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I discuss three potential sources of evidence for truth in set theory, coming from
set theory’s roles as a branch of mathematics and as a foundation for mathematics
as well as from the intrinsic maximality feature of the set concept. I predict that
new non first-order axioms will be discovered for which there is evidence of all three
types, and that these axioms will have significant first-order consequences which will
be regarded as true statements of set theory. The bulk of the paper is concerned with
the Hyperuniverse Programme, whose aim is to discover an optimal mathematical
principle for expressing the maximality of the set-theoretic universe in height and
width.

1 Introduction

The truth of the axioms of ZFC is commonly accepted for at least two reasons.
One reason is foundational, as they endow set theory with the ability to serve as a
remarkably good foundation for mathematics as a whole, and another is intrinsic,
as (with the possible exception of AC, the axiom of choice) they can be seen to be
derivable from the concept of set as embodied by the maximal iterative conception.

In fact a little bit more than ZFC is justifiable on intrinsic and perhaps also foun-
dational grounds. I refer here to reflection principles and their related small large
cardinals, which are also derivable from the maximal iterative conception through
height (ordinal) maximality and, at least in the case of inaccessible cardinals, are
occasionally useful for the development of certain kinds of highly abstract mathe-
matics (such as Grothendieck universes). These extensions of ZFC are mild in the
sense that they are compatible with the powerset-minimality principle V = L.

But finding strong evidence for the truth of axioms that contradict V = L has
been exceedingly difficult. There are a number of reasons for this. One is the
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fact that mild extensions of ZFC have been in a sense too good, in that they alone
have until recently been sufficient to serve the needs of set theory as a foundation
for mathematics. Another is the difficulty of squeezing more out of the maximal
iterative conception through a width (powerset) maximality analogue of the height
maximality principles that give rise to reflection. And the development of set theory
as a branch of mathematics has been so dramatic, diverse and ever-changing that
it has been impossible to select those perspectives on the subject whose choices of
new axioms can be regarded as “the most true”.

My aim in this article is to provide evidence for the following three predictions.

The Richness of Set-Theoretic Practice. The development of set theory as a branch
of mathematics is so rich that there will never be a consensus about which first-order
axioms (beyond ZFC plus small large cardinals) best serve this development.

A Foundational Need. Just as AC is now accepted due to its essential role for math-
ematical practice, a systematic study of independence results across mathematics
will uncover first-order statements contradicting CH (and hence also V = L) which
are best for resolving such independence.

An Optimal Maximality Criterion. Through the Hyperuniverse Programme it will
be possible to arrive at an optimal non first-order axiom expressing the maximality
of the set-theoretic universe in height and width; this axiom will have first-order
consequences contradicting CH (and hence also V = L).

And as a synthesis of these three predictions I propose the following optimistic
scenario for making progress in the study of set-theoretic truth.

Thesis of Set-Theoretic Truth. There will be first-order statements of set theory that
well serve the needs of set-theoretic practice and of resolving independence across
mathematics, and which are derivable1 from the maximality of the set-theoretic
universe in height and width. Such statements will come to be regarded as true
statements of set theory.

This Thesis has a converse: In order for a first-order statement contradicting
V = L to be regarded as true, in my view it must well serve the needs of set-
theoretic practice and of resolving independence in mathematics, and it must at
least be compatible with the maximality of the set-theoretic universe as expressed

1For a discussion of this notion of derivability see the final Subsection 4.12.
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by the optimal maximality criterion. Indeed the strength of the evidence for such
a statement’s truth is in my view measured by the extent to which it fulfills these
three requirements.

An important consequence of the Thesis is the failure of CH. Thus part of my
prediction is that CH will be regarded as false.

Note that in the Thesis I do not refer to true first-order axioms but only to true
first-order statements. The reason is the following additional claim.

Beyond First-Order. There will never be a consensus about the truth of proposed
first-order axioms that contradict V = L; instead true first-order statements will
arise solely as consequences of true non first-order axioms.

One reason for this claim is the inadequancy of first-order statements to capture
the maximality of the set-theoretic universe.

The plan of this paper is as follows. First I’ll review some of the popular first-
order axioms that well serve the needs of set-theoretic practice and argue for the
Richness prediction above. Second I’ll discuss what little is known about indepen-
dence across mathematics, discussing the role of forcing axioms as evidence for the
Foundational prediction above. And by far the bulk and central aim of the paper
is the third part, in which I present the Hyperuniverse Programme, including its
philosophical foundation and most recent mathematical developments.

2 Set-Theoretic Practice

Set theory is a burgeoning subject, rife with new ideas and new developments,
constantly leading to new perspectives. Naturally certain of these perspectives stand
out among the chaotic mass of new results being proved, and it is worth focusing on
a few of these to expose the difficulty of settling on particular new axioms as being
“the true ones”.

I have emphasized the need to find evidence for the truth of axioms that con-
tradict V = L, but purely in terms of the value of an axiom for the development of
good set theory, what I will refer to as Type 1 evidence, this is not possible. Jensen’s
deep work unlocking the power of this axiom reveals the power of V = L, indeed it
appears to give us, when combined with small large cardinals, a theory that is com-
plete for all natural set-theoretic statements! That is a remarkable achievement and
speaks volumes in favour of declaring V = L to be true based on Type 1 evidence.
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A natural Type 1 objection to V = L is that it doesn’t take forcing into account,
a fundamental method for building new models of set theory. Admittedly, even in L

one has forcing extensions of countable models, but it is more natural to force over
the full L and not just over some small piece of it. So now we contradict V = L in
favour of ”V contains many generic extensions of L” or something similar.

Having lots of forcing extensions of L sounds good, but then what is our canonical
universe now? Shouldn’t we also have a sentence that is true only in V , and not
in any of its proper inner models, while at the same time having many generic
extensions of L? Indeed this is possible with class forcing (see [11]). So now we
have a nice Type 1 axiom: V is a canonical universe which is class-generic over L,
containing many set-generic extensions of L. This is an excellent context for doing
set theory, as the forcing method is now available.

In fact we can do even better and take V to be L[0#]. Not only does this model
contain many generic extensions of L, it is also a canonical universe and we recover
all of the powerful methods that Jensen developed under V = L, relativised now to
the real 0#. So our Type 1 evidence leads us to the superb axiom V = L[0#].

Objection! What about measurable cardinals? Recall the important hierarchy
of consistency strengths: Natural theories are wellordered (up to bi-interpretability)
by their consistency strengths and the consistency strengths of large cardinal axioms
provide a nice collection of consistency strengths which is cofinal in a large initial
segment of (if not all of) this hierarchy. This does not mean that large cardinals
must exist but at the very least there should be inner models having them. So now
based on Type 1 evidence we get some version of “There are inner models with large
cardinals”, an attractive environment in which to do good set theory.

Moreover, notice that if we have inner models for large cardinals we haven’t lost
the option of looking at L or its generic extensions, they are still available as inner
models. So we seem to have reached the best Type 1 axiom yet.

But we could ask for even more. Recall that L has a nice internal structure, very
powerful for deriving consequences of V = L. Can V not only have inner models
for large cardinals but also an L-like internal structure? Of course the answer is
positive, as we can adopt the axiom “There are inner models with large cardinals
and V = L[x] for some real x”. A better answer is provided in [14], where it is shown
that V can be L-like together with arbitrary large cardinals, not only in inner models
but in V itself. However, as attractive as this may sound, it fails to address a key
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problem, and this is where we see the multiple perspectives of set theory, with no
single perspective having a claim to being “the best”.

Even if we produce a nice axiom2 of the form “There are large cardinals and V

is a canonical generalisation of L”, doing so commits us to an L-like environment in
which to do set theory. Indeed there are other compelling perspectives on set theory
which lead us to non L-like environments and correspondingly to entirely different
Type 1 axioms. I will mention two of them. (Further information about the notions
mentioned below is available in [22]).

Forcing axioms have a long history, dating back to Martin’s axiom (MA), a
special case of which asserts the existence of generics for ccc partial orders (i.e.
partial orders with only countable antichains) over models of size ℵ1. This simple
axiom can be used to establish in one blow the relative consistency of a huge range
of set-theoretic statements. Naturally there has been interest in strengthenings of
MA, and a popular one is the Proper Forcing Axiom (PFA), which strengthens this3

to the wider class of proper partial orders.

Now with regard to Type 1 evidence the point is that PFA has even more striking
consequences than MA, qualifying it as a central and important tool for solving
combinatorial problems in set theory. A powerful case can be made for its truth
based on Type 1 evidence. But of course PFA conflicts with any axiom which
asserts that V is L-like, as it implies the negation of CH. In fact PFA implies that
the size of the continuum is ℵ2.

The diversity of Type 1 evidence goes beyond just L-likeness and forcing axioms;
there are also cardinal characteristics. These are natural and heavily-investigated
cardinal numbers that arise when studying definability-theoretic and combinatorial
properties of sets of real numbers. Each of these cardinal characteristics is an un-
countable cardinal number of size at most the continuum. Now given the variety of
such characteristics together with the fact that they can consistently differ from each
other, isn’t it compelling to adopt the axiom that cardinal characteristics provide
a large spectrum of distinct uncountable cardinals below the size of the continuum
and therefore the continuum is indeed quite large, in contradiction to both L-likeness
and forcing axioms?4

2Woodin has in fact proposed such an axiom which he calls Ultimate L.
3For the experts, to get PFA one must allow non-transitive models of size ℵ1.
4As a specific example, let a denote the least size of an infinite almost disjoint family of subsets

of ω, and b (d) the least size of an unbounded (dominating) family of functions from ω to ω ordered
by eventual domination. Then b < a < d is consistent; shouldn’t it in fact be true?
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Thus we have three distinct types of axioms with excellent Type 1 evidence:
L-likeness with large cardinals, forcing axioms and cardinal characteristic axioms.
They contradict each other yet each is consistent with the existence of inner models
for the others. In my view, this makes a clear case that Type 1 evidence is insufficient
to establish the truth of axioms of set theory; it is also insufficient to decide whether
or not CH is true.

