
The Hyperuniverse

The Hyperuniverse H is the collection of all countable transitive
models of ZFC

The Hyperuniverse is interesting for 2 reasons:

(Mathematical)
• Much of set theory is about building transitive models of ZFC.
• By Löwenheim-Skolem, the �rst-order properties of these models
all appear in models of the Hyperuniverse.
• The Hyperuniverse is closed under all techniques for building new
countable transitive models from old ones and therefore provides
the broadest range of possibilities for natural interpretations of set
theory.



The Hyperuniverse

(Philosophical)
The Hyperuniverse can be used to formulate principles of
set-theoretic truth (The Hyperuniverse Program):
• Elements of the Hyperuniverse provide possible pictures of V

which mirror all possible �rst-order properties of V .
• We can formulate natural criteria for preferred elements of the
Hyperuniverse based on their status within the Hyperuniverse as a
whole.
• Under the assumption that �rst-order properties of the real
universe are mirrored by preferred elements of the Hyperuniverse,
we can regard the �rst-order properties shared by these preferred
universes as being �true� in V .



The Hyperuniverse

This tutorial will deal primarily with the mathematical, but also
touch upon the philosophical, aspects of the Hyperuniverse.

This work raises numerous issues in forcing, de�nability, large
cardinals, determinacy and in�nitary logic.

But before this study can begin we have to clear up one point:

Consistently with ZFC, the Hyperuniverse is empty!

Of course set theory is now su�ciently advanced that we can safely
make the following:

Assumption: Every real belongs to a transitive model of ZFC.

This gives us elements of the Hyperuniverse of arbitrarily large
countable height and through the methods of forcing leads to a rich
variety of universes within the Hyperuniverse.
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Structural Features of the Hyperuniverse

A. Notions of inner model.

The �rst questions to ask concern the relation of inclusion between
universes.
Let M,N be universes (i.e., elements of the Hyperuniverse) of the
same ordinal height.

M is an inner model of N i� N contains M
M is a strong inner model of N i� in addition (N,M) models ZFC
M is a de�nable inner model of N i� in addition M is N-de�nable

Clearly the 1st and 3rd of these notions are transitive.

1. The notion of �strong inner model� is not transitive, and

therefore the three notions of inner model are distinct.



Part I: The Structure of the Hyperuniverse

1. The notion of �strong inner model� is not transitive.

Proof Sketch: Start with V0 � V = L.
Let C0,C1 be generic over V0 for ∞-Cohen, the forcing that adds a
Cohen class of ordinals. Also arrange that C0,C1 agree except on a
co�nal subset of Ord(V0) of ordertype ω.
Force over (V0,C0) to add an ℵα×2+1-Cohen generic for α in C0,
using an Easton product. This is the model V1.
Then force over (V1,C0) to add an ℵα×2+1-Cohen generic for all α
not in C0; this is the model V2.
Finally, force over (V2,C1) to add an ℵα×2+2-Cohen generic for α
in C1; this is the model V3.

Then (V2,V1) and (V3,V2) are models of ZFC but both C0 and C1

are de�nable in (V3,V1) so the latter is not a model of ZFC.
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B. The inner model partial order

We look now at universes of a �xed ordinal height α under the
(plain) inner model ordering.

2. There is a smallest universe.

This is Lα.

Universes M,N of height α are compatible i� they have a common
outer model.

3. There are incompatible universes of height α.

Proof: Let C be a real coding α.
Build reals A,B which are Cohen generic over Lα and have the
following property:
Let (kn | n ∈ ω) enumerate the places where A,B di�er in
increasing order; then A(kn) = 0 i� n belongs to C .
Then Lα[A], Lα[B] are incompatible universes, as C ≤T (A,B).



Part I: The Structure of the Hyperuniverse

4. There are universes V0,V1 of height α which are compatible but

have no least common outer model.

Proof: This is similar to the proof of intransitivity for the notion of
strong outer model.
Let C0,C1 be ∞-Cohen generics over Lα whose union is the
complement of a co�nal subset of α of ordertype ω.
Let V0 be generic over (Lα,C0) for adding an ℵβ+1-Cohen set for β
in C0, via an Easton product.
De�ne V1 in the same way, using C1 instead of C0.
Then any common outer model of V0,V1 must have ℵβ+1-Cohen
generics on a �nal segment of the ℵβ+1's for β not in the union of
C0,C1.
There is no least such common outer model.
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5. There are two universes of height α with no largest common

inner model.

Proof: Modify the previous proof by choosing C0,C1 to be
∞-Cohen generics over Lα whose intersection is a co�nal subset of
α or ordertype ω.
De�ne V0,V1 by adding ℵβ+1-Cohen generics for all β and then
taking only those generics for β in C0,C1, respectively.
Then the intersection of V0,V1 is the non-ZFC model V2 generated
by ℵβ+1-Cohen generics for a co�nal set of β's of ordertyper ω.
There is no largest ZFC-model contained in V2.
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6. There is an increasing ω-chain of universes of height α with no

least upper bound.

Proof: Take (Rn | n ∈ ω) to be mutually Cohen over Lα and let Vn
be Lα[R0, . . . ,Rn].
Now let V ∗ be the choiceless model Lα(A ∪ {A}) where
A = {Rn | n ∈ ω}.
There are two models of ZFC whose intersection is V ∗.
It follows that any least upper bound of the Vn's must be contained
in V ∗.
But in V ∗ there is no wellordered sets of reals containing A so no
inner model of V ∗ satisfying choice can contain all of the Vn's.
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7. There is an increasing ω-chain of universes of height α with a

least upper bound.

Proof: Let Lα[G ] be obtained by adding a β-Cohen set over Lα for
each regular β.
Let (αn | n < ω) be an ω-sequence co�nal in α and de�ne
Vn = L[G � αn].
Then the union of the Vn's is the ZFC-model L[G ], which is clearly
the least upper bound.

Remark. Using Jensen coding, it is in fact possible to get an
increasing ω-chain of universes, each of the form Lα[Rn] for some
real Rn, with a least upper bound.
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8. There is a decreasing ω-chain of universes of height α with a

greatest lower bound.

