extending C below R_{G} (and so below T) such that $\left|C^{\prime}\right|=|C|$. Then in particular for all $n \in \omega, x \in\left[\operatorname{int}\left(R_{n}\right)\right]^{<\omega}, R_{n} \backslash x$ is preprocessed for $\dot{f}(n)$, $\max x, C^{\prime}$.

Proof. By Lemma 2.7.4 R_{G} is a pure condition of strictly increasing finite logarithmic measures such that $\forall n \in \omega R_{n}$ is a pure extension of $T_{j_{n}}$. To obtain the second part note for every X in C and $n \in \omega$, the generic filter G meets $D_{\tau}(X, n)$ and so the sequence $I_{X}=\left\langle i: r_{i} \leq X\right\rangle$ is infinite. Then $R_{G} \wedge X=\left\langle r_{i}: i \in I_{X}\right\rangle$ is a common extension of R_{G} and X. Furthermore if $X \leq Y$, then $I_{X} \subseteq I_{Y}$ and so $R_{G} \wedge X \leq R_{G} \wedge Y$. Thus $C^{\prime}=\left\{R_{G} \wedge X: X \in C\right\}$ is centered and extends C below R_{G}, $\left|C^{\prime}\right|=|C|$.

Let $n \in \omega, x \in\left[\operatorname{int}\left(R_{n}\right)\right]^{<\omega}$. Note that $R_{n} \backslash x=R_{k}$ where $k=$ $i_{R_{G}}(\max x)=\min \left\{j: \max x<\min \operatorname{int}\left(r_{j}\right)\right\}$. However $x \subseteq \operatorname{int}\left(R_{n}\right)$ and so $\max x \leq \max \operatorname{int}\left(r_{k-1}\right)=j_{k}$. Since $R_{k} \leq T_{j_{k}}$ and for every $i \leq j_{k}$, $T_{j_{k}}$ is preprocessed for $\dot{f}(i), j_{k}, C^{\prime}$, and so by Lemma 2.6.2 for every $i \leq j_{k}, R_{k}$ is preprocessed for $\dot{f}(i), j_{k}, C^{\prime}$. However $\max x \leq j_{k}$ and $n \leq j_{k}$. Therefore R_{k} is preprocessed for $\dot{f}(n), \max x, C^{\prime}$.

CHAPTER 3

$$
\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}
$$

3.1. Induced Logarithmic Measures

In the following κ is an uncountable regular cardinal. For completeness we state $M A_{\text {countable }}(\kappa)$ (see $[\mathbf{2 4]}$).

Definition 3.1.1. $M A_{\text {countable }}(\kappa)$ is the statement: for every countable partial order \mathbb{P} and every family $\mathcal{D},|\mathcal{D}|<\kappa$ of dense subsets of \mathbb{P} there is a filter $G \subseteq \mathbb{P}$ such that $\forall D \in \mathcal{D}(G \cap D \neq \emptyset)$.

Let \mathcal{M} be the ideal of meager subsets of the real line. Recall that the covering number of $\mathcal{M}, \operatorname{cov}(\mathcal{M})$ is the minimal size of a family of meager sets which covers the real line. For every regular uncountable cardinal $\kappa, \operatorname{cov}(\mathcal{M}) \geq \kappa$ if and only if $M A_{\text {countable }}(\kappa)$ (see [3]).

Lemma 3.1.2. Let C be a centered family of pure conditions, $|C|<$ $\operatorname{cov}(\mathcal{M}), \dot{f}$ a good $Q(C)$-name for a real, $n \in \omega, T=\left\langle t_{i}: i \in \omega\right\rangle$ pure condition in $Q(C)$ such that for all $x \in[\operatorname{int}(T)]^{<\omega}, T \backslash x$ is preprocessed for $\dot{f}(n), \max x, C$. Then the logarithmic measure induced by the family $\mathcal{P}_{v}(C, T, \dot{f}(n))$ where $v \in[\omega]^{<\omega}$, of all $x \in[\operatorname{int}(T)]^{<\omega}$ such that:
(1) $\exists i \in \omega$ such that $h_{i}\left(x \cap s_{i}\right)>0$ where $t_{i}=\left(s_{i}, h_{i}\right)$
(2) $\exists w \subseteq x \exists p \in \mathcal{A}_{n}(\dot{f})$ such that $(v \cup w, T \backslash x) \leq p$, takes arbitrarily high values.

Proof. To see that the logarithmic measure induced by the family $\mathcal{P}_{v}(C, T, \dot{f}(n))$ takes arbitrarily high values, consider an arbitrary finite partition $\omega=A_{0} \cup \cdots \cup A_{M-1}$. By Lemma 2.3.7 there is a pure extension T^{\prime} of T which is compatible with C and such that $\operatorname{int}\left(T^{\prime}\right) \subseteq A_{j}$ for some $j \in M . \mathrm{By}|C|<\operatorname{cov}(\mathcal{M})$ and Corollary 2.5.5 there is a centered family of pure conditions C^{\prime} extending $C,\left|C^{\prime}\right|=|C|$ and a pure condition $R=\left\langle r_{i}: i \in \omega\right\rangle \in Q\left(C^{\prime}\right)$ of finite logarithmic measures of strictly increasing levels, which extends T^{\prime}, and so T. Then \dot{f} is a $Q\left(C^{\prime}\right)$-name for a real and so $\mathcal{A}_{n}(\dot{f})$ is a maximal antichain in $Q\left(C^{\prime}\right)$. Therefore there is a condition $\left(v \cup w, R^{\prime}\right) \in Q\left(C^{\prime}\right)$ which is a common extension of (v, R) and some $q \in \mathcal{A}_{n}(\dot{f})$. By definition of the extension relation there is a finite subsequence $\left\langle r_{i}: i \in\left[m_{1}, m_{2}\right]\right\rangle$ of R, such that $w \subseteq x=$ $\cup_{i=m_{1}}^{m_{2}} \operatorname{int}\left(r_{i}\right)$. We can assume that $m_{2} \geq 1$ and so there is $i \in\left[m_{1}, m_{2}\right]$ such that $\left\|r_{i}\right\|>0$. However $R \leq T$ and so there is $i \in \omega$ such that $h_{i}\left(x \cap s_{i}\right)>0$. Therefore (1) holds for x.

Since R is pure extension of T and T is preprocessed for $\dot{f}(n)$, $\max x, C$, there is $p \in \mathcal{A}_{n}(\dot{f})$ such that $(v \cup w, T \backslash x) \leq p$ and so part (2) holds as well. It remains to observe that $x \subseteq \operatorname{int}(R) \subseteq A_{j}$ and so by Lemma 2.1.10 the logarithmic measure induced by $\mathcal{P}_{v}(C, T, \dot{f}(n))$ takes arbitrarily high values.

Corollary 3.1.3. Let C be a centered family of pure conditions, $|C|<\operatorname{cov}(\mathcal{M}), \dot{f}$ a good $Q(C)$-name for a real, $n, k \in \omega, T=\left\langle t_{i}: i \in\right.$ $\omega)$ a pure condition in $Q(C)$ such that for all finite subsets x of $\operatorname{int}(T)$, $T \backslash x$ is preprocessed for $\dot{f}(n), \max x, C$. Then the logarithmic measure induced by the family $\mathcal{P}_{k}(C, T, \dot{f}(n))$ of all $x \in[\operatorname{int}(T)]^{<\omega}$ such that
(1) $\exists i \in \omega$ such that $h_{i}\left(s_{i} \cap x\right)>0$ where $t_{i}=\left(s_{i}, h_{i}\right)$,
(2) $\forall v \subseteq k \exists w \subseteq x \exists p \in \mathcal{A}_{n}(\dot{f})$ such that $(v \cup w, T \backslash x) \leq p$, takes arbitrarily high values.

Proof. Let v_{0}, \ldots, v_{L-1} enumerate all subsets of k. Then if for all $j \in L, x_{j} \in \mathcal{P}_{v_{j}}(T, \dot{f}(n))$, the set $x=x_{0} \cup \cdots \cup x_{L-1}$ belongs to $\mathcal{P}_{k}(C, T, \dot{f}(n))$. To see that the logarithmic measure induced by $\mathcal{P}_{k}(C, T, \dot{f}(n))$ takes arbitrarily high values consider an arbitrary finite partition $\omega=A_{0} \cup \cdots \cup A_{M-1}$. By Lemma 2.3.7 there is a pure extension T^{\prime} of T which is compatible with C and such that $\operatorname{int}\left(T^{\prime}\right) \subseteq A_{j}$ for some $j \in M . \operatorname{By}|C|<\operatorname{cov}(\mathcal{M})$ and Corollary 2.5.5 there is a centered family of pure conditions C^{\prime} extending $C,\left|C^{\prime}\right|=|C|$ and a pure condition $R=$ $\left\langle r_{i}: i \in \omega\right\rangle \in Q\left(C^{\prime}\right)$ of finite logarithmic measures of strictly increasing levels, which extends T^{\prime} and so T. Then in particular for every $x \in$ $[\operatorname{int}(R)]^{<\omega}, R \backslash x \leq T \backslash x$ and so R is preprocessed for $\dot{f}(n), \max x, C$. By Lemma 3.1.2 for every $i \in L$ there is $x_{i} \in \mathcal{P}_{v_{i}}\left(C^{\prime}, R, \dot{f}(n)\right)$. It will be shown that $x=\cup\left\{x_{i}: i \in L\right\}$ belongs to $\mathcal{P}_{k}(C, T, \dot{f}(n))$. It is clear that (1) holds for x.

To obtain (2) consider any $v \subseteq k$. Then $v=v_{i}$ for some $i \in L$. Since $x_{i}\left(x_{i} \subseteq x\right)$ belongs to $\mathcal{P}_{v_{i}}\left(C^{\prime}, R, \dot{f}(n)\right)$ there is $w_{i} \subseteq x_{i}$ and $q_{i} \in \mathcal{A}_{n}(\dot{f})$ such that $\left(v_{i} \cup w_{i}, R \backslash x_{i}\right) \leq q_{i}$, and so in particular $\left(v_{i} \cup w_{i}, R \backslash x\right) \leq q_{i}$. However $R \leq T, C^{\prime}$ extends $C,\left|C^{\prime}\right|=|C|$ and T is preprocessed for $\dot{f}(n), \max x, C$. But then $\forall v \subseteq k \exists p \in \mathcal{A}_{n}(\dot{f})$ such that $(v \cup$ $w, T \backslash x) \leq p$. Therefore $x \in \mathcal{P}_{k}(C, T, \dot{f}(n))$. It remains to observe that $x \subseteq \operatorname{int}(R) \subseteq A_{j}$ and so by Lemma 2.1.10 the logarithmic measure induced by $\mathcal{P}_{k}(C, T, \dot{f}(n))$ takes arbitrarily high values.

3.2. Good Extensions

Until the end of the section let C be a centered family, $|C|<$ $\operatorname{cov}(\mathcal{M}), \dot{f}$ a good $Q(C)$-name for a real, $T=\left\langle t_{i}: i \in \omega\right\rangle$ a pure condition in $Q(C)$ such that for all $n \in \omega$ and all $x \in\left[\operatorname{int}\left(T_{n}\right)\right]^{<\omega}$, where $T_{n}=\left\langle t_{i}: i \geq n\right\rangle, T \backslash x$ is preprocessed for $\dot{f}(n), \max x, C$.

Definition 3.2.1. Let $\mathbb{P}(C, T, \dot{f})$ be the suborder of $\mathbb{P}(T)$ of all sequences $\bar{r}=\left\langle r_{i}: i \in \ell\right\rangle$ such that $\forall i \forall v \subseteq i \forall s \subseteq \operatorname{int}\left(r_{i}\right)$ which is r_{i}-positive, there are $w \subseteq s$ and $p \in \mathcal{A}_{i}(\dot{f})$ such that $(v \cup w, T \backslash s) \leq p$.

Lemma 3.2.2. For every $k \in \omega$ the set $E_{k}(C, T, \dot{f})=\{\bar{r} \in \mathbb{P}(C, T, \dot{f})$: $|\bar{r}| \geq k\}$ is dense in $\mathbb{P}(C, T, \dot{f})$.

Proof. Let $\bar{r}=\left\langle r_{0}, \ldots, r_{m-1}\right\rangle$ be a condition in $\mathbb{P}(C, T, \dot{f})$ and let $\ell=\operatorname{maxint}(\bar{r})$. We can assume that $m \leq k$. Then $i_{T}(\ell) \geq$ m and so $T \backslash \operatorname{int}(\bar{r})$ is an extension of T_{m}. Then by Corollary 3.1.3 (and $|C|<\operatorname{cov}(\mathcal{M})$) the logarithmic measure h induced by $\mathcal{P}_{m}=$ $\mathcal{P}_{m}(C, T \backslash \operatorname{int}(\bar{r}), \dot{f}(m))$ takes arbitrarily high values and so there is x such that $h(x)>\left\|r_{m-1}\right\|$. Let $r_{m}=(x, h \upharpoonright \mathcal{P}(x))$. We claim that $\bar{r} \curvearrowright\left\langle r_{m}\right\rangle$ is an extension of \bar{r} which belongs to $E_{m}(C, T, \dot{f})$.

Let $v \subseteq m$ and $s \subseteq \operatorname{int}\left(r_{m}\right)=x, h(s)>0$. Then by definition of h there is $w \subseteq s$ and $p \in \mathcal{A}_{m}(\dot{f})$ such that $(v \cup w, T \backslash s) \leq p$. In finitely many steps obtain an end-extension of \bar{r} which belongs to E_{k}.

Lemma 3.2.3. For every $X \in C, n \in \omega$ the set $D_{X, n}(C, T, \dot{f})=$ $\left\{\bar{r} \in \mathbb{P}(C, T, \dot{f}): \exists r_{j} \in \bar{r}\left(r_{j} \leq X\right.\right.$ and $\left.\left.\left\|r_{j}\right\| \geq n\right)\right\}$ is dense in $\mathbb{P}(C, T, \dot{f})$.

Proof. Let $\bar{r}=\left\langle r_{0}, \ldots, r_{m-1}\right\rangle$ be a condition in $\mathbb{P}(C, T, \dot{f})$ and let $\ell=\max \operatorname{int}(\bar{r})$. Then $i_{T}(\ell) \geq m$ and so $T \backslash \operatorname{int}(\bar{r})$ is an extension of T_{m}. Furthermore since both X and $T \backslash \operatorname{int}(\bar{r})$ are in the centered family, there is $Y \in C$ which is their common extension. Then in particular $\forall x \in[\operatorname{int}(Y)]^{<\omega} Y$ is preprocessed for $\dot{f}(m), \max x$ and C. Then by Corollary 3.2.2 and $|C|<\operatorname{cov}(\mathcal{M})$ the logarithmic measure h induced by $\mathcal{P}_{m}(C, Y, \dot{f}(m))$ takes arbitrarily high values and so we can choose $x \subseteq \operatorname{int}(Y)$ such that $h(x)>\max \left\{\left\|r_{m-1}\right\|, n\right\}$. Let $r_{m}=(x, h \upharpoonright \mathcal{P}(x))$. It is sufficient to show that $\bar{r}^{\wedge}\left\langle r_{m}\right\rangle$ belongs to $\mathbb{P}(C, T, \dot{f})$.

Let $v \subseteq m, s \subseteq x$ and $h(s)>0$. By definition of h there is $w \subseteq s$ and a condition $q \in \mathcal{A}_{m}(\dot{f})$ such that $(v \cup w, Y \backslash s) \leq q$. Since T is preprocessed for $\dot{f}(m), \max s$ and C, there is $p \in \mathcal{A}_{m}(\dot{f})$ such that $(v \cup w, T \backslash s) \leq p$.

Corollary 3.2.4. Let G be a filter in $\mathbb{P}(C, T, \dot{f})$ which meets all $D_{X, n}(C, T, \dot{f})$ and $E_{k}(C, T, \dot{f})$ for $X \in C, n, k \in \omega$.
(1) Then $R_{G}=\cup G=\left\langle r_{i}: i \in \omega\right\rangle$ is a pure condition of finite logarithmic measures of strictly increasing levels such that $\forall i \forall v \subseteq i \forall s \subseteq \operatorname{int}\left(r_{i}\right)$ which is r_{i}-positive, there is $w \subseteq s$ and $p \in \mathcal{A}_{i}(\dot{f})$ such that $\left(v \cup w, R_{G} \backslash s\right) \leq p$.
(2) Furthermore there is a centered family C^{\prime} extending C below R_{G} (and so below T) such that $\left|C^{\prime}\right|=|C|$.

Proof. By Lemmas 3.2.2 and 3.2.3 R_{G} is a pure condition of finite logarithmic measures of strictly increasing levels which is compatible with C. Let $i \in \omega, v \subseteq i$ and $s \subseteq \operatorname{int}\left(r_{i}\right)$ which is r_{i}-positive. Then by definition of the partial order, there is $w \subseteq s$ and $p \in \mathcal{A}_{i}(\dot{f})$ such
that $(v \cup w, T \backslash s) \leq p$. However $R_{G} \leq T$ and so $\left(v \cup w, R_{G} \backslash s\right) \leq p$. To obtain part (2) repeat the proof of Corollary 2.5.5 to get a centered family $C^{\prime}=\left\{R_{G} \wedge X: X \in C\right\}$ extending C below R_{G}.

3.3. Mimicking the Almost Bounding Property

Definition 3.3.1. A family $\mathcal{H} \subseteq{ }^{\omega} \omega$ is $<^{*}$-directed if for every subfamily \mathcal{H}^{\prime} such that $\left|\mathcal{H}^{\prime}\right|<|\mathcal{H}|$ there is $h \in \mathcal{H}$ such that $\mathcal{H}^{\prime}<^{*} h$.

THEOREM 3.3.2. Let κ be a regular uncountable $\operatorname{cardinal}, \operatorname{cov}(\mathcal{M})=$ κ and \mathcal{H} an unbounded, $<^{*}$-directed family of reals of size κ. Let C be a centered family, $|C|<\kappa$, \dot{f} a good $Q(C)$-name for a real and $T \in Q(C)$. Then there is a centered family C^{\prime}, a pure condition $R \in Q\left(C^{\prime}\right)$ and a real $h \in \mathcal{H}$ such that $C \subseteq Q\left(C^{\prime}\right),|C|=\left|C^{\prime}\right|, R \leq T$ and such that for every centered family $C^{\prime \prime}$ extending C^{\prime}, for every $a \in[\omega]^{<\omega}$,

$$
(a, R) \Vdash_{Q\left(C^{\prime \prime}\right)} \exists^{\infty} i \in \omega(\dot{f}(i)<h(i)) .
$$

Proof. By Corollary 2.7.5 and $|C|<\operatorname{cov}(\mathcal{M})$, there is a centered family C_{1} extending C below T, which is of the same cardinality as C and such that there is a pure condition $T_{1} \in Q\left(C_{1}\right), T_{1} \leq T$ with the property that if $T_{1}=\left\langle t_{i}^{1}: i \in \omega\right\rangle$ then for every $n \in \omega$ and every finite subset x of $\operatorname{int}\left(T_{1} \backslash \operatorname{int}\left(t_{n-1}^{1}\right)\right), T_{1} \backslash x$ is preprocessed for $\dot{f}(n), \max x$, C_{1}. By $\left|C_{1}\right|<\operatorname{cov}(\mathcal{M})$ there is a filter $G \subseteq \mathbb{P}\left(C_{1}, T_{1}, \dot{f}\right)$ meeting $E_{k}\left(C_{1}, T_{1}, \dot{f}\right)$ and $D_{X, n}\left(C_{1}, T_{1}, \dot{f}\right)$ for all $k, n \in \omega$ and $X \in C_{1}$. Then by Corollary 3.2.4 the pure condition $T_{2}=\cup G=\left\langle r_{i}: i \in \omega\right\rangle$ extends T_{1}, consists of finite logarithmic measures of strictly increasing levels and for all $\forall i \in \omega \forall v \subseteq i \forall s \subseteq \operatorname{int}\left(r_{i}\right)$ which is r_{i}-positive, there is $w \subseteq s$
and $p \in \mathcal{A}_{i}(\dot{f})$ such that $\left(v \cup w, T_{2} \backslash s\right) \leq p$. For all $i \in \omega$ let $g(i)$ be the maximal k such that there are $v \subseteq i, w \subseteq \operatorname{int}\left(r_{i}\right), p \in \mathcal{A}_{i}(\dot{f})$ such that $\left(v \cup w, T_{2}\right) \leq p$ and $p \Vdash \check{k}=\dot{f}(i)$. We can assume that g is nondecreasing. Otherwise redefine $g(i)=\max \{g(j): j \leq i\}$. For every $X \in C_{1}$ let $J_{X}=\left\{i: r_{i} \leq X\right\}$ and let F_{X} be a step function defined as follows: $F_{X}(\ell)=g\left(J_{X}(i+1)\right)$ iff $\ell \in\left(J_{X}(i), J_{X}(i+1)\right]$ where $J_{X}(m)$ is the m-th element of J_{X}. Since \mathcal{H} is unbounded for all X in C_{1} there is $h_{X} \in \mathcal{H}$ such that $h_{X} \not \mathbb{Z}^{*} F_{X}$. The cardinality of $\left\{h_{X}: X \in C_{1}\right\}$ does not exceed $\left|C_{1}\right|$ and so is less than κ. By the hypothesis on \mathcal{H} there is $h \in \mathcal{H}$ such that $h_{X} \leq^{*} h$ for every $X \in C_{1}$. We can assume that h is nondecreasing. Note that:
(1) $\forall X \in C_{1} \forall i \in \omega\left(g(i) \leq F_{X}(i)\right)$
(2) Since $\exists^{\infty} i \in \omega\left(F_{X}(i)<h_{X}(i)\right)$ and $\forall^{\infty} i \in \omega\left(h_{X}(i) \leq h(i)\right)$ we have $\exists^{\infty} i \in \omega\left(F_{X}(i)<h(i)\right)$. That is $h \not \mathbb{Z}^{*} F_{X}$.
(3) By part (1) and (2) the set $J=\{i \in \omega: g(i)<h(i)\}$ is infinite.
(4) Furthermore $\exists^{\infty} i \in J_{X}\left(F_{X}(i)<h(i)\right)$. Suppose not. Then $\forall^{\infty} i \in J_{X}\left(h(i) \leq F_{X}(i)\right)$ and so there is $m_{0} \in \omega$ such that $\forall i \in J_{X}$ if $i>m_{0}$ then $\left(h(i) \leq F_{X}(i)\right)$. Let $m \in \omega$ be such that $J_{X}(m)=\min J_{X}-m_{0}$. Then $\omega-J_{X}(m)=\cup\left\{\left(J_{X}(i), J_{X}(i+\right.\right.$ 1)] : $i \geq m\}$ and so if $\ell \in \omega-J_{X}(m)$, then there is $i \geq m$ such that $\ell \in\left(J_{X}(i), J_{X}(i+1)\right]$. Then $h(\ell) \leq h\left(J_{X}(i+1)\right) \leq$ $F_{X}\left(J_{X}(i+1)\right)=F_{X}(\ell)$ and so $h(\ell) \leq F_{X}(\ell)$. This implies that $h \leq^{*} F_{X}$ which is a contradiction to part 2.
(5) However $\forall i \in J_{X}\left(F_{X}(i)=g(i)\right)$ and so by part 4 the set $I_{X}=J_{X} \cap J$ is infinite.

Let $R=\left\langle r_{i}: i \in J\right\rangle$. Then for every $X \in C_{1}$ the pure condition $R \wedge X=\left\langle r_{i}: i \in I_{X}\right\rangle$ is a common extension of R and X. Furthermore if $X \leq Y$ then $I_{X} \subseteq I_{Y}$ since $J_{X} \subseteq J_{Y}$. Therefore $C^{\prime}=\left\{R \wedge X: X \in C_{1}\right\}$ is a centered family which extends C_{1} below R which is of the same cardinality as C_{1}. Let $C^{\prime \prime}$ be an arbitrary centered family which extends C^{\prime}. We will show that $\forall a \in[\omega]^{<\omega}(a, R) \Vdash_{Q\left(C^{\prime \prime}\right)} \exists^{\infty} i \in \omega(\dot{f}(i)<\check{h}(i))$.

