Some descriptive set theory related to the Lebesgue density theorem

A. Andretta ${ }^{1} \quad$ R. Camerlo ${ }^{2}$

${ }^{1}$ Dipartimento di Matematica
Università di Torino
${ }^{2}$ Dipartimento di Matematica
Politecnico di Torino
Wien 2009/6/23

The category algebra.

Work in some perfect Polish space, e.g. ${ }^{\omega} 2$.
\mathcal{B} is the collection of all sets with the property of Baire,
MGR is the ideal of meager sets,

$$
\mathcal{B} / \mathrm{MGR} \cong \mathrm{BOR} / \mathrm{MGR}=\mathrm{CAT}
$$

Cat is unique up-to isomorphism, i.e. it does not depend on the Polish space. The map

$$
\rho: \mathrm{CAT} \rightarrow \mathrm{RO}
$$

is a selector, and Cat can be identified with the collection of all regular open sets.
Cat is a Polish space.

The measure algebra.

μ a continuous probability Borel measure on some perfect Polish space, e.g. the usual Lebesgue measure on ${ }^{\omega} 2$.
Meas is the collection of all sets measurable sets, NuLL is the ideal of measure-zero sets,

$$
\mathrm{MEAS} / \mathrm{NULL} \cong \mathrm{BOR} / \mathrm{NULL}=\mathrm{MALG}
$$

MALG is unique up-to isomorphism, i.e. it does not depend on μ. MALG is a Polish space:

$$
\delta([A],[B])=\mu(A \triangle B)
$$

Definition

x has density $r \in[0 ; 1]$ in A if

$$
d_{A}(x) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \frac{\mu\left(A \cap \boldsymbol{N}_{x \mid n}\right)}{\mu\left(\boldsymbol{N}_{x \mid n}\right)}=r .
$$

Theorem (Lebesgue)
Let $A \subseteq{ }^{\omega} 2$ be Lebesgue measurable. Then

$$
\Phi(A)=\left\{x \in{ }^{\omega} 2 \mid x \text { has density } 1 \text { in } A\right\}
$$

is Lebesgue measurable, and $\mu(A \triangle \Phi(A))=0$.
In other words: d_{A} agrees with χ_{A} almost everywhere.

If $\mu(A \triangle B)=0$ then $\Phi(A)=\Phi(B)$, so

$$
\Phi: \text { MALG } \rightarrow \text { MEAS }
$$

is a selector. This is the analogue of $\rho: \mathrm{CAT} \rightarrow \mathrm{RO}$.

Question

What is the complexity of $\Phi(A)$?

Definition

The localization of A at s is

$$
A_{\lfloor s\rfloor}=\left\{x \in{ }^{\omega} 2 \mid s^{\wedge} x \in A\right\}
$$

Thus $s^{\wedge} A_{\lfloor s\rfloor}=A \cap \boldsymbol{N}_{s}$.

Trivial observation

$$
\mu(A \triangle B)=0 \Leftrightarrow \forall s \in^{<\omega} 2\left(\mu\left(A_{\lfloor s\rfloor}\right)=\mu\left(B_{\lfloor s\rfloor}\right)\right)
$$

Thus a measure class $[A]$ is completely determined by the map $s \mapsto \mu\left(A_{\lfloor s\rfloor}\right)$

Since

$$
x \in \Phi(A) \Leftrightarrow \forall k \exists n \forall m \geq n\left(\mu\left(A_{\lfloor x \mid m\rfloor}\right) \geq 1-2^{-k-1}\right)
$$

then
Proposition (Folklore)
For all measurable A

$$
\Phi(A) \in \Pi_{3}^{0} .
$$

Question

 Is Π_{3}^{0} optimal?- $A \subseteq B \Rightarrow \Phi(A) \subseteq \Phi(B)$,
- $\Phi(A \cap B)=\Phi(A) \cap \Phi(B)$,
- $\bigcup_{i \in I} \Phi\left(A_{i}\right) \subseteq \Phi\left(\bigcup_{i \in I} A_{i}\right)$,
- if A is open, then $A \subseteq \Phi(A)$.

Definition

$$
\mathcal{T}=\{A \in \operatorname{MEAS} \mid A \subseteq \Phi(A)\}
$$

is the density topology. It is finer than the usual topology.

Theorem (Scheinberg 1971, Oxtoby 1971?)