Proof: Let (Ri | i ∈ ω) be mutually Cohen over Lα and Vn the
model Lα[(Ri | i > n)].
Then the intersection of the Vn's is Lα:
Suppose that σn is a P(> n)-name for each n, where P is the
forcing to add the Ri 's and P(> n) is the forcing to add the Ri 's
for i > n.
Suppose that p ∈ P forces that the σn's are all equal.
If p does not force the σn's to belong to Lα then there are p0, p1
extending p which force di�erent values of σ0 at some number k
and therefore di�erent values of σn at k for each n.
But this is impossible if n is beyond the support of p0, p1.
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9. There is a decreasing ω-chain of universes of height α with no

greatest lower bound.

Proof: Let G be generic for adding an ℵβ+1-Cohen set over Lα for
each β, choose a sequence (αi | i ∈ ω) co�nal in α and let Vn be
L[Gn] where Gn is G without the G (αi ), i < n.
Then the intersection of the Vn's is L[G ′] where G ′ is G without all
of the G (αi ), i < ω and this non-ZFC model has no greatest ZFC
submodel.
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C. Jensen coding and minimality

Universes have outer models of a special form.

Theorem

(Jensen) Suppose that M is a universe of height α. Then M has an

outer model of the form Lα[R] for some real R. Moreover, if M

satis�es GCH then H(γ)M is de�nable over Lγ [R] for each cardinal

γ of M.

A universe M is minimal over a real i� for some real R , M is the
least universe (of any ordinal height) containing R .
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10. Every universe has an outer model which is minimal over a real.

Proof: In light of Jensen's theorem we may assume that M is of the
form Lα[R].
Now force a club C of cardinals γ such that Lγ [R] does not satisfy
ZFC.
Then collapse cardinals to ensure that all limit cardinals belong to
C and apply Jensen's theorem again.
The result is a model of the form Lα[R ′] in which ZFC fails in
Lγ [R ′] for all cardinals γ.

Now use:
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Theorem

(R.David-SDF) Suppose that N = Lα[R] is a model of ZFC, ϕ is a

Σ1 formula with parameter R and N � ϕ(γ) for every cardinal γ of

N. Then for some real S, Lα[S ] is an outer model of N satisfying

ϕ(δ) for every S-admissible δ.

Apply this to the model Lα[R ′] and the formula
ϕ(γ) ≡ (Lγ [R] 2 ZFC).
This gives a real S such that ZFC fails in Lδ[R] for all S-admissible
δ and therefore Lα[S ] is the least universe containing the reals R, S .
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D. Nodes in the Hyperuniverse

A universe M of height α is a node for comparability i� every
universe of height α is comparable with M, i.e., either contains M
or is contained in M.
M is a node for compatibility i� every universe of height α is
compatible with M.

Obviously Lα is a node for comparability.

11. Suppose that M is a universe of height α which is a node for

comparability. Then M equals Lα.

Proof: There is an uncountable set of reals X such that any two
distinct elements of X are mutually Cohen over Lα.
If M is contained in Lα[R] for two distinct R in X then M = Lα.
Otherwise M must contain all but one element of X , contradicting
its countability.
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Open Question: Is Lα the only node for compatibility of height α?
I.e., if M is a universe of height α which is compatible with all

universes of height α, must M equal Lα?

12. Suppose that M has height α and contains a function

f : ω → ω that is not dominated by such a function in Lα. Then M

is not a node for compatibility.

Proof: Using f we can build a Cohen real R so that R codes any
real (such as a code for α) on the range of f .
Then Lα[R] and M are incompatible universes.

It can also be shown that if M is Lα[S ] where S is Sacks-generic
over Lα then again M is not a node for compatibility.
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E. Characterisable universes

A universe M of height α is α-characterisable i� for some sentence
ϕ, M is the unique universe of height α satisfying ϕ.

13. Suppose that M is α-characterisable. Then M is an element of

Lβ where β is the least admissible greater than α. Therefore if α is

a cardinal in Lβ , M must equal Lα.

Proof: Let ϕ witness that M is α-characterisable.
Let Lβ denote the admissible fragment of Lω1ω determined by the
admissible set Lβ .
Let ψ be the sentence in this fragment given by:
ZFC + ϕ
∀x(x is an ordinal i�

∨
γ<α x = γ)

Then ψ is consistent and complete, and therefore has a model
which is an element of Lβ ; this is the unique model of ϕ of height α.
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A universe M is characterisable i� for some sentence ϕ, M is the
unique universe satisfying ϕ (of any height).

14. (Must be checked!) There is a characterisable M which does

not satisfy V = L.

Proof Sketch: This uses ideas from the construction of a Π1

2

singleton which is class-generic over L.
Let Lα be the minimal model of ZFC.
Associate to each ordinal γ < α a �guess� (γ2, . . . , γn) where
γi < γ is least so that Lγi is Σi elementary in Lγ (and γn+1 does
not exist).
Using the Recursion Theorem let γ 7→ p(γ) be a Σ1-de�nable
procedure which produces a P-generic when applied to the γ∗n =
the least γ such that Lγ is Σn elementary in the full Lα.
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De�ne a suborder of ∞-Cohen ∗ MacAloon coding, where the
latter kills GCH at ℵα+1 for α in the ∞-Cohen generic.
Inductively de�ne the conditions of length γ in this forcing as
follows:
At stage γ, take all conditions which force that p(γ) belongs to the
generic and whose �rst coordinate is Σk -generic for Pγ for all k
such that γ is Σk -admissible; also take those which force that p(γ)
is not in the generic and whose �rst coordinate is ∆2-de�nable over
Lγ .
Then there is only one possible generic for the resulting forcing P as
no generic can be ∆2-de�nable at an increasing chain of γn's such
that Lγn is Σn elementary in Lα, and therefore any generic must
agree with the generic produced by the conditions p(γ∗n), n ∈ ω.
The characterising sentence ϕ says that the universe is P-generic
over Lα for antichains which belong to Lα.
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A. Notions of Genericity

We have been talking about arbitrary outer models.
But sometimes we want to only consider outer models which are
obtained by some type of forcing.

Let M be a universe of height α.