Fix any $a \in[\omega]^{<\omega}$ and $k \in \omega$. Let $\left(b, R^{\prime}\right)$ be an arbitrary extension of (a, R) in $Q\left(C^{\prime \prime}\right)$. There is $i \in J, i>k$ such that $b \subseteq i$ and $s=$ $\operatorname{int}\left(R^{\prime}\right) \cap \operatorname{int}\left(r_{i}\right)$ is r_{i}-positive. But then, there is $w \subseteq s$ such that $\left(b \cup w, T_{2} \backslash s\right) \leq p$ for some $p \in \mathcal{A}_{i}(\dot{f})$. However $R^{\prime} \backslash s \leq R \backslash s \leq T_{2} \backslash s$. Therefore $\left(b \cup w, R^{\prime} \backslash s\right) \leq\left(b, R^{\prime}\right)$ and $\left(b \cup w, R^{\prime} \backslash s\right) \leq p$. Let $j \in \omega$ be such that $p \Vdash \check{j}=\dot{f}(i)$. Then by definition of g we have that $j \leq g(i)$. Since $i \in J, g(i)<h(i)$ and so

$$
\left(b \cup w, R^{\prime} \backslash s\right) \Vdash_{Q\left(C^{\prime \prime}\right)} " \dot{f}(i)=\check{j} \leq \check{g}(i)<\check{h}(i) "
$$

However $\left(b, R^{\prime}\right)$ was an arbitrary extension of (a, R) in $Q\left(C^{\prime \prime}\right)$. Therefore $(a, R) \Vdash_{Q\left(C^{\prime \prime}\right)}$ " $\exists i \in \omega(i>k \wedge \dot{f}(i)<\check{h}(i))$ ". Since k was arbitrary as well $(a, R) \Vdash_{Q\left(C^{\prime \prime}\right)}$ " $\exists{ }^{\infty} i \in \omega(\dot{f}(i)<\check{h}(i))$ ".

3.4. Adding an Ultrafilter

Lemma 3.4.1. Let κ be a regular uncountable cardinal, $\operatorname{cov}(\mathcal{M})=\kappa$, $\mathcal{H} \subseteq{ }^{\omega} \omega$ an unbounded $<^{*}$-directed family, $|H|=\kappa, \forall \lambda<\kappa\left(2^{\lambda} \leq \kappa\right)$. Then there is a centered family C such that $|C|=\kappa$ and
(1) $\Vdash_{Q(C)}$ " \mathcal{H} is unbounded",
(2) $Q(C)$ adds a real not split by the ground model reals.

Proof. Let $\mathcal{N}=\left\{\dot{f}_{\alpha}\right\}_{\alpha<\kappa}$ be an enumeration of all names for functions in ${ }^{\omega} \omega$ for partial orders $Q\left(C^{\prime}\right)$ where C^{\prime} is a centered family of pure conditions of size $<\kappa$. Furthermore let $\mathcal{A}=\left\{A_{\alpha+1}\right\}_{\alpha<\kappa}$ be an enumeration of $[\omega]^{\omega}$. The centered family C will be obtained by transfinite induction of length κ.

Begin with arbitrary pure condition T in Q and $C_{0}=\{T \backslash v: v \in$ $\left.[\omega]^{<\omega}\right\}$. If α is a successor, $\alpha=\beta+1$ and we have defined the centered family C_{β}, let $\dot{g}_{\beta+1}$ be the name with least index in $\mathcal{N} \backslash\left\{\dot{g}_{\gamma+1}\right\}_{\gamma<\beta}$ which is a $Q\left(C_{\beta}\right)$-name for a real. Suppose $\dot{g}_{\beta+1}$ is a good $Q\left(C_{\beta}\right)$-name. Then let $T^{\prime} \in Q\left(C_{\beta}\right)$ be arbitrary. By Lemma 2.3.7 there is a pure extension $T^{\prime \prime}$ of T^{\prime} such that $\operatorname{int}\left(T^{\prime \prime}\right) \subseteq A_{\beta+1}$ or $\operatorname{int}\left(T^{\prime \prime}\right) \subseteq A_{\beta+1}^{c}$ and $T^{\prime \prime}$ is compatible with C_{β}. By Corollary 2.5.5 there is a centered family $C_{\beta+1}^{\prime}$ extending C_{β} below $T^{\prime \prime}$ such that $\left|C_{\beta+1}^{\prime}\right|=\left|C_{\beta+1}\right|$. Then by Theorem 3.3.2 there is a centered family $C_{\beta+1}$ which extends $C_{\beta+1}^{\prime},\left|C_{\beta+1}\right|=\left|C_{\beta+1}^{\prime}\right|$ and a pure condition $T_{\beta+1} \in Q\left(C_{\beta+1}\right)$ such that $T_{\beta+1} \leq T^{\prime \prime}$ (and so in particular $\operatorname{int}\left(T_{\beta+1}\right) \subseteq A_{\beta+1}$ or $\left.\operatorname{int}\left(T_{\beta+1}\right) \subseteq A_{\beta+1}^{c}\right)$ and such that for some function $h_{\beta+1}$ from the unbounded family \mathcal{H}, for every centered family $C^{\prime \prime}$ extending $C_{\beta+1}$,

$$
\forall a \in[\omega]^{<\omega}\left(a, T_{\beta+1}\right) \Vdash_{Q\left(C^{\prime \prime}\right)} \exists^{\infty} i \in \omega\left(\dot{g}_{\beta+1}(i) \leq \check{h}_{\beta+1}(i)\right) .
$$

If $\dot{g}_{\beta+1}$ is not a good $Q\left(C_{\beta}\right)$-name, then by Corollary 2.4.5 there is a centered family $C_{\beta+1}^{\prime}$ extending $C_{\beta},\left|C_{\beta+1}^{\prime}\right|=\left|C_{\beta}\right|$ such that $\dot{g}_{\beta+1}$ is not a $Q\left(C_{\beta+1}^{\prime}\right)$-name for a real. Let $T^{\prime} \in Q\left(C_{\beta+1}^{\prime}\right)$ be arbitrary. By Lemma 2.3.7 there is a pure condition $T_{\beta+1}$ extending T^{\prime} which is compatible with $C_{\beta+1}^{\prime}$ and such that $\operatorname{int}\left(T_{\beta+1}\right) \subseteq A_{\beta+1}$ or $\operatorname{int}\left(T_{\beta+1}\right) \subseteq$
$A_{\beta+1}^{c}$. By $\left|C_{\beta+1}^{\prime}\right|<\operatorname{cov}(\mathcal{M})$ and Corollary 2.5.5 there is a centered family $C_{\beta+1}$ extending $C_{\beta+1}^{\prime}$ below $T_{\beta+1}$ such that $\left|C_{\beta+1}\right|=\left|C_{\beta+1}^{\prime}\right|$.

If α is a limit let $C_{\alpha}=\cup_{\beta<\alpha} C_{\beta}$. Then C_{α} is of cardinality less than κ and extends C_{β} for every $\beta<\alpha$. With this the inductive construction is complete. Let $C=\cup_{\alpha<\kappa} C_{\alpha}$. Then C is centered, of cardinality κ and extends C_{α} for every $\alpha<\kappa$.
(1) Let \dot{f} be a $Q(C)$-name for a real. Then

$$
\dot{f}=\cup\left\{\left\langle\left\langle i, j_{p}^{i}\right\rangle, p\right\rangle: p \in \mathcal{A}_{i}(\dot{f}), i \in \omega, j_{p}^{i} \in \omega\right\}
$$

where for every $i \in \omega, \mathcal{A}_{i}(\dot{f})$ is a maximal antichain in $Q(C)$ and so $\left|\mathcal{A}_{i}(\dot{f})\right|=\aleph_{0}$. For every $i \in \omega, p \in \mathcal{A}_{i}(\dot{f})$ let $\alpha_{i}(p)=\min \{\gamma: p \in$ $\left.Q\left(C_{\gamma}\right)\right\}$. Since κ is regular uncountable $\sup \left\{\alpha_{i}(p): p \in \mathcal{A}_{i}(\dot{f})\right\}=$ $\alpha_{i}<\kappa$ and furthermore $\alpha=\sup _{i \in \omega} \alpha_{i}<\kappa$ is minimal such that \dot{f} is a $Q\left(C_{\alpha}\right)$-name for a function in ${ }^{\omega} \omega$. Then \dot{f} is a name in the list \mathcal{N}. Note that for every $\beta \geq \alpha, \dot{f}$ is a $Q\left(C_{\beta}\right)$-name and so there is $\delta<\kappa$ such that \dot{f} is the name with least index in $\mathcal{N} \backslash\left\{\dot{g}_{\gamma+1}\right\}_{\gamma<\delta}$ which is a $Q\left(C_{\delta}\right)$-name (note $\alpha \leq \delta$). That is $\dot{f}=\dot{g}_{\delta+1}$. If \dot{f} is not a good $Q\left(C_{\delta}\right)$ name, then we would have chosen the centered family $C_{\delta+1}$ such that \dot{f} is not $Q\left(C_{\delta+1}\right)$-name for a real. Then in particular there is $i \in \omega$ and $p \in Q\left(C_{\delta+1}\right)$ such that p is incompatible with all elements of $\mathcal{A}_{i}(\dot{f})$ as conditions in $Q\left(C_{\delta+1}\right)$. But then by Lemma 2.2.6 $\mathcal{A}_{i}(\dot{f}) \cup\{p\}$ is an antichain in Q and so $\mathcal{A}_{i}(\dot{f}) \cup\{p\}$ remains an antichain in $Q(C)$. Then in particular $\mathcal{A}_{i}(\dot{f})$ is not maximal in $Q(C)$, i.e. \dot{f} is not a $Q(C)$ name for a real, which is a contradiction. Therefore $\dot{f}=\dot{g}_{\delta+1}$ is a good
$Q\left(C_{\delta}\right)$-name. But then by the choice of $T_{\delta+1}$ in $C_{\delta+1}$

$$
\forall a \in[\omega]^{<\omega}\left(a, T_{\delta+1}\right) \Vdash_{Q(C)} \exists^{\infty} i \in \omega\left(\dot{f}(i) \leq \check{h}_{\delta+1}(i)\right) .
$$

It remains to observe that $\left\{\left(a, T_{\delta+1}\right): a \in[\omega]^{<\omega}\right\}$ is predense in $Q(C)$ which implies $\Vdash_{Q(C)} \check{h}_{\delta+1} \not \mathbb{Z}^{*} \dot{f}$.
(2) Let G be a $Q(C)$ generic filter and $\cup G=\cup\{u: \exists T(u, T) \in G\}$. For every $\gamma \in \kappa$ the set $D_{\gamma+1}=\left\{(u, T) \in Q(C): T \leq T_{\gamma+1}\right\}$ is dense and so $\cup G \subseteq^{*} \operatorname{int}\left(T_{\gamma+1}\right)$, which implies that $\cup G$ is almost contained in $A_{\gamma+1}$ or in $A_{\gamma+1}^{c}$.

3.5. Some preservation theorems

We will use the following well known fact about $c c c$ forcing notions.

Remark 3.5.1. Note that if \mathcal{H} a $<^{*}$-directed family, then for every $c c c$ forcing notion $\mathbb{P},\left(\mathcal{H} \text { is }<^{*} \text {-directed }\right)^{V^{\mathbb{P}}}$.

The preservation theorem below will be of importance for the consistency result to be presented. The proof of Theorem 3.5.2 can be found in Judah and Shelah, [21], Theorem 2.2 (see also [13]).

Theorem 3.5.2. Let $\mathcal{H} \subseteq{ }^{\omega} \omega$ be unbounded such that every countable subset of \mathcal{H} is dominated by an element of \mathcal{H}. If $\left\langle\mathbb{P}_{\gamma}, \dot{\mathbb{Q}}_{\gamma}: \gamma \in \alpha\right\rangle$ is a finite support iteration, $\operatorname{cf}(\alpha)=\omega$, such that $\forall \gamma \in \alpha$, $\Vdash_{\mathbb{P}_{\gamma}}$ " $\dot{\mathbb{Q}}_{\gamma}$ is ccc" and $\Vdash_{\mathbb{P}_{\gamma}}$ "ȞH is unbounded". Then $\Vdash_{\mathbb{P}_{\alpha}}$ " \mathcal{H} is unbounded".

Proof. Suppose there is a \mathbb{P}_{α}-generic filter G such that in $V[G]$ there is $\exists f \in{ }^{\omega} \omega$ dominating \mathcal{H}. Let \dot{f} a \mathbb{P}-name for the real f. Let $\left\{\alpha_{n}\right\}_{n \in \omega}$ be increasing and cofinal sequence in α and for every $n \in \omega$ let
f_{n} be a function in $V\left[G_{\alpha_{n}}\right]$, where $G_{\alpha_{n}}=G \cap \mathbb{P}_{\alpha_{n}}$ such that for every $i \in \omega, f_{n}(i)=j$ iff $\exists q \in \mathbb{P}_{\alpha}\left(q \upharpoonright \alpha_{n} \in G_{\alpha_{n}}\right.$ and $\left.q \Vdash_{\alpha} \dot{f}(i)=\check{j}\right)$. Then for every $n \in \omega$ there is a function $h_{n} \in \mathcal{H}$ such that $V\left[G_{\alpha_{n}}\right] \vDash\left(h_{n} \not \mathbb{Z}^{*} f_{n}\right)$. Since \mathbb{P}_{α} is $c c c$, there is $\mathcal{C} \in[\mathcal{H}]^{\omega} \cap V$ such that $\left\{h_{n}: n \in \omega\right\} \subseteq \mathcal{C}$ and a function $h \in \mathcal{H} \cap V\left(\mathcal{C} \leq^{*} h\right)$. Then in particular for every $n \in \omega$, there is k_{n} such that $\forall i \geq k_{n}\left(h_{n}(i) \leq h(i)\right)$.

By assumption $V[G] \vDash \mathcal{H} \leq^{*} f$. Then there are $p \in G$ and $k \in \omega$ such that $\forall i \geq k, p \Vdash \check{h}(i) \leq \dot{f}(i)$. Fix α_{n} such that $\operatorname{support}(p) \subseteq \alpha_{n}$. Then, since $V\left[G_{\alpha_{n}}\right] \vDash h_{n} \not \leq f_{n}$ we have in particular

$$
V\left[G_{\alpha_{n}}\right] \vDash \exists i>\max \left(k_{n}, k\right)\left(f_{n}(i)<h_{n}(i)\right)
$$

and so there is $i>\max \left(k_{n}, k\right)$ and condition $p^{\prime} \in G_{\alpha_{n}}$ such that $p^{\prime} \Vdash$ $\dot{f}_{n}(i)<\check{h}_{n}(i)$ where \dot{f}_{n} is a $\mathbb{P}_{\alpha_{n}}$-name for f_{n}. By definition of f_{n} there is a condition $q \in \mathbb{P}_{\alpha}$ such that $q \upharpoonright \alpha_{n} \in G_{\alpha_{n}}$ and $q \Vdash_{\alpha} \dot{f}_{n}(i)=\dot{f}(i)$. Since $p \upharpoonright \alpha_{n}, p^{\prime}$ and $q \upharpoonright \alpha_{n}$ belong to the generic filter $G_{\alpha_{n}}$ there is $q^{\prime} \in \mathbb{P}_{\alpha}$ which is a common extension of p, p^{\prime} and q. Then

$$
q^{\prime} \Vdash_{\alpha} \dot{f}_{n}(i)=\dot{f}(i)<\check{h}_{n}(i) \leq \check{h}(i) \leq \dot{f}(i)
$$

which is a contradiction.

Lemma 3.5.3. Let \mathcal{H} be an unbounded family of reals and let \mathbb{C} be the Cohen forcing notion. Then $\Vdash_{\mathbb{C}}$ " \mathcal{H} is unbounded".

Proof. Let \dot{f} be a \mathcal{H}-name for a function in ${ }^{\omega} \omega$. It will be shown that there is $h \in \mathcal{H}$ such that $\Vdash \check{h} \not \mathbb{Z}^{*} \dot{f}$. For every $p \in \mathbb{C}$ let

$$
g_{p}(i)=\min \{j: \exists q \leq p(q \Vdash \dot{f}(i)=j)\} .
$$

Then $\left\{g_{p}: p \in \mathbb{C}\right\}$ is countable and so there is $g \in{ }^{\omega} \omega \cap V$ such that $\forall p \in \mathbb{C}\left(g_{p} \leq^{*} g\right)$. That is for all $p \in \mathbb{C}$ there is $m_{p} \in \omega$ such that $\forall i \geq m_{p}\left(g_{p}(i) \leq g(i)\right)$. Since \mathcal{H} is unbounded there is $h \in \mathcal{H}$ which is not dominated by g, that is the set $A=\{i \in \omega: g(i)<h(i)\}$ is infinite. It is sufficient to show that $\Vdash \exists^{\infty} i \in A(\dot{f}(i) \leq g(i))$, since then $\Vdash \exists^{\infty} i \in \omega(\dot{f}(i)<\check{h}(i))$.

Let $p \in \mathbb{C}$. Suppose there is no $q \leq p$ such that $q \Vdash \exists^{\infty} i \in \check{A}(\dot{f}(i) \leq$ $\check{g}(i))$. That is $p \Vdash \neg\left(\exists^{\infty} i \in A(\dot{f}(i) \leq \check{g}(i))\right)$ and so $p \Vdash \forall^{\infty} i \in A(\check{g}(i)<$ $\dot{f}(i))$. That is there is $m \in \omega$ and and extension q of p such that for all $i \in A, i>m, q \Vdash \check{g}(i)<\dot{f}(i)$. Let $i \in A$ be greater than m and m_{q}. Let q^{\prime} be an extension of q and let $j \in \omega$ such that $q^{\prime} \Vdash \dot{f}(i)=\check{j}$ and $j=g_{q}(i)$. Then $q^{\prime} \Vdash$ " $\dot{f}(i)=\check{g}_{q}(i) \leq \check{g}(i)<\dot{f}(i) "$, which is a contradiction.

Corollary 3.5.4. Let $\mathcal{H} \subseteq{ }^{\omega} \omega$ be unbounded and let $\mathbb{C}(\kappa)$ be the forcing notion for adding κ Cohen reals. Then $(\mathcal{H} \text { is unbounded })^{V^{\mathbb{C}(\kappa)}}$.

Proof. By Lemma 3.5.3, Theorem 3.5.2 and Lemma 3.5.6.
The proof of Lemma 3.5.5 can be found in Bartoszynski, Judah, [4].

Lemma 3.5.5. Let $\mathcal{H} \subseteq{ }^{\omega} \omega$ be an unbounded, $<^{*}$-directed family, $|\mathcal{H}|=\kappa, \mathbb{P}$ a forcing notion, $|\mathbb{P}|<\kappa$. Then $(\mathcal{H}$ is unbounded $))^{V^{\mathbb{P}}}$.

Proof. Let \dot{f} be a \mathbb{P}-name for a function in ${ }^{\omega} \omega$. For every $p \in$ \mathbb{P} and $i \in \omega$ let $g_{p}(i)=\min \{j: \exists q \leq p(q \Vdash \dot{f}(i)=\check{j})\}$. Since $(\mathcal{H} \text { is unbounded) })^{V^{\mathbb{P}}}$ for every $p \in \mathbb{P}$ there is a function $h_{p} \in \mathcal{H} \cap V$ which is not dominated by g_{p}. However $\left|\left\{h_{p}: p \in \mathbb{P}\right\}\right|<\kappa$ and so there
is $h \in \mathcal{H} \cap V$ which dominates all h_{p} 's. That is for every $p \in \mathbb{P}$ there is $n_{p} \in \omega$ such that $\forall i \geq n_{p}\left(h_{p}(i) \leq h(i)\right)$.

Suppose $p \in \mathbb{P}$ such that $p \Vdash$ " $\mathcal{H}<^{*} \dot{f}$ ". Then there is $p_{0} \leq p$ and $n_{0} \in \omega$ such that $\forall i \geq n_{0}, p_{0} \Vdash \check{h}(i) \leq \dot{f}(i)$. Let $i>\max \left\{n_{0}, n_{p}\right\}$ be such that $g_{p_{0}}(i)<h_{p_{0}}(i)$ and let q be an extension of p_{0} such that $q \Vdash g_{p_{0}}(i)=\dot{f}(i)$. Then $q \Vdash " \dot{f}(i)=g_{p_{0}}(i)<h_{p_{0}}(i) \leq h(i) \leq \dot{f}(i) "$ which is a contradiction.

The last two Lemmas in this section summarize some well known facts of finite support iterations of $c c c$ forcing notions.

Lemma 3.5.6. Let κ be an ordinal of uncountable cofinality and let $\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}: \alpha<\kappa\right\rangle$ be a finite support iteration of ccc forcing notions. Then every real in $V^{\mathbb{P}_{\kappa}}$ is obtained at some initial stage of the iteration of countable cofinality. That is

$$
{ }^{\omega} \omega \cap V^{\mathbb{P}_{\kappa}}=\cup\left\{{ }^{\omega} \omega \cap V^{\mathbb{P}_{\alpha}}: \alpha<\kappa, c f(\alpha)=\omega\right\} .
$$

Proof. Let \dot{f} be a \mathbb{P}_{κ}-name for a real. We can assume that \dot{f} is of the form $\dot{f}=\cup\left\{\left\langle\left\langle i, j_{p}^{i}\right\rangle, p\right\rangle: p \in A_{i}, i \in \omega, j_{p}^{i} \in \omega\right\}$ where each A_{i} is a maximal antichain of conditions in \mathbb{P}_{κ} deciding $\dot{f}(i)$. Since \mathbb{P}_{κ} is $c c c$ every A_{i} is countable. Furthermore \mathbb{P} is a finite support iteration and so in particular for every $p \in A_{i}$, the support of p is finite. Therefore for all $i \in \omega, \alpha_{i}=\sup \left\{\alpha_{i}^{p}: p \in A_{i}\right\}$ where $\alpha_{i}^{p}=\max \operatorname{support}(p)$ is of countable cofinality and so is smaller than κ. But then $\alpha=\sup _{i \in \omega} \alpha_{i}$ is also of countable cofinality (thus $\alpha<\kappa$) and \dot{f} is a \mathbb{P}_{α}-name.

Lemma 3.5.7. Let κ be a regular uncountable cardinal. Let $\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}\right.$: $\alpha<\kappa\rangle$ be a finite support iteration of ccc forcing notions of length κ. Let G be a \mathbb{P}_{κ}-generic filter and let $\mathcal{A} \subseteq V[G] \cap^{\omega} \omega,|\mathcal{A}|<\kappa$. Then \mathcal{A} is obtained at some proper initial stage of the iteration.

Proof. For every f in \mathcal{A} let \dot{f} be a \mathbb{P}_{κ}-name for f. By Lemma 3.5.6 for every \dot{f} there is an ordinal α_{f} of countable cofinality such that \dot{f} is a $\mathbb{P}_{\alpha_{f}}$-name for a real. Let $\alpha=\sup \left\{\alpha_{f}: f \in \mathcal{A}\right\}$. Then $\operatorname{cf}(\alpha) \leq|\mathcal{A}|<\kappa$ and so $\alpha<\kappa$. It remains to observe that \mathcal{A} is contained in $V\left[G_{\alpha}\right]$ where $G_{\alpha}=G \cap \mathbb{P}_{\alpha}$.

$$
\text { 3.6. } \mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}
$$

Definition 3.6.1 (Hechler, [20]). Let \mathcal{A} be an infinite set of functions in ${ }^{\omega} \omega$. Then $\mathbb{H}(\mathcal{A})$ is the forcing notion consisting of all pairs (s, F) where $s \in \cup_{n \in \omega}{ }^{n} \omega$ and $F \in[\mathcal{A}]^{<\omega}$ with extension relation defined as follows. We say that $\left(s_{1}, F_{1}\right)$ extends $\left(s_{2}, F_{2}\right)$ (and denote this by $\left.\left(s_{1}, F_{1}\right) \leq\left(s_{2}, F_{2}\right)\right)$ if
(1) $s_{2} \subseteq s_{1}, F_{2} \subseteq F_{1}$,
(2) $\forall f \in F_{2} \forall k \in \operatorname{dom}\left(s_{1}\right) \backslash \operatorname{dom}\left(s_{2}\right)$ we have $s_{1}(k) \geq f(k)$.

The following is a well known fact about Hechler forcing, see [20].

Lemma 3.6.2. Let \mathcal{A} be an infinite set of functions in ${ }^{\omega} \omega$. Then the partial order $\mathbb{H}(\mathcal{A})$ is σ-centered, adds a real dominating \mathcal{A} and is of the same cardinality as the set \mathcal{A}.

Proof. Note that if $\left(s_{1}, F_{1}\right)$ and $\left(s_{2}, F_{2}\right)$ are elements of $\mathbb{H}(\mathcal{A})$ such that $s_{1}=s_{2}=s$, then $\left(s, F_{1} \cup F_{2}\right)$ is their common extension. To obtain

$$
\text { 3.6. } \mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}
$$

the second part of claim, it is sufficient to observe that for every $f \in \mathcal{A}$ the set $D_{f}=\{(s, F): f \in F\}$ is dense. Now let G be a $\mathbb{H}(\mathcal{A})$-generic filter and let $f_{G}=\cup\left\{s: \exists F \in[\mathcal{A}]^{<\omega}(s, F) \in G\right\}$. If $f \in \mathcal{A}$ and $(s, F) \in G \cap D_{f}$ then by definition of the extension relation, for every $i \geq|s|+1$ we have $f(i) \leq f_{G}(i)$.