3 Set Theory as a Foundation for Mathematics

Of course axiomatic set theory can be heartily congratulated for its success in pro-
viding a foundation for mathematics. An overwhelming case can be made that
when theorems are proved in mathematics they can be regarded as theorems of a
mild extension of ZFC (compatible with V = L). In particular, we routinely expect
questions in mathematics to be answerable (perhaps with great difficulty!) in a mild
extension of ZFC.

A consequence is that an independence result for such mild extensions is indeed
an independence result for mathematics as a whole. This is of course of minor
importance if the independence result in question is a statement of set theory, as set
theory is just a small part of mathematics. But this is of considerable importance
when independence arises with questions of mathematics outside of set theory, as
is the case with the the Borel, Kaplansky and Whitehead Conjectures of measure
theory, functional analysis and group theory, respectively. Let us not forget the
great mathematician David Hilbert’s thesis that the questions of mathematics can
be resolved using the powerful tools of the subject. An understanding of how to deal
with independence is needed to restore the status of mathematics as the complete
and definitive field of study that Hilbert envisaged.

The time is ripe for set-theorists to focus on this problem. The central question
is:

Foundational or Type 2 Evidence: Are there particular axioms of set theory which
best serve the needs of resolving independence in other areas of mathematics?

Recently there are signs that a positive answer to this question is emerging, as
new applications of set theory to functional analysis, topology, abstract algebra and
model theory (a field of logic, but still outside of set theory) are being found. The
Foundational Need that I expressed earlier is precisely the prediction that a pattern
will emerge from these applications to reveal that particular axioms of set theory
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are best for bringing set theory closer to the complete foundation that Hilbert was
hoping for.

Now where are these foundationally advantageous axioms of set theory to be
found? Consider the following list of candidates with good Type 1 evidence:

V = L

V is a canonical and rich class-generic extension of L

Large Cardinal Axioms (like supercompacts)
Forcing Axioms like MA, PFA
Determinacy Axioms like AD in L(R)
Cardinal Characteristic Axioms like b < a < d

As already said, each of these axioms is important for the development of set
theory, providing a unique perspective on the subject. But perhaps it is surprising to
discover that only two of them, V = L and Forcing Axioms, have had any significant
impact on mathematics outside of set theory! The impact of Large Cardinal Axioms
(like supercompacts) and Cardinal Characteristic Axioms has been minimal and that
of Determinacy Axioms non-existent so far.

To give a bit more detail, both V = L and Forcing Axioms can be used to answer
the following questions (in different ways):

Functional Analysis: Must every homomorphism from C(X), X compact Hausdorff,
into another Banach algebra be continuous (the Kaplansky Problem)? Is the ideal of
compact operators on a separable Hilbert space in the ring of all bounded operators
the sum of two smaller ideals?; Are all automorphisms of the Calkin Algebra inner?

Topology and Measure Theory: Is every normal Moore Space metrizable? Are
there S-spaces (regular, hereditarily separable spaces where some open cover has no
countable subcover)? Is every strong measure 0 set of reals countable (the Borel
conjecture)?

Abstract Algebra: Is every Whitehead group free (the Whitehead Problem)? What
is the homological dimension of R(x, y, z) as an R[x, y, z]-module where R is the
field of real numbers? Does the direct product of countably many fields have global
dimension 2?

One could also mention the field of Model Theory (part of Logic, but not part
of Set Theory), where new axioms of Set Theory may play an important role in the
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study of Morley’s theorem for Abstract Elementary Classes or perhaps even in the
resolution of Vaught’s Conjecture.

My prediction is that V = L and Forcing Axioms will be the definite winners
among choices of axioms of Set Theory that resolve independence across mathematics
as a whole. But as V = L is in conflict with the maximality of the set-theoretic
universe in width, it is not suitable as a realization of the Thesis of Set-Theoretic
Truth, leaving Forcing Axioms as the current leading candidate for that.

4 The Maximality of the Set-Theoretic Universe and

the HP

The letters HP stand for the Hyperuniverse Programme, which I now discuss in
detail.

4.1 The Iterative Conception of Set

As Gödel put it, the iterative conception of set expresses the idea that a set is some-
thing obtainable from well-defined objects by iterated application of the powerset
operation. In more detail (following Boolos [7]; also see [27]): Sets are formed in
stages, where only the empty set is formed at stage 0 and at any stage greater
than 0, one forms collections of sets formed at earlier stages. (Said this way,
a set is re-formed at every stage past where it is first formed, but that is OK.)
Any set is formed at some least stage, after its elements have been formed. This
conception excludes anomalies: We can’t have x ∈ x, there is no set of all sets,
there are no cycles x0 ∈ x1 ∈ · · · ∈ xn ∈ x0 and there are no infinite sequences
· · · ∈ xn ∈ xn−1 ∈ xn−2 ∈ · · · ∈ x1 ∈ x0, as there must be a least stage at which
one of the xn’s is formed. We’ll assume that there are infinite sets5, so the iteration
process leads to a limit stage ω, which is not 0 and is not a successor stage.

The iterative conception yields that the universe of sets is a model of the axioms
of Zermelo Set Theory, i.e. ZFC without Replacement and without the Axiom of
Choice. The standard model for this theory is Vω+ω.

Nevertheless, Replacement and AC (the Axiom of Choice) are included as part
of the standard axioms of Set Theory, for very different reasons. The case for AC
is typically made on extrinsic grounds, citing its fruitfulness for the development

5This is derivable once we add maximality to the iterative conception, but is convenient to
assume already as part of the iterative conception.
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of mathematics and its corresponding necessity for Set Theory as a foundation for
mathematics (a case of what I have called Type 2 evidence). It is not clear to me
that Choice is derivable from the iterative conception, nor from its necessity for
doing good Set Theory (Type 1 evidence).

Replacement, on the other hand, is derivable from the concept of set. To see
this, we need to extend the iterative conception to the stronger maximal iterative
conception, also implicit in the set-concept.

4.2 Maximality and the Iterative Conception

The term maximal is used in many different senses in Set Theory, what I have in
mind here is a very specific use associated to the iterative conception (IC). Recall
that according to the IC, sets appear inside levels indexed by the ordinal numbers,
where each successor level Vα+1 is the powerset of the previous. As Boolos explained,
the IC alone takes no stand on how many levels there are (the height of the universe
V ) or on how fat the individual levels are (the width of V ). However it is generally
regarded as implicit in the set-concept that both of these should be maximal:

Height (or Ordinal) maximality: The universe V is as tall as possible, i.e., the
sequence of ordinals is as long as possible.

Width (or Powerset) maximality: The universe V is as wide (or thick) as possible,
i.e., the powerset of each set is as large as possible.

If we conjunct the IC with maximality we arrive at the MIC, the maximal itera-
tive conception, also part of the set-concept but more of a challenge to explain than
the simple IC.

It is natural to see a comparative aspect to maximality, as to be as large as
possible suggests as large as possible within the realm of possibilities. Thus a natural
way to explain height and width maximality would be to compare V to other possible
universes.

But now we face a serious problem. If V is the fixed universe of all sets, then
there are no universes other than those already included in V . In other words V is
maximal by default, as no other universe can threaten its maximality, and therefore
we are limited in what we can say about this concept.
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I will postpone this problem for now, and instead discuss an easier one: Let M

denote a countable transitive model of ZFC (ctm). What could it mean to say that
M is maximal?

Now we have a different problem. The natural way to express the maximality
of M is to say that M cannot be expanded to a larger universe. Let us call this
structural maximality. But under a very mild assumption (there is a set-model of
ZFC containing all of the reals) this is impossible: Any ctm M is an element (and
therefore proper subset) of a larger ctm.

So instead we move to a milder form of maximality, called syntactic maximality,
expressed as follows.

In the case of (syntactic-) height maximality, we consider lengthenings of M , i.e.
ctm’s M∗ of which M is a rank-initial segment (the ordinals of M form an initial
segment of the ordinals of M∗ and the powerset operations of these two universes
agree on the sets in M).

In the case of width maximality, we consider thickenings of M , i.e. ctm’s M∗ of
which M is an inner model (M and M∗ have the same ordinals and M is included
in M∗).

In this way we can produce forms of height maximality and width maximality for
ctm’s as follows.

If M is height maximal then a property of M also holds of some rank-initial
segment of M . This is the typical formulation of reflection. (However we will see
that height maximality is stronger than reflection.) Of course specific realizations of
height maximality must specify which properties are to be taken into account.

If M is width maximal then a property of a thickening of M also holds of some
inner model of M . In the case of first-order properties this is called the Inner Model
Hypothesis, or IMH (introduced in [12]).

The above discussion of maximality for ctm’s, although brief, will suffice for
establishing the strategy of the HP.

We return now to the problem of maximality for V . Can the above discussion
for ctm’s also be applied to V ? Does it make sense to talk about lengthenings and
thickenings of V in the way we talk about them for ctm’s? There are differences of
opinion about this, which I’ll take up next.
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4.3 Actualism and Potentialism

Recall that in the IC we describe V , the universe of sets, via a process of iteration
of the powerset operation. Does this process come to an end, or is it indefinite,
always extendible further to a longer iteration? The former possibility, that there
is a “limit” to the iteration process is referred to as height actualism and the latter
view is called height potentialism. Analogously there is a question of the definiteness
of the powerset operation: For a given set, is its powerset determined or is it always
possible to extend it further by adding more subsets? The former is called width
actualism and latter width potentialism.