G is set-generic over M i� for some forcing P ∈ M, G is a pairwise
compatible, upward-closed subset of P which meets every dense
subset of P in M.

N is a set-generic outer model of M i� N = M[G ] for some G

which is set-generic over M.
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G is de�nable class-generic over M i� for some M-de�nable forcing
P , G is a pairwise compatible, upward-closed subset of P which
meets every M-de�nable dense subset of P .

N is a de�nable class-generic outer model of M i� N = M[G ] for
some G which is de�nable class-generic over M.

Further notions of genericity make use of models of class theory.

(M, C) is a model of GB i� C is a collection of subsets of M (the
members of C are �the classes�) such that:
i. For any A1, . . . ,An from C, (M,A1, . . . ,An) is a model of ZFC
(with the Ai 's as additional predicates)
ii. Any subset of M de�nable over (M,A1, . . . ,An) belongs to C.
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Now let (M, C) be a model of GB.

G is class-generic over (M, C) i� for some forcing P in C, G is a
pairwise compatible, upward-closed subset of P which meets every
dense subset of P in C.
A model (N,D) of GB is a class-generic outer model of (M, C) i�
for some G which is class-generic over (M, C), N = M[G ] and D
consists of those subsets of M[G ] which are de�nable over
(M[G ],G ,A) for some A ∈ C.
G is de�nable hyperclass-generic over (M, C) i� for some
(M, C)-de�nable forcing P ⊆ C, G is a pairwise compatible,
upward-closed subset of P which meets every dense subset of P
which is de�nable over (M, C).
(Note that G is not a �class�, i.e. subset of M, but a �hyperclass�,
i.e., subset of C.)
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To discuss de�nable hyperclass-generic extensions it is necessary to
assume more than GB in the ground model (M, C).
We need a strengthened form of Morse-Kelley class theory:

Axioms of MK∗

a. GB.
b. {x | ϕ(x)} (where x ranges over sets) is a class, even if ϕ
quanti�es over classes and has class parameters.
c. If for all sets x there is a class A such that ϕ(x ,A), then there is
a �xed class B such that for all x , ϕ(x , (B)y ) holds for some y ,
where (B)y = {z | (y , z) ∈ B}.
(Again, ϕ may quantify over classes and include class parameters.)

Our next aim is to de�ne the structure (M, C)[G ] when G is
de�nable hyperclass-generic over (M, C).
This is best done by translating the theory MK∗ into a �rst-order
set theory called SetMK.
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The axioms of SetMK are:

a. ZF− (ZF minus Power Set).
b. There is a strongly inaccessible cardinal κ (in particular Vκ exists
and models choice).
c. Every set can be mapped injectively into Vκ.
(We don't require that Vκ can be wellordered.)



Part II: Genericity in the Hyperuniverse

15. (a) If (M, C) is a model of MK∗ where M has height α then

there is a unique model M∗ of SetMK with largest cardinal α such

that M = VM∗
α and the elements of C are the subsets of M in M∗.

(b) Conversely, if M∗ is a model of SetMK with largest cardinal α
then (M, C) is a model of MK∗, where M = VM∗

α and C consists of

the subsets of M in M∗.

Proof Sketch. (a) Given (M, C), take M∗ to be the union of all
transitive sets isomorphic to some structure (M,R) where R is a
binary relation on M in C.
The fact that (M, C) models MK∗ implies that M∗ models
bounding and comprehension principles, hence all of ZF−.
It is straightforward to check the other axioms of SetMK and the
uniqueness of M∗.
(b) This is also straightforward, using the bounding principle in M∗

to verify the 3rd axiom of MK∗.
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Now assuming that (M, C) models MK∗ we can de�ne the generic
extension (M, C)[G ] for de�nable hyperclass-generic G .
Let P be the (M, C)-de�nable forcing for which G is P-generic.

Let M∗ be the model of SetMK associated to (M, C) and
inductively de�ne P-names in M∗ in the usual way, after Kunen:

A P-name in M∗ is a set in M∗ consisting of pairs (τ, p) where τ is
a P-name in M∗ and p belongs to P .

For P-names σ, σG denotes {τG | p ∈ G for some (τ, p) ∈ σ}.
Then M∗[G ] is the set of all such τG and (M, C)[G ] is the model of
class theory derived from M∗[G ], whose sets are the elements of

V
M∗[G ]
α and whose classes are the subsets of V

M∗[G ]
α in M∗[G ].
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Now if (M, C) is a model of MK∗ then a model (N,D) of MK∗ is a
de�nable hyperclass-generic outer model of (M, C) i� for some G

which is de�nable hyperclass-generic over (M, C),
(N,D) = (M, C)[G ], as de�ned above.

B. Tameness

Unlike for set-forcing, generics for de�nable class-forcing,
class-forcing or de�nable hyperclass-forcing do not necessarily yield
models of ZFC, GB and MK∗, respectively.

But under the right circumstances (when the forcings are �tame�),
they do:
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First recall the proof that set-forcing preserves ZFC:
Let M denote the ground model and P the set-forcing in question.

a. The forcing relation is de�nable: For each ϕ(x1, . . . , xn) the
relation p 
 ϕ(σ1, . . . , σn) is an M-de�nable relation of
(p, σ1, . . . , σn) (where the σi 's range over P-names in M).

b. Using the de�nability of the forcing relation, the Truth Lemma
holds:
For G which are P-generic over M, M[G ] � ϕ(σ1, . . . , σn) i�
p 
 ϕ(σ1, . . . , σn) for some p ∈ G .
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c. To verify the Bounding Principle, argue as follows:
If p 
 ∀x ∈ σ∃yϕ(σ, y) then for each P-name σ0 of rank <
rank(σ), the collection of q ≤ p such that q 
 ϕ(σ0, τ) for some τ
is dense below p.
Now apply the Bounding Principle in M to obtain a set T such that
this is still true if we restrict τ to belong to T .
Then use T and the de�nability of the forcing relation to form a
name Σ so that p 
 ∀x ∈ σ∃y ∈ Σϕ(σ, y).
d. Separation (= Comprehension) and AC follow easily from
Separation and AC in M, using the de�nability of the forcing
relation.
e. To verify the Power Set axiom, use the fact that for any ordinal
α, each subset of α has a nice name of the form⋃
β<α{(β̌, p) | p ∈ Aβ} where each Aβ is a subset of P , and the set

of all such names forms a set in M.