Theorem 3.6.3 (GCH). Let κ be a regular uncountable cardinal. Then there is a ccc generic extension in which $\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}$.

Proof. Obtain a model V of $\mathfrak{b}=\mathfrak{c}=\kappa$ by adding κ-many Hechler reals (i.e. do a finite support iteration of length κ of Hechler forcing, see [19] and [8]). Let $\mathcal{H}=V \cap^{\omega} \omega$. Then \mathcal{H} is unbounded and every subfamily of \mathcal{H} of cardinality less than κ is dominated by an element of \mathcal{H}. Furthermore in V for every $\lambda<\kappa, 2^{\lambda}=\kappa$. By transfinite induction of length κ^{+}define a finite support iteration of $c c c$ forcing notions $\left\langle\left\langle\mathbb{P}_{\alpha}: \alpha \leq \kappa^{+}\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha}: \alpha<\kappa\right\rangle\right\rangle$ as follows.

Suppose α is a limit and for every $\beta<\alpha$ we have defined a ccc forcing notion \mathbb{P}_{β} and a \mathbb{P}_{β}-name $\dot{\mathbb{Q}}_{\beta}$ such that in $V^{\mathbb{P}_{\beta}}$ the family \mathcal{H} is unbounded and $\Vdash_{\mathbb{P}_{\beta}}$ " $\dot{\mathbb{Q}}_{\beta}$ is $c c c$ ". Let \mathbb{P}_{α} be the finite support iteration of $\left\langle\mathbb{P}_{\beta}, \dot{\mathbb{Q}}_{\beta}: \beta<\alpha\right\rangle$. Then:
(1) By Theorem 3.5.2 the family \mathcal{H} remains unbounded in $V^{\mathbb{P}_{\alpha}}$.
(2) Since \mathbb{P}_{α} is $c c c$, by Remark 3.5.1 \mathcal{H} is $<^{*}$-directed in $V^{\mathbb{P}_{\alpha}}$.
(3) In $V^{\mathbb{P}_{\alpha}}$ for every $\lambda<\kappa, 2^{\lambda} \leq \kappa$.

If α is a successor, $\alpha=\beta+1$ and \mathbb{P}_{β}-has been defined, then:
(1) Let $\dot{\mathbb{Q}}_{\beta}$ be a \mathbb{P}_{β} name for $\mathbb{C}(\kappa)$, i.e. the forcing notion for adding κ Cohen reals and let $\mathbb{P}_{\beta+1}=\mathbb{P}_{\alpha}=\mathbb{P}_{\beta} * \dot{\mathbb{Q}}_{\beta}$. Then
(a) By Corollary 3.5.4 the family \mathcal{H} is unbounded in $V^{\mathbb{P}_{\alpha}}$.
(b) Since \mathbb{P}_{α} is $c c c$, by Remark 3.5.1 \mathcal{H} is $<^{*}$-directed in $V^{\mathbb{P}_{\alpha}}$.
(c) Forcing notions with the countable chain condition do not collapse cardinals and so $\forall \lambda<\kappa\left(2^{\lambda} \leq \kappa\right)$.
(d) In $V^{\mathbb{P}_{\alpha}}$ the covering number of the meager ideal \mathcal{M} is κ.
(2) Therefore in $V^{\mathbb{P}_{\alpha}}$ the hypothesis of Lemma 3.4.1 holds and so there is a centered family of pure conditions C such that $Q(C)$ preserves \mathcal{H} unbounded and adds a real not spit by $[\omega]^{\omega} \cap V^{\mathbb{P}_{\alpha}}$. Let $\dot{\mathbb{Q}}_{\alpha}$ be a \mathbb{P}_{α}-name for $Q(C)$ and $\mathbb{P}_{\alpha+1}=\mathbb{P}_{\alpha} * \dot{\mathbb{Q}}_{\alpha}$. Then:
(a) By part (2) of Lemma 3.4.1, \mathcal{H} is unbounded in $V^{\mathbb{P}_{\alpha+1}}$.
(b) Since $\mathbb{P}_{\alpha+1}$ is $c c c, \mathcal{H}$ remains $<^{*}$-directed in $V^{\mathbb{P}_{\alpha+1}}$.
(c) Also by the ccc of $\mathbb{P}_{\alpha+1} \forall \lambda<\kappa\left(2^{\lambda} \leq \kappa\right)$.
(3) In $V^{\mathbb{P}_{\alpha+1}}$ let $\mathcal{A} \subseteq{ }^{\omega} \omega$ be an unbounded family, $|\mathcal{A}|<\kappa$ and let $\dot{\mathbb{Q}}_{\alpha+1}$ be a $\mathbb{P}_{\alpha+1}$-name for $\mathbb{H}(\mathcal{A})$. Let $\mathbb{P}_{\alpha+2}=\mathbb{P}_{\alpha+1} * \dot{\mathbb{Q}}_{\alpha+1}$.
(a) Then since $|\mathbb{H}(\mathcal{A})|=|\mathcal{A}|<\kappa$, by Lemma 3.5.5 the family \mathcal{H} remains unbounded in $V^{\mathbb{P}_{\alpha+2}}$.
(b) Since $\mathbb{H}(\mathcal{A})$ is $c c c$, by Remark 3.5.1 every subfamily of \mathcal{H} of size less than κ is dominated by an element of \mathcal{H}.
(c) Again by the $c c c$ of $\mathbb{P}_{\alpha+2}$, in $V^{\mathbb{P}_{\alpha+2}}$ for all $\lambda<\kappa\left(2^{\lambda} \leq \kappa\right)$.
(d) Furthermore \mathcal{A} is bounded in $V^{\mathbb{P}_{\alpha+2}}$.

With this the inductive construction is complete. Let $\mathbb{P}=\mathbb{P}_{\kappa^{+}}$be the finite support iteration $\left\langle\left\langle\mathbb{P}_{\alpha}: \alpha \leq \kappa^{+}\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha}: \alpha<\kappa^{+}\right\rangle\right\rangle$. Then \mathbb{P} is a $c c c$ forcing notion and in $V^{\mathbb{P}}$ we have that $2^{\omega}=\kappa^{+}$. Let \mathcal{A} be a subfamily of $[\omega]^{\omega} \cap V^{\mathbb{P}}$ of cardinality less than κ^{+}. Then by Lemma 3.5.7 there is $\alpha<\kappa^{+}$such that $\mathcal{A} \subseteq V\left[G_{\alpha}\right]$ where $G_{\alpha}=G \cap \mathbb{P}_{\alpha}$ and G is
a \mathbb{P}-generic filter over V. Then by the inductive construction of \mathbb{P}, in $V\left[G_{\alpha+3}\right]$ there is a real which is not split by \mathcal{A}. Therefore $V^{\mathbb{P}} \vDash \mathfrak{s}=\kappa^{+}$. By Theorem 3.5.2 and the construction of \mathbb{P} the family \mathcal{H} is unbounded in $V^{\mathbb{P}}$. Since every family of reals in $V^{\mathbb{P}}$ of size less than κ is obtained at some initial stage of the iteration, using a suitable bookkeeping device (by step (3) of the successor case in the inductive construction of \mathbb{P}) one can guarantee that any such subfamily is bounded in $V^{\mathbb{P}}$ and so $V^{\mathbb{P}} \vDash \mathfrak{b}=\kappa$.

Remark 3.6.4. Alternatively in the model V defined in the proof of Theorem 3.6.3 one can define a finite support iterated forcing construction $\left\langle\left\langle\mathbb{P}_{\alpha}: \alpha \leq \kappa^{+}\right\rangle,\left\langle\dot{\mathbb{Q}}_{\alpha}: \alpha<\kappa^{+}\right\rangle\right\rangle$such that for every $\alpha<\kappa^{+}$, $\vdash_{\mathbb{P}_{\alpha}}$ " $\dot{\mathbb{Q}}_{\alpha}$ is ccc and $\left|\dot{\mathbb{Q}}_{\alpha}\right|=\mathfrak{c}$ " as follows.

If α is a limit and $\mathbb{P}_{\beta}, \dot{\mathbb{Q}}_{\beta}$ have been defined for every $\beta<\alpha$ let \mathbb{P}_{α} be the finite support iteration of $\left\langle\mathbb{P}_{\beta}, \dot{\mathbb{Q}}_{\beta}: \beta<\alpha\right\rangle$. If $\alpha=\beta+1$ and \mathbb{P}_{β} has been defined, then let $V_{\beta}=V^{\mathbb{P}_{\beta}}$ and let \mathbb{H}_{1} be the forcing notion for adding κ Cohen reals. Then in $V_{\beta}^{\mathbb{H}_{1}}$ by Lemma 3.5.4, \mathcal{H} is unbounded and $\forall \lambda<\kappa\left(2^{\lambda} \leq \kappa\right), \operatorname{cov}(\mathcal{M})=\kappa$. Therefore in $V_{\beta}^{\mathbb{H}_{1}}$ the hypothesis of Lemma 3.4.1 hold and so there is a centered family of pure conditions C such that $Q(C)$ adds a real not split by $V_{\beta}^{\mathbb{H}_{1}} \cap[\omega]^{\omega}$ (and so not split by $V_{\beta} \cap[\omega]^{\omega}$) and preserves \mathcal{H} unbounded. Then let $\dot{\mathbb{H}}_{2}$ be a \mathbb{H}_{1}-name for $Q(C)$ and in $V_{\beta}^{\mathbb{H}_{1} * \mathbb{H}_{2}}$ let $\mathcal{A} \subseteq V_{\beta} \cap^{\omega} \omega$ be an unbounded family of cardinality less than κ. Let $\dot{\mathbb{H}}_{3}$ be a $\mathbb{H}_{1} * \dot{\mathbb{H}}_{2}$ name for $\mathbb{H}(\mathcal{A})$. Then in $V_{\beta}^{\left(\mathbb{H}_{1} * \dot{H}_{2}\right) * \dot{H}_{3}}$ the family \mathcal{A} is dominated. Since $|\mathbb{H}(\mathcal{A})|<\kappa$, by Lemma 3.5.5 the family \mathcal{H} is unbounded. Let $\dot{\mathbb{Q}}_{\beta}$ be a \mathbb{P}_{β}-name for $\left(\mathbb{H}_{1} * \dot{\mathbb{H}}_{2}\right) * \dot{\mathbb{H}}_{3}$, and let $\mathbb{P}_{\alpha}=\mathbb{P}_{\beta} * \dot{\mathbb{Q}}_{\beta}$.

CHAPTER 4

Symmetry

4.1. $Q(C)$ which preserves unboundedness

Suppose for every unbounded family of reals $\mathcal{H} \subseteq{ }^{\omega} \omega$ there is a centered family of pure conditions $C=C_{\mathcal{H}}$ in the partial order Q such that $Q(C)$ adds a real not split by the ground model reals and at the same time preserves \mathcal{H} unbounded. Then let V be a model of $G C H$ and V_{1} a generic extension obtained by adding κ Hechler reals \mathcal{H} (for κ regular uncountable cardinal). Proceed with a finite support iteration $\left\langle\mathbb{Q}_{\alpha}: \alpha \leq \lambda\right\rangle$ of length λ over V_{1} where
(1) for every even $\alpha, \mathbb{Q}_{\alpha}=Q\left(C_{\alpha}\right)$ for C_{α} a centered family of pure conditions such that $Q\left(C_{\alpha}\right)$ preserves \mathcal{H} unbounded and adds a real not split by the ground model reals, and
(2) for every odd $\alpha, \mathbb{Q}_{\alpha}=\mathbb{H}\left(\mathcal{A}_{\alpha}\right)$ is the Hechler forcing associated with a family of reals \mathcal{A}_{α} obtained at a previous stage of the iteration which is of cardinality less than κ.

Then $V_{1}^{\mathbb{Q}_{\lambda}}$ would satisfy $\mathfrak{b}=\kappa<\mathfrak{s}=\lambda$. However there are certain difficulties in obtaining such centered family of pure conditions. One may try to proceed along the lines of Theorem 3.3.2, dropping the requirement that $|C|<|\mathcal{H}|$. Then it would be sufficient to guarantee that for every $X \in C_{1}$ the intersection $I_{X}=J_{X} \cap J$ is infinite, where C_{1}, J_{X}, J are defined as in the proof of Theorem 3.3.2. For this it
would be sufficient to provide a filter G in $\mathbb{P}=\mathbb{P}\left(C_{1}, T_{1}, \dot{f}\right)$ meeting

$$
D_{J}(X, n)=\left\{\bar{r} \in \mathbb{P}: \exists r_{i} \in \bar{r} \text { s.t. } i \in J, r_{i} \leq X \text { and }\left\|r_{i}\right\| \geq n\right\}
$$

for all $X \in C_{1}, n \in \omega$. It is not difficult to show that for all $A \in[\omega]^{\omega}$, $X \in C_{1}$ the corresponding set $D_{A}(X, n)$ is dense in $\mathbb{P}\left(C_{1}, T_{1}, \dot{f}\right)$. Therefore the existence of such a filter would require meeting continuum many dense sets which is not possible. One way to sidestep this difficulty is exactly what is done in Theorem 3.3.2, namely to require that every subfamily of \mathcal{H} of cardinality smaller than $|\mathcal{H}|$ is dominated by an element of \mathcal{H} and to consider only centered families of cardinality less than the cardinality of the unbounded family \mathcal{H}. As is established in chapter III this leads to the consistency of $\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}$for arbitrary regular uncountable κ. Observe that the restrictions on the unbounded family \mathcal{H} as well as the centered family C, prevent further iteration and so also further generalization of the same construction.

Another way to sidestep the difficulty in preserving a small unbounded family unbounded, is to consider generic centered families, that is centered families of names for pure conditions (see Theorem 5.4.1). Let Γ be a set of ordinals. Then $\mathbb{C}(\Gamma)$ denotes the forcing notion of all partial functions from $\Gamma \times \omega$ to ω with extension relation reverse inclusion. That is $p \leq q$ if $q \subseteq p$ and so in particular $\mathbb{C}\left(\omega_{2}\right)$ is the forcing notion for adding ω_{2} Cohen reals. In the last three chapters we will examine the existence of a countably closed forcing notion which has the \aleph_{2}-chain condition and which adds a centered family C of $\mathbb{C}\left(\omega_{2}\right)$ names for pure conditions, such that $Q(C)$ preserves the first ω_{1} Cohen
reals unbounded and adds a real not split by $V^{\mathbb{C}\left(\omega_{2}\right)} \cap[\omega]^{\omega}$. Consider the following partial order.

Definition 4.1.1. Let \mathbb{P}^{\prime} be the forcing notion of all pairs $p=$ (Γ_{p}, C_{p}) where Γ_{p} is a countable subset of ω_{2} and C_{p} is a countable centered family of $\mathbb{C}\left(\Gamma_{p}\right)$-names for pure conditions with extension relation defined as follows. For every p and q in \mathbb{P}^{\prime} let $p \leq q$ if $\Gamma_{q} \subseteq \Gamma_{p}$ and $\Vdash_{\mathbb{C}\left(\Gamma_{p}\right)}$ " $C_{q} \subseteq Q\left(C_{p}\right)$ ".

Then in particular \mathbb{P}^{\prime} is countably closed. Note that if G is \mathbb{P}^{\prime} generic then $C_{G}=\cup\left\{C_{p}: p \in G\right\}$ is centered family of $\mathbb{C}\left(\omega_{2}\right)$-names for pure conditions. Let G_{0} be $\mathbb{C}\left(\omega_{2}\right)$-generic filter. Then it would be sufficient to guarantee that

$$
U_{H}=\cup\{u: \exists X \text { s.t. }(u, X) \in H\}
$$

where H is $Q\left(C_{G}\right)$-generic over $V\left[G_{0}\right][G]$ is not split by

$$
V^{\mathbb{C}\left(\omega_{2}\right)} \cap[\omega]^{\omega}=V^{\mathbb{C}\left(\omega_{2}\right) \times \mathbb{P}^{\prime}} \cap[\omega]^{\omega} .
$$

This amounts to obtaining the following Lemma:
Lemma 4.1.2. Let Γ be a countable subset of ω_{2}, C a countable centered family of $\mathbb{C}(\Gamma)$-names for pure conditions. Let \dot{A} be a $\mathbb{C}(\Gamma)$ name for an infinite subset of ω. Let G be a $\mathbb{C}(\Gamma)$-generic filter. Then in $V[G]$ there is a pure condition X such that $\operatorname{int}(X) \subseteq A$ or $\operatorname{int}(X) \subseteq$ A^{c} and a countable centered family $C^{\prime \prime}$ extending C below X.

The second task is to preserve the collection of the first ω_{1} Cohen reals unbounded. Note that equivalently we might aim in preserving
unbounded any subfamily of the Cohen reals of size ω_{1}. Let \dot{f} be a $\mathbb{C}\left(\omega_{2}\right) * Q\left(C_{G}\right)$-name for a real in $V[G]$. Then there is a countable subset Γ of ω_{2} and a countable centered family $C \subseteq C_{G}$ of $\mathbb{C}(\Gamma)$-names for pure conditions such that \dot{f} is a $\mathbb{C}(\Gamma) * Q(C)$-name for a real. Then it would be sufficient to show the following.

Lemma 4.1.3. Let \dot{f} be a $\mathbb{C}\left(\Gamma_{p}\right) * Q\left(C_{p}\right)$-name for a real, let $\delta \in$ $\omega_{1} \backslash \Gamma_{p}$ and let $\dot{h}=\cup \dot{G}_{\delta}$ where \dot{G}_{δ} is the $\mathbb{C}(\{\delta\})$-canonical name for the generic filter. Then there is a countable centered family C^{\prime} of $\mathbb{C}(\Gamma \cup\{\delta\})$-names for pure conditions extending C such that for every centered family $C^{\prime \prime}$ of $\mathbb{C}\left(\omega_{2}\right)$-names for pure condition which extends $C^{\prime}, \Vdash_{\mathbb{C}\left(\omega_{2}\right) * Q\left(C^{\prime \prime}\right)} " \dot{h} \not Z^{*} \dot{f} "$.

Observe that if \dot{f} is a $\mathbb{C}(\Gamma) * Q(C)$-name for a real, where Γ is a countable subset of ω_{2}, C is a countable centered family of $\mathbb{C}(\Gamma)$-names for pure conditions, then for every $\Gamma^{\prime} \in\left[\omega_{2}\right]^{\omega}$, such that $\Gamma \subseteq \Gamma^{\prime}, \dot{f}$ is also a $\mathbb{C}\left(\Gamma^{\prime}\right) * Q(C)$-name for a real. However if C^{\prime} is a centered family of $\mathbb{C}\left(\Gamma^{\prime}\right)$-names for pure conditions extending C, that is $\Vdash_{\mathbb{C}\left(\Gamma^{\prime}\right)} C \subseteq Q\left(C^{\prime}\right)$ then it is not necessarily the case that \dot{f} is a $\mathbb{C}\left(\Gamma^{\prime}\right) * Q\left(C^{\prime}\right)$-name for a real. Lemma 4.1.3 holds, as it will be shown later, for names \dot{f} which are good in the sense that whenever C^{\prime} is as above, \dot{f} is also a $\mathbb{C}\left(\Gamma^{\prime}\right) * Q\left(C^{\prime}\right)$-name. An important point in preservation of the first ω_{1} Cohen reals is the fact that for every $\mathbb{C}\left(\omega_{1}\right) * Q\left(C_{G}\right)$-name for a real \dot{f}, there is $a \in G$ such that \dot{f} is a good $\mathbb{C}\left(\Gamma_{a}\right) * Q\left(C_{a}\right)$-name for a real (see discussion following Definition 5.4.2).

The main difficulty in realizing this project is the \aleph_{2}-chain condition. Work in a model of CH and consider a collection $\left\{p_{\alpha}: \alpha \in I\right\}$
of \aleph_{2}-many elements of \mathbb{P}^{\prime}. For every $\alpha \in I$ let $\Gamma_{\alpha}=\Gamma_{p_{\alpha}}, C_{\alpha}=C_{p_{\alpha}}$. By CH and passing to a subset we can assume that for all $\alpha, \beta \in I$ the order types of Γ_{α} and Γ_{β} are the same. Furthermore by the Delta System Lemma we can choose a subfamily $\left\{p_{\alpha}: \alpha \in J\right\}$ for some $J \subseteq I,|J|=\aleph_{2}$ such that for all $\alpha, \beta \in J, \Gamma_{\alpha} \cap \Gamma_{\beta}=\Delta$, $\sup \Delta<\min \Gamma_{\alpha} \backslash \Delta$ and for all $\alpha<\beta$ in $J, \sup \Gamma_{\alpha} \backslash \Delta<\min \Gamma_{\beta} \backslash \Delta$. Also we can assume that there is an isomorphism $i_{\alpha, \beta}: \Gamma_{\alpha} \cong \Gamma_{\beta}$ such that $i_{\alpha, \beta} \upharpoonright \Delta=$ id and $\left\{i_{\alpha, \beta}(X): X \in C_{\alpha}\right\}=C_{\beta}$. Therefore it is sufficient to obtain:

Lemma 4.1.4. Let p, q be conditions in \mathbb{P}^{\prime} such that $\Delta=\Gamma_{p} \cap \Gamma_{q}$, $\sup \Delta<\min \Gamma_{p} \backslash \Delta<\sup \Gamma_{p} \backslash \Delta<\min \Gamma_{q} \backslash \Delta$ and there is an isomorphism $i: \Gamma_{p} \cong \Gamma_{q}$, such that $i \upharpoonright \Delta=$ id and $C_{q}=\left\{i(X): X \in C_{p}\right\}$. Then there is $r \in \mathbb{P}^{\prime}$ such that $r \leq p$ and $r \leq q$.

The main argument of Lemma 4.1.4 is the claim below.
Lemma 4.1.5. Let $X \in C_{p}$. Then there is a $\mathbb{C}\left(\Gamma_{p} \cup \Gamma_{q}\right)$-name for a pure condition \tilde{X} such that $\Vdash_{\mathbb{C}\left(\Gamma_{p} \cup \Gamma_{q}\right)} \tilde{X} \leq \dot{X}$ and $\tilde{X} \leq i(\dot{X})$.

Indeed if 4.1.5 holds, then $r=\left(\Gamma_{r}, C_{r}\right)$ where $\Gamma_{r}=\Gamma_{p} \cup \Gamma_{q}$ and $C_{r}=C_{p} \cup C_{q} \cup\left\{\tilde{X}_{X}: X \in C_{p}\right\}$ where for every $X \in C_{p}, \tilde{X}_{X}$ is $\mathbb{C}\left(\Gamma_{p} \cup \Gamma_{q}\right)$-name for a pure condition extending X and $i(X)$ would be a common extension of p and q. In order to guarantee Lemma 4.1.5, we have to impose certain combinatorial property on the names for pure conditions (see Definition 4.3.2 and Definition 6.1.3). We refer to names that have this property as symmetric since one of its defining characteristics is that different evaluations of the name are compatible
pure conditions (see Lemma 4.5.1). The same combinatorial property can be imposed on names for infinite sets of integers (Definition 4.2.2). What might be considered of independent interest is the fact that in every Cohen generic extension the collection of subsets of ω which do not have symmetric names forms an ideal (see Corollary 4.2.10). Furthermore we have to accomplish the entire construction, in particular define a partial order analogous to 4.1.1 and obtain statements analogous to Lemmas 4.1.2, 4.1.3, 4.1.4 and 4.1.5 remaining within the class of names for pure conditions which have the given combinatorial property. In chapters IV and V we develop a particular case of this combinatorial property, which completes the \aleph_{2}-chain condition in case that the root of the Delta system is empty and establish the construction within the class of names for pure conditions which have this property - see Lemma 4.4.6, Theorem 5.4.1 and Lemma 5.4.3. In the last chapter we give a generalization of this combinatorial property (Definitions 6.1.3 and 6.1.1) and demonstrate the chain condition for non-empty root (Lemma 6.2.2).

4.2. Symmetric Names for Sets of Integers

Definition 4.2.1. Let \dot{X} be a Cohen name for an infinite subset of ω. Then for every $p \in \mathbb{C}$ let $\operatorname{hull}_{p} \dot{X}=\{j: \exists q \leq p(q \Vdash \check{j} \in \dot{X})\}$.

