A reflecting principle compatible with the continuum large (1)

David Asperó

(joint work with Miguel Ángel Mota)

ICREA at U. Barcelona

ESI workshop on large cardinals and descriptive set theory
PFA implies $2^\aleph_0 = \aleph_2$. All known proofs of this implication use forcing notions that collapse ω_2 to ω_1.

Question: Does $FA(\{P : P \text{ proper}, |P| = \aleph_1\})$ imply $2^{\aleph_0} = \aleph_2$?
I will isolate a certain subclass Γ of \{$P : P$ proper, $|P| = \aleph_1$\} and will sketch a proof that $FA(\Gamma) + 2^{\aleph_0} > \aleph_2$ is consistent.

$FA(\Gamma)$ will be strong enough to imply for example the negation of Justin Moore’s \mathcal{U} and other strong forms of the negation of Club Guessing.
I will isolate a certain subclass Γ of $\{P: P \text{ proper}, |P| = \aleph_1 \}$ and will sketch a proof that $FA(\Gamma) + 2^{\aleph_0} > \aleph_2$ is consistent.

$FA(\Gamma)$ will be strong enough to imply for example the negation of Justin Moore’s \mathfrak{U} and other strong forms of the negation of Club Guessing.
If N is a set such that $N \cap \omega_1 \in \omega_1$, set $\delta_N = N \cap \omega_1$.

If \mathcal{W} is a collection of countable sets and N is a set, \mathcal{W} is N–stationary if for every ordinal $\gamma \in N$ and every function $Z : [\gamma]^{<\omega} \to \gamma$, $Z \in N$ there is some $M \in \mathcal{W} \cap N$ such that $Z^{"[M]^{<\omega}} \subseteq M$.

If \mathbb{P} is a partial order, \mathbb{P} is *nice* if

(a) conditions in \mathbb{P} are functions with domain included in ω_1, and

(b) if $p, q \in \mathbb{P}$ are compatible, then the greatest lower bound r of p and q exists, $\text{dom}(r) = \text{dom}(p) \cup \text{dom}(q)$, and $r(\nu) = p(\nu) \cup q(\nu)$ for all $\nu \in \text{dom}(r)$ (where $f(\nu) = \emptyset$ if $\nu \notin \text{dom}(f)$).

Exercise: Every set–forcing for which $\text{glb}(p, q)$ exists whenever p and q are compatible conditions is isomorphic to a nice forcing.
If N is a set such that $N \cap \omega_1 \in \omega_1$, set $\delta_N = N \cap \omega_1$.

If \mathcal{W} is a collection of countable sets and N is a set, \mathcal{W} is N–stationary if for every ordinal $\gamma \in N$ and every function $Z : [\gamma]^{<\omega} \longrightarrow \gamma$, $Z \in N$ there is some $M \in \mathcal{W} \cap N$ such that $Z``[M]^{<\omega} \subseteq M$.

If \mathbb{P} is a partial order, \mathbb{P} is nice if

(a) conditions in \mathbb{P} are functions with domain included in ω_1, and

(b) if $p, q \in \mathbb{P}$ are compatible, then the greatest lower bound r of p and q exists, $\text{dom}(r) = \text{dom}(p) \cup \text{dom}(q)$, and $r(\nu) = p(\nu) \cup q(\nu)$ for all $\nu \in \text{dom}(r)$ (where $f(\nu) = \emptyset$ if $\nu \notin \text{dom}(f)$).

Exercise: Every set–forcing for which $\text{glb}(p, q)$ exists whenever p and q are compatible conditions is isomorphic to a nice forcing.
More notation

Given a nice partial order \((\mathbb{P}, \leq)\), a \(\mathbb{P}\)–condition \(p\) and a set \(M\) such that \(\delta_M\) exists, we say that \(M\) is good for \(p\) iff, letting

\[
X = \{ s \in \mathbb{P} \cap M : s \leq p \upharpoonright \delta_M, \text{ s compatible with } p \},
\]

(i) \(X \neq \emptyset\), and

(ii) for every \(s \in X\) there is some \(t \leq s, t \in M\), such that for all \(t' \leq t\), if \(t' \in M\), then \(t' \in X\).
A class of posets

Let \mathbb{P} be a nice poset. \mathbb{P} is κ–suitable if there are a binary relation R and a club $C \subseteq \omega_1$ satisfying the following properties.

(1) If $p \mathrel{R} (N, \mathcal{W})$, then the following conditions hold.

(1.1) N is a countable subset of $H(\kappa)$, \mathcal{W} is an N–stationary subset of $[H(\kappa)]^{\aleph_0}$, and all members of $\mathcal{W} \cap N$ are good for p.