Part II: Genericity in the Hyperuniverse

Now suppose that P is a de�nable class-forcing in M.
Can we repeat steps (a)-(e) to show that M[G ] is a model of ZFC
for P-generic G?

Counterexamples:
Collapsing the universe to ω: Consider
P = {p : Dom(p)→ M | Dom(p) a �nite subset of ω}. A P-generic
adds a map from ω onto M, so kills the Bounding Principle.
Too many reals: Consider P = {p : Dom(p)→ 2 | Dom(p) a �nite
subset of Ord(M)× ω}. A P-generic adds reals Rβ , β ∈ Ord(M),
so kills the Power Set axiom.

To obtain ZFC-preservation we need to worry about:
(a) De�nability of the forcing relation.
(c) The Bounding Principle
(e) The Power Set axiom.
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The proof of the Bounding Principle for set-forcing immediately
suggests the following:
Pretameness Condition. Suppose that a ∈ M, p ∈ P , D ⊆ a × P is
M-de�nable and (D)i = {p | (i , p) ∈ D} is dense below p for each
i ∈ a.
Then there exists d ⊆ D, d ∈ M and q ≤ p in P such that each
(d)i is predense below q (i.e., each r ≤ q is compatible with some
element of (d)i ).

Given Pretameness and the De�nability of the forcing relation, it is
straightforward to verify the Bounding Principle in P-generic
extensions.
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Fortunately, Pretameness is also su�cient for the De�nability of the
forcing relation:

16. Suppose that P is pretame. Then the forcing relation is

de�nable.

Proof Sketch: The key step is to show that there is an �e�ective�
way to extend any p ∈ P to a q ∈ P which decides p 
 σ ∈ τ for
P-names σ, τ (and similarly for p 
 σ = τ).
By induction we have an e�ective way to extend any q ≤ p to r

deciding σ = τ0 for P-names τ0 of rank less than the rank of τ .
This gives us a de�nable class D such that (D)τ0 is a dense class of
conditions deciding σ = τ0 for each such τ0.
Now apply Pretameness to e�ectively extend p either to force
σ = τ0 for some τ0 or to force σ 6= τ0 for each τ0 and therefore
force σ /∈ τ .
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To preserve the Power Set axiom it is necessary to show that for
each a ∈ M and p ∈ P , there is q ≤ p and a set S ∈ M such that
it is dense below q to force any P-name for a subset of a to be
equal to a P-name in S .
In practice this happens in one of two ways:
i. For each a ∈ M, P factors as P0 ∗ P1 where P1 does not add
subsets of a and P0 is a set-forcing.
ii. For each a ∈ M, P factors as P1 ∗ P0 where P1 does not add
subsets of a and P0 is a set forcing.
The �rst option is typical of reverse Easton iterations and the
second of forcings which resemble Easton products, like Jensen
codings.
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Note that Pretameness already gives the De�nability of the forcing
relation, so the preservation of Power Set is a �rst-order condition
on M, expressed by �P forces the Power Set axiom�.
So we can legitimately de�ne:

Tameness Condition. P is pretame and forces the Power Set axiom.

Remarks. (a) Tameness gives us slightly more than
ZFC-preservation, as it implies that for P-generic G , (M[G ],M) is
a model of ZFC (with M as an additional predicate).
This is because the relation �p 
 σ ∈ M� is M-de�nable.
(b) Conversely, ZFC-preservation with M as a predicate implies
Tameness.
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Preserving GB with class forcing is similar, with de�nable classes
replaced by arbitrary classes of the given GB model:

Tameness for Class Forcing. A class forcing P in the GB model
(M, C) is pretame i� for any condition p, a ∈ M and D ⊆ a × P in
C such that (D)i = {p | (i , p) ∈ D} is dense below p for each
i ∈ a, there exists d ⊆ D, d ∈ M and q ≤ p in P such that each
(d)i is predense below q.
P is tame i� it is pretame and forces the Power Set axiom.

And Tameness is equivalent to GB-preservation.
(As (M, C)[G ] includes M as a class, there is no need to adjoin M

as an additional predicate, as was the case for de�nable class
forcing.)
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Tameness for De�nable Hyperclass forcing is obtained by
translating pretameness for models of SetMK into class theory and
looks like this:

A de�nable hyperclass forcing P in the MK∗ model (M, C) is
pretame i� for any condition p, and (M, C)-de�nable D ⊆ M × P

such that (D)i = {p | (i , p) ∈ D} is dense below p for each i ∈ M,
there exists d ∈ C such that for each i , j ∈ M, (i , (d)i ,j) ∈ D

(where (d)i ,j = {a ∈ M | (i , j , a) ∈ d}) and for eaech i ∈ M,
{(d)i ,j | j ∈ M} is predense below q.
P is tame i� it is pretame and forces the axioms of GB.

Tameness for De�nable Hyperclass forcing is equivalent to
MK∗-preservation.
The proof passes through the associated model of SetMK and uses
the fact that this model is Lβ(M) where β is the least ordinal not
coded by an element of C.
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C. Separating notions of genericity

a. Let M be a countable transitive model of ZFC.
Then there is a real R which belongs to a de�nable class-generic
extension of M but to no set-generic extension of M.

Proof: Force to make GCH hold everywhere to get M[G ] and then
add an ∞-Cohen class of ordinals A to get M[G ] = L[A].
Finally, use Jensen coding to add a real R so that A is de�nable in
L[R].
Then R belongs to no set-generic extension of M as otherwise A

would be de�nable in M.



Part II: Genericity in the Hyperuniverse

b. Let (M, C) satisfy GB where C includes the satisfaction predicate
Sat(M) for M (Sat(M) = {(ϕ, x) | M � ϕ(x)}).
Then there is a real R which belongs to a class-generic extension of
(M, C) but to no de�nable class-generic extension of M.