Definition 4.2.2. A Cohen name \dot{X} for an infinite subset of ω is said to be symmetric if for every finite number of conditions p_{1}, \ldots, p_{k} in \mathbb{C} and every $M \in \omega$, there is $m>M$ and extensions $\bar{p}_{1} \leq p_{1}, \ldots, \bar{p}_{n} \leq$ p_{n} such that for every $i \leq k, \bar{p}_{i} \Vdash \check{m} \in \dot{X}$.

Lemma 4.2.3. Let \dot{X} be a Cohen name for an infinite subset of ω. Then \dot{X} is symmetric if and only if for every finite number of conditions p_{1}, \ldots, p_{n} in \mathbb{C} the set $\bigcap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{X})$ is infinite.

Example 4.2.4. Every check name for an infinite subset of ω is symmetric.

Lemma 4.2.5. The Cohen generic real has a symmetric name. That is if \dot{G} is the canonical name for the generic filter, then $\dot{X}=\bigcup \dot{G}$ is a symmetric name.

Proof. Let p_{1}, \ldots, p_{k} be a finite number of conditions and $n \in \omega$. Then there is $j>n$ which does not belong to the domain of of the given conditions. Then for all $\ell=1, \ldots, k, q_{\ell}=p_{\ell} \cup\{(j, 1)\}$ extends of p_{ℓ} and $q_{\ell} \Vdash j \in \dot{X}$. That is $j \in \bigcap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{X})$.

In the remainder of this section it will be shown that in the Cohen extension the family of subsets of ω which do not have symmetric names forms an ideal.

Lemma 4.2.6. Suppose \dot{X} and \dot{Y} are \mathbb{C}-names for subsets of ω such that $\Vdash \dot{X} \subseteq \dot{Y}$ and \dot{Y} is not symmetric. Then \dot{X} is not symmetric.

Proof. Suppose \dot{X} is symmetric. Since \dot{Y} is not symmetric there are conditions p_{1}, \ldots, p_{n} in \mathbb{C} such that $\bigcap_{i=1}^{n} \operatorname{hull}_{p_{i}}(\dot{Y}) \subseteq M$ for some $M \in \omega$. Since \dot{X} is symmetric there are extensions $\bar{p}_{i} \leq p_{i}$ and $m>M$ such that for every $i \leq n, \bar{p}_{i} \Vdash \check{m} \in \dot{X}$. Then for every $i \leq n \bar{p}_{i} \Vdash \check{m} \in$ \dot{Y} and so $m \in \bigcap_{i=1}^{n} \operatorname{hull}_{p_{i}}(\dot{X})$ which is a contradiction.

Definition 4.2.7. A Cohen name \dot{X} is symmetric below a condition p if for every finite family p_{1}, \ldots, p_{n} of extensions of p and $M \in \omega$ there are extensions $\bar{p}_{i} \leq p_{i}$ for all i and $m>M$ such that $\bar{p}_{i} \Vdash \check{m} \in \dot{X}$.

Lemma 4.2.8. Let \dot{X} be a symmetric name for a subset of ω and let \dot{Y}, \dot{Z} be Cohen names such that $\Vdash \dot{X}=\dot{Y} \cup \dot{Z}$. Then for every $p \in \mathbb{C}$ either there is $q \leq p$ such that \dot{Y} is symmetric below q or there is $q \leq p$ such that \dot{Z} is symmetric below q.

Proof. Suppose not. That is there is $p \in \mathbb{C}$ such that for every $q \leq p, \dot{Y}$ and \dot{Z} are not symmetric below q. Then in particular there are extensions p_{1}, \ldots, p_{k} of p and $n_{0} \in \omega$ such that $\bigcap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{Y}) \subseteq n_{0}$. Similarly for every i there are extensions $q_{i_{j}} \leq p_{i}$ for $j=1, \ldots, k_{i}$ and $n_{i} \in \omega$ such that $\bigcap_{i_{j}=1}^{k_{j}} \operatorname{hull}_{q_{i_{j}}}(\dot{Z}) \subseteq n_{i}$. Let $M=\max _{i \leq k} n_{i}$. Since \dot{X} is symmetric there is $m>M$ and extensions $t_{i_{j}} \leq q_{i_{j}}$ such that for all $i_{j}, t_{i_{j}} \Vdash \check{m} \in \dot{X}$. However $\Vdash \dot{X}=\dot{Y} \cup \dot{Z}$ and so for every i_{j} there is an extension $a_{i_{j}}$ of $t_{i_{j}}$ such that $a_{i_{j}} \Vdash \check{m} \in \dot{Y}$ or $a_{i_{j}} \Vdash \check{m} \in \dot{Z}$. If there is $i \in\{1, \ldots, k\}$ such that for every $a_{i_{j}}\left(i_{j}=1, \ldots, k_{j}\right) a_{i_{j}} \Vdash \check{m} \in \dot{Z}$ we reach a contradiction with the choice of $q_{i, j}$ and $m>n_{i}$, since $a_{i_{j}} \leq q_{i_{j}}$ for all i_{j}. Otherwise for every $i=1, \ldots, k$ there is $i_{j} \in\left\{1, \ldots, k_{j}\right\}$ such that $a_{i_{j}} \Vdash \check{m} \in \dot{Y}$, which is a contradiction with the choice of p_{1}, \ldots, p_{k} and $m>n_{0}$, since $a_{i_{j}} \leq p_{i}$ for all i.

Remark 4.2.9. Whenever \dot{X} is a \mathbb{P}-name for a pure condition and $p \in \mathbb{P}$, let $\dot{X} \upharpoonright p=\{\langle\check{x}, q\rangle: q \leq p$ and $q \Vdash \check{x} \in \dot{X}\}$. For poset \mathbb{P} and condition $p \in \mathbb{P}$ denote by $\mathbb{P}^{+}(p)$ the set of all extensions of p and by $\mathbb{P}(p)$ denote the set of all conditions compatible with p.

Corollary 4.2.10. Let G ba a Cohen generic filter. Then the collection $\mathcal{I}_{\text {nsym }} \in V[G]$ of subsets of ω which do not have symmetric names forms an ideal.

Proof. Let $\Vdash \dot{X}=\dot{Y} \cup \dot{Z}$ where \dot{X} is a symmetric name for an infinite subset of ω. Then the set D of all conditions $p \in \mathbb{C}$ such that \dot{Y} is symmetric below p or \dot{Z} is symmetric below p is dense. Let E be a maximal antichain contained in D and for every $e \in E$ define $X^{*} \upharpoonright e=\dot{Y} \upharpoonright e$ if \dot{Y} is symmetric below e and let $X^{*} \upharpoonright e=\dot{Z} \upharpoonright e$ if \dot{Z} is symmetric below e. Then X^{*} is a a Cohen name for an infinite subset of ω such that $\Vdash\left(X^{*} \subseteq \dot{X}\right) \wedge\left(X^{*}=\dot{Y} \vee X^{*}=\dot{Z}\right)$. With every $e \in E$ associate a symmetric name X_{e}^{*} for an infinite subset of ω as follows. Let $X_{e}^{*} \upharpoonright e=X^{*} \upharpoonright e$. Let e^{\prime} be a condition in E distinct from e. There is an isomorphism $i_{e e^{\prime}}: \mathbb{C}^{+}(e) \rightarrow \mathbb{C}^{+}\left(e^{\prime}\right)$ where for every $p \in \mathbb{C}, \mathbb{C}^{+}(p)=\{q \in \mathbb{C}: q \leq p\}$. Then for every $e^{\prime} \in E \backslash\{e\}$ let $X_{e}^{*} \upharpoonright e^{\prime}=i_{e e^{\prime}}\left(X_{e}^{*} \upharpoonright e\right)$.

Let G be a Cohen generic filter, $X=\dot{X}[G], Y=\dot{Y}[G]$ and $Z=$ $\dot{Z}[G]$. Then $G \cap E=\{e\}$ and so $V[G] \vDash X_{e}^{*}[G]=Y$ or $X_{e}^{*}[G]=Z$ depending on whether \dot{Y} or \dot{Z} is symmetric below e. Thus either Y or Z has a symmetric name.

REMARK 4.2.11. $\mathcal{I}_{\text {nsym }}$ does not contain infinite subsets from the ground model V, since every check name for an infinite subset of ω is symmetric. Note also that a symmetric name is necessarily a name for an infinite subset of ω and so every finite subset of ω belongs to $\mathcal{I}_{\text {nsym }}$.

4.3. Symmetric Names for Pure Conditions

In the following $L M$ denotes the family of all finite logarithmic measures. For every $n \in \omega$ let L_{n} be the set of all finite logarithmic measures x such that $\|x\| \geq n$ and $\min \operatorname{int}(x) \geq n$. Just as in Section 4.2 we can give the following definition:

Definition 4.3.1. Let \dot{X} be a Cohen name for a pure condition. Then for every $p \in \mathbb{C}$ let

$$
\operatorname{hull}_{p}(\dot{X})=\{x \in L M: \exists q(q \leq p)(q \Vdash \check{x} \leq \dot{X})\}
$$

Definition 4.3.2. Let \dot{X} be a \mathbb{C}-name for a pure condition. We say that \dot{X} is symmetric if for every $n \in \omega$ and every finite number of conditions p_{1}, \ldots, p_{k} there is $x \in L_{n}$ and extensions $\bar{p}_{1} \leq p_{1}, \ldots, \bar{p}_{k} \leq$ p_{k} such that for every $\ell=1, \ldots, k\left(\bar{p}_{\ell} \Vdash \check{x} \leq \dot{X}\right)$.

Definition 4.3.3. A name for a pure condition \dot{X} is symmetric below a given condition p if for every $M \in \omega$ and finite number of extensions p_{1}, \ldots, p_{n} of p there are extensions $\bar{p}_{1} \leq p_{1}, \ldots, \bar{p}_{n} \leq p_{n}$ and a measure $x \in L_{M}$ such that for every $\ell=1, \ldots, n \bar{p}_{\ell} \Vdash " \check{x} \leq \dot{X} "$.

Proposition 4.3.4. Let \dot{X} be a Cohen name for a pure condition. The following are equivalent:
(1) \dot{X} is symmetric.
(2) For every finite number of extension p_{1}, \ldots, p_{k} of p and $n \in \omega$ the intersection $\left(\bigcap_{i=1}^{k}\right.$ hull $\left._{p_{i}}(\dot{X})\right) \cap L_{n}$ is nonempty.
(3) For every finite number of extensions p_{1}, \ldots, p_{k} of p the set $\bigcap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{X})$ contains a pure condition.

Proof. Part (2) is just a reformulation of part (1).
Assume (1) and let \dot{X} be a symmetric name for a pure condition. Let p_{1}, \ldots, p_{k} be some finite number of conditions and $n \in \omega$. Then there is $x_{n} \in L_{n}$ and extensions $p_{1, n} \leq p_{1}, \ldots, p_{k, n} \leq p_{k}$ such that $p_{l, n} \Vdash \check{x_{n}} \leq \dot{X}(\forall l \leq k)$ and so $x_{n} \in \bigcap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{X}) \bigcap L_{n}$. Then for $k_{n}=$ $\max \left\{\left\|x_{n}\right\|, \operatorname{maxint}\left(x_{n}\right)\right\}$ there is $x_{n+1} \in L_{k_{n}}$, and extensions $p_{1, n+1} \leq$ $p_{1}, \ldots, p_{k, n+1} \leq p_{k}$ such that $p_{\ell, n+1} \Vdash \check{x}_{n+1} \leq \dot{X}(\forall \ell \leq k)$ and so in particular x_{n+1} belongs to $\bigcap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{X})$. Proceeding inductively we can choose a pure condition $\left\langle x_{n}: n \in \omega\right\rangle$ contained in $\bigcap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{X})$.

To see that (3) implies (1) fix any p_{1}, \ldots, p_{k} finite number of conditions and let $n \in \omega$. By assumption $\bigcap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{X})$ contains a pure condition $\left\langle x_{i}: i \in \omega\right\rangle=R$ of logarithmic measures of strictly increasing hight. However $x_{n} \in L_{n} \bigcap\left(\bigcap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{X})\right)$ and so for some $\bar{p}_{1} \leq p_{1}, \ldots, \bar{p}_{k} \leq p_{k}$ we have $\bar{p}_{\ell} \Vdash \check{x}_{n} \leq \dot{X}(\forall \ell \leq k)$.

Remark 4.3.5. Thus a \mathbb{C}-name for a pure condition is not symmetric iff there are conditions p_{1}, \ldots, p_{k} and $M \in \omega$ such that

$$
\left(\cap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{X})\right) \cap L_{M}=\emptyset
$$

Remark 4.3.6. If a finite logarithmic measure x does not belong to $\cap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{X})$ then there is an index $i \leq k$ such that $p_{i} \Vdash \check{x} \not 又 \dot{X}$.

Lemma 4.3.7. Let \dot{X} and \dot{Y} be \mathbb{C}-names for pure conditions such that $\Vdash \dot{X} \leq \dot{Y}$. If \dot{Y} is not symmetric, then \dot{X} is not symmetric.

Proof. Suppose that \dot{X} is symmetric, but \dot{Y} is not symmetric. Then there are conditions p_{1}, \ldots, p_{k} such that $\bigcap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{Y})$ does not
contain measures of level greater than M for some $M \in \omega$. Let $j>M$. Since \dot{X} is symmetric there are extensions $q_{1} \leq p_{1}, \ldots, q_{k} \leq p_{k}$ and $x \in L_{M}$ such that for every $\ell \leq k, q_{\ell} \Vdash \check{x} \leq \dot{X}$. But then $q_{\ell} \Vdash \check{x} \leq \dot{Y}$ and so x belongs to $\bigcap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{Y})$ which is a contradiction.

4.4. An ultrafilter of Symmetric Names

Definition 4.4.1. The finite logarithmic measure x is said to be stronger than the finite logarithmic measure y if x is of measure greater than the measure of y and $\min \operatorname{int}(x)>\max \operatorname{int}(y)$. We will denote the fact that x is stronger than y with $x>y$.

REmark 4.4.2. Whenever p and q are incompatible conditions we will denote this by $p \perp q$.

Lemma 4.4.3. Let \dot{X} be a symmetric Cohen name for a pure condition and let \dot{A} be a name for an infinite subset of ω. Then for every p_{1}, \ldots, p_{k} in \mathbb{C} and every $M \in \omega$ there is a finite logarithmic measure $z \in L_{M}$ and extensions $\bar{p}_{1} \leq p_{1}, \ldots, \bar{p}_{k} \leq p_{k}$ such that $\forall i \leq n$,

$$
\bar{p}_{i} \Vdash " \check{z} \leq \dot{X} \text { and } \check{z} \subseteq \dot{A} " \text { or } \bar{p}_{i} \Vdash " \check{z} \leq \dot{X} \text { and } \check{z} \subseteq \dot{A}^{c} " .
$$

Proof. Let $s_{0}=2^{k}+M$. Since \dot{X} is symmetric there are extensions $p_{1,1} \leq p_{1}, \ldots, p_{1, k} \leq p_{k}$ and $x \in L_{s_{0}}$ such that for every $i \leq k, p_{1, i} \Vdash$ $\check{x} \leq \dot{X}$. Let $s=\max x+1$. Extend $p_{1, i}$ to a condition $p_{2, i}$ such that for some $a_{i} \subseteq s, p_{2, i} \Vdash(\dot{A} \upharpoonright s)=\check{a}_{i}$ and so in particular if $b_{i}=s \backslash a_{i}$ then $p_{2, i} \Vdash\left(\dot{A}^{c} \upharpoonright s\right)=\check{b}_{i}$.

In the ground model we can partition x into 2^{k} subsets $\left\{z_{j}: j \leq 2^{k}\right\}$ such that $\forall j \leq 2^{k} \forall i \leq k z_{j}$ is contained in a_{i} or b_{i}. Furthermore by

Lemma 2.1.3 there is $j_{0} \leq 2^{k}$ such that the measure of $z=z_{j_{0}}$ is at least M. Then for every $i \leq k$ we have

$$
p_{2, i} \Vdash "(\check{z} \leq \dot{X} \text { and } \check{z} \subseteq \dot{A}) \text { or }\left(\check{z} \leq \dot{X} \text { and } \check{z} \subseteq \dot{A}^{c}\right) " \text {. }
$$

Then for every $i \leq k$ there is a further extension $\bar{p}_{i} \leq p_{2, i}$ such that $\bar{p}_{i} \Vdash " \check{z} \leq \dot{X}$ and $\check{z} \subseteq \dot{A}$ " or $\bar{p}_{i} \Vdash " \check{z} \leq \dot{X}$ and $\check{z} \subseteq \dot{A}^{c} "$.

Lemma 4.4.4. Let \dot{X} be a \mathbb{C}-symmetric name for a pure condition and \dot{A} a \mathbb{C}-name for an infinite subset of ω. Then there is a Cohen symmetric name for a pure condition \dot{Y} such that $\Vdash \dot{Y} \leq \dot{X}$ and $\forall i \in \omega$

$$
\Vdash " i n t(\dot{Y}(i)) \subseteq \dot{A} \text { or } \operatorname{int}(\dot{Y}(i)) \subseteq \dot{A}^{c} "
$$

Proof. Fix an enumeration $\left\{p_{n}: n \in \omega\right\}$ of \mathbb{C}. Find an extension $p_{0,0}$ of p_{0} and a finite measure x_{0} such that $p_{0,0} \Vdash$ " $\check{x}_{0} \leq \dot{X} \wedge \operatorname{int}\left(\check{x}_{0}\right) \subseteq$ \dot{A} " or " $p_{0,0} \Vdash \check{x}_{0} \leq \dot{X} \wedge \operatorname{int}\left(\check{x}_{0}\right) \subseteq \dot{A}$ ". Let $A_{0}=\left\{a_{0, s}: s \in \omega\right\}$ be a maximal antichain in $\mathbb{C}-\mathbb{C}\left(p_{0,0}\right)$ such that for every $s \in \omega$ there is a measure $x_{0, s}$ such that $a_{0, s} \Vdash{ }_{0} \check{x}_{0, s} \leq \dot{X} \wedge \operatorname{int}\left(\check{x}_{0, s}\right) \subseteq \dot{A}$ " or $a_{0, s} \Vdash$ $" \check{x}_{0, s} \leq \dot{X} \wedge \operatorname{int}\left(\check{x}_{0, s}\right) \subseteq \dot{A}{ }^{c} "$. Let $R_{0}=\left\{\left\langle p_{0,0}, \check{x}_{0}\right\rangle\right\} \cup\left\{\left\langle a_{0, s}, \check{x}_{0, s}\right\rangle\right.$: $s \in \omega\}$. Proceed inductively. Suppose we have defined conditions $\left\{p_{n-1, \ell}\right\}_{\ell \in n}$ and a finite logarithmic measure x_{n-1} such that for every $\ell \in n, p_{n-1, \ell} \leq p_{n-1}$ and $p_{n-1, \ell} \Vdash " \check{x}_{n-1} \leq \dot{X} \wedge \operatorname{int}\left(\check{x}_{n-1}\right) \subseteq \dot{A}$ " or $p_{n-1, \ell} \Vdash " \check{x}_{n-1} \leq \dot{X} \wedge \operatorname{int}\left(\check{x}_{n-1}\right) \subseteq \dot{A}^{c} "$. Furthermore suppose we have defined a maximal antichain $A_{n-1}=\left\{a_{n-1, s}: s \in \omega\right\}$ in $\mathbb{C}-$ $\mathbb{C}\left(\left\{p_{n-1, \ell}\right\}_{\ell \in n}\right)$ such that for every $s \in \omega$ there is a finite logarithmic measure $x_{n-1, s}$ such that $a_{n-1, s} \Vdash " \check{x}_{n-1, s} \leq \dot{X} \wedge \operatorname{int}\left(\check{x}_{n-1, s}\right) \subseteq \dot{A}$ " or
$a_{n-1, s} \Vdash " \check{x}_{n-1, s} \leq \dot{X} \wedge \operatorname{int}\left(\check{x}_{n-1, s}\right) \subseteq \dot{A}$ " and finally we have defined $R_{n-1}=\left\{\left\langle\check{x}_{n-1}, p_{n-1, \ell}\right\rangle\right\}_{\ell \in n} \cup\left\{\left\langle\check{x}_{n-1, s}, a_{n-1, s}\right\rangle: s \in \omega\right\}$.

If $p_{n} \perp\left\{p_{n-1, i}\right\}_{i \leq n-1}$ then there is $a_{n-1, s} \in A_{n-1}$ compatible with p_{n} and we can fix a common extension b_{n} and let $y_{n}=x_{n-1, s}$. Otherwise let b_{n} be a common extension of p_{n} and some $p_{n-1, j}$ for $j \in n$ and let $y_{n}=x_{n-1}$. By the Lemma 4.4.3 there are extensions $p_{n, 0} \leq$ $p_{n-1,0}, \ldots, p_{n, n-1} \leq p_{n-1, n-1}, p_{n, n} \leq b_{n}$ and a finite measure x_{n} stronger than x_{n-1} and y_{n} such that $\forall i \leq n$

$$
\left(p_{n, i} \Vdash \check{x}_{n} \leq \dot{X} \wedge \operatorname{int}\left(\check{x}_{n}\right) \subseteq \dot{A}\right) \text { or }\left(p_{n, i} \Vdash \check{x}_{n} \leq \dot{X} \wedge \operatorname{int}\left(\check{x}_{n}\right) \subseteq \dot{A}^{c}\right) .
$$

Fix a maximal antichain $A_{n}=\left\langle a_{n, s}: s \in \omega\right\rangle$ in $\mathbb{C}-\mathbb{C}\left(\left\{p_{n, i}\right\}_{i \leq n}\right)$ such that for all $s \in \omega$
(1) $\exists i^{s} \in \omega$ such that $a_{n, s} \leq a_{n-1, i^{s}}$
(2) $\exists x_{n, s}$ measure stronger than $x_{n-1, i^{s}}$ such that $a_{n, s} \Vdash " \check{x}_{n, s} \leq \dot{X} \wedge \operatorname{int}\left(\check{x}_{n, s}\right) \subseteq \dot{A} "$ or $a_{n, s} \Vdash \check{x}_{n, s} \leq \dot{X} \wedge$ $\operatorname{int}\left(\check{x}_{n, s}\right) \subseteq \dot{A}^{c}$.

Let $R_{n}=\left\{\left\langle p_{n, i}, \check{x}_{n}\right\rangle\right\}_{i \leq n} \cup\left\{\left\langle a_{n, s}, \check{x}_{n, s}\right\rangle: s \in \omega\right\}$. With this the inductive construction in complete and $\dot{Y}=\bigcup_{n \in \omega} R_{n}$ is the desired symmetric name for a pure condition.

Remark 4.4.5. Note that R_{i} is a name for the i-th measure of \dot{Y}.

Lemma 4.4.6. Let G be a Cohen generic filter. In $V[G]$ let X be a pure condition with symmetric name \dot{X} and let $A \in V[G]$ be an infinite subset of ω. Then in $V[G]$ there is a pure condition Z extending X, which has a symmetric name and such that $\operatorname{int}(Z) \subseteq A$ or int $(Z) \subseteq A^{c}$.

Proof. Let \dot{Y} be the name constructed in Lemma 4.4.4. Then there are \mathbb{C} names \dot{R} and \dot{T} such that $\Vdash \dot{R}=\langle\dot{Y}(i): \dot{Y}(i) \subseteq \dot{A}\rangle$ and $\Vdash \dot{T}=\left\langle\dot{Y}(i): \dot{Y}(i) \subseteq \dot{A}^{c}\right\rangle$. Then $\Vdash \dot{R} \cup \dot{T}=\dot{Y}$. We claim that for every $p \in \mathbb{C}$ there is an extension $q \leq p$ such that \dot{R} is symmetric below q or \dot{T} is symmetric below q.

Suppose not and let p be a condition which does not have an extension with the desired properties. Then there are extensions p_{1}, \ldots, p_{k} of p such that for some $n_{0},\left(\bigcap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{R}) \bigcap L_{n_{0}}=\emptyset\right.$ and respectively for every $i \leq k$ there are $\left\{q_{i, j}\right\}_{j=1}^{\ell_{i}} \subseteq \mathbb{C}^{+}\left(p_{i}\right)$ such that for some n_{i}, $\left(\bigcap_{j=1}^{\ell_{i}} \operatorname{hull}_{q_{i, j}}(\dot{T})\right) \bigcap L_{n_{i}}=\emptyset$. By construction of \dot{Y} there are extensions $\bar{q}_{i, j} \leq q_{i, j}$ and a measure x of level higher than $\left\{n_{0}, \ldots, n_{k}\right\}$ such that $\bar{q}_{i, j} \Vdash \check{x} \in \dot{Y}$. Then for all $i, j q_{i, j} \Vdash \check{x} \in \dot{R} \cup \dot{T}$ and so there is a further extension $t_{i, j} \leq q_{i, j}$ such that $t_{i, j} \Vdash \check{x} \in \dot{R}$ or $t_{i, j} \Vdash \check{x} \in \dot{T}$.