(1.2) If p' is a \mathbb{P}–condition extending p, then there is some $\mathcal{W}' \subseteq \mathcal{W}$ such that $p' \mathrel{R} (N, \mathcal{W}')$.

(1.3) If $\mathcal{W}' \subseteq \mathcal{W}$ is N–stationary, then $p \mathrel{R} (N, \mathcal{W}')$.
A class of posets

(2) For every \(p \in P \) and every finite set \(\{(N_i, \mathcal{W}_i) : i < m\} \) such that

(\circ) each \(N_i \) is a countable subset of \(H(\kappa) \) containing \(p \),
\(\omega_1^{N_i} = \omega_1 \), \(\delta_{N_i} \in C \), \(N_i \models ZFC^* \), and

(\circ) each \(\mathcal{W}_i \) is \(N_i \)-stationary

there is a condition \(q \in P \) extending \(p \) and there are \(\mathcal{W}_i' \subseteq \mathcal{W}_i \) \((i < m) \) such that \(q R (N_i, \mathcal{W}_i') \) for all \(i < m \).

We will say that a nice partial order is absolutely \(\kappa \)-suitable if it is \(\kappa \)-suitable in every inner model \(W \) containing it and such that \(\omega_1^W = \omega_1 \).
A class of posets

(2) For every $p \in \mathcal{P}$ and every finite set $\{(N_i, \mathcal{W}_i) : i < m\}$ such that

- each N_i is a countable subset of $H(\kappa)$ containing p, $\omega_1^{N_i} = \omega_1$, $\delta_{N_i} \in C$, $N_i \models ZFC^*$, and
- each \mathcal{W}_i is N_i–stationary

there is a condition $q \in \mathcal{P}$ extending p and there are $\mathcal{W}_i' \subseteq \mathcal{W}_i (i < m)$ such that $q R (N_i, \mathcal{W}_i')$ for all $i < m$.

We will say that a nice partial order is absolutely κ–suitable if it is κ–suitable in every inner model W containing it and such that $\omega_1^W = \omega_1$.
Let Γ_κ denote the class of all absolutely κ–suitable posets consisting of finite functions included in $\omega_1 \times [\omega_1]^{<\omega}$.

Easy: For all $\kappa \geq \omega_2$, $\Gamma_\kappa \subseteq \text{Proper}$.

$FA(\Gamma_\kappa)$: For every $\mathbb{P} \in \Gamma_\kappa$ and every collection \mathcal{D} of size \aleph_1 consisting of dense subsets of \mathbb{P} there is a filter $G \subseteq \mathbb{P}$ such that $G \cap D \neq \emptyset$ for all $D \in \mathcal{D}$.
A class of posets

Let Γ_κ denote the class of all absolutely κ–suitable posets consisting of finite functions included in $\omega_1 \times [\omega_1]^{<\omega}$.

Easy: For all $\kappa \geq \omega_2$, $\Gamma_\kappa \subseteq Proper$.

$FA(\Gamma_\kappa)$: For every $\mathbb{P} \in \Gamma_\kappa$ and every collection \mathcal{D} of size \aleph_1 consisting of dense subsets of \mathbb{P} there is a filter $G \subseteq \mathbb{P}$ such that $G \cap D \neq \emptyset$ for all $D \in \mathcal{D}$.
A class of posets

Let Γ_κ denote the class of all absolutely κ–suitable posets consisting of finite functions included in $\omega_1 \times [\omega_1]^{<\omega}$.

Easy: For all $\kappa \geq \omega_2$, $\Gamma_\kappa \subseteq Proper$.

$FA(\Gamma_\kappa)$: For every $\mathbb{P} \in \Gamma_\kappa$ and every collection \mathcal{D} of size κ_1 consisting of dense subsets of \mathbb{P} there is a filter $G \subseteq \mathbb{P}$ such that $G \cap D \neq \emptyset$ for all $D \in \mathcal{D}$.
One application of $FA(\Gamma_\kappa)$: Ω

Definition (Moore) \mathcal{U}: There is a sequence $\langle g_\delta : \delta < \omega_1 \rangle$ such that each $g_\delta : \delta \rightarrow \omega$ is continuous with respect to the order topology and such that for every club $C \subseteq \omega_1$ there is some $\delta \in C$ with $g_\delta " C = \omega$.

(◦) Club Guessing implies \mathcal{U}.

(◦) \mathcal{U} preserved by ccc forcing, and in fact by ω–proper forcing.

(◦) Each of $BPFA$ and MRP implies $\Omega := \neg \mathcal{U}$.
One application of $\text{FA}(\Gamma_\kappa)$: Ω

Definition (Moore) \mathcal{U}: There is a sequence $\langle g_\delta : \delta < \omega_1 \rangle$ such that each $g_\delta : \delta \to \omega$ is continuous with respect to the order topology and such that for every club $C \subseteq \omega_1$ there is some $\delta \in C$ with $g_\delta^{-1}C = \omega$.