Proof: Use Jensen coding over (M, C) to make Sat(M) de�nable
from a real R .
Then R is in a class-generic extension of (M, C) but in no de�nable
class-generic extension of M as otherwise by the Truth Lemma,
Sat(M[R]) would be de�nable over (M, Sat(M)) and hence over
M[R], contradicting Tarski.
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17. Suppose that (M, C) satis�es MK∗.
Then there is a real R which belongs to a de�nable

hyperclass-generic extension of (M, C) but to no class-generic

extension of (M, C0) for any GB model (M, C0) where C0 ⊆ C.
(Note that the conclusion is stronger than saying that R belongs to
no class-generic extension of (M, C).)

Proof Sketch: Let M∗ be the model of SetMK corresponding to
(M, C).
Now consider the following M∗-de�nable forcing:
By a variant of almost disjoint forcing, we add a subset X of κ (the
largest cardinal of M∗ = the ordinal height of M) such that for any
subset A of κ in M∗, A(ω) is de�nable over (M,A,X ), where A(ω)

is the satisfaction predicate for (M,A).
This is a de�nable hyperclass forcing over (M, C).
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Then X cannot belong to any class-generic extension of any GB
model (M, C0) for C0 ⊆ C: If P ∈ C0 and G ⊆ P witnessed this then
via the Truth Lemma, (X ,G )(ω) would be de�nable over
(M,P(ω),G ) and therefore by the choice of X over (M,X ,G ), in
contradiction to Tarski's unde�nability of the satisfaction predicate.
Finally use Jensen coding to code X by a real.
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D. Genericity and inner models

Recall:
M is an inner model of N i� N contains M
M is a strong inner model of N i� in addition (N,M) models ZFC
M is a de�nable inner model of N i� in addition M is N-de�nable

Now suppose that N is a generic outer model of M in some sense
of generic; must M be a strong or even de�nable inner model of N?

We have seen that for de�nable class-forcing, M will be a strong
inner model of N.
This is vacuously true for class-forcing and de�nable
hyperclass-forcing as when extending (M, C) to (M, C)[G ] we
include M itself as a class and therefore ZFC holds relative to it.
So we focus on the question of whether M must be a de�nable
inner model.
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19. (Laver) Suppose that N is a set-generic extension of M.

Then M is a de�nable inner model of N.

Proof: Choose a V -regular κ so that P belongs to H(κ)M , where V
is P-generic over M. We need three facts:

i. M κ-covers V : Any subset X of M in V of size < κ in V is a
subset of such a set in M.

This is because if f maps some ordinal α < κ onto X then for each
i < α there are < κ possibilities for f (i), given by the < κ di�erent
forcing conditions.
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ii. M κ-approximates V : If X is a subset of M in V all of whose
size < κ M-approximations (i.e., intersections with size < κ
elements of M) belong to M, then X also belongs to M.

This is because if Ẋ is forced not to be in M then we can choose
for each condition a set in M whose membership in Ẋ is not
decided by that condition; no condition can force the intersection of
Ẋ with the resulting size < κ set of elements of M to be in M.
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iii. If N is an inner model which κ-covers and κ-approximates V

such that M,N have the same H(κ+) then M = N.

By κ-approximation it's enough to show that any set X of ordinals
of size < κ in M also belongs to N (and vice-versa). Build a κ-chain
X = X0 ⊆ X1 ⊆ · · · of sets of size < κ such that X2α+1 belongs to
M and X2α+2 belongs to N. If Y is the union of the Xα's then by
κ-approximation, Y belongs to M ∩ N. But as M,N have the same
H(κ+) they also have the same subsets of the ordertype of Y and
therefore the same subsets of Y . It follows that X belongs to N.

Finally: All of this holds with M,V replaced by H(λ)M ,H(λ) for
V -regular cardinals λ > κ+. So H(λ)M is de�nable in V from λ,
H(κ+)M uniformly in λ, so M is V -de�nable.
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20. There exists M ⊆ N where N is a de�nable class-generic

extension of M, such that M is not de�nable as an inner model of

N.

Proof Sketch: Start with some Lα and let P be the Easton product
that adds an α-Cohen set for each regular α.
Let (G0,G1) be generic for P × P (which is isomorphic to P) and
let M = Lα[G0], N = Lα[G0,G1].
Then N is a P-generic extension of M and as P is Lα-de�nable it is
also M-de�nable.
But one can show that no formula de�nes M is an inner model of
N, using the homogeneity of the forcing and the fact that any
parameter in a potential de�nition of M is captured by a bounded
part of the P × P-generic.
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E. Criteria for genericity

Suppose that M is an inner model of N.
Is there a simple criterion that determines whether or not N is a
set-generic extension of M? First observe:

21. Suppose that N is a set-generic extension of M.

Then M globally covers N: For some N-regular κ, if f : α→ M

belongs to N then there is g : α→ M in M such that f (i) ∈ g(i)
and g(i) has N-cardinality < κ for all i < α.

Proof: De�ne g(i) to be the set of possible values of f (i) given by
the di�erent forcing conditions. We can choose any κ so that the
forcing is κ-cc.

Surprisingly, this provides a simple criterion for set-generic
extensions:
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22. (Bukovsky) Suppose that M is a de�nable inner model which

globally covers N.

Then N is a set-generic extension of M.

Proof: First suppose that N = M[A] for some set of ordinals A;
we'll get rid of this extra hypothesis later.

Fix a N-regular κ such that A is a subset of κ and M globally
κ-covers N, i.e., if f : α→ M in N then there is g : α→ M in M

so that f (i) ∈ g(i) and g(i) has N-cardinality < κ for each i < α.
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The languages LQFκ (M), LQFκ+ (M)

The formulas of LQFκ (M) are de�ned inductively by:

1. Basic formulas α ∈ Ȧ, α /∈ Ȧ for α < κ.

2. If Φ ∈ M is a size < κ set of formulas then so are
∨

Φ and
∧

Φ.

Each formula can be regarded as an element of H(κ)M . The set of
formulas forms a κ-complete Boolean algebra in M, denoted by BMκ .

LQFκ+ (M) is de�ned similarly, replacing �size < κ� by �size ≤ κ�.

A ⊆ κ satis�es ϕ i� ϕ is true when Ȧ is replaced by A.