$A=\Phi(A)$ if and only if A is open and regular in \mathcal{T}.

$$
\Phi: \text { MALG } \rightarrow \mathrm{RO}_{\mathcal{T}}
$$

- $\operatorname{NuLL}=\operatorname{MGR}_{\mathcal{T}}$ (Oxtoby, 1971)
- \mathcal{T} is neither first countable, nor second countable, nor Lindelöf, nor separable.
- \mathcal{T} is Baire.

Recall that $\Phi(A)$ is always Π_{3}^{0}.
Theorem
There is a closed C such that $\Phi(C)$ is complete Π_{3}^{0}
Clearly

$$
\operatorname{lnt}(A) \subseteq \Phi(A) \subseteq \mathrm{Cl}(A) .
$$

and $A=\Phi(A)$ if A is clopen.

Question

Can $\Phi(A)$ be something other than clopen or complete Π_{3}^{0} ?

Yes!

Definition

A is Wadge reducible to B

$$
A \leq_{\mathrm{w}} B
$$

just in case $A=f^{-1}(B)$ for some continuous $f:{ }^{\omega} 2 \rightarrow{ }^{\omega} 2$.
$A \equiv{ }_{\mathrm{w}} B$ iff $A \leq_{\mathrm{w}} B \wedge B \leq_{\mathrm{w}} A$.
The equivalence classes $[A]_{\mathrm{W}}$ are called Wadge degrees.

Theorem

$\forall A \in \Pi_{3}^{0} \exists C \in \Pi_{1}^{0}\left(\Phi(C) \equiv{ }_{\mathrm{w}} A\right)$

Recall that $d_{A}(x)=0,1$ for almost all x.

Definition

A set A is dualistic (or Manichæan) if $d_{A}(x)=0,1$ for all x. \mathcal{M} is the Boolean algebra of all dualistic sets.

Clearly being dualistic depends on the equivalence class of A, so

$$
A \in \mathcal{M} \Leftrightarrow \Phi(A) \in \mathcal{M}
$$

Fact

$A=\Phi(A)$ is dualistic iff A is \mathcal{T}-clopen, i.e.,

$$
\mathcal{M} \cap \operatorname{ran}(\Phi)=\Delta_{1}^{0}-\mathcal{T}
$$

Proposition

$\forall A \in \operatorname{Meas}\left(A \in \mathcal{M} \Rightarrow \Phi(A) \in \Delta_{2}^{0}\right)$.
Theorem
$\forall A \in \Delta_{2}^{0} \exists C \in \Pi_{1}^{0}\left(\Phi(C) \equiv_{\mathrm{w}} A \wedge \Phi(C) \in \mathcal{M}\right)$.

Proposition

Φ is Borel (as a map from Malg to the set of codes for Π_{3}^{0} sets).

Sketch of the proof for Π_{3}^{0} completeness

- T a pruned tree such that [T] has positive measure and empty interior. Thus $\neg[T]=\bigcup_{n} \boldsymbol{N}_{t_{n}}$.
- $n<m \Rightarrow \operatorname{lh}\left(t_{n}\right)<\operatorname{lh}\left(t_{m}\right)$ and $\exists^{\infty} n\left(\operatorname{lh}\left(t_{n}\right)+1<\operatorname{lh}\left(t_{n+1}\right)\right)$.
- For all $t \in T$ there is a shortest $s \supset t$ such that $s \notin T$. s is the target of t.
- Let $\tau(t)=\operatorname{lh}($ target of $t)-\operatorname{lh}(t), \tau: T \rightarrow \omega \backslash\{0\}$.
- For $x \in[T]$,

$$
x \in \Phi([T]) \Leftrightarrow \lim _{n \rightarrow \infty} \tau(x \upharpoonright n)=\infty .
$$

Sketch of the proof for Π_{3}^{0} completeness, ctd.

The set

$$
P=\left\{z \in{ }^{\omega \times \omega} 2 \mid \forall m \forall^{\infty} n z(n, m)=0\right\} .
$$

is complete Π_{3}^{0}.
Given a: $n \times n \rightarrow 2$ construct a node $\varphi(a) \in T$ so that

$$
a \subset b \Rightarrow \varphi(a) \subset \varphi(b)
$$

and

$$
\omega \times \omega 2 \rightarrow[T], \quad z \mapsto \bigcup_{n} \varphi(z \upharpoonright n \times n)
$$

witnesses $P \leq_{W} \Phi([T])$.