There is a vast literature on this topic ([4, 19, 20, 21, 23, 24, 25, 26, 29, 31, 32]).
However as the Hyperuniverse Programme is very flexible on the choice of ontology,
we will not engage here in a lengthy discussion of the actualism/potentialism debate,
but only mention some points in favour of a Zermelian view, combining height po-
tentialism with width actualism, the view which we choose to adopt for our analysis
of maximality via the HP.

We can summarize the situation as follows. Without difficulty, height poten-
tialism facilitates an analysis of height maximality. Surprisingly, we will show that
even with width actualism, it also facilitates an analysis of width maximality, us-
ing the method of V -logic. A further benefit of height potentialism is that we can
reduce the study of maximality for V to the study of maximality for ctm’s6. Our
arguments also show that height actualism is viable for our analysis of width maxi-
mality, provided it is enhanced with a strong enough fragment of MK (Morse-Kelley
class theory; one only needs Σ1

1 comprehension). Thus the only problematic ontol-
ogy for the HP is height actualism supported by only a weak class theory; otherwise
the choice of ontology is not critical for the HP (although the programme develops
slightly differently with width potentialism than it does with width actualism) 7.

I will now present some arguments due to Geoffrey Hellman ([33]8) in favour of

6The set of ctm’s is called the Hyperuniverse; hence we arrive at the Hyperuniverse Programme.
7Height actualism with just GB (Gödel-Bernays) appears inadequate for a fruitful analysis of

maximality. A referee has informed us about agnostic Platonism, the view that there is a well-
determined universe V of all sets but without taking a position on whether ZFC holds in it. But
as this perspective allows for the possibility of height actualism with just GB, it is problematic for
the HP.

8These comments were made during a lively e-mail exchange among numerous set-theorists and
philosophers of set theory from August until November 2014, triggered by my response to Sol Fefer-
man’s preprint The Continuum Hypothesis is neither a definite mathematical problem nor a definite

logical problem. Some of this discussion is documented at <http://logic.harvard.edu/blog/?cat=2>,
but regrettably Hellman’s comments do not appear there.
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height potentialism and width actualism, the Zermelian view. Hellman says:

“The idea that any universe of sets can be properly extended (in height, not
width) is extremely natural, endorsed by many mathematicians (e.g. MacLane,
seemingly by Gödel, et. al.) ... As Maddy and others say, if it’s possible that
sets beyond some (putatively maximal) level exist, then they do exist ... Thus,
if ‘imaginable’ (end) extensions of V are not incoherent, then they are possible,
and then, on an actualist, platonist reading, they are actual, and V wasn’t really
maximal after all. ... such extensions are always possible, so that the notion of a
single fixed, absolutely maximal universe V of sets is really an incoherent notion.”

And again:

“I have no earthly or heavenly idea what ‘as high as possible’ could mean, since
the notion of a set domain that absolutely could not in logic be extended seems to
me incoherent (or at any rate empty). As Putnam put it in his controversial paper,
‘Mathematics without Foundations’ (1967), ‘Even God couldn’t make a universe for
Zermelo set theory that it would be impossible to extend.’ And I agree, theology
aside.”

Regarding width potentialism, Hellman says ([33]):

“I have a good idea, I think, about ‘as thick as possible’, since the notion of
full power set of a given set makes perfect sense to me ... Granted that forcing
extensions can be viewed as ‘thickenings’ of the cumulative hierarchy, as usually
described, when we assert the standard Power Sets axiom, we implicitly build in
bivalence, i.e. that either x belongs to y or it doesn’t, i.e. we are in effect ruling
forcing extensions or Boolean-valued generalizations as non-standard [my italics],
i.e. ‘full power set’ is to be understood only in the standard way.”

And further:

“Thus, to my way of thinking, there is an important disanalogy between ‘all
ordinals’ ... and ‘all subsets of a given set’. The latter is ‘already relativized’; there
is nothing implicit in the notion of ‘subset’ that allows for indefinite extensions, so
long as we are speaking of ‘subsets of a fixed, given set’ ... In contrast, ‘all ordinals’
cries out for relativization (a point I find in Zermelo’s [1930]); without it, it does
allow for indefinite extensibility, by the very operations that we use to describe
ordinals”
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I do appreciate Hellman’s point here, and indeed will (for the most part) adopt
the Zermelian perspective, height potentialism with width actualism, in this paper.
Another strong point in favour of this view is that although we have a clear and
coherent way of generating the ordinals through a process of iteration, there is
currently no analogous iteration process for generating increasingly rich power sets9.

In light of this adoption of potentialism in height, I will now use the symbol V

ambiguously, not to denote the fixed universe of all sets (which does not exist) but
as a variable to range over universes within the Zermelian multiverse in which each
universe is a rank initial segment of the next.

Despite my adoption of the Zermelian view, I will for expository purposes also
consider a form of potentialism in both height and width which I will call radi-
cal potentialism. The HP can be run with either point of view. Although it is
simpler with radical potentialism, there are interesting issues (both mathematical
and philosophical) which arise when employing the Zermelian view which are worth
exploring.

To describe radical potentialism, let me begin with something less radical, width
potentialism. First as motivation, consider a Platonist view, so that V is the fixed
universe of all sets, and consider the method of forcing for producing generic sets. If
M is a ctm we can easily build a generic extension M [G] of M using the countability
of M . But of course generic extensions V [G] of V do not exist, as our “real V ” has
all the sets. Despite this we can talk definably in V about what can be true in such
a generic extension without actually having such extensions in V , by constructing
the Boolean universe V B within V and taking true in a generic extension of V to
just mean of nonzero Boolean truth value in V B. Thus the Platonist view is in fact
dualistic: It allows for the possibility of making sense of truth in universes (generic
extensions) without allowing these universes to actually exist.

Width potentialism is a view in which any universe can be thickened, keeping the
same ordinals, even to the extent of making ordinals countable. Thus for example
it allows for the existence of the generic extensions of V (now a variable ranging
over the multiverse of all possible universes) that are prohibited by the Platonist.
So for any ordinal α of V we can thicken V to a universe where α is countable;
i.e., any ordinal is potentially countable. But that does not mean that every ordinal
of V is countable in V , it is only countable in a larger universe. So this potential
countability does not threaten the truth of the powerset axiom in V .

9But I am not 100% sure that there could not be such an analogous iteration process, perhaps
provided by a wildly successful theory of inner models for large cardinals.
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Now radical potentialism is in effect a unification of width and height potential-
ism. It entails that any V (in the multiverse of possible universes) looks countable
inside a larger universe: We allow V to be lengthened and thickened simultaneously.
Note that even just width potentialism (allowing universes to be thickened) forces
us also into height potentialism: If we were to keep thickening to make every ordinal
of V countable then after Ord(V ) steps we are forced to also lengthen to reach a
universe that satisfies the powerset axiom. In that universe, the original V looks
countable. But then we could repeat the process with this new universe until it too
is seen to be countable. The height potentialist aspect is that we cannot end this
process by taking the union of all of our universes, as this would not be a model of
ZFC (the powerset axiom will fail) and therefore would have to be lengthened. Note
that once again, the potential countability of V does not threaten the truth of the
axioms of ZFC in V .

4.4 Maximality in Height and #-Generation

The analysis of height maximality is the first major success of the HP. The pro-
gramme has produced a robust principle expressing the maximality of V in height
which appears to encompass all prior height maximality principles, including reflec-
tion, and to constitute the definitive expression of the height maximality of V in
mathematical terms.

For our discussion of height maximality, height potentialism will suffice (radical
potentialism is not needed). Thus we allow ourselves the option of lengthening V to
universes V ∗ which have V as a rank-initial segment. Of course we can also consider
shortenings of V , replacing V by one of its own rank-initial segments. Let us now
make use of lengthenings and shortenings to formulate a height maximality principle
for V , expressing the idea that the sequence of ordinals is as long as possible.

But before embarking on our analysis of height maximality we should take note
of the following: No first-order statement ϕ can be adequate to fully capture height
maximality. This is simply because a first-order statement true in V will reflect
to one of its rank initial segments and we are then naturally led from ϕ to the
stronger first-order statement “ϕ holds both in V and in some transitive set model
of ZFC”. We will also see that no first-order statement is adequate to capture width
maximality. This is an instance of the Beyond First-Order claim of the introduction:
True first-order statements contradicting V = L only arise as consequences of true
non first-order axioms.

But how do we capture height maximality with a non first-order axiom? We do
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this via a detailed analysis of the relationship between V and its lengthenings and
shortenings.

Standard Lévy reflection tells us that a single first-order property of V with
parameters will hold in some Vκ which contains those parameters. It is natural to
strengthen this to the simultaneous reflection of all first-order properties of V to
some Vκ, allowing arbitrary parameters from Vκ. Thus we have reflected V to a Vκ

which is an elementary submodel of V .

Repeating this process leads us to an increasing, continuous sequence of ordinals
(κi | i < ∞), whee ∞ denotes the ordinal height of V , such that the models (Vκi

|
i < ∞) form a continuous chain Vκ0

≺ Vκ1
≺ · · · of elementary submodels of V

whose union is all of V .

Let C be the proper class consisting of the κi’s. We can apply reflection to
V with C as an additional predicate to infer that properties of (V, C) also hold of
some (Vκ, C ∩ κ). But the unboundedness of C is a property of (V, C) so we get
some (Vκ, C ∩ κ) where C ∩ κ is unbounded in κ and therefore κ belongs to C. As
a corollary, properties of V in fact hold in some Vκ where κ belongs to C. It is
convenient to formulate this in its contrapositive form: If a property holds of Vκ for
all κ in C then it also holds of V .

Now note that for all κ in C, Vκ can be lengthened to an elementary extension
(namely V ) of which it is a rank-initial segment. By the contrapositive form of
reflection of the previous paragraph, V itself also has such a lengthening V ∗.