T � ϕ i� for all A ⊆ κ (in a set-generic extension of M), if A
satis�es all formulas in T then A also satis�es ϕ.

The above is expressible in M for T , ϕ in M.
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Quotients of BMκ : Suppose that T is a set of formulas in BMκ+ . Then
IT is the ideal of formulas in BMκ which are inconsistent with T .

Now we prove the genericity of A over M.

Recall that M globally κ-covers N. Let f be a function in N from
subsets of BMκ in M to BMκ such that:

If A satis�es some ψ ∈ Φ then A satis�es f (Φ) ∈ Φ.

Using a wellorder of H(κ+)M we can regard f as a function from
some ordinal α into M. Apply global κ-covering to get g in M so
that g(Φ) ⊆ Φ has size < κ and f (Φ) ∈ g(Φ) for each Φ.

Consider the following set of formulas T in BMκ+ :

T = {(
∨

Φ→
∨
g(Φ)) | Φ ⊆ BMκ , Φ ∈ M}.

Let P be the forcing (BMκ \ IT )/IT the set of T -consistent
formulas modulo T -provability.
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Claim 1. P = (BMκ \ IT )/IT is κ-cc.

Proof. Suppose that Φ is a maximal antichain in P . We show that
g(Φ) = Φ (and therefore Φ has size < κ). It su�ces to show that
any ϕ ∈ Φ is T -consistent with some element of g(Φ). Choose any
B ⊆ κ which satis�es T ∪ {ϕ} (this is possible because ϕ is
T -consistent). As T includes the formula

∨
Φ→

∨
g(Φ) it follows

that B also satis�es
∨
g(Φ) and therefore ψ for some ψ ∈ g(Φ).

So ϕ is T -consistent with ψ ∈ g(Φ). �

Claim 2. Let G (A) be {[ϕ]IT | ϕ belongs to BMκ and A satis�es ϕ}.
Then G (A) is P-generic over M.

Proof. Suppose that Φ consists of representatives of a maximal
antichain X of equivalence classes in P . Then T �

∨
Φ, else the

negation of
∨

Φ represents an equivalence class violating the
maximality of X . As A satis�es the theory T it follows that A
satis�es some element of Φ and therefore G (A) meets X . �
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It now follows that M[A] is a P-generic extension of M, as
M[A] = M[G (A)].

This proves Bukovsky's theorem assuming that N = M[A] for some
set of ordinals A.

But the same proof shows that M[A] is a κ-cc generic extension of
M for any set of ordinals A ∈ N.
Choose A so that M[A] contains all subsets of 2<κ in N. Then
M[A] must equal all of N:
Otherwise for some set B of ordinals in N, M[A,B] is a nontrivial
κ-cc generic extension of M[A] and therefore adds a new subset of
2<κ to M[A].
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Bukovsky for class forcing?

Is there a similar criterion to Bukovsky's that characterises
de�nable class-generic extensions?

I don't know, but there are two simple criteria, one of which is
necessary and the other su�cient for de�nable class-genericity, and
which are �fairly close� to each other.
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Stability predicates

Suppose that N is a countable transitive model of ZFC.
Work inside N.
For an in�nite cardinal α, H(α) is de�ned as usual.
Let C be the club of in�nite cardinals β such that:
α < β → H(α) has size < β.

(n > 0) α is n-stable in β i� α < β are limit points of C and:
(H(α),C ∩ α) ≺Σn

(H(β),C ∩ β).

The Stability Predicate S = {(α, β, n) | α is n-stable in β}.
For any club C , we also take S � C to be the Stability Predicate
restricted to C :
S � C = {(α, β, n) | α, β belong to C and α is n-stable in β}.
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23. Suppose that N is a countable transitive model of ZFC and

(M,A) is a de�nable inner model of N satisfying ZFC.

Let S be the Stability Predicate of N.

If S � C is (M,A)-de�nable for some N-de�nable club C, then N is

a de�nable class-generic extension of (M,A).

(Note that we have taken the liberty of extending the notion of
�de�nable class-genericity� to ZFC models with predicates.)

The model (L[S ], S) where S is the Stability Predicate of N is
called the Stable Core of N.
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As a partial converse:
24. Again suppose that N is a countable transitive model of ZFC,

(M,A) is a de�nable inner model of N satisfying ZFC and S is the

Stability Predicate of N.

If N is a de�nable class-generic extension of (M,A) then there is an

(M,A)-de�nable predicate S ′ such that for some N-de�nable club

C, S ′ � C = S � C.

Thus the de�nability in (M,A) of the Stability Predicate of N is
�close� to being equivalent to the statement that N is a de�nable
class-generic extension of (M,A): If we could repalce �N-de�nable
club C � in the above by �(M,A)-de�nable club C �, then we would
have an exact equivalence.
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A corollary of the results about the Stability Predicate is:

25. Let M be a countable transitive model of ZFC.

Then M is de�nable class-generic over (HODM , S) for an

M-de�nable predicate S.
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F. Transcendence

To what extent can arbitrary outer models be captured by forcing?

26. Suppose that N is a countable transitive model which satis�es

that 0# exists. Let Lα be the L of N and suppose that (M,D) is a

class-generic extension of (Lα, C) where the latter satis�es GB.

Then N is not contained in M.

Proof Sketch: Otherwise the 0# of N is an element of M and
therefore in M one can de�ne the Silver indiscernibles for Lα.
But then via the forcing relation, one can de�ne the set of ordinals
i < α which are forced by some condition to belong to the Silver
indiscernibles, and a �nal segment of these ordinals i have the
property that (Li ,A ∩ i) is elementary in (Lα,A), where the forcing
is (Lα,A)-de�nable.
This contradicts Tarski's unde�nability of the satisfaction relation
for the model (Lα,A).
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There are similar results showing that 0# is not generic over L via
hyperclass forcing and there is no forcing method which is known to
be able to capture all outer models of L in which 0# does not exist.
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The study of Maximality in the Hyperuniverse is motivated by the
Hyperuniverse Program.
As mentioned before, this approach to the study of set-theoretic
truth works as follows:

• Elements of the Hyperuniverse provide possible pictures of V

which mirror all possible �rst-order properties of V .
• We can formulate natural criteria for preferred elements of the
Hyperuniverse based on their status within the Hyperuniverse as a
whole.
• Under the assumption that �rst-order properties of the real
universe are mirrored by preferred elements of the Hyperuniverse,
we can regard the �rst-order properties shared by these preferred
universes as being �true� in V .