If for every $i \leq k$ there is some $j \leq \ell_{i}$ such that $t_{i, j} \Vdash \check{x} \in \dot{R}$, then since $t_{i, j} \leq p_{i}$ we obtain that x is in $\bigcap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{R})$ which is a contradiction since x is of measure greater than n_{0}. Otherwise, there is some $i \leq k$ such that $\forall j=1, \ldots, \ell_{i} t_{i, j} \Vdash \check{x} \in \dot{T}$. But then x is in $\bigcap_{j=1}^{\ell_{i}} \operatorname{hull}_{q_{i, j}} \dot{T}$ which is a contradiction since the measure of x is greater than n_{i}.

Therefore the set D of all $p \in \mathbb{C}$ such that \dot{R} or \dot{T} is symmetric below p is dense in \mathbb{C}. Fix a maximal antichain E contained in D. Define Y^{*} as follows: for every $e \in E$ let $Y^{*} \upharpoonright e=\dot{R} \upharpoonright e$ if \dot{R} is symmetric below e and let $Y^{*} \upharpoonright e=\dot{T} \upharpoonright e$ otherwise. Then

$$
\Vdash\left(Y^{*} \leq Y\right) \wedge\left(\operatorname{int}\left(Y^{*}\right) \subseteq \dot{A} \vee \operatorname{int}\left(Y^{*}\right) \subseteq \dot{A}^{c}\right)
$$

Furthermore for every $e \in E$ let Y_{e} be a symmetric name defined as follows. Let $Y_{e} \upharpoonright e=\dot{R} \upharpoonright e$ if \dot{R} is symmetric below e and let $Y_{e} \upharpoonright e^{\prime}=$ $i_{e e^{\prime}}\left(Y_{e} \upharpoonright e\right)$ for every $e^{\prime} \in E \backslash\{e\}$, where $i_{e e^{\prime}}$ is an isomorphism of $\mathbb{C}^{+}(e)$ and $\mathbb{C}^{+}\left(e^{\prime}\right)$. Note that for every $e \in E$, $\Vdash Y_{e}=\dot{R} \vee Y_{e}=\dot{T}$. Now, since G is Cohen generic there is $e \in G \cap E$. Then Y_{e} is a symmetric name for $\dot{R}[G]$ or $\dot{T}[G]$, and so in particular for an extension of X the underlying infinite set of which is contained in A or in A^{c}.

As a straightforward generalization of the above one obtains:

Corollary 4.4.7. Let G be a Cohen generic filter. If, in $V[G] X$ is a pure condition with a symmetric name and $A_{0} \cup \cdots \cup A_{n-1}$ is a partition of ω into finitely many sets, then there is a pure condition Y extending X which has a symmetric name and such that $\operatorname{int}(Y) \subseteq A_{j}$ for some $j \in \omega$.

In particular we obtain the following result:

Corollary 4.4.8. Let G be a Cohen generic filter and let X be a pure condition in $V[G]$ with symmetric name \dot{X}. Let $A \in V[G] \cap[\omega]^{\omega}$ which does not have a symmetric name. Then in $V[G]$ there is a pure condition Y extending X such that $\operatorname{int}(Y) \subseteq A^{c}$.

Proof. By Lemma 4.4.6 there is a symmetric name \dot{Y} for a pure condition such that in $V[G], \dot{Y}[G]=Y \leq X$ and $\operatorname{int}(Y) \subseteq A$ or $\operatorname{int}(Y) \subseteq A^{c}$. Suppose $V[G] \vDash \operatorname{int}(Y) \subseteq A$. Let \dot{A} be a Cohen name for A and let $p \in G$ be a condition in G such that $p \Vdash \operatorname{int}(\dot{Y}) \subseteq \dot{A}$. If \dot{A} is symmetric below p then the set A does have a symmetric name, which
is a contradiction to the hypothesis of the lemma. Therefore there is a finite set of extensions of p, p_{1}, \ldots, p_{k} such that $\bigcap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{A}) \subseteq M$ for some $M \in \omega$. However \dot{Y} is symmetric and so there is $x \in L_{M}$ and extensions $q_{i} \leq p_{i}$ such that for every $i q_{i} \Vdash \check{x} \leq \dot{Y}$. Then for every $i, q_{i} \Vdash \check{x} \subseteq \dot{A}$ which implies that $\operatorname{int}(x) \subseteq \bigcap_{i=1}^{k} \operatorname{hull}_{p_{i}}(\dot{A})$. This is a contradiction, since $x \in L_{M}$ implies that $\min \operatorname{int}(x) \geq M$.

In his original work from 1984 S. Shelah works with a restriction of the partial order Q to a suborder $Q[I]$, where I is an ideal on $\mathcal{P}(\omega)$ containing all finite subsets, which consists of all conditions (a, T) in Q, where $T=\left\langle t_{i}: i \in \omega\right\rangle$, having the property that for every A in I the sequence $T \cap A^{c}=\left\langle t_{i}: \operatorname{int}\left(t_{i}\right) \cap A=\emptyset\right\rangle$ is a pure condition. If G is a Cohen generic filter, in $V[G]$ the collection $I_{\text {nsym }}$ of subsets of ω which do not have symmetric names forms an ideal (containing all finite subsets of ω) and so in $V[G]$ we can consider the analogous partial order $Q_{s}\left[I_{n s y m}\right]$ where Q_{s} is the suborder of Q consisting of conditions with symmetric name for the pure part.

Corollary 4.4.9. Let G be a Cohen generic filter. Then

$$
V[G] \vDash\left(Q_{s}=Q_{s}\left[I_{n s y m}\right]\right) .
$$

Proof. In $V[G]$ let $X=\left\langle x_{i}: i \in \omega\right\rangle$ be a pure condition with symmetric name \dot{X} and let A be a subset of ω which does not have a symmetric name. Let \dot{Z} be a name for $Z=\left\langle x_{i}: \operatorname{int}\left(x_{i}\right) \cap A=\emptyset\right\rangle$. By Lemma 4.4.8 there is a pure condition $Y \leq X$ which has a symmetric name \dot{Y} such that $\operatorname{int}(Y) \subseteq A$. Then $Y \leq Z$ and so there is a condition
$p \in G$ such that $p \Vdash \dot{Y} \leq \dot{Z}$. By Lemma 4.3.7 \dot{Z} is symmetric below p, which implies that Z has a symmetric name.

Whenever \dot{X} is a \mathbb{P}-name for an infinite subset of ω (resp. a \mathbb{P} name for a pure condition) where \mathbb{P} is a forcing notion, such that for every finite set of conditions p_{1}, \ldots, p_{n} in \mathbb{P} and integer M there are extensions $\bar{p}_{1} \leq p_{1}, \ldots, \bar{p}_{n} \leq p_{n}$ and $m>M$ (resp. a finite logarithmic measure $x \in L_{M}$) such that for all $j=1, \ldots, n \bar{p}_{j} \Vdash \check{m} \in \dot{X}$ (resp. $\left.\bar{p}_{j} \Vdash \check{x} \leq \dot{X}\right)$ we will say that the name \dot{X} is symmetric. Also if we want to emphasize that \dot{X} is a \mathbb{P}-name, we will say that \dot{X} is \mathbb{P}-symmetric.

4.5. Extending Different Evaluations

Lemma 4.5.1. Let \dot{X} be a Cohen symmetric name for a pure condition. Let $\mathbb{C}_{n}=\mathbb{C} \times \cdots \times \mathbb{C}$ be the product of n-copies of \mathbb{C}. Then there is a \mathbb{C}_{n}-symmetric name for a pure condition \tilde{X} such that for all \mathbb{C}_{n}-generic filters G, for all $j=1, \ldots, n V[G] \vDash \tilde{X}[G] \leq \dot{X}\left[G^{j}\right]$, where G^{j} is the j-th projection of G.

Proof. Let $\left\{p_{m}\right\}_{m \in \omega}$ be an enumeration of \mathbb{C}_{n}. Then for every $m \in \omega, p_{m}=\left(p_{m}^{1}, \ldots, p_{m}^{n}\right)$ where $p_{m}^{j} \in \mathbb{C}$. Consider p_{1}. Since \dot{X} is \mathbb{C}-symmetric name there are extensions $p_{1,1}^{1} \leq p_{1}^{1}, \ldots, p_{1,1}^{n} \leq p_{1}^{n}$ and a finite logarithmic measure x_{1} such that for every $j=1, \ldots, n, p_{1,1}^{j} \Vdash$ $\check{x}_{1} \leq \dot{X}$. Let $p_{1,1}=\left(p_{1,1}^{1}, \ldots, p_{1,1}^{n}\right)$ and let $R_{1}^{\prime}=\left\{\left\langle p_{1,1}, \check{x}_{1}\right\rangle\right\}$. Fix a maximal antichain of conditions $A_{1}=\left\{a_{1, s}: s \in \omega\right\}$ in $\mathbb{C}_{n}-\mathbb{C}_{n}^{+}\left(p_{1,1}\right)$ such that $\forall s \in \omega$, there is a finite logarithmic measure $x_{1, s}$ such that for every $j=1, \ldots, n, a_{1, s}^{j} \Vdash \check{x}_{1, s} \leq \dot{X}$. Let $R_{1}^{\prime \prime}=\left\{\left\langle a_{1, s}, \check{x}_{1, s}\right\rangle: s \in \omega\right\}$ and let $R_{1}=R_{1}^{\prime} \cup R_{1}^{\prime \prime}$.

Suppose we have defined R_{m-1}. Consider $p_{m-1,1}, \ldots, p_{m-1, m-1}$ and p_{m}. If $p_{m} \perp\left\{p_{m-1, \ell}\right\}_{\ell=1}^{m-1}$, then there is $a_{m-1, s} \in A_{m-1}$ such that $a_{m-1, s} \not \perp$ p_{m} with common extension b_{m}. Let $y_{m}=x_{m-1, s}$. Otherwise there is $j \in\{1, \ldots, m-1\}$ such that $p_{m-1, j} \not \perp p_{m}$ with common extension which we again denote b_{m}. In this case let $y_{m}=x_{m-1}$. By symmetry of \dot{X} there are extensions $p_{m, \ell}^{j} \leq p_{m-1, l}^{j}$ for $1 \leq \ell \leq m-1,1 \leq j \leq n$ and $p_{m, m}^{j} \leq b_{m}^{j}(\forall j: 1 \leq j \leq n)$ and a finite logarithmic measure x_{m} which is stronger than $\left\{x_{m-1}, y_{m}\right\}$ such that for all $j, \ell p_{m, \ell}^{j} \Vdash \check{x}_{m} \leq \dot{X}$. Then for every $\ell=1, \ldots, m$ let $p_{m, \ell}=\left(p_{m, \ell}^{1}, \ldots, p_{m, \ell}^{n}\right)$ and let $R_{m}^{\prime}=$ $\left\{\left\langle p_{m, \ell}, \check{x}_{m}\right\rangle\right\}_{\ell=1}^{m}$. Just as in the base case let $A_{m}=\left\{a_{m, s}: s \in \omega\right\}$ be a maximal antichain in $\mathbb{C}_{n}-\mathbb{C}_{n}^{+}\left(\left\{p_{m, \ell}\right\}_{\ell=1}^{m}\right)$ such that for all $s \in \omega$
(1) $\exists i^{s} \in \omega$ such that $a_{m, s} \leq a_{m-1, i^{s}}$
(2) $\exists x_{m, s}$ stronger than $x_{m-1, i^{s}}$ such that for all $j=1, \ldots, n$, $a_{m, s}^{j} \Vdash \check{x}_{m, s} \leq \dot{X}$.

Let $R_{m}^{\prime \prime}=\left\{\left\langle a_{m, s}, \check{x}_{m, s}\right\rangle\right\}_{s \in \omega}$ and let $R_{m}=R_{m}^{\prime} \cup R_{m}^{\prime \prime}$. With this the inductive construction id complete and we can define $\tilde{X}=\cup_{m \in \omega} R_{m}$.

Let G be \mathbb{C}_{n}-generic. Then $G \cap A_{1}$ contains some $a_{1, s}$ (or $p_{1,1}$) and so $\tilde{X}[G](1)=x_{1, s}\left(\right.$ resp. $\left.\tilde{X}[G](1)=x_{1}\right)$. However for every $j=1, \ldots, n$, $a_{1, s}^{j} \in G^{j}$ and so since $a_{1, s}^{j} \Vdash \check{x}_{1, s} \leq \dot{X}$ we have $x_{1, s} \leq \dot{X}\left[G^{j}\right]$ (similarly $\left.x_{1} \leq \dot{X}\left[G^{j}\right]\right)$. The same argument holds for every $m \in \omega$. Indeed if $a_{m, s} \in G \cap A_{m}$, then $\tilde{X}[G](m)=x_{m, s}$. But for all $j=1, \ldots, n, a_{m, s}^{j} \in$ G^{j} and since $a_{m, s}^{j} \Vdash\left(\check{x}_{m, s} \leq \dot{X}\right)$ we obtain $\check{x}_{m, s}=\tilde{X}[G](m) \leq \dot{X}\left[G^{j}\right]$. Therefore $\tilde{X}[G]$ is a pure condition which is a common extension of $\dot{X}\left[G^{1}\right], \ldots, \dot{X}\left[G^{n}\right]$.

The name \tilde{X} is \mathbb{C}_{n}-symmetric. Consider any finite number of conditions p^{1}, \ldots, p^{n} and $M \in \omega$. In the fixed enumeration of \mathbb{C}_{n} for every $j=1, \ldots, n$ there is i_{j} such that $p^{j}=p_{i_{j}}$. Then there is $k \in \omega$ such that $k>i_{j}$ for all j and $k>M$. Then $p_{k, i_{1}} \leq p_{1}, \ldots, p_{k, i_{n}} \leq p_{i_{n}}$ and for $x_{k} \in L_{k} \subseteq L_{M}$ for all j we have $p_{k, i_{j}} \Vdash$ " $\tilde{x}_{k} \in \tilde{X}$ ". That is given any finite number of conditions p^{1}, \ldots, p^{n} and $M \in \omega$ there are extensions $q_{1} \leq p^{1}, \ldots, q_{n} \leq p^{n}$ and a finite logarithmic measure $x \in L_{M}$ such that $\forall l: 1 \leq l \leq n, q_{l} \Vdash \check{x} \leq \tilde{X}$. Therefore the name \tilde{X} is \mathbb{C}_{n}-symmetric.

Lemma 4.5.2. Let $\dot{X}=\langle\dot{X}(i): i \in \omega\rangle$ be a Cohen symmetric name for a pure condition, A an infinite subset of ω and $G_{0} a \mathbb{C}_{n}$ generic filter. Then there is a \mathbb{C}_{n}-symmetric name for a pure condition $X^{*}=\left\langle X^{*}(i): i \in \omega\right\rangle$ such that
(1) $\operatorname{int}\left(X^{*}\left[G_{0}\right]\right) \subseteq A$ or $\operatorname{int}\left(X^{*}\left[G_{0}\right]\right) \subseteq A^{c}$ and
(2) $\forall m \in \omega, j \leq n X_{m}^{*}\left[G_{0}\right] \leq \dot{X}_{m}\left[G_{0}^{j}\right]$, where $\dot{X}_{m}=\langle\dot{X}(i): i \geq$ $m\rangle$ and $X_{m}^{*}=\left\langle X^{*}(i): i \geq m\right\rangle$.

Proof. Let $\left\{p_{m}\right\}_{m \in \omega}$ be a fixed enumeration of \mathbb{C}_{n}. Consider $p_{1}=$ $\left(p_{1}^{1}, \ldots, p_{1}^{n}\right)$. Since \dot{X}_{1} is \mathbb{C}-symmetric there is $x_{1} \in L_{1}$ and extensions $p_{1,1}^{j} \leq p_{1}^{j}($ for $j=1, \ldots, n)$ such that $\operatorname{int}\left(x_{1}\right) \subseteq A \operatorname{or} \operatorname{int}\left(x_{1}\right) \subseteq A^{c}$ and for all $j, p_{1,1}^{j} \Vdash \check{x}_{1} \leq \dot{X}_{1}$. Let $A_{1}=\left\{a_{1, s}: s \in \omega\right\}$ be a maximal antichain in $\mathbb{C}_{n}-\mathbb{C}_{n}^{+}\left(p_{1,1}\right)$ such that for all $s \in \omega$ there is a finite logarithmic measure $x_{1, s}$ such that $\operatorname{int}\left(x_{1, s}\right) \subseteq A$ or $\operatorname{int}\left(x_{1, s}\right) \subseteq A^{c}$ and for all $j=1, \ldots, n, a_{1, s}^{j} \Vdash \check{x}_{1, s} \leq \dot{X}_{1}$ where $a_{1, s}=\left(a_{1, s}^{1}, \ldots, a_{1, s}^{n}\right)$. Let $R_{1}=\left\{\left\langle p_{1,1}, \check{x}_{1}\right\rangle\right\} \cup\left\{\left\langle a_{1, s}, \check{x}_{1, s}\right\rangle: s \in \omega\right\}$. Suppose we have defined R_{m-1}. Consider $p_{m-1,1}, \ldots, p_{m-1, m-1}$ and p_{m}. If $p_{m} \perp\left\{p_{m-1, \ell}\right\}_{\ell=1}^{m-1}$ then
there is $s \in \omega$ such that $p_{m} \not \perp a_{m-1, s}$. In this case let b_{m} be their common extension and let $y_{m}=x_{m-1, s}$. If there is $j \leq m-1$ such that $p_{m} \not \perp p_{m-1, j}$ let b_{m} be their common extension and let $y_{m}=x_{m-1}$. Then there are extensions $p_{m, \ell} \leq p_{m-1, \ell}$ for every $\ell=1, \ldots, m-1$ and $p_{m, m} \leq b_{m}$, and a finite logarithmic measure x_{m} stronger than $\left\{x_{m-1}, y_{m}\right\}$ such that $x_{m} \subseteq A$ or $x_{m} \subseteq A^{c}$ and for all $\ell=1, \ldots, m$, for all $j=1, \ldots, n, p_{m, \ell}^{j} \Vdash \check{x}_{m} \leq \dot{X}_{m}$ where $p_{m, \ell}=\left(p_{m, \ell}^{1}, \ldots, p_{m, \ell}^{n}\right)$. Let $A_{m}=\left\{a_{m, s}: s \in \omega\right\}$ be a maximal antichian in $\mathbb{C}_{n}-\mathbb{C}_{n}^{+}\left(\left\{p_{m, \ell}\right\}_{\ell=1}^{m}\right)$ such that for all $s \in \omega$
(1) $\exists i^{s} \in \omega$ s.t. $a_{m, s} \leq a_{m-1, i^{s}}$,
(2) $\exists x_{m, s}$ stronger than $x_{m-1, i^{s}}$ such that $x_{m, s} \subseteq A$ or $x_{m, s} \subseteq A^{c}$ and for all $j=1, \ldots, n, a_{m, s}^{j} \Vdash \check{x}_{m, s} \leq \dot{X}_{m}$ where $a_{m, s}=$ $\left(a_{m, s}^{1}, \ldots, a_{m, s}^{n}\right)$

Let $R_{m}=\left\{\left\langle p_{m, \ell}, \check{x}_{m}\right\rangle\right\}_{\ell=1}^{m} \cup\left\{\left\langle a_{m, s}, \check{x}_{m, s}\right\rangle: s \in \omega\right\}$. With this the inductive construction is complete and we can define $\tilde{X}=\cup_{m \in \omega} R_{m}$.

To see that \tilde{X} is symmetric consider any finite number of conditions p^{1}, \ldots, p^{m} in \mathbb{C}_{n} and some $M \in \omega$. Then $\forall j \leq m, \exists i_{j} \in \omega$ such that $p^{j}=p_{i_{j}}\left(\right.$ in the fixed enumeration of $\left.\mathbb{C}_{n}\right)$. There is $k>M$ s.t. $k>i_{j}$ for all $j \leq m$. Then $p_{k, i_{1}} \leq p_{i_{1}}, \ldots, p_{k, i_{m}} \leq p_{i_{m}}$ and $x_{k} \in L_{k} \subseteq L_{M}$ are such that $p_{k, \ell} \Vdash \check{x}_{k} \leq \tilde{X}$ for all $\ell \in\{1, \ldots, k\}$ and so in particular $p_{k, \ell} \Vdash \check{x}_{k} \leq \tilde{X}\left(\forall \ell \in\left\{i_{1}, \ldots, i_{m}\right\}\right)$.

Let G be \mathbb{C}_{n}-generic. We will show that for every $j \leq n, \tilde{X}[G] \leq$ $\dot{X}\left[G^{j}\right]$. Then $G \cap\left(\left\{p_{1,1}\right\} \cup A_{1}\right)$ contains some condition $a_{1, s}$ (or contains $\left.p_{1,1}\right)$. Then for every $j \leq n, a_{1, s}^{j} \Vdash\left(\check{x}_{1, s} \leq \dot{X}\right)\left(\right.$ resp. $\left.p_{1,1}^{j} \Vdash\left(\check{x}_{1} \leq \dot{X}\right)\right)$ and since $a_{1, s}^{j} \in G^{j}$ (resp. $\left.p_{1,1}^{j} \in G^{j}\right) x_{1, s}=\tilde{X}[G](1) \leq \dot{X}\left[G^{j}\right]$ for
every $j \leq n$ (resp. $\left.x_{1}=\tilde{X}[G](1) \leq \dot{X}\left[G^{j}\right]\right)$. The same argument holds for every $A_{k} \cup\left\{p_{k, 1}, \ldots, p_{k, k}\right\}$) and so $\tilde{X}[G]$ is a common extension of $\dot{X}\left[G^{1}\right], \ldots, \dot{X}\left[G^{n}\right]$. Furthermore $\tilde{X}_{m}=\cup_{k \geq m} R_{k}$ is symmetric and for every \mathbb{C}_{n}-generic filter in $V[G]$ for every $j \leq n$ we have $\tilde{X}_{m}[G] \leq$ $\dot{X}_{m}\left[G^{j}\right]$. Observe that $\forall i \in \omega$

$$
\vdash_{\mathbb{C}_{n}} " \operatorname{int}(\tilde{X}(i)) \subseteq \check{A} \text { or } \operatorname{int}(\tilde{X}(i)) \subseteq \check{A}^{c} "
$$

Let \tilde{H}, \tilde{T} be \mathbb{C}_{n}-names such that \Vdash " $\tilde{H}=\langle\tilde{X}(i): \operatorname{int}(\tilde{X}(i)) \subseteq \tilde{A}\rangle$ " and \Vdash " $\tilde{T}=\left\langle\tilde{X}(i): \operatorname{int}(\tilde{X}(i)) \subseteq \tilde{A}^{c}\right\rangle$ ". Then following the proof of Lemma 4.4.6 obtain that for every $p \in \mathbb{C}_{n}$ there is $q \leq p$ such that \tilde{H} or \tilde{T} is symmetric below q. Let E be a maximal antichian of conditions with this property. Then for every $e \in E$ let $X_{e}^{*} \upharpoonright e=\tilde{H} \upharpoonright e$ if \tilde{H} is symmetric below e and let $X_{e}^{*} \upharpoonright e=\tilde{T} \upharpoonright e$ if \tilde{T} is symmetric below e. For every $e^{\prime} \in E \backslash\{e\}$ let $i_{e e^{\prime}}: \mathbb{C}_{n}^{+}(e) \cong \mathbb{C}_{n}^{+}\left(e^{\prime}\right)$ be a partial order isomorphism. Then for every $e^{\prime} \in E \backslash\{e\}$ let $X_{e}^{*} \upharpoonright e^{\prime}=i_{e, e^{\prime}}\left(X_{e}^{*} \upharpoonright e\right)$. Then for every $e \in E, X_{e}^{*}$ is a symmetric name for a pure condition such that $\mathbb{1} \Vdash$ "int $\left(X_{e}^{*}\right) \subseteq \check{A}$ or $\operatorname{int}\left(X_{e}^{*}\right) \subseteq \check{A} c$ ". Furthermore $e \Vdash$ $X_{e}^{*} \leq \tilde{X}$ and so in particular for all $m \in \omega, e \Vdash X_{e, m}^{*} \leq \tilde{X}_{m}$, where $\Vdash X_{e, m}^{*}=\left\langle X_{e}^{*}(i): i \geq m\right\rangle$. Then $X^{*}=X_{e_{0}}^{*}$ where $\left\{e_{0}\right\}=G_{0} \cap E$ is the desired symmetric name for a pure condition.

Remark 4.5.3. Note that in $V[G]$ the centered family

$$
C^{*}=\left\{\left(X_{e}^{*}\right)_{m}[G]\right\}_{m \in \omega}
$$

extends the centered family $C_{j}=\left\{\dot{X}_{m}\left[G^{j}\right]\right\}_{m \in \omega}$ for every $j=1, \ldots, n$.