But this is clearly not the end of the story. For the same reason we can also
infer that there is a continuous increasing sequence of such lengthenings V = Vκ∞

≺
V ∗

κ∞+1
≺ V ∗

κ∞+2
≺ · · · of length the ordinals. For ease of notation, let us drop the

∗’s and write Wκi
instead of V ∗

κi
for ∞ < i and instead of Vκi

for i ≤ ∞. Thus V

equals W∞.

But which tower V = Wκ∞
≺ Wκ∞+1

≺ Wκ∞+2
≺ · · · of lengthenings of V

should we consider? Can we make the choice of this tower canonical?

Consider the entire sequence Wκ0
≺ Wκ1

≺ · · · ≺ V = Wκ∞
≺ Wκ∞+1

≺
Wκ∞+2

≺ · · · . The intuition is that all of these models resemble each other in
the sense that they share the same first-order properties. Indeed by virtue of the
fact that they form an elementary chain, these models all satisfy the same first-
order sentences. But again in the spirit of “resemblance”, the following should hold:
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For i0 < i1 regard (Wκi1
, Wκi0

) as the structure (Wκi1
, ∈) together with Wκi0

as a
unary predicate. Then it should be the case that any two such pairs (Wκi1

, Wκi0
),

(Wκj1
, Wκj0

) (with i0 < i1 and j0 < j1) satisfy the same first-order sentences, even
allowing parameters which belong to both Wκi0

and Wκj0
. Generalising this to

triples, quadruples and n-tuples in general we arrive at the following situation:

(∗) V occurs in a continuous elementary chain Wκ0
≺ Wκ1

≺ · · · ≺ V = Wκ∞
≺

Wκ∞+1
≺ Wκ∞+2

≺ · · · of length ∞ + ∞, where the models Wκi
form a strongly-

indiscernible chain in the sense that for any n and any two increasing n-tuples
~i = i0 < i1 < · · · < in−1, ~j = j0 < j1 < · · · < jn−1, the structures W~i

=
(Wκin−1

, Wκin−2
, · · · , Wκi0

) and W~j
(defined analagously) satisfy the same first-order

sentences, allowing parameters from Wκi0
∩ Wκj0

.

We are getting closer to the desired axiom of #-generation. Surely we can impose
higher-order indiscernibility on our chain of models. For example, consider the pair
of models Wκ0

= Vκ0
, Wκ1

= Vκ1
. We can require that these models satisfy the same

second-order sentences; equivalently, we require that H(κ+
0 )V and H(κ+

1 )V satisfy
the same first-order sentences. But as with the pair H(κ0)V , H(κ1)V we would
want H(κ+

0 )V , H(κ+
1 )V to satisfy the same first-order sentences with parameters.

How can we formulate this? For example, consider κ0, a parameter in H(κ+
0 )V

that is second-order with respect to H(κ0)V ; we cannot simply require H(κ+
0 )V �

ϕ(κ0) iff H(κ+
1 )V � ϕ(κ0), as κ0 is the largest cardinal in H(κ+

0 )V but not in
H(κ+

1 )V . Instead we need to replace the occurence of κ0 on the left side with
a “corresponding” parameter on the right side, namely κ1, resulting in the natural
requirement H(κ+

0 )V � ϕ(κ0) iff H(κ+
1 )V � ϕ(κ1). More generally, we should be able

to replace each parameter in H(κ+
0 )V by a “corresponding” element of H(κ+

1 )V . It
is natural to solve this parameter problem using embeddings.

Definition 1. (See [10])
A structure N = (N, U) is called a # with critical point κ, or just a #, if the

following hold:
(a) N is a model of ZFC− (ZFC minus powerset) in which κ is both the largest
cardinal and strongly inaccessible.
(b) (N, U) is amenable (i.e. x ∩ U ∈ N for any x ∈ N).
(c) U is a normal measure on κ in (N, U).
(d) N is iterable, i.e., all of the successive iterated ultrapowers starting with (N, U)
are well-founded, yielding iterates (Ni, Ui) and Σ1 elementary iteration maps πij :
Ni → Nj where (N, U) = (N0, U0).

We let κi denote the largest cardinal of the i-th iterate Ni.
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If N is a # and λ is a limit ordinal then LP(Nλ) denotes the union of the (Vκi
)Ni ’s

for i < λ. (LP stands for lower part.) LP(N∞) is a model of ZFC.

Definition 2. We say that a transitive model V of ZFC is #-generated iff there is
N = (N, U), a # with iteration N = N0 → N1 → · · · , such that V equals LP(N∞)
where ∞ denotes the ordinal height of V .

#-generation fulfills our requirements for vertical maximality, with powerful con-
sequences for reflection. L is #-generated iff 0# exists, so this principle is compatible
with V = L. If V is #-generated via (N, U) then there are elementary embeddings
from V to V which are canonically-definable through iteration of (N, U): In the
above notation, any order-preserving map from the κi’s to the κi’s extends to such
an elementary embedding. If π : V → V is any such embedding then we obtain not
only the indiscernibility of the structures H(κ+

i ), for all i but also of the structures
H(κ+α

i ) for any α < κ0 and more. Moreover, #-generation evidently provides the
maximum amount of vertical reflection: If V is generated by (N, U) as LP(N∞)
where ∞ is the ordinal height of V , and x is any parameter in a further iterate
V ∗ = N∞

∗ of (N, U), then any first-order property ϕ(V, x) that holds in V ∗ reflects
to ϕ(Vκi

, x̄) in Nj for all sufficiently large i < j < ∞, where πj,∞∗(x̄) = x. This im-
plies any known form of vertical reflection and summarizes the amount of reflection
one has in L under the assumption that 0# exists, the maximum amount of reflection
in L. This is reinforced by a Jensen’s #-generated coding theorem (Theorem 9.1. of
[6]) which states that if V is #-generated then V can be coded into a #-generated
model L[x] for a real x where the given # which generates V extends to the natural
generator x# for the model L[x].

From this we can conclude that #-generated models have the same large cardinal
and reflection properties as does L when 0# exists.

#-generation also answers our question about which canonical tower of length-
enings of V to look at in reflection, namely the further lower parts of iterates of
any # that generates V . This tower of lengthenings is independent of the choice
of generating # for V and is therefore entirely canonical. And #-generation fully
realizes the idea that V should look exactly like closed unboundedly many of its rank
initial segments as well as its canonical lengthenings of arbitrary ordinal height.

In summary, #-generation stands out as the correct formalization of the princi-
ple of height maximality, and we shall refer to #-generated models as being maximal
in height. It is not first-order (we have argued that no optimal height maximality
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principle can be), however it is second-order in a very restricted way: For a count-
able V , the property of being a # that generates V is expressible by quantifying
universally over the models Lα(V ) as α ranges over the countable ordinals.

4.5 Maximality in Width and the IMH

Whereas in the case of maximality in height we can use height potentialism (i.e., the
option of lengthening V to taller universes) to arrive at an optimal principle, the
case of maximality in width is of a very different nature. Unlike in the case of height
maximality, we will see that there are many distinct criteria for width maximality
and will not easily arrive at an optimal criterion. Moreover, to get a fair picture of
maximality in both height and width, it is necessary to synthesise or unify width
maximality criteria with #-generation, the optimal height maximality criterion.

A thorough analysis of the different possible width maximality criteria and their
synthesis with #-generation, with an aim towards arriving at an optimal criterion,
is the principal aim of the Hyperuniverse Programme.

I’ll begin with a discussion of width maximality in the context of radical poten-
tialism, as this offers a simpler theory than that provided by the Zermelian view.
Thus we use the symbol V to be a variable ranging not over the Zermelian multi-
verse (in which universes are ordered by the relation of rank-initial segment) but
over elements of the rich multiverse provided by radical potentialism, in which each
universe is potentially countable. We begin with the fundamental:

Inner Model Hypothesis (IMH, [12]) If a first-order sentence holds in some outer
model of V then it holds in some inner model of V .

For the current presentation, we may take outer model to mean a transitive set
V ∗ containing V , with the same ordinals as V , which satisfies ZFC. An inner model
in this presentation is a V -definable subclass of V with the same ordinals as V which
satisfies ZFC. By radical potentialism, any transitive model of ZFC is countable in
a larger such model and from this we can infer the existence of a rich collection of
outer models of V .

The consistency of #-generation follows from the existence of 0#. But the con-
sistency of the IMH, i.e. the assertion that there are universes V satisfying the IMH,
requires more.

Consistency of the IMH
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Theorem 3. ([18]) Assuming large cardinals there exists a countable transitive
model M of ZFC such that if a first-order sentence ϕ holds in an outer model N of
M then it also holds in an inner model of M .

Proof. For any real R let M(R) denote the least transitive model of ZFC containing
R. We are assuming large cardinals so indeed such an M(R) exists (the existence
of just an inaccessible is sufficient for this). We will need the following consequence
of large cardinals:

(∗) There is a real R such that for any real S in which R is recursive, the (first-order)
theory of M(R) is the same as the theory of M(S).

One can derive (∗) from large cardinals as follows. Large cardinals yield Projec-
tive Determinacy (PD). A theorem of Martin is that PD implies the following Cone
Theorem: If X is a projective set of reals closed under Turing-equivalence then for
some real R, either S belongs to X for all reals S in which R is recursive or S belongs
to the complement of X for all reals S in which R is recursive.

Now for each sentence ϕ consider the set X(ϕ) consisting of those reals R such
that M(R) satisfies ϕ. This set is projective and closed under Turing-equivalence.
By the cone theorem we can choose a real R(ϕ) so that either ϕ is true in M(S) for
all reals S in which R(ϕ) is recursive or this holds for ∼ ϕ. Now let R be any real in
which every R(ϕ) is recursive; as there are only countably-many ϕ’s this is possible.
Then R witnesses the property (∗).