Key for the program is the choice of criteria for preferred universes.
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Criteria are to be based on motivating principles which arise from
an unbiased look at the Hyperuniverse.

One such motivating principle is Maximality.

Maximality for the universe of sets is an old idea, tracing back to
Gödel and Scott:
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Gödel (1964):

�From an axiom in some sense opposite to [V=L], the negation of
Cantor's conjecture could perhaps be derived. I am thinking of an
axiom which ... would state some maximum property of the system
of all sets, whereas [V=L] states a minimum property. Note that
only a maximum property would seem to harmonize with the
concept of set ...�
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Scott (1977):

�I see that there are any number of contradictory set theories, all
extending the Zermelo-Fraenkel axioms; but the models are all just
models of the �rst order axioms and �rst-order logic is weak. I still
feel that it ought to be possible to have strong axioms which would
generate these types of models as submodels of the universe, but
where the universe can be thought of as something absolute ... But
really pleasant axioms have not been produced by someone else or
me, and the suggestion remains speculation. A new idea (or point
of view) is needed, and in the meantime all we can do is to study
the great variety of models.�
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Question. What does it mean for a universe to be �maximal�?

We use truth in inner models to de�ne maximality:

Also, for technical reasons, we work with de�nable inner models

rather than with general inner models

L = language of ZFC
For a universe W :
Φ(W ) = all sentences of L which are true
in some de�nable inner model of W

Obviously:
V a de�nable inner model of W → Φ(V ) ⊆ Φ(W )
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V is maximal i�:
V a de�nable inner model of W → Φ(V ) = Φ(W )

27. (with Woodin) Assume PD. Then there are maximal universes.

Proof: Assume PD.
For each real R let M(R) denote the smallest transitive model of
ZFC containing R .
For each sentence ϕ there is a real Rϕ such that either M(R) � ϕ
for all R ≥T Rϕ or M(R) 2 ϕ for all R ≥T Rϕ.
Choose R∗ so that Rϕ ≤T R∗ for all ϕ;
then Thy(M(R)) is constant for R ≥T R∗.

Claim. M(R∗) is a maximal universe.
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Claim. M(R∗) is a maximal universe.

We need to show that if M(R∗) is a de�nable inner model of N and
N has a de�nable inner model M satisfying some sentence ϕ, then
also M(R∗) has a de�nable inner model satisfying ϕ.

Apply Jensen coding to N to produce a real S such that R∗ ≤T S

and M(S) has N (and therefore also M) as a de�nable inner model.
If ψ de�nes M in M(S) then M(S) satis�es the sentence:
�ψ with some choice of parameters de�nes a transitive inner model
of ZFC + ϕ�
(Note that this sentence is �rst-order, as �ZFC� can be replaced by
a �nite subtheory)
But by choice of R∗, Thy(M(S)) equals Thy(M(R∗)), so also
M(R∗) has a de�nable inner model satisfying ϕ, as desired.



Part III: Maximality in the Hyperuniverse

Remarks. (a) Full PD is not needed for the preceding proof; it is
enough to have a bit more than lightface PD (a Woodin cardinal
with an inaccessible above is enough).
(b) Welch and I showed that the existence of maximal universes
gives the consistency of measurable cardinals of any Mitchell order.
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The Maximality Paradox

The idea of maximality is that the universe should be �large�;
but we have:

28. Suppose that M is a maximal universe.
Then in M there are no inaccessibles and some real has no #.

Proof: We have seen that with Jensen coding one can produce a
real R so that M is a de�nable inner model of M(R).
In M(R) there is a real (namely R) such that there is no transitive
model of ZFC containing R .
So by maximality of M, this holds in a de�nable inner model of M.
But then this also holds in M, i.e., in M there is a real R such that
there is no transitive model of ZFC containing R .
This implies that in M there are no inaccessibles and that R# does
not exist.
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Thus Maximality kills the existence of inaccessible cardinals as well
as boldface Π1

1
determinacy.

This is the Maximality Paradox.

I see two ways of resolving this paradox:
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Option 1: A re-examination of the roles of large cardinals and

determinacy in set theory

Maximality as formulated above is compatible with:

i. The existence of large cardinals in inner models.
ii. The existence of #'s for ordinal-de�nable reals.
iii. Determinacy for ordinal-de�nable sets of reals.

Thus one could adopt the following perspective:

a. Indeed large cardinals don't exist, they only exist in inner models.

Their importance in set theory results from their existence in inner

models and not from their existence in V .

b. PD is false, but determinacy for OD sets of reals is true. The

importance of PD in set theory derives from its consequences for

lightface-de�nable projective sets.
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Regarding the existence of large cardinals not in V but only in inner
models:

The main use of large cardinals is for consistency upper and lower
bound results:

a. Consistency upper bounds:

V with large cardinals Force → V [G ] � ϕ

V [G ] only has large cardinals in inner models

b. Consistency upper bounds:

V � ϕ Core model construction → K with large cardinals

Large cardinals do not exist in V but only in the inner model K
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Regarding lightface versus boldface PD:

a. PD is sometimes �justi�ed� through extrapolation:
ZFC gives the measurability of analytic sets, PD extends this to all
projective sets so PD must be true.

But similar extrapolations lead to contradiction:
Shoen�eld gives boldface Σ1

2
absoluteness for arbitrary outer

models;
but boldface Σ1

3
absoluteness for arbitrary outer models is

inconsistent (only by restricting to set-generic outer models is it
consistent).

More reasonable is the extrapolation to Σ1

3
absoluteness without

parameters; this is consistent with (and indeed implied by)
maximality.