Sketch of the proof for Π_{3}^{0} completeness, ctd.
Let $a:(n+1) \times(n+1) \rightarrow 2$. (Say $n=4)$
Case 1:

$a_{0,4}$	$a_{1,4}$	$a_{2,4}$	$a_{3,4}$	0
$a_{0,3}$	$a_{1,3}$	$a_{2,3}$	$a_{3,3}$	0
$a_{0,2}$	$a_{1,2}$	$a_{2,2}$	$a_{3,2}$	0
$a_{0,1}$	$a_{1,1}$	$a_{2,1}$	$a_{3,1}$	0
$a_{0,0}$	$a_{1,0}$	$a_{2,0}$	$a_{3,0}$	0

Then pick $t \supset \varphi(a \upharpoonright n \times n)$ such that

$$
\tau(t) \geq \max \{n+1, \tau(\varphi(a \upharpoonright n \times n))\}
$$

Sketch of the proof for Π_{3}^{0} completeness, ctd.
Let $a:(n+1) \times(n+1) \rightarrow 2$. (Say $n=4)$
Case 2:

$a_{0,4}$	$a_{1,4}$	$a_{2,4}$	$a_{3,4}$	$a_{4,4}$
$a_{0,3}$	$a_{1,3}$	$a_{2,3}$	$a_{3,3}$	$a_{4,3}$
$a_{0,2}$	$a_{1,2}$	$a_{2,2}$	$a_{3,2}$	$a_{4,2}$
$a_{0,1}$	$a_{1,1}$	$a_{2,1}$	$a_{3,1}$	0
$a_{0,0}$	$a_{1,0}$	$a_{2,0}$	$a_{3,0}$	0

Then pick $t \supset \varphi(a \upharpoonright n \times n)$ such that

$$
\tau(t)=3
$$

The Wadge hierarchy on ${ }^{\omega} 2$.

- A set A (or degree) is self dual if $A \equiv_{\mathrm{w}} \neg A$. Otherwise it is non-self-dual.
- Self-dual and non-self-dual pairs alternate.
- At all limit levels there is a non-self-dual pair.

How to construct larger degrees.
Given $f: \omega \rightarrow \omega \backslash\{0\}$ and sets A_{0}, A_{1}, \ldots consider the set

How to construct larger degrees.

If $\exists^{\infty} n(f(n) \geq 2)$ and the $A_{n} s$ are \mathcal{T}-regular, i.e. $\Phi\left(A_{n}\right)=A_{n}$ then so is Rake ${ }^{-}\left(f ;\left(A_{n}\right)_{n}\right)$. Moreover

- if $A=A_{0}=A_{1}=\ldots$ are self-dual, then $\operatorname{Rake}^{-}\left(f ;\left(A_{n}\right)_{n}\right)$ is non-self-dual and immediately above A,
- if $A_{0}<\mathrm{w} A_{1}<\mathrm{w} A_{2}<\mathrm{w} \ldots$ then Rake $^{-}\left(f ;\left(A_{n}\right)_{n}\right)$ is non-self-dual and immediately above the A_{n} s.
Note that the rake $\operatorname{Rake}^{-}\left(f ;\left(A_{n}\right)_{n}\right)$ has no pole, i.e., $0^{(\infty)}$ does not belong to this set. In order to construct the dual degrees we need another kind of rake, a pole and densely packed tines.

How to construct larger degrees.

How to construct larger degrees.

If $\lim _{n} f(n)=\infty$ then and the A_{n} s are \mathcal{T}-regular, i.e. $\Phi\left(A_{n}\right)=A_{n}$ then so is Rake ${ }^{+}\left(f ;\left(A_{n}\right)_{n}\right)$. Moreover

$$
\operatorname{Rake}^{+}\left(f ;\left(A_{n}\right)_{n}\right) \equiv_{\mathrm{W}} \neg \operatorname{Rake}^{-}\left(f ;\left(A_{n}\right)_{n}\right)
$$

If A and B are \mathcal{T}-regular then so is

$$
A \oplus B=0^{\wedge} A \cup 1^{\wedge} B
$$

Arguing this way, we can climb up to Δ_{2}^{0}.

Jumping ω_{1} levels.