We claim that if N is an outer model of M(R) satisfying ZFC and ϕ is a sentence
true in N then ϕ is true in an inner model of M(R). For this we need the following
deep theorem of Jensen.

Coding Theorem (see [6]) Let α be the ordinal height of N . Then N has an outer
model of the form Lα[S] for some real S which satisfies ZFC and in which N is
∆2-definable with parameters.

As R belongs to M(R) it also belongs to N and hence to Lα[S] where S codes N as
above. Also note that since α is least so that M(R) = Lα[R] models ZFC, it is also
least so that Lα[S] satisfies ZFC and therefore Lα[S] equals M(S).

Clearly we can choose S to be Turing above R (simply replace S by its join with
R). But now by the special property of R, the theories of M(R) and M(S) are the
same. As N is a definable inner model of M(S), part of the theory of M(S) is the
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statement “There is an inner model of ϕ which is ∆2-definable with parameters”
and therefore there is an inner model of M(R) satisfying ϕ, as desired. ✷

Note that the model that we produce above for the IMH, M(R) for some real
R, is the minimal model containing the real R and therefore satisfies “there are no
inaccessible cardinals”. This is no accident:

Theorem 4. [12] Suppose that M satisfies the IMH. Then in M : There are no
inaccessible cardinals and in fact there is a real R such that there is no transitive
model of ZFC containing R.

Proof. A theorem of Beller and David (also in [6]) extends Jensen’s Coding Theorem
to say that any model M has an outer model of the form M(R) for some real R,
where as above M(R) is the minimal transitive model of ZFC containing R. Now
suppose that M satisfies the IMH and consider the sentence “There is no inaccessible
cardinal”. This is true in an outer model M(R) of M and therefore in an inner model
of M . It follows that there are no inaccessibles in M . The same argument with the
sentence “There is a real R such that there is no transitive model of ZFC containing
R” gives an inner model M0 of M with this property for some real R; but then also
M has this property as any transitive model of ZFC containing R in M would also
give such a model in the L[R] of M and therefore in M0, as M0 contains the L[R]
of M . ✷

It follows that if M satisfies the IMH then some real in M has no # and there-
fore boldface Π1

1 determinacy fails in M (although 0# does exist and lightface Π1
1

determinacy does hold).

Width actualism

So far I have presented the IMH in the context of radical potentialism, which
allows us to talk freely about outer models (thickenings) of the universe V . This is
of course unacceptable to the width actualist, who sees a fixed meaning to Vα for
each ordinal α (although possibly an unfixed, potentialist view of what the ordinals
are). Is it possible to nevertheless talk about the maximality of V in width from a
width actualist perspective (where V is now a variable ranging over the Zermelian
multiverse)? Can we express the idea that V is as thick as possible without actually
comparing V to thicker universes (which do not exist)?

A positive answer to the latter question emerges through a study of V -logic, to
which I turn next. A useful reference for this material is Barwise’s book [5].
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V -Logic

Let’s start with something simpler, Vω-logic. In Vω-logic we have constant sym-
bols ā for a ∈ Vω as well as a constant symbol V̄ω for Vω itself (in addition to ∈ and
the other symbols of first-order logic). Then to the usual logical axioms and the rule
of Modus Ponens we add the rules:

For a ∈ Vω: From ϕ(b̄) for each b ∈ a infer ∀x ∈ āϕ(x).

From ϕ(ā) for each a ∈ Vω infer ∀x ∈ V̄ω ϕ(x).

Introducing the second of these rules generates new provable statements via proofs
which are now infinite. The idea of Vω-logic is to capture the idea of a model in which
Vω is standard. By the ω-completeness theorem, the logically provable sentences of
Vω-logic are exactly those which hold in every model in which ā is interpreted as
a for a ∈ Vω and V̄ω is interpreted as the (real, standard) Vω. Thus a theory T in
Vω-logic is consistent in Vω-logic iff it has a model in which Vω is the real, standard
Vω.

Now the set of logically-provable formulas (i.e. validities) in Vω-logic, unlike
in first-order logic, is not arithmetical, i.e. it is not definable over the model Vω.
Instead it is definable over a larger structure, a lengthening of Vω. Let me explain.

As proofs in Vω-logic are no longer finite, they do not naturally belong to Vω.
Instead they belong to the least admissible set (Vω)+ containing Vω as an element,
this is known to higher recursion-theorists as Lωck

1
, where ωck

1 is the least non-
recursive ordinal. Something very nice happens: Whereas proofs in first-order logic
belong to Vω and therefore provability is Σ1 definable over Vω (there exists a proof
is Σ1), proofs in Vω-logic belong to (Vω)+ and provability is Σ1 definable over (Vω)+.

For our present purposes the point is that (Vω)+ is a lengthening, not a thickening
of Vω and in this lengthening we can formulate theories which describle arbitrary
models in which Vω is standard. For example the existence of a real R such that
(Vω, R) satisfies a first-order property can be formulated as the consistency of a
theory in Vω-logic. As the structure (Vω, R) can be regarded as a “thickening”
of Vω, we have described what can happen in “thickenings” of Vω by a theory in
(Vω)+, a lengthening of Vω. This is even more dramatic if we start not with Vω but
with (Vω)+ = Lωck

1
and introduce Lωck

1
-logic, a logic for ensuring that the recursive

ordinals are standard. Then in the lengthening (Lωck
1

)+ of Lωck
1

, the least admissible
set containing Lωck

1
as an element, we can express the existence of a thickening of
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Lωck
1

in which a first-order statement holds, and such thickenings can contain new
reals and more as elements.

V -logic is analogous to the above. It has the following constant symbols:

1. A constant symbol ā for each set a in V .
2. A constant symbol V̄ to denote the universe V .

Formulas are formed in the usual way, as in any first-order logic. To the usual
axioms and rules of first-order logic we add the new rules:

(∗) From ϕ(b̄) for all b ∈ a infer ∀x ∈ āϕ(x).

(∗∗) From ϕ(ā) for all a ∈ V infer ∀x ∈ V̄ ϕ(x).

This is the logic to describe models in which V is standard. The proofs of this logic
appear in V +, the least admissible set containing V as an element; this structure V +

is a special lengthening of V of the form Lα(V ), the α-th level of Gödel’s L-hierarchy
built over V . We refer to such lengthenings as Gödel lengthenings. Recall that with
our height potentialist perspective, we can lengthen V to models V ∗ with V as a
rank-initial segment, and therefore surely lengthen V to the Gödel lengthening V +.
(This is also the case with a height actualist perspective, provided we allow our
classes to satisfy MK (Morse-Kelley), as in MK we can construct a class coding
V +.)

The Inner Model Hypothesis for a Width Actualist

As width actualists we cannot talk directly about outer models or even about sets
that do not belong to V . However using V -logic we can talk about them indirectly,
as I’ll now illustrate. Consider the theory in V -logic where we not only have constant
symbols ā for the elements of V and a constant symbol V̄ for V itself, but also a
constant symbol W̄ to denote an “outer model” of V . We add the new axioms:

1. The universe is a model of ZFC (or at least the weaker KP, admissibility theory).
2. W̄ is a transitive model of ZFC containing V̄ as a subset and with the same
ordinals as V .

So now when we take a model of our axioms which obeys the rules of V -logic, we get
a universe modelling ZFC (or at least KP) in which V̄ is interpreted correctly as V

and W̄ is interpreted as an outer model of V . Note that this theory in V -logic has
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been formulated without “thickening” V , indeed it is defined inside V +, the least
admissible set containing V , a Gödel lengthening of V . Again the latter makes sense
thanks to our adoption of height (not width) potentialism.

So what does the IMH really say for a width actualist? It says the following:

IMH: Suppose that ϕ is a first-order sentence and the above theory, together the
axiom “W̄ satisfies ϕ” is consistent in V -logic. Then ϕ holds in an inner model of
V .

In other words, instead of talking directly about “thickenings” of V (i.e. “outer
models”) we instead talk about the consistency of a theory formulated in V -logic
and defined in V +, a (mild) Gödel lengthening of V .

Note that this also provides a powerful extension of the Definability Lemma
for set-forcing. The latter says that definably in V we can express the fact that a
sentence with parameters holds in a “set-generic extension” (for sentences of bounded
complexity, such as Σn sentences for a fixed n). The above shows that we can do
the same for arbitrary “thickenings” of V , but where the definability takes place
not in V but in V +. (In the case of omniscient universes V , we can in fact obtain
definability in V , and under mild large cardinal assumptions, V will be omniscient.
See Subsection 4.11 for a discussion of this.)

So far we have worked with V , its lengthenings and its “thickenings” (via theories
expressed in its lengthenings). We next come to an important step, which is to reduce
this discussion to the study of certain properties of countable transitive models of
ZFC, i.e., to the Hyperuniverse (the set of countable transitive models of ZFC).
The net effect of this reduction is to show that our width actualist discussion of
maximality is in fact equivalent to a radical potentialist discussion in which all
models under consideration belong to the Hyperuniverse.

4.6 The Reduction to the Hyperuniverse

Of course it would be much more comfortable to remove the quotes in “thickenings”
of V , as we could then dispense with the need to reformulate our intuitions about
outer models via theories in V -logic. Indeed, if we were to have this discussion
not about V but about a countable transitive ZFC model little-V , then our worries
evaporate, as genuine thickenings become available. For example, if P is a forcing
notion in little-V then we can surely build a P -generic extension to get a little-V [G].
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Of course we can’t do this for V itself as in general we cannot construct generic sets
for partial orders with uncountably many maximal antichains.

But the way we have analysed things with V -logic allows us to reduce our study of
maximality criteria for V to a study of countable transitive models. As the collection
of countable transitive models carries the name Hyperuniverse, we are then led to
what is known as the Hyperuniverse Programme.