CHAPTER 5

Preserving small unbounded families

5.1. Preprocessed Names for Pure Conditions

Definition 5.1.1. Let $\Gamma \in\left[\omega_{2}\right]^{\omega}$ and let C be a centered family of $\mathbb{C}(\Gamma)$-symmetric names for pure conditions. We say that \dot{f} is a good $\mathbb{C}(\Gamma) * Q(C)$-name for a real if for every subset Γ^{\prime} of ω_{2} such that $\Gamma \subseteq \Gamma^{\prime}$ and centered family C^{\prime} of $\mathbb{C}\left(\Gamma^{\prime}\right)$-symmetric names for pure conditions extending C, \dot{f} is a $\mathbb{C}\left(\Gamma^{\prime}\right) * Q\left(C^{\prime}\right)$-name for a real.

Definition 5.1.2. Let C be a countable centered family of $\mathbb{C}(\Gamma)$ names for pure conditions, let \dot{f} be a good $\mathbb{C}(\Gamma) * Q(C)$-name for a real, $i, k \in \omega, p \in \mathbb{C}(\Gamma), \dot{X}$ a symmetric name for a pure condition in $Q(C)$ such that $\Vdash \check{k}<\min \operatorname{int}(\dot{X})$. The name \dot{X} is preprocessed for $\dot{f}(i), k$, p and C where $i, k \in \omega$ if for every $v \subseteq k$ the following holds:

If there is a countable centered family C^{\prime} of $\mathbb{C}(\Gamma)$-symmetric names extending C, a symmetric name for a pure condition \dot{Y} in $Q\left(C^{\prime}\right)$ extending \dot{X} and a condition $A \in \mathcal{A}_{i}(\dot{f})$ such that $(p,(v, \dot{Y})) \leq A$ then there is $B \in \mathcal{A}_{i}(\dot{f})$ such that $(p,(v, \dot{X})) \leq B$.

Lemma 5.1.3. Let C be a countable centered family of $\mathbb{C}(\Gamma)$-symmetric names for pure conditions, \dot{f} a good $\mathbb{C}(\Gamma) * Q(C)$-name for a real, \dot{X} a symmetric name for a pure condition in $Q(C)$. Let C^{\prime} be a countable centered family of symmetric names for pure conditions extending C
and \dot{Y} a symmetric name for a pure condition in $Q\left(C^{\prime}\right)$ extending \dot{X}. If \dot{X} is preprocessed for $\dot{f}(i), k, p$ and C then \dot{Y} is preprocessed for $\dot{f}(i), k, p$ and C^{\prime}.

Proof. Let $C^{\prime \prime}$ be a countable centered family of symmetric names for pure conditions extending C^{\prime} and let \dot{Z} be a symmetric name for an extension of \dot{Y} such that for some $A \in \mathcal{A}_{i}(\dot{f})(p,(v, \dot{Z})) \leq A$. However $C^{\prime \prime}$ extends C, \dot{Z} extends \dot{X}, \dot{X} is preprocessed for $\dot{f}(i), k, p$ and C, and so there is $B \in \mathcal{A}_{i}(\dot{f})$ such that $(p,(v, \dot{X})) \leq B$. But $\Vdash \dot{Y} \leq \dot{X}$ and so $(p,(v, \dot{Y})) \leq(p,(v, \dot{X})) \leq B$. Therefore \dot{Y} is preprocessed for $\dot{f}(i), k, p$ and C^{\prime}.

Lemma 5.1.4. Let C be a countable centered family of $\mathbb{C}(\Gamma)$-symmetric names for pure conditions, \dot{f} a good $\mathbb{C}(\Gamma) * Q(C)$-name for a real, $i, k \in \omega, p \in \mathbb{C}(\Gamma), \dot{X}$ a symmetric name for a pure condition in $Q(C)$. Then there is a countable centered family of symmetric names for pure conditions C^{\prime} extending C and a symmetric name for a pure condition T^{\prime} extending $\dot{X}, T^{\prime} \in Q\left(C^{\prime}\right)$ such that T^{\prime} is preprocessed for $\dot{f}(i), k, p$ and C^{\prime}.

Proof. Let v_{1}, \ldots, v_{s} enumerate the subsets of k. The name \dot{Y} and the centered family C^{\prime} will be obtained at finitely many steps. Consider $\left(p_{1},\left(v_{1}, \dot{X}\right)\right)$. If there is a countable centered family C_{1}^{\prime} of symmetric names for pure conditions extending C and a symmetric name for a pure condition $T_{1}^{\prime} \in Q\left(C_{1}^{\prime}\right)$ extending $\dot{X} \backslash k$ such that for some $A_{1} \in \mathcal{A}_{i}(\dot{f}),\left(p,\left(v_{1}, T_{1}^{\prime}\right)\right) \leq A_{1}$ let $T_{1}=T_{1}^{\prime}, C_{1}=C_{1}^{\prime}$. Otherwise let $T_{1}=\dot{X}, C_{1}=C$. At step $(s-1)$ consider $\left(p,\left(v_{s}, T_{s-1}\right)\right)$ and C_{s-1}.

If there is a centered family of symmetric names for pure conditions C_{s}^{\prime} extending $C_{s-1},\left|C_{s}^{\prime}\right|=\left|C_{s-1}\right|$ such that for some pure condition $T_{s}^{\prime} \in$ $Q\left(C_{s}^{\prime}\right)$ extending T_{s-1}, there is $A_{s} \in \mathcal{A}_{i}(\dot{f})$ such that $\left(p,\left(v_{s}, T_{s}^{\prime}\right)\right) \leq A_{s}$ let $T_{s}=T_{s}^{\prime}, C_{s}=C_{s}^{\prime}$. Otherwise let $T_{s}=T_{s-1}, C_{s}=C_{s-1}$. It will be shown that $T^{\prime}=T_{s}$ is preprocessed for $\dot{f}(i), k, p$ and $C^{\prime}=C_{s}$.

Let $v \subseteq k, C^{\prime \prime}$ a countable centered family of $\mathbb{C}(\Gamma)$-symmetric names for pure conditions extending $C^{\prime}, T^{\prime \prime}$ a symmetric name for a pure condition in $Q\left(C^{\prime \prime}\right)$ extending T^{\prime} such that for some $A \in \mathcal{A}_{i}(\dot{f})$, $\left(p,\left(v, T^{\prime \prime} \backslash k\right)\right) \leq A$. Then $v=v_{j}$ for some $j \in s+1$. Since $C^{\prime \prime}$ extends $C^{\prime}, C^{\prime \prime}$ extends C_{j-1} and furthermore $T^{\prime \prime}$ is a name for an extension of T_{j-1}. Therefore at stage j we have chosen a centered family C_{j} and a symmetric name for a pure condition $T_{j} \in Q\left(C_{j}\right)$ such that $\left(p,\left(v_{j}, T_{j}\right)\right) \leq A_{j} \in \mathcal{A}_{i}(\dot{f})$. However $\Vdash T^{\prime} \leq T_{j}$ and so $\left(p,\left(v_{j}, T^{\prime}\right)\right) \leq A_{j}$.

Corollary 5.1.5. Let \dot{X} be a $\mathbb{C}(\Gamma)$-symmetric name for a pure condition in $Q(C)$, where C is a countable centered family of $\mathbb{C}(\Gamma)$ symmetric names for pure conditions and let \dot{f} be a good $\mathbb{C}(\Gamma) * Q(C)$ name for a real. Let $\left\{p_{j}\right\}_{j \in \ell}$ be a finite number of conditions in $\mathbb{C}(\Gamma)$, $k, n \in \omega$. Then there is a countable centered family C^{\prime} of $\mathbb{C}(\Gamma)$ symmetric names extending C, a symmetric name \dot{Y} for a pure extension of \dot{X} in $Q\left(C^{\prime}\right)$ such that for all $j \leq \ell$ and $i \leq n, \dot{Y}$ is preprocessed for $\dot{f}(i), k, p_{j}$ and C^{\prime}.

Proof. By Lemma 5.1.4 there is a countable centered family C_{0} of $\mathbb{C}(\Gamma)$-symmetric names for pure conditions, a $\mathbb{C}(\Gamma)$-symmetric name \dot{X}_{0} for an extension of \dot{X} in $Q\left(C_{0}\right)$ which is preprocessed for $\dot{f}(0), k, p_{0}$
and C_{1}. Again by Lemma 5.1.4 there is a countable centered family C_{1} of $\mathbb{C}(\Gamma)$-symmetric names extending C_{0} and a symmetric name for a pure condition \dot{X}_{1} extending $\dot{X}_{0}, \Vdash \dot{X}_{1} \in Q\left(C_{1}\right)$ which is preprocessed for $\dot{f}(0), k, p_{1}$ and C_{1}. By Lemma 5.1.3 \dot{X}_{1} is also preprocessed for $\dot{f}(0), k, p_{0}$ and C_{1}. Repeating the argument ℓ-times obtain a centered family of symmetric names for pure conditions $C_{\ell-1}$ and a symmetric name $\dot{X}_{\ell-1} \in Q\left(C_{\ell-1}\right)$ such that for all $j \in \ell, \dot{X}_{\ell-1}$ is preprocessed for $\dot{f}(0), k, p_{j}$ and $C_{\ell-1}$. Repeating the argument above successively for $\dot{f}(1), \ldots, \dot{f}(n-1)$ obtain a centered family C^{\prime} of symmetric names for pure conditions and a symmetric name for a pure condition $\dot{Y} \in Q\left(C^{\prime}\right)$ extending \dot{X} such that for all $j \in \ell, i \in n, \dot{Y}$ is preprocessed for $\dot{f}(i)$, k, p_{j} and C^{\prime}.

Corollary 5.1.6. Let $\left\{p_{n}\right\}_{n \in \omega}$ enumerate $\mathbb{C}(\Gamma)$. Let C be a countable centered family of $\mathbb{C}(\Gamma)$-symmetric names for pure conditions, \dot{X} a $\mathbb{C}(\Gamma)$-symmetric name for a pure condition in $Q(C)$ and let \dot{f} be a good $\mathbb{C}(\Gamma) * Q(C)$-name for a real. Then there is a countable centered family C^{\prime} of $\mathbb{C}(\Gamma)$-symmetric names for pure conditions extending C and a sequence $\left\langle\dot{Y}_{n}: n \in \omega\right\rangle$ of $\mathbb{C}(\Gamma)$-symmetric names for pure conditions in $Q\left(C^{\prime}\right)$ such that

$$
\begin{aligned}
& \text { (1) } \Vdash \dot{Y}_{0} \leq \dot{X} \text { and } \forall n \in \omega \Vdash \dot{Y}_{n+1} \leq \dot{Y}_{n} \\
& \text { (2) } \forall n \in \omega \forall i, j \leq n \dot{Y}_{n} \text { is preprocessed for } \dot{f}(i), n, p_{j} \text { and } C^{\prime} .
\end{aligned}
$$

Proof. By Corollary 5.1 .5 there is a $\mathbb{C}(\Gamma)$-symmetric name for a pure condition \dot{Y}_{0} extending \dot{X}, such that $\dot{Y}_{0} \in Q\left(C_{0}^{\prime}\right)$ where C_{0}^{\prime} is a countable centered family of $\mathbb{C}(\Gamma)$-symmetric names for pure conditions extending C, which is preprocessed for $\dot{f}(0), p_{0}, 0$ and C_{0}.

Suppose \dot{Y}_{n}, C_{n} have been defined. Then by Corollary 5.1.5 there is a countable centered family C_{n+1} of $\mathbb{C}(\Gamma)$-symmetric names for pure conditions extending C_{n} and a symmetric name for a pure condition \dot{Y}_{n+1} extending \dot{Y}_{n} such that for all $i, j \leq n+1, \dot{Y}_{n+1}$ is preprocessed for $\dot{f}(i), n, p_{j}$ and C_{n+1}. Then $C^{\prime}=\cup_{n \in \omega} C_{n}$ is a countable centered family of $\mathbb{C}(\Gamma)$-symmetric names for pure conditions extending C, such that $\left\langle\dot{Y}_{n}: n \in \omega\right\rangle$ is contained in $Q\left(C^{\prime}\right)$ and $\forall n \in \omega, \forall i, j \leq n, \dot{Y}_{n}$ is preprocessed for $\dot{f}(i), n, p_{j}$, and C^{\prime}.

Corollary 5.1.7. Let C be a countable centered family of $\mathbb{C}(\Gamma)$ symmetric names for pure conditions, \dot{f} a good $\mathbb{C}(\Gamma) * Q(C)$-name for a real and \dot{X} a $\mathbb{C}(\Gamma)$-symmetric name for a pure condition in $Q(C)$. Then there is a countable centered family C^{\prime} of $\mathbb{C}(\Gamma)$-symmetric names for pure conditions extending C and $a \mathbb{C}(\Gamma)$-symmetric name $\dot{Z}=\langle\dot{Z}(i)$: $i \in \omega\rangle$ for a pure condition in $Q\left(C^{\prime}\right)$ such that $\forall n \in \omega, \forall i, j \leq n$ $\dot{Z}_{n}=\langle\dot{Z}(i): i \geq n\rangle$ is preprocessed for $\dot{f}(i), p_{j}, n$ and C^{\prime}, where $\left\{p_{n}\right\}_{n \in \omega}$ is a fixed enumeration of $\mathbb{C}(\Gamma)$.

Proof. Let C^{\prime} be a countable centered family extending $C,\left\langle\dot{Y}_{n}\right.$: $n \in \omega\rangle$ a sequence of $\mathbb{C}(\Gamma)$-symmetric names contained in $Q\left(C^{\prime}\right)$ satisfying Corollary 5.1.6. Passing to a subfamily we can assume that $C^{\prime}=\left\{\dot{X}_{n}\right\}_{n \in \omega}$ where for all $n \in \omega, \Vdash \dot{X}_{n+1} \leq \dot{X}_{n}$. Then using the fixed enumeration of $\mathbb{C}(\Gamma)$ obtain a $\mathbb{C}(\Gamma)$-symmetric name for a pure condition $\dot{Z}=\langle\dot{Z}(i): i \in \omega\rangle$ such that for all $n \in \omega, \Vdash \dot{Z}_{n} \leq \dot{X}_{n} \wedge \dot{Z}_{n} \leq \dot{Y}_{n}$ where $\Vdash \dot{Z}_{n}=\langle\dot{Z}(i): i \in \omega\rangle$. Then \dot{Z} and $C^{\prime}=\left\{\dot{Z}_{n}\right\}_{n \in \omega}$ are the desired pure condition and centered family of $\mathbb{C}(\Gamma)$-symmetric names.

5.2. Induced Logarithmic Measure

Lemma 5.2.1. Let $\left\{p_{i}\right\}_{i \in \omega}$ be a fixed enumeration of $\mathbb{C}(\Gamma)$ and let $\dot{X}=\langle\dot{X}(i): i \in \omega\rangle$ be a $\mathbb{C}(\Gamma)$-symmetric name for a pure condition such that $\forall m \in \omega, \forall i, j \leq m$ the name $\dot{X}_{m}=\langle\dot{X}(i): i \geq m\rangle$ is preprocessed for $\dot{f}(i), m, p_{j}$ and $C=\left\{\dot{X}_{m}\right\}_{m \in \omega}$, where \dot{f} is a good $\mathbb{C}(\Gamma) * Q(C)$-name for a real. Then for every $i, k \in \omega$ and finite number of conditions p^{1}, \ldots, p^{n} in $\mathbb{C}(\Gamma)$ the logarithmic measure induced by the set $\mathcal{P}_{k}\left(\dot{f}(i), \dot{X},\left\{p^{j}\right\}_{j=1}^{n}\right)$ which consists of all $x \in[\omega]^{<\omega}$ such that for all $j=1, \ldots, n$ there is $\bar{p}_{j} \leq p^{j}$ such that
(1) $\bar{p}_{j} \Vdash(\check{x} \subseteq \operatorname{int}(\dot{X})) \wedge\left(\exists j \in \omega\left(x \cap \operatorname{int}(X(j)) \in X(j)^{+}\right)\right)$,
(2) $\forall v \subseteq k \exists w_{v}^{j} \subseteq x \exists A_{v, j} \in \mathcal{A}_{i}(\dot{f})$ s.t. $\left(\bar{p}_{j},\left(v \cup w_{v}^{j}, X^{*}\right)\right) \leq A_{v, j}$
where X^{*} is a symmetric name for some final segment of \dot{X}, takes arbitrarily high values. The conditions $\left\{\bar{p}_{j}\right\}_{j=1}^{n}$ are said to witness the fact that x is positive.

Proof. Let G be $\mathbb{C}^{*}=\prod_{i=1}^{n} \mathbb{C}\left(\Gamma_{i}\right)$-generic filter where $\forall i \neq j$, $\Gamma_{i} \cap \Gamma_{j}=\emptyset$ and $\Gamma_{i} \cong \Gamma_{j}$, such that $\left(p^{1}, \ldots, p^{n}\right) \in G$. Let $\omega=A_{0} \cup$ $\cdots \cup A_{M-1}$ be a partition of ω into finitely many sets. By Lemma 4.5.2 there is a \mathbb{C}^{*}-symmetric name $\tilde{X}=\langle\tilde{X}(i): i \in \omega\rangle$ such that for some $j_{0} \in M \operatorname{int}(\tilde{X}[G]) \subseteq A_{j_{0}}$ and for all $m \in \omega, j=1, \ldots, n, \tilde{X}_{m}[G]=$ $\langle\tilde{X}(i)[G]: i \geq m\rangle \leq \dot{X}_{m}\left[G^{j}\right]$. Then in particular for all $j=1, \ldots, n$, $C_{j}=\left\{\dot{X}_{m}\left[G^{j}\right]\right\}_{m \in \omega} \subseteq Q(\tilde{C})$ where $\tilde{C}=\left\{\tilde{X}_{m}[G]\right\}_{m \in \omega}$. Since \dot{f} is a good name, \dot{f} is also a $\mathbb{C}^{*} * Q(\tilde{C})$-name for a real. Let v_{1}, \ldots, v_{L} enumerate the subsets of k. Fix $j \in\{1, \ldots, n\}$ and $s \in\{1, \ldots, L\}$. Since $f_{j}=$ \dot{f} / G^{j} is $Q(\tilde{C})$-name for a real, there is $q_{j s} \in G^{j}$, a $\mathbb{C}(\Gamma)$-symmetric name
for a pure condition $\dot{R}_{j s}$ in $Q(C)$ and a finite subset $u_{j s}$ of ω, such that $A_{j s}=\left(q_{j s},\left(u_{j s}, \dot{R}_{j s}\right)\right) \in \mathcal{A}_{i}(\dot{f})$ and in $V[G]$ the conditions $\left(u_{j s}, R_{j s}\left[G^{j}\right]\right)$ and $\left(v_{s}, \tilde{X}[G]\right)$ are compatible with common extension $\left(v_{s} \cup w_{j s}, \tilde{T}[G]\right)$ $($ from $Q(\tilde{C}))$. Then in particular $w_{j s} \subseteq \operatorname{int}(\tilde{X}[G])$ and $v_{s} \cup w_{j s} \backslash u_{j s} \subseteq$ $\operatorname{int}\left(\dot{R}_{j s}\left[G^{j}\right]\right)$. Since $\dot{R}_{j s}$ and \dot{X} are names in $Q(C)$, there is a $\mathbb{C}(\Gamma)$ symmetric name for a pure condition $\dot{Z}_{j s}$ (in fact a name for a final subsequence of $\dot{X})$ in $Q(C)$ which is their common extension. Then there is $t_{j s} \in G^{j}$ extending $q_{j s}$ and p^{j} such that $\left(t_{j s},\left(v_{s} \cup w_{j s}, \dot{Z}_{j s}\right)\right) \leq$ $A_{j s}$ and $\left(t_{j s},\left(v_{s} \cup w_{j s}, \dot{Z}_{j s}\right)\right) \leq\left(t_{j s},\left(v_{s} \cup w_{j s}, \dot{X}\right)\right)$. In finitely many steps find a finite subset x of $\operatorname{int}(\tilde{X}[G])$ such that for every $s=1, \ldots, L$ and every $j=1, \ldots, n$ there is $w_{j s} \subseteq x$, a $\mathbb{C}(\Gamma)$-symmetric name for a pure condition $\dot{Z}_{j s}$ in $Q(C)$ such that $\Vdash \dot{Z}_{j s} \leq \dot{X}$, a Cohen condition $t_{j s} \in G^{j}$ and a condition $A_{j s} \in \mathcal{A}_{i}(\dot{f})$ such that $\left(t_{j s},\left(v_{s} \cup w_{j s}, \dot{Z}_{j s}\right)\right) \leq A_{j s}$ and such that for some $l \in \omega, x \cap \operatorname{int}(\tilde{X}(l)[G])$ is $\tilde{X}(l)$-positive. Since $\tilde{X}[G] \leq \dot{X}\left[G^{j}\right]$ (for all $\left.j=1, \ldots, n\right)$ we have that $x \subseteq \operatorname{int}\left(\dot{X}\left[G^{j}\right]\right)$ and furthermore for every $j=1, \ldots, n$ there is $\ell_{j} \in \omega$ such that $x \cap$ $\operatorname{int}\left(\dot{X}\left(\ell_{j}\right)\left[G^{j}\right]\right)$ is a positive subset of $\dot{X}\left(\ell_{j}\right)\left[G^{j}\right]$. Then for every $j=$ $1, \ldots, n$ there is a condition $\bar{p}_{j} \in G^{j}$ extending p^{j} and $\left\{t_{j s}\right\}_{s=1}^{l}$ which forces " $x \subseteq \operatorname{int}(\dot{X})$ " and " $x \cap \operatorname{int}\left(\dot{X}\left(\ell_{j}\right)\right)$ is a positive subset of $\dot{X}\left(\ell_{j}\right)$ ". Since $\bar{p}_{j} \leq t_{j s}$, then also we have that $\left(\bar{p}_{j},\left(v_{s} \cup w_{j s}, \dot{Z}_{j s}\right)\right) \leq A_{j s}$ for all $s=1, \ldots, \ell$.

Let N be an integer greater than the indexes of \bar{p}_{j} for $j=1, \ldots, n$ in the fixed enumeration of $\mathbb{C}(\Gamma)$ and also greater than i and $\max x$. Let $X^{*}=\dot{X}_{N}$. Recall that $\dot{Z}_{j s}$ is a $\mathbb{C}(\Gamma)$-symmetric name for a pure condition extending \dot{X} and $\dot{Z}_{j s} \in Q(C)$. Then there is a $\mathbb{C}(\Gamma)$-symmetric
name for a pure condition $Z_{j s}^{*}$ in $Q(C)$ such that

$$
\Vdash " Z_{j s}^{*} \leq Z_{j s} \text { and } Z_{j s}^{*} \leq X^{*} "
$$

(in fact $Z_{j s}^{*}$ is a name for some final subsequence of \dot{X}). However X^{*} is preprocessed for $\dot{f}(i), \max x,\left\{\bar{p}_{j}\right\}_{j \leq n}$ and C. Therefore for all j, s there is a condition $B_{j s} \in \mathcal{A}_{i}(\dot{f})$ such that $\left(\bar{p}_{j},\left(v_{s} \cup w_{s}^{j}, X^{*}\right)\right) \leq B_{j s}$ and so x is a positive set. It remains to observe that $x \subseteq A_{j_{0}}$ and so by the sufficient condition for arbitrarily high values (Lemma 2.1.10) the logarithmic measure induced by $\mathcal{P}_{k}\left(\dot{f}(i), \dot{X},\left\{p^{j}\right\}_{j=1}^{n}\right)$ takes arbitrarily high values.

5.3. Good Names for Pure Conditions

Corollary 5.3.1. Let $\left\{p_{i}\right\}_{i \in \omega}$ enumerate $\mathbb{C}(\Gamma)$ and let $\dot{X}=\langle\dot{X}(i)$: $i \in \omega\rangle$ be a $\mathbb{C}(\Gamma)$-symmetric name for a pure condition such that $\forall m \in$ $\omega \forall i, j \leq m$ the name $\dot{X}_{m}=\langle\dot{X}(i): i \geq m\rangle$ is preprocessed for $\dot{f}(i)$, m, p_{j} and $C=\left\{\dot{X}_{m}\right\}_{m \in \omega}$ where \dot{f} is a good $\mathbb{C}(\Gamma) * Q(C)$-name for a real. Then there is a $\mathbb{C}(\Gamma)$-symmetric name for a pure condition $\dot{Y}=\langle\dot{Y}(i): i \in \omega\rangle$ such that
(1) $\forall m \in \omega, \dot{Y}_{m}=\langle\dot{Y}(i): i \geq m\rangle$ extends \dot{X}_{m}, and
(2) for all $i \in \omega, v \subseteq i, p \in \mathbb{C}(\Gamma)$, $s \in[\omega]^{<\omega}$ such that $p \Vdash$ $s \in \dot{Y}(i)^{+}$there is $w_{v} \subseteq s$ and $A \in \mathcal{A}_{i}(\dot{f})$ such that $(p,(v \cup$ $\left.\left.w_{v}, \dot{Y}_{i+1}\right)\right) \leq A$.