Part III: Maximality in the Hyperuniverse

b. PD is also sometimes �justi�ed� by the fact that it implies that
the theory of HC cannot be changed by set-forcing.
But even the Σ2 theory of HC can change when passing to more
general outer models, even while preserving very large cardinals.
As with Σ1

3
absoluteness, the restriction to set-generic outer models

cannot yield a convincing principle.
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Returning to the Maximality Paradox, we have:

Option 2: #-Maximality

Note that so far maximality has focused on �horizontal� or
�powerset� maximality, whereby M is maximal with respect to its
outer models.

But what about �vertical� or �ordinal� maximality?

This is associated with the principle of �re�ection�, advocated by
Gödel. In its basic form re�ection says:

If V satis�es some property then so does some Vα

Re�ection principles can be used to argue in favour of the existence
of the types of large cardinals compatible with V = L:

inaccessible, Mahlo, weakly compact, ine�able, Π1
n re�ecting,

ω-Erd®s, · · ·
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It appears that one can maximize the amount of re�ection
compatible with V = L by imposing the existence of 0#:

0# exists i� there is a closed unbounded class of indiscernibles for L

I would like to use this idea to maximise re�ection for other
transitive models of ZFC.
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Recall that a ZF− model m is a model of SetMK i� m has a largest
cardinal κ which is strongly inaccessible in m.

A pre-# is a countable structure (m,U) where m is a transitive
model of SetMK with largest cardinal κ and U is an ultra�lter on
the subsets of κ in m

(m,U) is a # i� (m,U) is iterable, i.e., by taking the ultrapower of
m using u and repeating this through the ordinals, wellfoundedness
is never lost.

If (m,U) is a # with iteration

(m,U) = (m0,U0)→ (m1,U1)→ · · ·
and critical points (κi | i ∈ Ord) then (m,U)∞ denotes the union
of the Vmi

κi
, a model of ZFC.
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A countable transitive model M of ZFC is #-generated i� for some
# (m,U) with iteration

(m,U) = (m0,U0)→ (m1,U1)→ · · · ,
M equals Vmλ

κλ
for some limit ordinal λ.

Clearly #-generated models enjoy a lot of �re�ection� (�ordinal
maximality�)
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Now I make the informal

Conjecture. The statement that M is #-generated can be
formulated as a �re�ection� (�vertical maximality�) principle for M.

If the Conjecture is true then I propose the following alternative
solution to the Maximality Paradox:

Reformulate maximality only with reference to #-generated
universes:

We say that a #-generated universe M is #-maximal i�:

M a de�nable inner model of N, N #-generated → Φ(M) = Φ(N).
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29. Assume large cardinals plus PD. Then there is a #-generated,

#-maximal universe with large cardinals.

Proof Sketch: For each real R let M#(R) be the least #-generated
model of the form Lα[R]. Use PD to get a real R such that
R ≤T S implies that Thy(M#(R)) = Thy(M#(S).
We claim that M#(R) is #-maximal:
Indeed, let M be a #-generated outer model of M#(R) with a
de�nable inner model satisfying some sentence ϕ.
By a result of Jensen, M has a #-generated outer model N
satisfying V = L[S ] for some real S , which must then be M#(S).
By the choice of R , M#(R) also has a de�nable inner model
satisfying ϕ. So M#(R) is #-maximal.
If M is any #-generated outer model of an initial segment of L[R]
then again by Jensen's result, M is #-maximal; assuming large
cardinals there are such models M containing large cardinals.
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We end with a discussion of Strong Maximality.

Notice that maximality has no implications for CH, as any outer
model of a maximal universe is still maximal.
Strong Maximality is a form of maximality with parameters that
resolves CH.

To motivate Strong Maximality we consider the following forms of
Lévy absoluteness:

LAbs: If a Σ1 formula with no parameters holds in an outer model
of M then it holds in M.
LAbs(ω1): If a Σ1 formula with parameter ω1 holds in an
ω1-preserving outer model of M then it holds in M.
LAbs(ω1, ω2): If a Σ1 formula with parameters ω1, ω2 holds in an
ω1- and ω2-preserving outer model of M then it holds in M.
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30. (a) LAbs holds for all universes.

(b) Assuming PD, there is a universe satisfying LAbs(ω1).
(c) Any universe satisfying LAbs(ω1, ω2) also satis�es not CH.

Proof: (a) follows from Lévy's absoluteness theorem.
(b) Any maximal universe satis�es LAbs(ω1), using the fact that
Jensen coding preserves ω1.
(c) Apply LAbs(ω1, ω2) to an extension that results from adding ω2
Cohen reals.

LAbs(ω1, ω2) is a special case of the following more general
property:
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Strong Maximality for M. Suppose that p is absolute, i.e., has a
de�nition uniform over all outer models of M which preserve
cardinals up to the cardinality of the transitive closure of p.
Then if ϕ(p) holds in an inner model of such an outer model, it
also holds in an inner model of M containing p.

Conjecture. Assuming large cardinals there are Strongly Maximal
universes (which necessarily satisfy LAbs(ω1, ω2)).
And the same is true for Strong #-Maximality, which is de�ned just
like Strong Maximality, but restricted to #-generated universes.

Note that just as LAbs(ω1, ω2) implies not CH, Strong Maximality
implies that the size of the continuum is rather enormous, greater
for example than any ℵα where α is countable in L.
And Strong #-Maximality, if consistent, should also be consistent
with large cardinals.
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About possible solutions to the Continuum Problem

Note that even the version of LAbs(ω1, ω2) which refers only to ccc
forcing extensions (and not to arbitrary outer models) is su�cient
to infer not CH.
And this version of absoluteness is consistent: Just perform a ccc
�nite-support iteration, at each stage handling one of the ω-many
instances of absoluteness.
Similarly one has the consistency of the version of Strong
Absoluteness (or Strong #-Absoluteness) which refers only to ccc
forcing extensions.

Does this solve the Continuum Problem?
I don't think so: The problem is that the restriction to ccc forcing
extensions (or for that matter to forcing extensions at all) is
arti�cial.
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However the unrestricted version of LAbs(ω1, ω2) does not have
this defect.
For this reason I feel that a consistency proof of this principle is a
strong candidate for a compelling principle of absoluteness that
resolves the Continuum Problem.
I very much hope that some day we will see such a consistency
proof.