I’ll illustrate the reduction to the Hyperuniverse with the specific example of
the IMH. Suppose that we formulate the IMH as above, using V -logic, and want to
know what first-order consequences it has.

Lemma 5. Suppose that a first-order sentence ϕ holds in all countable models of
the IMH. Then it holds in all models of the IMH.

Proof. Suppose that ϕ fails in some model V of the IMH, where V may be uncount-
able. Now notice that the IMH is first-order expressible in V +, a lengthening of V .
But then apply the downward Löwenheim-Skolem theorem to obtain a countable
little-V which satisfies the IMH, as verified in its associated little-V +, yet fails to
satisfy ϕ. But this is a contradiction, as by hypothesis ϕ must hold in all countable
models of the IMH. ✷

So without loss of generality, when looking at first-order consequences of maxi-
mality criteria as formulated in V -logic, we can restrict ourselves to countable little-
V ’s. The advantage of this is then we can dispense with the little-V -logic and the
quotes in “thickenings” altogether, as by the Completeness Theorem for little-V -
logic, consistent theories in little-V -logic do have models, thanks to the countability
of little-V . Thus for a countable little-V , we can simply say:

IMH for little-V ’s: Suppose that a first-order sentence holds in an outer model of
little-V . Then it holds in an inner model of little-V .

This is exactly the radical potentialist version of the IMH with which we began.
Thus the width actualist and radical potentialist versions of the IMH coincide on
countable models.

#-Generation Revisited

The reduction of maximality principles to the Hyperuniverse is however not
always so obvious, as we will now see in the case of #-generation. This reveals
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a difference in the development of the HP form a Zermelian perspective versus a
radical potentialist perspective.

First consider the following encouraging analogue for #-generation of our earlier
reduction claim for the IMH.

Lemma 6. Suppose that a first-order sentence ϕ holds in all countable models which
are #-generated. Then it holds in all models which are #-generated.

Proof. Suppose that ϕ fails in some #-generated model V , where V may be un-
countable. Let (N, U) be a generating # for V and place both V and (N, U) inside
some transitive model of ZFC minus powerset T . Now apply Löwenhiem-Skolem to
T to produce a countable transitive T̄ in which there is a V̄ which T̄ believes to be
generated by (N̄ , Ū ) with an elementary embdding of T̄ into T , sending V̄ to V and
(N̄ , Ū) to (N, U). But the fact that (N, U) is iterable and (N̄ , Ū) is embedded into
(N, U) is enough to conclude that also (N̄ , Ū ) is iterable. So we now have a count-
able V̄ which is #-generated (via (N̄ , Ū)) in which ϕ fails, contrary to hypothesis.
✷

However the difficulty is this: How do we express #-generation from a width
actualist perspective? Recall that to produce a generating # for V we have to
produce a set of rank less than Ord(V ) which does not belong to V , in violation of
width actualism.

And recall that a # is a structure (N, U) meeting certain first-order conditions
which is in addition iterable: For any ordinal α if we iterate (N, U) for α steps then
it remains wellfounded. V is #-generated if there is a # which generates it. But
notice that to express the iterability of a generating # for V we are forced to consider
theories Tα formulated in Lα(V )-logic for arbitrary Gödel lengthenings Lα(V ) of V :
Tα asserts that V is generated by a pre-# (i.e. by a structure that looks like a #
but may not be fully iterable) which is α-iterable, i.e. iterable for α-steps. Thus
we have no fixed theory that captures #-generation but only a tower of theories
Tα (as α ranges over ordinals past the height of V ) which capture closer and closer
approximations to it.

Definition 7. V is weakly #-generated if for each ordinal α past the height of V ,
the theory Tα which expresses the existence of an α-iterable pre-# which generates
V is consistent.

Weak #-generation is meaningful for a width actualist (who accepts enough
height potentialism to obtain Gödel lengthenings) as it is expressed entirely in terms
of theories internal to Gödel lengthenings of V .
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For a countable little-V , weak #-generation can be expressed semantically. First
a useful definition:

Definition 8. Let little-V be a countable transitive model of ZFC and α an ordinal.
Then little-V is α-generated if there is an α-iterable pre-# which generates little-V
(as the union of the lower parts of its first γ iterates, where γ is the ordinal height
of little-V ).

Then a countable little-V is weakly #-generated if it is α-generated for each
countable ordinal α (where the witness to this may depend on α). Little-V is #-
generated iff it is α-generated when α = ω1 iff it is α-generated for all ordinals
α.

Just as a syntactic approach is needed for a width actualist fomulation of #-
generation, the reduction of this weakened form of #-generation to the Hyperuni-
verse takes a syntactic form:

Lemma 9. Suppose that a first-order sentence ϕ holds in all countable little-V
which are weakly #-generated, and this is provable in ZFC. Then ϕ holds in all
models which are weakly #-generated.

Proof. Let W be a weakly #-generated model (which may be uncountable). Thus
for each ordinal α above the height of W , the theory Tα+ ∼ ϕ expressing that ϕ

fails in W and W is generated by an α-iterable pre-# is consistent. If we choose α so
that Lα(W ) is a model of ZFC (or enough of ZFC where the truth of ϕ in countable
#-generated models provable) then Lα(W ) is a model of (enough of) ZFC in which
W is weakly #-generated. Apply Löwenheim-Skolem to obtain a countable W̄ and
ᾱ such that Lᾱ(W̄ ) embeds elementarily into Lα(W ) and therefore satisfies (enough
of) ZFC plus “W̄ is weakly #-generated”. Now let g be generic over Lᾱ(W̄ ) for
the Lévy collapse of (the height of) W̄ to ω; then Lᾱ(W̄ )[g] is a model of (enough
of) ZFC in which W̄ is both countable and weakly #-generated. By hypothesis
Lᾱ(W )[g] satisfies “W̄ satisfies ϕ” and therefore W̄ really does satisfy ϕ. Finally,
by elementarity W satisfies ϕ as well, as desired. ✷

To summarise: As radical potentialists we can comfortably work with full #-
generation as our principle of height maximality. But as width actualists we instead
work with weak #-generation, expressed in terms of theories inside Gödel lengthen-
ings Lα(V ) of V . Weak #-generation is sufficient to maximise the height of the uni-
verse. And properly formulated, the reduction to the Hyperuniverse applies to weak
#-generation: To infer that a first-order statement follows from weak #-generation
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it suffices to show that in ZFC one can prove that it holds in all weakly #-generated
countable models.

Weak #-generation is indeed strictly weaker than #-generation for countable
models: Suppose that 0# exists and choose α to be least so that α is the α-th Silver
indiscernible (α is countable). Now let g be generic over L for Lévy collapsing α to
ω. Then by Lévy absoluteness, Lα is weakly #-generated in L[g], but it cannot be
#-generated in L[g] as 0# does not belong to a generic extension of L.

In what follows I will primarily work with #-generation, as at present the math-
ematics of weak #-generation is poorly understood. Indeed, as we’ll see in the next
section, a synthesis of #-generation with the IMH is consistent, but this remains an
open problem for weak #-generation.

4.7 Synthesis

We introduced the IMH as a criterion for width maximality and #-generation as a
criterion for height maximality. It is natural to see how these can be combined into
a single criterion which recognises both forms of maximality. We achieve this in this
section through synthesis. Note that the IMH implies that there are no inaccessibles
yet #-generation implies that there are. So we cannot simply take the conjunction
of these two criteria.

A #-generated model M satisfies the IMH# iff whenever a sentence holds in a
#-generated outer model of M it also holds in an inner model of M .

Note that IMH# differs from the IMH by demanding that both M and M∗,
the outer model, are #-generated (while the outer models considered in IMH are
arbitrary). The motivation behind this requirement is to impose width maximality
only with respect to those models which are height maximal.

Theorem 10. [15] Assuming that every real has a # there is a real R such that any
#-generated model containing R satisfies the IMH#.

Proof. (Woodin) Let R be a real with the following property: Whenever X is a
lightface and nonempty Π1

2 set of reals, then X has an element recursive in R. We
claim that any #-generated model M containing R as an element satisfies the IMH#.

Suppose that ϕ holds in M∗, a #-generated outer model of M . Let (m∗, U∗) be a
generating # for M∗. Then the set X of reals S such that S codes such an (m∗, U∗)
(generating a model of ϕ) is a lightface Π1

2 set. So there is such a real recursive in
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R and therefore in M . But then M has an inner model satisfying ϕ, namely any
model generated by a # coded by an element of X in M . ✷

The argument of the previous theorem is special to the weakest form of IMH#.
The original argument from [15], used #-generated Jensen coding to prove the con-
sistency of a stronger principle, SIMH#(ω1); see Theorem 15.

Corollary 11. Suppose that ϕ is a sentence that holds in some Vκ with κ measurable.
Then there is a transitive model which satisfies both the IMH# and the sentence ϕ.

Proof. Let R be as in the proof of Theorem 10 and let U be a normal measure on κ.
The structure N = (H(κ+), U) is a #; iterate N through a large enough ordinal ∞
so that M = LP (N∞), the lower part model generated by N , has ordinal height ∞.
Then M is #-generated and contains the real R. It follows that M is a model of the
IMH#. Moreover, as M is the union of an elementary chain Vκ = V N

κ ≺ V N1
κ1

≺ · · ·
where ϕ is true in Vκ, it follows that ϕ is also true in M . ✷

Note that in Corollary 11, if we take ϕ to be any large cardinal property which
holds in some Vκ with κ measurable, then we obtain models of the IMH# which
also satisfy this large cardinal property. This implies the compatibility of the IMH#
with arbitrarily strong large cardinal properties.

Question 12. Reformulate IMH# using weak #-generation, as follows: V is weakly
#-generated and for each sentence ϕ, if the theories expressing that V has an outer
model satisfying ϕ with an α-iterable generating pre-# are consistent for each α,
then ϕ holds in an inner model of V . Is this consistent?