Proof. For every $p \in \mathbb{C}(\Gamma)$ let $C(p)=\mathbb{C}(\Gamma)(p)$. By Lemma 5.2.1 there is $x_{1} \in \mathcal{P}_{1}\left(\dot{X}_{1}, \dot{f}(1), p_{1}\right)$ with witness $p_{1,1}$. Fix a maximal antichain $A_{1}=\left\{a_{1, s}: s \in \omega\right\}$ in $\mathbb{P}-C\left(p_{1,1}\right)$ such that for every $s \in \omega$,
$a_{1, s}$ witnesses that $x_{1, s}$ is in $\mathcal{P}_{1}\left(\dot{X}_{1}, \dot{f}(1), a_{1 s}\right)$. Let

$$
R_{1}=\left\{\left\langle p_{11}, \check{x}_{1}\right\rangle\right\} \cup\left\{\left\langle a_{1 s}, \check{x}_{1 s}: s \in \omega\right\} .\right.
$$

Suppose R_{m-1} is defined. If $p_{m} \perp\left\{p_{m-1, l}\right\}_{l \leq m-1}$ then there is some $a_{m-1, s} \in A_{m-1}$ compatible with p_{m} with common extension b_{m} and let $y_{m}=x_{m-1, s}$. Otherwise there is $j \leq m-1$ such that $p_{m} \not \perp$ $p_{m-1, j}$ with common extension which we again denote b_{n}. In this case let $y_{m}=x_{m-1}$. Then by Lemma 5.2.1 there is a measure x_{m} in $\mathcal{P}_{m}\left(\dot{X}_{m}, \dot{f}(m),\left\{p_{m-1, l}\right\}_{l=1}^{m-1} \cup\left\{b_{m}\right\}\right)$ which is stronger than x_{m-1} and y_{m}. Thus in particular there are extensions $p_{m, l} \leq p_{m-1, l}$ for $l \leq m-1$ and $p_{m, m} \leq b_{m} \leq p_{m}$ witnessing this fact. Just as in the base case fix a maximal antichain $A_{m}=\left\{a_{m, s}: s \in \omega\right\}$ in $\mathbb{P}-C\left(\left\{p_{m, l}\right\}_{l=1}^{m}\right)$ such that for all $s \in \omega$
(1) $\exists i^{s} \in \omega\left(a_{m, s} \leq a_{m-1, i^{s}}\right)$
(2) there is a finite logarithmic measure $x_{m, s}$ stronger than $x_{m-1, i^{s}}$ such that $a_{m, s}$ witness that $x_{m, s}$ is in $\mathcal{P}_{m}\left(\dot{X}_{m}, \dot{f}(m), a_{m s}\right)$.

Let $R_{m}=\left\{\left\langle p_{m l}, \check{x}_{m}\right\rangle\right\}_{l=1}^{m} \cup\left\{\left\langle a_{m s}, \check{x}_{m s}\right\rangle: s \in \omega\right\}$ and let $\dot{Y}=\cup_{m \in \omega} R_{m}$. Then $\forall m \in \omega, \dot{Y}_{m}=\langle\dot{Y}(i): i \geq m\rangle$ extends \dot{X}_{m} and has the desired properties.

5.4. Unboundedness

THEOREM 5.4.1. Let C be a countable centered family of $\mathbb{C}(\Gamma)$ symmetric names for pure conditions, let Γ be a countable subset of ω_{2}, let \dot{f} be a good $\mathbb{C}(\Gamma) * Q(C)$-name for a real and $\delta \in \omega_{1} \backslash \Gamma$. Let $\dot{h}=\cup \dot{G}_{\delta}$ where \dot{G}_{δ} is the canonical name for the $\mathbb{C}(\{\delta\})$-generic filter. Then
there is a countable centered family C^{\prime} of $\mathbb{C}(\Gamma \cup\{\delta\})$-symmetric names for pure conditions which extends C and such that for every centered family $C^{\prime \prime}$ of $\mathbb{C}\left(\omega_{2}\right)$-symmetric names for pure conditions which extends $C^{\prime}, \Vdash_{\mathbb{C}\left(\omega_{2}\right) * Q\left(C^{\prime \prime}\right)} " \dot{h} \not z^{*} \dot{f} "$.

Proof. We can assume that $C=\left\{\dot{Y}_{m}\right\}_{m \in \omega}$, where $\dot{Y}_{m}=\langle\dot{Y}(i)$: $i \geq m\rangle$ and $\dot{Y}=\langle\dot{Y}(i): i \in \omega\rangle$ is the $\mathbb{C}(\Gamma)$-symmetric name constructed in Corollary 5.3.1. Let \dot{g} be a $\mathbb{C}(\Gamma)$-name for a function in ${ }^{\omega} \omega$ such that $\forall p \in \mathbb{C}(\Gamma) \forall i \in \omega, p \Vdash \dot{g}(i)=\check{k}$ if and only if

$$
\begin{aligned}
k= & \max \left\{j: v \subseteq i, w \in[\omega]^{<\omega}, p \Vdash " \check{w} \subseteq \dot{Y}(i) ",\right. \\
& \left.(p,(v \cup w, \dot{Y})) \leq A \text { for some } A \in \mathcal{A}_{i}(\dot{f}) \text { and } A \Vdash " \dot{f}(i)=\check{j} "\right\} .
\end{aligned}
$$

Let \dot{J} be a $\mathbb{C}(\Gamma \cup\{\delta\})$-name for a subset of ω such that

$$
\Vdash \dot{J}=\{i: \dot{g}(i)<\dot{h}(i)\}
$$

and for every $m \in \omega$ let \dot{Z}_{m} be a $\mathbb{C}(\Gamma \cup\{\delta\})$-name such that

$$
\Vdash \dot{Z}_{m}=\langle\dot{Y}(i): i>m \text { and } i \in \dot{J}\rangle .
$$

Claim. For all $m \in \omega$ the name \dot{Z}_{m} is $\mathbb{C}(\Gamma \cup\{\delta\})$-symmetric.

Proof. Let p_{0}, \ldots, p_{n-1} be a finite number of conditions in $\mathbb{C}(\Gamma \cup$ $\{\delta\})$ and let $M \in \omega$ be given. Then for every $i \in n p_{i}=p_{i}^{0} \cup p_{i}^{1}$ where $p_{i}^{0}=p_{i} \upharpoonright \Gamma \times \omega$ and $p_{i}^{1}=p_{i} \upharpoonright\{\delta\} \times \omega$. By construction of \dot{Y} there are extensions $q_{i}^{0} \leq p_{i}^{0}$ and a finite logarithmic measure $x \in L_{M}$ such that
$\forall i \in n, q_{i}^{0} \Vdash \check{x}=\dot{Y}(\ell)$ where $\ell>m, \ell>M$ and

$$
\ell>\max \left\{j:(\delta, j) \in \operatorname{domain}\left(p_{i}^{1}\right), i \in n\right\} .
$$

Furthermore for every $i \in n$ there is $t_{i}^{0} \in \mathbb{C}(\Gamma)$ extending q_{i}^{0} such that $t_{i}^{0} \Vdash \dot{g}(\ell)=\check{k}_{i}$ for some $k_{i} \in \omega$. Then let $L>\max _{i \in n} k_{i}$ and for every $i \in n$ let

$$
t_{i}^{1}=p_{i}^{1} \cup\{\langle(\delta, \ell), \check{L}\rangle\} .
$$

Then $t_{i}=t_{i}^{0} \cup t_{i}^{1} \leq p_{i}$ and $t_{i} \Vdash$ " $\dot{Y}(\ell)=\check{x} \wedge \ell>m \wedge \ell \in \dot{J}$ ". That is $t_{i} \Vdash \check{x} \leq \dot{Z}_{m}$. Therefore \dot{Z}_{m} is symmetric.

Then let $C^{\prime}=\left\{\dot{Z}_{m}\right\}_{m \in \omega}$ and let $\dot{Z}=\dot{Z}_{0}$. Consider arbitrary centered family $C^{\prime \prime}$ of $\mathbb{C}\left(\omega_{2}\right)$-symmetric names such that $\Vdash C^{\prime} \subseteq Q\left(C^{\prime \prime}\right)$. It is sufficient to show that $\forall a \in[\omega]^{<\omega}, \forall k \in \omega$

$$
\Vdash_{\mathbb{C}\left(\omega_{2}\right)} "(a, \dot{Z}) \Vdash_{Q\left(C^{\prime \prime}\right)} " \exists i>k(\dot{f}(i)<\dot{h}(i) " "
$$

since

$$
\vdash_{\mathbb{C}\left(\omega_{2}\right)} "\left\{(a, \dot{Z}): a \in[\omega]^{<\omega}\right\} \text { is predense in } Q\left(C^{\prime \prime}\right) \text { ". }
$$

Let $a \in[\omega]^{<\omega}, k \in \omega$ be arbitrary. Consider any $(p,(b, \dot{R})) \in \mathbb{C}\left(\omega_{2}\right) *$ $Q\left(C^{\prime \prime}\right)$ such that $p \Vdash$ " $(b, \dot{R}) \leq(a, \dot{Z})$ ". Then in particular $p \Vdash b \backslash a \subseteq$ $\operatorname{int}(\dot{Z})$ and $p \Vdash \dot{R} \leq \dot{Z}$. By definition of the extension relation there is $\ell>k$ such that $b \subseteq \ell$, a finite subset s of ω and extension \bar{p} of p such that

$$
\bar{p} \Vdash " \check{\ell} \in \dot{J} \text { and } \check{s}=\operatorname{int}(\dot{R}) \cap \operatorname{int}(\dot{Z}(\ell)) \text { is } \dot{Z}(\ell) \text { - positive". }
$$

By definition of $\dot{Z}(\ell)$ there is $w \subseteq s$ and $A \in \mathcal{A}_{\ell}(\dot{f})$ such that

$$
(\bar{p},(b \cup w, \dot{Y})) \leq A
$$

and so $(\bar{p},(b \cup w, \dot{Z})) \leq A$ as well as $(\bar{p},(b \cup w, R)) \leq A$. Note that $\bar{p} \Vdash \check{w} \subseteq \operatorname{int}(\dot{R})$ and so $(\bar{p},(b \cup w, R)) \leq(p,(b, \dot{R}))$. Furthermore

$$
(\bar{p},(b \cup w, \dot{R})) \Vdash " \dot{f}(\ell) \leq \dot{g}(\ell)<\dot{h}(\ell) " .
$$

Definition 5.4.2. Let \mathbb{P} be the partial order of all pairs $p=$ (Γ_{p}, C_{p}) where Γ is a countable subset of ω_{2}, C_{p} is a countable centered family of $\mathbb{C}\left(\Gamma_{p}\right)$-symmetric names for pure conditions with extension relation defined as follows: $p \leq q$ if $\Gamma_{q} \subseteq \Gamma_{p}$ and $\Vdash_{\mathbb{C}\left(\Gamma_{p}\right)} C_{q} \subseteq Q\left(C_{p}\right)$.

The partial order \mathbb{P} is countably closed and adds a centered family of $\mathbb{C}\left(\omega_{2}\right)$-symmetric names for pure conditions

$$
C_{H}=\cup\left\{C_{p}: p \in H\right\}
$$

where H is \mathbb{P}-generic. By Lemma 4.4.6, forcing with $Q\left(C_{H}\right)$ over $V^{\mathbb{P} \times \mathbb{C}\left(\omega_{2}\right)}$ adds a real not split by

$$
V^{\mathbb{C}\left(\omega_{2}\right)} \cap[\omega]^{\omega}=B^{\mathbb{C}\left(\omega_{2}\right) \times \mathbb{P}} \cap[\omega]^{\omega} .
$$

To see that the first ω_{1} Cohen reals remain an unbounded family consider an arbitrary $\mathbb{C}\left(\omega_{2}\right) * Q\left(C_{H}\right)$-name \dot{f} for a real. Then there is a condition $p \in H$ such that \dot{f} is a $\mathbb{C}\left(\Gamma_{p}\right) * Q\left(C_{p}\right)$-name for a real. Then for every $q \leq p$ either there is a further extension a such that \dot{f} is not
a $\mathbb{C}\left(\Gamma_{a}\right) * Q\left(C_{a}\right)$-name for a real, or \dot{f} is a good $\mathbb{C}\left(\Gamma_{a}\right) * Q\left(C_{a}\right)$-name. Then let $A=A^{-} \cup A^{+}$be an antichian of conditions which is maximal below p and such that $\forall a \in A^{-} \dot{f}$ is not a $\mathbb{C}\left(\Gamma_{a}\right) * Q\left(C_{a}\right)$-name for a real and $\forall a \in A^{+} \dot{f}$ is a good $\mathbb{C}\left(\Gamma_{a}\right) * Q\left(C_{a}\right)$-name. Since $p \in H$ and \dot{f} is a $\mathbb{C}\left(\omega_{2}\right) * Q\left(C_{H}\right)$-name for a real, there is $a \in H \cap A^{+}$. That is there is $a \in H$ such that \dot{f} is a good $\mathbb{C}\left(\Gamma_{a}\right) * Q\left(C_{a}\right)$-name for a real. Let \mathcal{H} be the collection of all names \dot{h} such that $\dot{h}=\cup \dot{G}_{\delta}$ where $\delta \in \omega_{1}$ and \dot{G}_{δ} is the canonical $\mathbb{C}(\{\delta\})$-name for the $\mathbb{C}(\{\delta\})$-generic filter (that is \mathcal{H} is the set of the first ω_{1} Cohen reals). Then by Theorem 5.4.1 the set

$$
D_{\dot{f}}=\left\{q \in \mathbb{P}: \exists \dot{h} \in \mathcal{H}\left(q \Vdash_{\mathbb{P}} " \Vdash_{\mathbb{C}\left(\omega_{2}\right) * Q\left(C_{\dot{H}}\right)} \text { " } \dot{h} \not \mathbb{Z}^{*} \dot{f} " "\right)\right\}
$$

where \dot{H} is the canonical \mathbb{P}-name for the \mathbb{P}-generic filer, is dense below a. Therefore there is $\dot{h} \in \mathcal{H}$ such that

$$
V[H] \vDash\left(\Vdash_{\mathbb{C}\left(\omega_{2}\right) * Q\left(C_{H}\right)} " \dot{h} \not \mathbb{Z}^{*} \dot{f} "\right)
$$

Lemma 5.4.3. Let Γ_{1}, Γ_{2} be countable subsets of ω_{2} such that $\Gamma_{1} \cap$ $\Gamma_{2}=\emptyset$ and let $i: \Gamma_{1} \cong \Gamma_{2}$ be an isomorphism. Let \dot{X} be $\mathbb{C}\left(\Gamma_{1}\right)$ symmetric name for a pure condition. Then there is $\mathbb{C}\left(\Gamma_{1} \cup \Gamma_{2}\right)$ symmetric name for a pure condition \tilde{X} such that $\Vdash_{\mathbb{C}_{\left(\Gamma_{1} \cup \Gamma_{2}\right)}}$ " $\tilde{X} \leq$ \dot{X} and $\tilde{X} \leq i(\dot{X})$ ". If \dot{Y} and \dot{Z} are $\mathbb{C}\left(\Gamma_{1}\right)$-symmetric names for pure conditions such that \Vdash " $\dot{X} \leq \dot{Y}$ and $\dot{X} \leq \dot{Z}$ " then

$$
\Vdash_{\mathbb{C}\left(\Gamma_{1} \cup \Gamma_{2}\right)} " \tilde{X} \leq \dot{Y} \text { and } \tilde{X} \leq i(\dot{Z}) "
$$

We will need the following claim.

CLAim. Let p_{1}, \ldots, p_{k} be any finite number of conditions in $\mathbb{C}\left(\Gamma_{1} \cup\right.$ Γ_{2}) and let $M \in \omega$. Then there is a finite logarithmic measure $x \in L_{M}$ and extensions $q_{1} \leq p_{1}, \ldots, q_{k} \leq p_{k}$ such that $\forall i \leq k$,

$$
q_{i} \Vdash " \check{x} \leq \dot{X} \text { and } \check{x} \leq i(\dot{X}) " .
$$

Proof. Note that $\forall i \leq k, p_{i}=p_{i}^{1} \cup p_{i}^{2}$ where $p_{i}^{1}=p_{i} \upharpoonright \Gamma_{1}, p_{i}^{2}=p_{i} \upharpoonright$ Γ_{2}. Let $q_{i}^{1}=p_{i}^{1}$ and $q_{i}^{2}=i^{-1}\left(p_{i}^{2}\right)$. Then since \dot{X} is $\mathbb{C}\left(\Gamma_{1}\right)$-symmetric there is $x \in L_{M}$ and extensions $q_{i, 1}^{1} \leq q_{i}^{1}$ and $q_{i, 2}^{2} \leq q_{i}^{2}$ such that $\forall i \leq k$, $q_{i, 1}^{1} \Vdash \check{x} \leq \dot{X}$ and $q_{i, 1}^{2} \Vdash \check{x} \leq \dot{X}$. But then $i\left(q_{i, 1}^{2}\right) \Vdash_{\mathbb{C}\left(\Gamma_{2}\right)} \check{x} \leq i(\dot{X})$ and so $r_{i}=q_{i, 1}^{1} \cup q_{i, 1}^{2}$ is an extension of p_{i} such that $r_{i} \Vdash_{\mathbb{C}\left(\Gamma_{1} \cup \Gamma_{2}\right)}$ " $\check{x} \leq$ \dot{X} and $\check{x} \leq i(\dot{X})$.

With this we can proceed with the proof of Lemma 5.4.3.

Proof. Fix an enumeration $\left\{p_{n}\right\}_{n \in \omega}$ of $\mathbb{C}\left(\Gamma_{1} \cup \Gamma_{2}\right)$ and inductively construct a $\mathbb{C}\left(\Gamma_{1} \cup \Gamma_{2}\right)$-symmetric name \tilde{X} such that for all $n \in \omega$,

$$
\Vdash_{\mathbb{C}\left(\Gamma_{1} \cup \Gamma_{2}\right)} \tilde{X}(n) \leq \dot{X} \wedge \tilde{X}(n) \leq i(\dot{X})
$$

Suppose \dot{Y} and \dot{Z} are $\mathbb{C}\left(\Gamma_{1}\right)$-symmetric names for pure conditions such that $\Vdash_{\mathbb{C}\left(\Gamma_{1}\right)} \dot{X} \leq \dot{Y} \wedge \dot{X} \leq \dot{Z}$. Then $\Vdash_{\mathbb{C}\left(\Gamma_{2}\right)} i(\dot{X}) \leq i(\dot{Z})$ and so $\vdash_{\mathbb{C}\left(\Gamma_{1} \cup \Gamma_{2}\right)} \tilde{X} \leq \dot{Y} \wedge \tilde{X} \leq i(\dot{Z})$.

Begin with a model of CH and consider a subset $\left\{p_{i}: i \in I\right\}$ of \mathbb{P} of size \aleph_{2}. By the Delta System Lemma there is a subset J of I, $|J|=\aleph_{2}$ such that $\left\{\Gamma_{i}: i \in J\right\}$ forms a delta system with root Δ where $\forall i \in I\left(\Gamma_{i}=\Gamma_{p_{i}}\right)$. Furthermore J might be chosen so that for all $i, j \in J$ there is an isomorphism $\alpha_{i j}: p_{i}(1) \cong p_{j}(1)$, such that $\alpha_{i j} \upharpoonright \Delta$
is the identity and such that $C_{j}=C_{p_{j}}=\left\{\alpha_{i j}(\dot{X}): \dot{X} \in C_{p_{i}}\right\}$. If $\Delta=\emptyset$ then by Lemma 5.4.3 for every $\dot{X} \in C_{i}$ where $C_{i}=C_{p_{i}}$, there is $\mathbb{C}\left(\Gamma_{i} \cup \Gamma_{j}\right)$-symmetric name for a pure condition \tilde{X}_{X} extending \dot{X} and $\alpha_{i, j}(\dot{X})$ and so $p_{k}=\left(\Gamma_{k}, C_{k}\right)$ where $\Gamma_{k}=\Gamma_{i} \cup \Gamma_{j}$ and

$$
C_{k}=C_{i} \cup C_{j} \cup\left\{\tilde{X}_{X}: X \in C_{i}\right\}
$$

is a common extension of p_{i} and p_{j}. However as mentioned in section 4.1 if the root of the delta system is non-empty the above argument does not hold and a stronger combinatorial property on the names for pure conditions is needed.

CHAPTER 6

A look ahead

6.1. General Definition of Symmetric Names

Definition 6.1.1. Let \dot{X} be a $\mathbb{C}(\Gamma)$-name for a subset of ω, where $\Gamma \in\left[\omega_{2}\right]^{\omega}$. Then \dot{X} is symmetric if for all finite subsets $\Gamma^{\prime}=\left\{\gamma_{0}, \ldots, \gamma_{n}\right\}$ of ω_{2}, where $\gamma_{0}=\min \Gamma<\gamma_{1}<\cdots<\gamma_{n}=\sup \Gamma$, for all finite families of conditions $\left\langle p_{i}^{j}\right\rangle_{i \leq k_{j}} \subseteq \mathbb{C}\left(\Gamma \cap \gamma_{j} \backslash \gamma_{j-1}\right)$ for $j=1, \ldots, n$ and every $M \in \omega$, there is $m>M$ which belongs to

$$
\cap_{i_{1}=1}^{k_{1}} \operatorname{hull}_{p_{i_{1}}^{1}, \Gamma \cap \gamma_{1} \backslash \gamma_{0}}\left(\cap_{i_{2}=1}^{k_{2}} \operatorname{hull}_{p_{i_{2}}^{2}, \Gamma \cap \gamma_{2} \backslash \gamma_{1}}\left(\ldots \cap_{i_{n}=1}^{k_{n}} \operatorname{hull}_{p_{i_{n}}^{n}, \Gamma \cap \gamma_{n} \backslash \gamma_{n-1}}(\dot{X}) \ldots\right)\right) .
$$

Remark 6.1.2. Note that \dot{X} is a $\mathbb{C}(\Gamma)$-symmetric name for a subset of ω if and only if for all finite subsets $\Gamma^{\prime}=\left\{\gamma_{0}, \ldots, \gamma_{n}\right\}$ of ω_{2}, where

$$
\gamma_{0}=\min \Gamma<\gamma_{1}<\cdots<\gamma_{n}=\sup \Gamma
$$

for all finite families of conditions $\left\langle p_{i}^{j}\right\rangle_{i \leq k_{j}} \subseteq \mathbb{C}\left(\Gamma \cap \gamma_{j} \backslash \gamma_{j-1}\right)$ for $j=$ $1, \ldots, n$ and every $M \in \omega$, there is a tree of extensions

$$
\Phi=\left\{\bar{\phi}\left(i_{1} \ldots i_{j}\right): 1 \leq j \leq n, 1 \leq i_{j} \leq k_{j}\right\}
$$

where $\phi\left(i_{1} \ldots i_{j}\right)$ is an extension of $p_{i_{j}}^{j}$ in $\mathbb{C}\left(\Gamma \cap \gamma_{j} \backslash \gamma_{j-1}\right), \bar{\phi}\left(i_{1}\right)=\phi\left(i_{1}\right)$ and for $j \geq 2 \bar{\phi}\left(i_{1} \ldots i_{j}\right)=\left(\bar{\phi}\left(i_{1} \ldots i_{j-1}\right), \phi\left(i_{1} \ldots i_{j}\right)\right)$, and there is an integer $m>M$ such that for every maximal node $\bar{\phi}$ of $\Phi, \bar{\phi} \Vdash \check{m} \in \dot{X}$. We will refer to the family of all Cohen conditions $P=\left\langle p_{i}^{j}\right\rangle_{i, j}$ as a
matrix of conditions and to the tree $\Phi=\Phi(P)$ as an associated tree of extensions. Note that definition 4.2.2 coincides with the particular case of the above definition in which Γ is a singleton.

This definition generalizes to names for pure conditions.