Wadge defined two operations A^{\natural} and A^{b} on subsets of the Baire space

$$
\begin{aligned}
& A^{\natural}=\left\{s_{0}^{+} 0^{\wedge} s_{1}^{+} 0^{\wedge} \ldots \wedge_{n}^{+} 0^{\wedge} x^{+} \mid n \in \omega, s_{i} \in{ }^{<\omega} \omega, x \in A\right\} \\
& A^{b}=A^{\natural} \cup\left\{x \in{ }^{\omega} \omega \mid \exists^{\infty} n(x(n)=0)\right\}
\end{aligned}
$$

where s^{+}and x^{+}are the sequences obtained from s and x by adding a 1 to all entries.
The idea is that A^{\natural} is the union of ω many layers of the form

$$
A^{+}=\left\{x^{+} \mid x \in A\right\}
$$

A^{+}

Jumping ω_{1} levels.

Theorem (Wadge)

If A is self-dual, then A^{\natural} and A^{b} form a non-self-dual pair and

$$
\left\|\boldsymbol{A}^{\natural}\right\|_{\mathrm{W}}=\left\|\boldsymbol{A}^{\mathfrak{b}}\right\|_{\mathrm{W}}=\|\boldsymbol{A}\|_{\mathrm{W}} \cdot \omega_{1} .
$$

The operations A^{\natural} and A^{b} together with the (analogs of) the Rake operations, are sufficient to construct sets of rank $<\omega_{1}^{\omega_{1}}$, i.e. the Δ_{3}^{0} sets.

Jumping ω_{1} levels.

An analogue of A^{+}.

- $\overline{s^{\wedge i}}=\bar{s}^{\wedge} i i$, for $s \in{ }^{<\omega} 2$.
- $\bar{x}=\bigcup_{n} \overline{x\lceil n}$, for $x \in{ }^{\omega} 2$.
- Replace A with $\{\bar{x} \mid x \in A\}$, but. . .
- Does not work, since $\left\{\bar{x} \mid x \in{ }^{\omega} 2\right\}$ is of measure 0 !
- The cure: enlarge $\{\bar{x} \mid x \in A\}$ like Rake ${ }^{-}$was enlarged to Rake ${ }^{+}$. The resulting set is called $\operatorname{Plus}(A)$.
- In fact we construct $\operatorname{Plus}(A ; r)$ (with $r \in(0 ; 1))$ so that $\mu\left(\operatorname{Plus}(A ; r)_{\lfloor\bar{s}\rfloor}\right) \geq r$ for all s.
- If A is \mathcal{T}-regular (i.e., $A=\Phi(A)$), then so is $\operatorname{Plus}(A ; r)$.

Jumping ω_{1} levels.

Construct $\operatorname{Nat}(A)$ and $\operatorname{Flat}(A)$: they are the analogs of A^{\natural} and A^{\natural}, and have rank $\|A\|_{\mathrm{w}} \cdot \omega_{1}$.
Using the operations $\operatorname{Nat}(A), \operatorname{Flat}(A)$, Rake $^{-} A$, Rake $^{+} A$, and \oplus it is possible to construct a closed sets C such that $\Phi(C)$ is of any given Wadge degree in Δ_{3}^{0}.

$\operatorname{Nat}(A)$

Fix $0<r<1 . \operatorname{Nat}(A)$ is composed of ω-many layers

Plus $(A ; r)$

Plus $(A ; r)$

Plus $(A ; r)$

- If x settles inside a layer, then $x=s^{\wedge} \bar{y}$ and the density of x in $\operatorname{Nat}(A)$ will be 'similar' to the density of y in A.
- Every time we climb to a higher level, the density drops momentarily to $\leq 1 / 2$. So if x climbs infinitely many layers, then x will not have density 1 in $\operatorname{Nat}(A)$.

$\operatorname{Flat}(A)$

Fix $0<r_{0}<r_{1}<r_{2}<\cdots \rightarrow 1$.
Flat (A) is the set is composed of ω-many layers

Plus $\left(A ; r_{2}\right)$
 $\operatorname{Plus}\left(A ; r_{1}\right)$

Plus $\left(A ; r_{0}\right)$

- If x settles inside a layer, then $x=s^{\wedge} \bar{y}$ and the density of x in Flat (A) will be 'similar' to the density of y in A.
- In the layer n, the density will always be $\geq r_{n}$. So if x climbs infinitely many layers, then x will have density 1 in $\operatorname{Flat}(A)$.