The above formulation of IMH# for weak #-generation takes the following form
for a countable V : V is α-generated for each countable α and for all ϕ, if ϕ holds
in an α-generated outer model of V for each countable α then ϕ holds in an inner
model of V . It is not known if this is consistent.

Remark. An even weaker form of #-generation asserts that V is just Ord(V ) +
Ord(V )-generated, a sufficient amount of iterability to obtain ordinal maximality.
However a synthesis of the IMH with this very weak #-generation yields a consistent
principle that contradicts large cardinals (indeed the existence of #’s for arbitrary
reals). These different forms of #-generation, and of their synthesis with the IMH,
are in need of further philosophical discussion.

We have now laid the foundations for the HP and discussed the two most basic
maximality principles, #-generation and the IMH. Most of the mathematical work
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in the HP remains to be done. Therefore what I will do in the remainder of this
article is simply present a range of maximality criteria which are yet to be fully
analysed and which give the flavour of how the HP is intended to proceed. These
criteria are also referred to as H-axioms, formulated as properties of elements of the
Hyperuniverse H, expressible as maximality properties within H.

4.8 The Strong IMH

Our discussion of the IMH has been always with regard to sentences, without pa-
rameters. Stronger forms result if we introduce parameters.

First note the difficulties with introducing parameters into the IMH. For example
the statement

“If a sentence with parameter ωV
1 holds in an outer model of V then it holds in an

inner model”

is inconsistent, as the parameter ωV
1 could become countable in an outer model and

therefore the above cannot hold for the sentence “ωV
1 is countable”. If we however

require that ω1 is preserved then we get a consistent principle.

Theorem 13. Let SIMH(ω1) be the following principle: If a sentence with parameter
ω1 holds in an ω1-preserving outer model then it holds in an inner model. Then the
SIMH(ω1) is consistent (assuming large cardinals).

Proof. Again use PD to get a real R such that the theory of M(S), the least transitive
ZFC model containing S, is fixed for all S Turing above R. Now suppose that ϕ(ω1)
is a sentence true in an ω1-preserving outer model N of M(R), where ω1 denotes the
ω1 of M(R). Then as in the proof of consistency of the IMH, we can code N into
M(S) for some real S Turing above R, and moreover this coding is ω1-preserving.
As ϕ(ω1) holds in a definable inner model of M(S) and ω1 is the same in M(R) and
M(S), it follows that M(R) also has an inner model satisfying ϕ(ω1). ✷

The above argument uses the fact that Jensen-coding is ω1-preserving. It is
however not ω2-preserving unless CH holds, and therefore we have the following
open question:

Question 14. Let SIMH(ω1, ω2) be the following principle: If a sentence with pa-
rameters ω1, ω2 holds in an ω1-preserving and ω2-preserving outer model then it holds
in an inner model. Then is the SIMH(ω1, ω2) consistent (assuming large cardinals)?
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The SIMH(ω1, ω2) implies that CH fails, as any model has a cardinal-preserving
outer model in which there is an injection from ω2 into the reals. Is there an analogue
M∗(R) of the minimal model M(R) which does not satisfy CH? Is there a coding
theorem which says that any outer model of M∗(R) which preserves ω1 and ω2 has
a further outer model of the form M∗(S), also with the same ω1 and ω2? If so, then
one could establish the consistency of the SIMH(ω1, ω2).

The most general from of the SIMH makes use of absolute parameters. A pa-
rameter p is absolute if some formula defines it in all outer models which preserve
cardinals up to and including the hereditary cardinality of p, i.e. the cardinality of
the transitive closure of p. Then SIMH(p) for an absolute parameter p states that if
a sentence with parameter p holds in an outer model which preserves cardinals up
to the hereditary cardinality of p then it holds in an inner model. The full SIMH
(Strong Inner Model Hypothesis) states that this holds for every absolute parameter
p.

The SIMH is closely related to strengthenings of Lévy absoluteness. For example,
define Lévy(ω1) to be the statement that Σ1 formulas with parameter ω1 are absolute
for ω1-preserving outer models; this follows from the SIMH(ω1) and is therefore
consistent. But the consistency of Lévy(ω1, ω2), i.e. Σ1 absoluteness with parameters
ω1, ω2 for outer models which preserve these cardinals, is open.

The SIMH#

A synthesis of the SIMH with #-generation can be formulated as follows: V

satisfies the SIMH# if V is #-generated and whenever a sentence ϕ with absolute
parameters holds in a #-generated outer model having the same cardinals as V up
to the hereditary cardinality of those parameters, ϕ also holds in an inner model of
V . A special case is SIMH#(ω1), where the only parameter involved is ω1 and we
are concerned only with ω1-preserving outer models.

Theorem 15. [15] Assuming large cardinals, the SIMH#(ω1) is consistent.

Proof. Assume there is a Woodin cardinal with an inaccessible above. For each real
R let M#(R) be Lα[R] where α is least so that Lα[R] is #-generated. The Woodin
cardinal with an inaccessible above implies enough projective determinacy to enable
us to use Martin’s Lemma to find a real R such that the theory of M#(S) is constant
for S Turing-above R. We claim that M#(R) satisfies SIMH#(ω1): Indeed, let M be
a #-generated ω1-preserving outer model of M#(R) satisfying some sentence ϕ(ω1).
Let α be the ordinal height of M#(R) (= the ordinal height of M). By the result
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of Jensen quoted before (Theorem 9.1 of [6]), M has a #-generated ω1-preserving
outer model W of the form Lα[S] for some real S with R ≤T S. Of course α is least
so that Lα[S] is #-generated. So W equals M#(S) and the ω1 of W equals the ω1

of M#(R). By the choice of R, M#(R) also has a definable inner model satisfying
ϕ(ω1). ✷

However as with the SIMH(ω1, ω2), the consistency of SIMH#(ω1, ω2) is open.

4.9 A Maximality Protocol

This protocol aims to organise the study of height and width maximality into three
stages.

Stage 1. Maximise the ordinals (height maximality).

Stage 2. Having maximised the ordinals, maximise the cardinals.

Stage 3. Having maximised the ordinals and cardinals, maximise powerset (width
maximality).

Stage 1 is taken care of by #-generation. So we focus now on Stage 2, cardinal-
maximisation.

In light of Stage 1, we assume now that V is #-generated and when discussing
outer models of V we only consider those which are also #-generated.

We would like a criterion which says that for each cardinal κ, κ+ is as large
as possible. To get started let’s consider the case κ = ω, so we want to maximise
ω1. The basic problem of course is the following. As set-generic extensions of #-
generated models are also #-generated:

Fact. V has a #-generated outer model in which ωV
1 is countable.

But surely we would want something like: ω
L[x]
1 is countable for each real x. The

reason for this is that ω
L[x]
1 , unlike ωV

1 in general, is absolute between V and all of
its outer models.

Definition 16. Let p be a parameter in V and P a set of parameters in V . Then
p is strongly absolute relative to P if there is a formula ϕ with parameters from P
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that defines p in V and all #-generated outer models of V which preserve cardinals
up to and including the hereditary cardinality of the parameters mentioned in ϕ10.

Typically we will take P to consist of all subsets of some infinite cardinal κ, in
which case the cardinal-preservation in the above definition refers to cardinals up to
and including κ.

CardMax(κ+) (for κ an infinite cardinal). Suppose that the ordinal α is strongly
absolute relative to subsets of κ. Then α has cardinality at most κ.

It is possible to show that if κ is regular then there is a set-forcing extension in
which CardMax(κ+) holds.

Question 17. Is CardMax consistent, where CardMax denotes CardMax(κ+) for
all infinite cardinals κ, both regular and singular?

Internal Cardinal Maximality

Another approach to cardinal maximality is to relate the cardinals of V to those
of its inner models. Two large inner models are HOD, the class of hereditarily
ordinal-definable sets, and the smaller inner model S, the Stable Core of [13]. V is
class-generic over each of these models.

Let M denote an inner model.

M -cardinal Violation. For each infinite cardinal κ, κ+ is greater than the κ+ of M .

In [9] it is shown that HOD-cardinal violation is consistent. Can we strengthen
this?

Question 18. Is it consistent that for each infinite cardinal κ, κ+ is inaccessible,
measurable or even supercompact in HOD? Is this consistent with HOD replaced by
the Stable Core S?

A result of Shelah states that all subsets of κ belong to HODx for some fixed
subset x of κ when κ is a singular strong limit cardinal of uncountable cofinality.
By [8] this need not be true at countable cofinalities.

Question 19. Is it consistent that for each infinite cardinal κ, κ+ is greater than
κ+ of Sx (the Stable Core relativised to x) for each subset x of κ?

10We thank one of the referees for pointing out that an earlier version of cardinal-maximality with
a weaker parameter-absoluteness assumption is inconsistent. A similar phenomenon with weakly
absolute parameters occurs in Theorem 10 of [18].
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A major difference between HOD and S is that while any set is set-generic over
HOD, this is not the case for S.

Question 20. Is it consistent that for each infinite cardinal κ, some subset of κ+

is not set-generic over Sx for any subset x of κ?

A positive answer to any of these three questions would yield a strong internal
cardinal-maximality principle for V .

Stage 3: Having maximised the ordinals and cardinals, maximise powerset.

This is where we revisit the SIMH, but only in the context of #-generation and
cardinal-preservation. Again assume that V is #-generated.

A parameter p in V is cardinal-absolute if there is a parameter-free formula which
defines p in all #-generated outer models of V which have the same cardinals as V .

SIMH#(CP) (Cardinal-preserving SIMH#). Suppose that p is a cardinal-absolute
parameter, V ∗ is a #-generated outer model of V with the same cardinals as V and
ϕ is a sentence with parameter p which holds in V ∗. Then ϕ holds in an inner model
of V .