Definition 6.1.3. Let \dot{X} be a $\mathbb{C}(\Gamma)$-name for a pure condition, where Γ is a countable subset of ω_{2}. Then \dot{X} is symmetric if for all finite subsets $\Gamma^{\prime}=\left\{\gamma_{0}, \ldots, \gamma_{n}\right\}$ of ω_{2}, where $\gamma_{0}=\min \Gamma<\gamma_{1}<\cdots<$ $\gamma_{n}=\sup \Gamma$, for all finite families of conditions $\left\langle p_{i}^{j}\right\rangle_{i \leq k_{j}} \subseteq \mathbb{C}\left(\Gamma \cap \gamma_{j} \backslash \gamma_{j-1}\right)$ for $j=1, \ldots, n$ and every $M \in \omega$, there is a finite logarithmic measure $x \in L_{M}$ such that x belongs to
$\cap_{i_{1}=1}^{k_{1}} \operatorname{hull}_{p_{i_{1}}^{1}, \Gamma \cap \gamma_{1} \backslash \gamma_{0}}\left(\cap_{i_{2}=1}^{k_{2}} \operatorname{hull}_{p_{i_{2}}^{2}, \Gamma \cap \gamma_{2} \backslash \gamma_{1}}\left(\ldots \cap_{i_{n}=1}^{k_{n}} \operatorname{hull}_{p_{i_{n}}^{n}, \Gamma \cap \gamma_{n} \backslash \gamma_{n-1}}(\dot{X}) \ldots\right)\right)$.
Remark 6.1.4. Note that \dot{X} is a $\mathbb{C}(\Gamma)$-symmetric name for a pure condition if and only if for all finite subsets $\Gamma^{\prime}=\left\{\gamma_{0}, \ldots, \gamma_{n}\right\}$ of ω_{2}, where

$$
\gamma_{0}=\min \Gamma<\gamma_{1}<\cdots<\gamma_{n}=\sup \Gamma
$$

for all finite families of conditions $\left\langle p_{i}^{j}\right\rangle_{i \leq k_{j}} \subseteq \mathbb{C}\left(\Gamma \cap \gamma_{j} \backslash \gamma_{j-1}\right)$ for $j=$ $1, \ldots, n$ and every $M \in \omega$, there is a tree of extensions

$$
\Phi=\left\{\bar{\phi}\left(i_{1} \ldots i_{j}\right): 1 \leq j \leq n, 1 \leq i_{j} \leq k_{j}\right\}
$$

where $\phi\left(i_{1} \ldots i_{j}\right)$ is an extension of $p_{i_{j}}^{j}$ in $\mathbb{C}\left(\Gamma \cap \gamma_{j} \backslash \gamma_{j-1}\right), \bar{\phi}\left(i_{1}\right)=\phi\left(i_{1}\right)$ and for $j \geq 2, \bar{\phi}\left(i_{1} \ldots i_{j}\right)=\left(\bar{\phi}\left(i_{1} \ldots i_{j-1}\right), \phi\left(i_{1} \ldots i_{j}\right)\right)$ and there is a finite logarithmic measure $x \in L_{M}$ such that for every maximal node $\bar{\phi}$ of $\Phi, \bar{\phi} \Vdash \check{x} \leq \dot{X}$. We will refer to the family of all Cohen conditions
$P=\left\langle p_{i}^{j}\right\rangle_{i, j}$ as a matrix of conditions and to the tree $\Phi=\Phi(P)$ as an associated tree of extensions. Note that definition 4.3.2 coincides with the particular case of Definition 6.1.3 in which Γ is a singleton.

6.2. The \aleph_{2}-chain condition

Having in mind the construction following Definitions 5.4.2 consider the following Lemma:

Lemma 6.2.1. Let Γ and Θ be countable subsets of ω_{2}, let $\Delta=\Gamma \cap \Theta$, $\Omega=\Gamma \cup \Theta$ and let \dot{X} be $\mathbb{C}(\Gamma)$-symmetric name for a pure condition. Suppose

$$
\sup \Delta<\min \Gamma \backslash \Delta<\sup \Gamma \backslash \Delta<\min \Theta \backslash \Delta
$$

and let $i: \Gamma \cong \Theta$ be an isomorphism such that $i \upharpoonright \Delta=i d$. Then for every finite subset $\Gamma^{\prime}=\left\{\gamma_{0}, \ldots, \gamma_{s}\right\}$ of ω_{2} where

$$
\gamma_{0}=\min \Omega<\gamma_{1}<\cdots<\gamma_{s}=\sup \Omega
$$

and all finite families of conditions $\left\langle p_{i}^{j}\right\rangle_{i \leq k_{j}} \subseteq \mathbb{C}\left(\Omega \cap \gamma_{j} \backslash \gamma_{j-1}\right)$ for $j=$ $1, \ldots, s$ and every $M \in \omega$ there is $x \in L_{M}$ and an associated tree of extensions

$$
\Phi(P)=\left\{\bar{\phi}\left(i_{1} \ldots i_{j}\right): 1 \leq j \leq s, 1 \leq i_{j} \leq k_{j}\right\}
$$

for every maximal node $\bar{\phi}$ of which

$$
\bar{\phi} \Vdash " \check{x} \leq \dot{X} \text { and } \check{x} \leq i(\dot{X}) "
$$

Here P denotes the collection $\left\langle p_{i}^{j}\right\rangle_{i, j}$ of the given Cohen conditions.

Proof. Adding more ordinals if necessary we can assume that
$\Gamma^{\prime} \cap \Delta=\left\{\gamma_{j}\right\}_{j \in n+1}, \Gamma^{\prime} \cap \Gamma \backslash \Delta=\left\{\gamma_{j}\right\}_{j \in(n, 2 n]}, \Gamma^{\prime} \cap \Theta \backslash \Delta=\left\{\gamma_{j}\right\}_{j \in(2 n, 3 n]}$.

Furthermore we can assume that $i\left(\gamma_{j}\right)=\gamma_{j+n}$ for all $j \in(n, 2 n]$ and $\gamma_{n}=\sup \Delta, \gamma_{2 n}=\sup \Gamma \backslash \Delta, \gamma_{3 n}=\sup \Theta$. Also for all $j \in(0,3 n]$ let $k_{j}=k$. Let $M \in \omega$ be given. We have to obtain a tree of extensions $\Phi(P)$ associated with the matrix P and a finite logarithmic measure $x \in L_{M}$ such that the maximal nodes of Φ force that x extends \dot{X} and the isomorphic copy $i(\dot{X})$.

For every $j \in(0,2 n], i \in(0, k]$ let $r_{i}^{j}=p_{i}^{j}$ and for $j \in(n, 2 n]$, $i \in(k, 2 k]$ let $r_{i}^{j}=i^{-1}\left(p_{i-k}^{j+n}\right)$. Then $R=\left(r_{i}^{j}\right)_{i, j}$ is a matrix of conditions in $\mathbb{C}(\Gamma)$ and so by symmetry of \dot{X} there is a finite logarithmic measure $x \in L_{M}$ and a tree of extensions $\Psi(R)=\left\{\bar{\psi}\left(i_{1} \ldots i_{j}\right): 1 \leq j \leq 2 n, 1 \leq\right.$ $\left.i_{j} \leq k_{j}^{\prime}\right\}$ where for $j \in(0, n] k_{j}^{\prime}=k$ and for $j \in(n, 2 n] k_{j}^{\prime}=2 k$, the maximal nodes of which force that x extends \dot{X}. For $j \in(0,2 n]$ let

$$
\phi\left(i_{1} \ldots i_{j}\right)=\psi\left(i_{1} \ldots i_{j}\right)
$$

and for $j \in(2 n, 3 n]$, say $j=2 n+m$ let

$$
\phi\left(i_{1} \ldots i_{j}\right)=i\left(\psi\left(i_{1} \ldots i_{n} ; i_{n+1}+k, \ldots, i_{n+m}+k\right)\right) .
$$

Then let

$$
\Phi(P)=\left\{\bar{\phi}\left(i_{1} \ldots i_{j}\right): 1 \leq j \leq 3 n, 1 \leq i_{j} \leq k\right\}
$$

where $\bar{\phi}\left(i_{1}\right)=\phi\left(i_{1}\right)$ and $\bar{\phi}\left(i_{1} \ldots i_{j}\right)=\left(\bar{\phi}\left(i_{1} \ldots i_{j-1}\right), \phi\left(i_{1} \ldots, i_{j}\right)\right)$ is a tree of extensions of the given matrix P. To see that Φ has the desired properties, consider arbitrary maximal node $\bar{\phi}=\bar{\phi}\left(i_{1} \ldots i_{3 n}\right)$. Then $\bar{\phi}=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$ where $\alpha_{0}=\bar{\phi}\left(i_{1} \ldots i_{n}\right)=\bar{\psi}\left(i_{1} \ldots i_{n}\right), \alpha_{1}=$ $\left\langle\phi\left(i_{1} \ldots i_{j}\right): n<j \leq 2 n\right\rangle$ and $\alpha_{2}=\left\langle\phi\left(i_{1} \ldots i_{j}\right): 2 n<j \leq 3 n\right\rangle$. Observe in particular that $\alpha_{0} \in \mathbb{C}(\Delta), \alpha_{1} \in \mathbb{C}(\Gamma \backslash \Delta)$ and $\alpha_{2} \in \mathbb{C}(\Theta \backslash \Delta)$. Furthermore $\left(\alpha_{0}, \alpha_{1}\right)=\bar{\psi}\left(i_{1} \ldots i_{2 n}\right)$ and

$$
\left(\alpha_{0}, i^{-1}\left(\alpha_{2}\right)\right)=\bar{\psi}\left(i_{1} \ldots i_{n} ; i_{2 n+1}+k, \ldots, i_{3 n}+k\right)
$$

are maximal nodes of $\Psi(R)$ and so they force that x extends \dot{X}. It remains to observe that $i\left(\alpha_{0}, i^{-1}\left(\alpha_{2}\right)\right)=\left(\alpha_{0}, \alpha_{2}\right)$ since $i \upharpoonright \Delta=\mathrm{id}$ and so $\left(\alpha_{0}, \alpha_{2}\right) \Vdash \check{x} \leq i(\dot{X})$. Therefore $\bar{\phi} \Vdash$ " $\check{x} \leq \dot{X}$ and $\check{x} \leq i(\dot{X}) "$.

Lemma 6.2.2. Let Γ and Θ be countable subsets of ω_{2}, let $\Delta=\Gamma \cap \Theta$, $\Omega=\Gamma \cup \Theta$,

$$
\sup \Delta<\min \Gamma \backslash \Delta<\sup \Gamma \backslash \Delta<\min \Theta \backslash \Delta
$$

and let $i: \Gamma \cong \Theta$ be an isomorphism such that $i \upharpoonright \Delta=i d$. Let \dot{X} be $\mathbb{C}(\Gamma)$-symmetric name for a pure condition. Then $i(\dot{X})$ is a $\mathbb{C}(\Theta)$ symmetric name for a pure condition and there is a $\mathbb{C}(\Omega)$-symmetric name for a pure condition \tilde{X} such that

$$
\Vdash_{\mathbb{C}(\Omega)} \tilde{X} \leq \dot{X} \text { and } \tilde{X} \leq i(\dot{X})
$$

Proof. Enumerate all finite subsets of ω_{2} and associated matrices of conditions on Ω such that each pair is enumerated cofinally often. At
stage n consider the n-th pair and let m_{n} be an integer grater than the measures and domains of all finite logarithmic measures that have been defined up to this stage. Apply Lemma 6.2.1 to this n-th pair and the integer m_{n} to obtain a corresponding tree of extensions T_{n} and a finite logarithmic measure $x \in L_{m_{n}}$ such that the maximal nodes of the tree force " $\check{x} \leq \dot{X} \wedge \check{x} \leq i(\dot{X})$. Then let $\left\{(t, \check{x}): t\right.$ max node of $\left.T_{n}\right\} \subseteq \tilde{X}$.

6.3. Conclusion and open questions

A family \mathcal{A} of infinite subsets of ω, with pairwise finite intersection is an almost disjoint family. An almost disjoint family which is maximal, is called a maximal almost disjoint family, usually abbreviated as mad family. The almost disjointness number \mathfrak{a} is the minimal size of a maximal almost disjoint family. The ultrafilter number \mathfrak{u} is the minimal size of an ultrafilter base. A family \mathcal{F} of subsets of ω has the strong finite intersection property if the intersection of any finite subfamily of \mathcal{F} is infinite. A pseudo-intersection of a family \mathcal{F} is an infinite set almost contained in every element of the family. The pseudo-intersection number \mathfrak{p} is the minimal size of a family which has the strong finite intersection property and no pseudo-intersection.

THEOREM 6.3.1 (GCH). Let κ be a regular uncountable cardinal. Then there is a ccc generic extension, in which $\mathfrak{b}=\kappa<\mathfrak{s}=\mathfrak{a}=\kappa^{+}$.

Proof. In [12] J. Brendle shows that if V is a model of $Z F C^{*}$, κ is a regular uncountable cardinal, $\left\langle f_{\alpha}: \alpha<\kappa\right\rangle$ is a $<^{*}$-well ordered sequence of strictly increasing functions from ω to ω and in $V, \mathfrak{c}=\kappa$, $2^{\kappa}=\kappa^{+}$and $\left\langle f_{\alpha}: \alpha<\kappa\right\rangle$ is unbounded and \mathcal{A} is a maximal almost
disjoint family, then there is a ccc forcing notion $\mathbb{P}(\mathcal{A})$ of size \mathfrak{c} such that $\Vdash_{\mathbb{P}(\mathcal{A})}$ " \mathcal{A} is not mad and $\left\langle f_{\alpha}: \alpha<\kappa\right\rangle$ is unbounded". Using an appropriate bookkeeping device, along the finite support iteration of Theorem 3.6.3, one can destroy all mad families of size $\leq \kappa$.

THEOREM 6.3.2 (GCH). Let κ be a regular uncountable cardinal. Then there is a ccc generic extension in which $\mathfrak{p}=\mathfrak{b}=\kappa<\mathfrak{s}=\mathfrak{a}=\kappa^{+}$.

Proof. Along the finite support iteration from the proof of Theorem 3.6.3, one can force with all σ-centered forcing notions of size $<\kappa$, and so provide that in the final generic extension $M A_{<\kappa}(\sigma$-centered) holds. Then by Bell's theorem, $V^{\mathbb{P}_{\kappa}+} \vDash \mathfrak{p} \geq \kappa$. However, it is a ZFC theorem that $\mathfrak{p} \leq \mathfrak{b}$ and so $V^{\mathbb{P}^{+}+} \vDash \mathfrak{p}=\kappa$.

Theorem 6.3.3 (GCH). Let κ be a regular uncountable cardinal. Then there is a ccc generic extension in which

$$
\mathfrak{p}=\mathfrak{b}=\kappa<\mathfrak{s}=\mathfrak{a}=\mathfrak{u}=\kappa^{+} .
$$

Proof. Modifying an argument from A.Blass and S. Shelah [9], it will be shown that in the model of Theorem 3.6.3 the ultrafilter number $\mathfrak{u}=\kappa^{+}$. Suppose $\mathfrak{u}<\kappa^{+}$and let \mathcal{F} be an ultrafilter base of size \mathfrak{u}. Then there is $\beta<\kappa^{+}$such that $\mathcal{F} \subseteq V_{\beta}=V\left[G_{\beta}\right]$ where as usual, for every $\gamma \leq \kappa^{+} G_{\gamma}=G \cap \mathbb{P}_{\gamma}$. We can assume that in $V_{\beta}, Q_{\alpha}=Q\left(C_{\alpha}\right)$ where $\alpha=\beta+1$ for an appropriate centered family of pure conditions C_{α}. Let $s_{\alpha}=\cup\{u: \exists T(u, T) \in G\}$ where $G_{\alpha}=G_{\beta} * G$, i.e. G is $Q\left(C_{\alpha}\right)$ generic over $V_{\beta}=V\left[G_{\beta}\right]$ and let $X=\left\{n:\left|s_{\alpha} \cap n\right|\right.$ is even $\}$. Then $X \in$ $V\left[G_{\alpha}\right] \cap[\omega]^{\omega}$. Let \dot{X} and \dot{s}_{α} be $Q\left(C_{\alpha}\right)$-names for X and s_{α} respectively,
in $V\left[G_{\beta}\right]$. It will be shown that neither X nor its complement contain infinite set from V_{β}, which contradicts the hypothesis that \mathcal{F} is an ultrafilter base. Suppose to the contrary, that there is $Y \in V_{\beta} \cap[\omega]^{\omega}$ such that $V\left[G_{\alpha}\right] \vDash Y \subseteq X$ or $V[\alpha] \vDash Y \subseteq X^{c}$. Without loss of generality suppose $V\left[G_{\alpha}\right] \vDash Y \subseteq X$. Then there is $(u, T) \in Q\left(C_{\alpha}\right)$ such that $(u, T) \Vdash \check{Y} \subseteq \dot{X}$. Let $m=\operatorname{minint}(T)$ and let $y \in Y$ such that $y>m$. Then $(u, T \backslash y)$ and $(u \cup\{m\}, T \backslash y)$ extend (u, T). However $(u, T \backslash y) \Vdash \dot{s}_{\alpha} \cap y=u$ and $(u \cup\{m\}, T \backslash y) \Vdash \dot{s}_{\alpha} \cap y=u \cup\{m\}$. Then one of those extensions forces " $\check{y} \notin \dot{X}$ ", which is a contradiction.

Corollary 6.3.4 (GCH). Let κ be regular uncountable cardinal. Then there is a ccc generic extension, in which $\mathfrak{p}=\mathfrak{t}=\mathfrak{h}=\mathfrak{b}=\kappa$ and $\mathfrak{s}=\mathfrak{d}=\mathfrak{i}=\mathfrak{a}=\mathfrak{u}=\mathfrak{c}=\kappa^{+}$.

Question 6.3.5. What can be said about $\mathfrak{r}, \mathfrak{e}, \mathfrak{g}$ in this model?

In section 4.2, we showed that in the Cohen extension, the collection of all subsets of ω which do not have symmetric names forms an ideal $I_{\text {nsym }}$. This ideal has a very natural definition, and on the other hand its properties seem to be distinct from the properties of known ideals.

Question 6.3.6. Find a generating set for $I_{\text {nsym }}$. Is there an absolute analogue of $I_{\text {nsym }}$? What are the properties of $\mathcal{P}(\omega) / I_{\text {nsym }}$?

One can combine the techniques of chapter III with techniques of S. Shelah, from his original paper [31] on the consistency of $\mathfrak{b}=\omega_{1}<\mathfrak{s}=$ $\mathfrak{a}=\omega_{2}$ to obtain a forcing notion which preserves a given unbounded family unbounded, which destroys a maximal almost disjoint family
and adds a real not split by the ground model reals. Furthermore, it seems reasonable to expect that the construction of the countably closed, \aleph_{2}-c.c. forcing notion from chapter V, see Definition 5.4.2, can be modified to obtain a countably closed, \aleph_{2}-c.c. forcing notion (or alternatively κ-closed, κ^{+}-c.c.) which adds a centered family C of $\mathbb{C}(\lambda)$ names for pure conditions, such that $Q(C)$ preserves all unbounded families unbounded, destroys $V^{\mathbb{C}(\lambda)} \cap[\omega]^{\omega}$ as a splitting family, and adds a real almost disjoint from the elements of a given maximal almost disjoint family in $V^{\mathbb{C}(\lambda)}$. Then it becomes imperative to find an appropriate way to iterate this forcing notion and obtain the consistency of $\mathfrak{b}=\kappa<\mathfrak{s}=\mathfrak{a}=\lambda$, where κ and λ are arbitrary regular uncountable cardinals.

Bibliography

[1] U. Abraham Proper forcing, for the Handbook of Set-Theory.
[2] B. Balcar, J. Pelant, P. Simon The space of ultrafilters of \mathbb{N} covered by nowhere dense sets, Fund. Math., vol. 110(1980), pp. 11-24.
[3] T. Bartoszyński and H. Judah Set theory: on the structure of the real line, A.K. Peters, 1995.
[4] T. Bartoszyński and J. Ihoda [H. Judah] On the cofinality of the smallest covering of the real line by meager sets, The Journal of Symbolic Logic, vol. 54(1989), no. 3, pp. 828-832.
[5] J. Baumgartner Applications of the proper forcing axiom Handbook of settheoretic topology, pp. 913-959, North-Holland, Amsterdam, 1984.
[6] J. Baumgartner Iterated forcing, Surveys in set theory, pp. 1-59, London Math. Soc. Lecture Notes Ser., 87, Cambridge Univ. Press, Cambridge, 1983.
[7] J. Baumgartner and P. Dordal Adjoining dominating functions, The Journal of Symbolic Logic, vol. 50(1985), no.1, pp.94-101.
[8] A. Blass Combinarotial cardinal characteristics of the continuum, for the Handbook of Set-Theory.
[9] A. Blass and S.Shelah Ultrafilters with small generating sets, Israel J. Math., vol. 65, no. 3(1989), pp. 259-271.
[10] D. Booth A boolean view of sequential compactness, Fund. Math., vol. 110 (1980), pp. 99-102.
[11] J. Brendle How to force it, lecture notes.
[12] J. Brendle Mod families and mad families Arch. Math. Logic, vol. 37 (1998), pp. 183-197.
[13] J. Brendle Larger cardinals in Cichon's diagram, The Journal of Symbolic Logic, vol. 56, no. 3 (Sep., 1991), pp. 795-810.
[14] M. Canjar Mathias forcing which does not add dominating reals, Proc. Amer. Math. Soc., vol. 104, no. 4, 1988, pp. 1239-1248.
[15] P. Cohen The independence of the continuum hypothesis, Proceeding of the National Academy of Sciences of the United States of America, vol. 50, no.9(1963), pp. 1143-1148.
[16] P. Cohen The indeendence of the continuum hypothesis, II, Proceeding of the National Academy of Sciences of the United States of America, vol. 51, no.1(1964), pp. 105-110.
[17] M. Goldstern Tools for your forcing construction, Set theory of the reals (Ramat Gan, 1991), pp. 305-360, Israel Math. Conf. Proc., 6, Bar-Ilan Univ., Ramat Gan, 1993.
[18] G. Hardy Orders of Infinity. The "Infinitärcalcül of Paul du Bois-Reymond, Cambridge University Press, 1954.
[19] S. Hechler On the existence of certain cofinal subsets of ${ }^{\omega} \omega$, In T. Jech, editor, Axiomatic Set Theory Part II, volume 13(2) of Proc. Smp. Pure Math., pp. 155173. Amer. Math. Soc., 1974.
[20] T. Jech Set Theory, Springer-Verlag, 2003.
[21] H. Judah and S. Shelah The Kunen-Miller chart(Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing), The Journal of Symbolic Logic, vol. 55(1990), pp. 909-927.
[22] D. Hausdorff Die Graduierung nach dem Endverlauf, Leipzig Abh., 31, pp. 297-334, 1909.
[23] D. Hausdorff Summen von \aleph_{1} Mengen, Fund. Math. 26 (1993), pp. 243-247.
[24] K. Kunen Set Theory: an introduction to independence proofs, North-Holland, 1980.
[25] S. Lavine Understanding the infinite, Harvard University Press, 1994.
[26] A. R. D. Mathias Happy Families, Annals of Mathematical Logic 12 (1977), pp. 59-111.
[27] F. Rothberger Une remarque concernant l'hypothese du continu. Fund. Math., vol. 31, pp. 224-226
[28] F. Rothberger Sur un ensemble toujours de premiere categorie qui est depourvu de la propriete λ, Fund. Math, vol. 32, pp. 294-300
[29] M. Scheepers Gaps in ${ }^{\omega} \omega$, Set theory of the reals (Ramat Gan, 1991), 439-561, Israel Math. Conf. Proc., 6, Bar-Ilan Univ., Ramat Gan, 1993.
[30] S. Shelah Proper and Improper Forcing, Second Edition. Springer, 1998.
[31] S. Shelah On cardinal invariants of the continuum, In (J.E. Baumgartner, D.A. Martin, S. Shelah eds.) Contemporary Mathematics (The Boulder 1983 conference) Vol. 31, Amer. Math. Soc. (1984), pp. 184-207.
[32] S. Shelah Vive la Difference I: Nonisomorphism of ultrapowers of countable models Set theory of the continuum (Berkeley, CA, 1989), pp. 357-405, Math. Sci. Res. Inst. Publ., 26, Springer, New York, 1992.
[33] S. Shelah On what I do not understand (and have something to say). I. Saharon Shelah's anniversary issue. Fund. Math. 166 (2000), no. 1-2, pp. 1-82.
[34] J. Steprans History of the continuum in the 20th century, preprint.
[35] Eric K. Van Douwen The integers and topology, Handbook of Set-Theoretic Topology, edited by K. Kunen and J. E. Vaughan.
[36] B. Velicković CCC posets of perfect trees, Compositio Math. vol. 79 (1991), no. 3, pp. 279-294.