Question 21. Is the SIMH#(CP) consistent?

Note that SIMH#(CP) implies a strong failure of CH.

4.10 Width Indiscernibility

An alternative to the Maximality Protocol (which ideally should be synthesised with
it) is Width Indiscernibility. The motivation is to provide a description of V in width
analogous to its description in height provided by #-generation.

Recall that with #-generation we arrive at the following:

V0 ≺ V1 ≺ · · · ≺ V = V∞ ≺ V∞+1 ≺ · · ·

where for i < j, Vi is a rank-initial segment of Vj. Moreover the models Vi form a
collection of indiscernible models in a strong sense. This picture was the result of
an analysis which began with height reflection, starting with the idea that V must
have unboundedly many rank-initial segments Vi which are elementary in V .

Analogously, we introduce width reflection. We would like to say that V has
proper inner models which are “elementary in V ”. Of course this cannot literally be
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true, as if V0 is an elementary submodel of V with the same ordinals as V then it is
easy to see that V0 equals V . Instead, we use elementary embeddings.

Width Reflection. For each ordinal α, there is a proper elementary submodel H of
V such that Vα ⊆ H and H is amenable, i.e. H ∩ Vβ belongs to V for each ordinal
β.

Equivalently:

Width Reflection. For each ordinal α, there is a nontrivial elementary embedding
j : V0 → V with critical point at least α such that j is amenable, i.e. j ↾ (Vβ)V0

belongs to V for each ordinal β.

Let’s write V0 < V if there is a nontrivial amenable j : V0 → V , as in the second
formulation of width reflection. This relation is transitive.

Proposition 22. (a) If V0 < V then V0 is a proper inner model of V .
(b) Width Reflection is consistent relative to the existence of a Ramsey cardinal.

Proof. (a) This follows from Kunen’s Theorem that there can be no nontrivial
elementary embedding from V to V .
(b) Suppose that κ is Ramsey. Then it follows that any structure of the form
M = (Vκ, ∈, . . .) has an unbounded set of indiscernibles, i.e. an unbounded subset
I of κ such that for each n, any two increasing n-tuples from I satisfy the same
formulas in M. Now apply this to M = (Vκ, ∈, <) where < is a wellorder of Vκ of
length κ. Let J be any unbounded subset of I such that I \ J is unbounded and for
any α < κ, let H(J ∪ α) denote the Skolem hull of J ∪ α in M. Then H(J ∪ α) is
an elementary submodel of Vκ and is not equal to Vκ because no element of I \ J

greater than α belongs to it. As Vκ contains all bounded subsets of κ it follows that
H(J ∪ α) is amenable. ✷

A variant of the argument in (b) above yields the consistency of arbitrarily long
finite chains V0 < V1 < · · · < Vn. But obtaining infinite such chains seems more
difficult, and even more ambitiously we can ask:

Question 23. Is it consistent to have V0 < V1 < · · · < V of length Ord + 1 such
that the union of the Vi’s equals V ?

The latter would be a good start on the formulation of a consistent criterion of
Width Indiscernibility, as an analogue for maximality in width to the criterion of
maximality in height provided by #-generation.
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4.11 Omniscience

By OMT(V ), the outer model theory of V , we mean the class of sentences with
arbitrary parameters from V which hold in all outer models of V . We have seen
using V -logic that OMT(V ) is definable over V +. However for many universes V ,
OMT(V ) is in fact first-order definable over V . These universes are said to be
omniscient.

Recall the following version of Tarski’s result on the undefinability of truth:

Proposition 24. The set of sentences with parameters from V which hold in V is
not (first-order) definable in V with parameters.

Surprisingly, Mack Stanley showed however that OMT(V ) can indeed be V -
definable.

Theorem 25. (M.Stanley [30]) Suppose that in V there is a proper class of mea-
surable cardinals, and indeed this class is V +-stationary, i.e. Ord(V ) is regular
with respect to V +-definable functions and this class intersects every club in Ord(V )
which is V +-definable. Then OMT(V ) is V -definable.

Proof. Using V -logic we can translate the statement that a first-order sentence ϕ

(with parameters from V ) holds in all outer models of V to the validity of a sentence
ϕ∗ in V -logic, a fact expressible over V + by a Σ1 sentence. Using this we show that
the set of ϕ which hold in all outer models of V is V -definable.

As Ord(V ) is regular with respect to V +-definable functions we can form a club
C in Ord(V ) such that for κ in C there is a Σ1-elementary embedding from Hyp(Vκ)
into V + (with critical point κ, sending κ to Ord(V )). Indeed C can be chosen to be
V +-definable.

For any κ in C let ϕ∗

κ be the sentence of Vκ-logic such that ϕ holds in all outer
models of Vκ iff ϕ∗

κ is valid (a Σ1 property of Hyp(Vκ)). By elementarity, ϕ∗

κ is valid
iff ϕ∗ is valid.

Now suppose that ϕ holds in all outer models of V , i.e. ϕ∗ is valid. Then ϕ∗

κ is
valid for all κ in C and since the measurables form a V +-stationary class, there is a
measurable κ such that ϕ∗

κ is valid.

Conversely, suppose that ϕ∗

κ is valid for some measurable κ. Now choose a normal
measure U on κ and iterate (H(κ+), U) for Ord(V ) steps to obtain a wellfounded
structure (H∗, U∗). (This structure is wellfounded, as for any admissible set A, any
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measure in A can be iterated without losing wellfoundedness for α steps, for any
ordinal α in A.) Then H∗ equals Hyp(V ∗) for some V ∗ ⊆ V . By elementarity, the
sentence ϕ∗

V ∗ which asserts that ϕ holds in all outer models of V ∗ is valid. But as
V ∗ is an inner model of V , ϕ also holds in all outer models of V .

Thus ϕ belongs to OMT(V ) exactly if it belongs to OMT(Vκ) for some measur-
able κ, and this is first-order expressible. ✷

Are measurable cardinals needed for omniscience? Actually, Stanley was able to
use just Ramsey cardinals, but as far as the consistency of omniscience we have the
following:

Theorem 26. ([16]) Suppose that κ is inaccessible and GCH holds. Then there is
an omniscient model of the form Vκ[G] where G is generic over V . Moreover, Vκ[G]
carries a definable wellorder.

Omniscience demonstrates that it is possible to treat truth in arbitrary outer
models internally in a way similar to how truth in set-generic extensions can be
handled using the standard definability and truth lemmas of set-forcing. In fact, the
situation is even better in that the entire outer model theory is first-order definable,
not just the restriction of this theory to sentences of bounded complexity, as is the
case for set-forcing. (The key difference is that in the case of set-forcing, the ground
model V is uniformly definable in its set-generic extensions and therefore the full
OMT(V ) cannot be first-order definable in V by Proposition 24. An omniscient V

cannot be uniformaly definable in its arbitrary outer models for the same reason.)

Note also that by Theorem 25, omniscience synthesises well with #-generation:
We need only work with models that have sufficiently many measurable cardinals.

4.12 The Future of the HP

We have discussed evidence of Type 1, coming from set theory’s role as a branch of
mathematics, and evidence of Type 2, coming from set theory’s role as a foundation
for mathematics. In the first case, evidence is judged by its value for the mathe-
matical development of set theory and in the second case it is judged by its value
for resolving independence in (and providing tools for) other areas of mathematics.
In both cases the weight of the evidence is measured by a consensus of researchers
working in the field.

Type 3 evidence is also measured by a consensus of researchers working in set
theory (and its philosophy) but emanates instead from an analysis of the intrinsic
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maximality feature of the set concept as expressed by the maximal iterative concep-
tion. The Hyperuniverse Programme provides a strategy for deriving mathematical
consequences from this conception.

To illustrate more clearly how the HP derives consequences of the maximality
of V I’ll discuss the case of #-generation and the search for an optimal maximality
criterion.

#-generation is a major success of the HP. It provides a powerful mathemati-
cal criterion for height maximality which implies all prior known height maximality
principles and provides an elegant description of how the height of V is maximised in
a way analogous to the way L is maximised in height by the existence of large cardi-
nals (or equivalently, by the existence of 0#). There are good reasons to beleive that
#-generation will be accepted by the community of set-theorists and philosophers
of set theory as the definitive expression of height maximality.

Width maximality is of course much more difficult than height maximality and
the formulation, analysis and synthesis of the various possible width maximality
criteria is at its early stages. The basic IMH is a good start, but must be synthesised
with #-generation. The biggest challenge at the moment is dealing with formulations
of width maximality which make use of parameters. The maximality protocol is
a promising approach. But it is important to emphasize that the mathematical
analysis of width maximality principles is challenging and there are sure to be some
false turns in the development of the programme, leading to inconsistnet principles
(this has already happened several times). Such false turns are not damaging to
the programme, but rather provide valuable further understanding of the nature of
maximality.

The aim of the HP is to arrive after extensive mathematical work at an optimal
criterion of maximality for the height and width of the universe of sets, providing
a full mathematical analysis of the maximal iterative conception. As already said,
the validation of such a criterion as optimal depends on a consensus of researchers
working in set theory and its philosophy. Derivability from the maximal iterative
conceptions refers to formal derivability form this sought-after optimal criterion. Of
greatest interest are the first-order statements derivable from maximality, but it is
already clear that the criteria being developed in the programme, such as the ones
mentioned in this paper, are almost exclusively non first-order. My prediction is
that the optimal criterion will include some form of the SIMH and therefore imply
the (first-order) failure of CH.
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I remain optimistic that when the discoveries of this programme are combined
with further work in set theory and its application to resolving problems of inde-
pendence in other areas of mathematics, the prediction expressed by the Thesis of
Set-Theoretic Truth will be satisfyingly realized. But there is first a lot of work to
be done.
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