(\circ) Club Guessing implies \mathcal{U}.

(\circ) \mathcal{U} preserved by ccc forcing, and in fact by ω–proper forcing.

(\circ) Each of BPFA and MRP implies $\Omega := \neg \mathcal{U}$.
Theorem (Moore) \emptyset implies the existence of an Aronszajn line which does not contain any Contraryman suborder.

Question (Moore):

Does Ω imply $2^{\aleph_0} \leq \aleph_2$?
Theorem (Moore) \mathcal{U} implies the existence of an Aronszajn line which does not contain any Contryman suborder.

Question (Moore):

Does Ω imply $2^{\aleph_0} \leq \aleph_2$?
Proposition: For every $\kappa \geq \omega_2$, $FA(\Gamma_\kappa)$ implies Ω.

Proof sketch:

Notation: Given X, a set of ordinals, and δ, an ordinal, set

1. $\text{rank}(X, \delta) = 0$ iff δ is not a limit point of X, and
2. $\text{rank}(X, \delta) > \eta$ if and only if δ is a limit of ordinals ϵ such that $\text{rank}(X, \epsilon) \geq \eta$.

Given a sequence $\mathcal{G} = \langle g_\delta : \delta < \omega_1 \rangle$ of continuous colourings, let $\mathbb{P}_\mathcal{G}$ be the following poset:
Proposition: For every $\kappa \geq \omega_2$, $FA(\Gamma_\kappa)$ implies Ω.

Proof sketch:

Notation: Given X, a set of ordinals, and δ, an ordinal, set

(\circ) $\text{rank}(X, \delta) = 0$ iff δ is not a limit point of X, and

(\circ) $\text{rank}(X, \delta) > \eta$ if and only if δ is a limit of ordinals ϵ such that $\text{rank}(X, \epsilon) \geq \eta$.

Given a sequence $\mathcal{G} = \langle g_\delta : \delta < \omega_1 \rangle$ of continuous colourings, let $\mathbb{P}_\mathcal{G}$ be the following poset:
Proposition: For every \(\kappa \geq \omega_2 \), \(FA(\Gamma_\kappa) \) implies \(\Omega \).

Proof sketch:

Notation: Given \(X \), a set of ordinals, and \(\delta \), an ordinal, set

\[\text{rank}(X, \delta) = 0 \iff \delta \text{ is not a limit point of } X, \text{ and} \]

\(\text{rank}(X, \delta) > \eta \)

if and only if \(\delta \) is a limit of ordinals \(\epsilon \) such that \(\text{rank}(X, \epsilon) \geq \eta \).

Given a sequence \(\mathcal{G} = \langle g_\delta : \delta < \omega_1 \rangle \) of continuous colourings, let \(\mathbb{P}_\mathcal{G} \) be the following poset:
Conditions in \mathbb{P}_g are pairs $p = (f, \langle k_\xi : \xi \in D \rangle)$ satisfying the following properties:

1. f is a finite function that can be extended to a normal function $F : \omega_1 \rightarrow \omega_1$.

2. For every $\xi \in \text{dom}(f)$, $\text{rank}(f(\xi), f(\xi)) \geq \xi$.

3. $D \subseteq \text{dom}(f)$ and for every $\xi \in \text{dom}(f)$,
 - $k_\xi < \omega$,
 - $g_{f(\xi)} \text{"range}(f) \subseteq \omega \setminus \{k_\xi\}$, and
 - $\text{rank}(\{\gamma < f(\xi) : g_{f(\xi)}(\gamma) \neq k_\xi\}, f(\xi)) = \text{rank}(f(\xi), f(\xi))$.
Given conditions \(p_\epsilon = (f_\epsilon, (k_\xi^\epsilon : \xi \in D_\epsilon)) \in \mathbb{P}_G \) for \(\epsilon \in \{0, 1\} \), \(p_1 \) extends \(p_0 \) iff

(i) \(f_0 \subseteq f_1 \),

(ii) \(D_0 \subseteq D_1 \), and

(iii) \(k_\xi^1 = k_\xi^0 \) for all \(\xi \in D_0 \).

Easy: If \(G \) is \(\mathbb{P}_G \)-generic and \(C = \text{range}(\bigcup \{ f : (\exists k)(\langle f, k \rangle \in G) \}) \), then \(C \) is a club of \(\omega_1^\gamma \) and for every \(\delta \in C \) there is \(k_\delta \in \omega \) such that \(g_\delta \models \text{"}C \subseteq \omega \setminus \{k_\delta\} \).
Given conditions $p_\epsilon = (f_\epsilon, (k_\xi^\epsilon : \xi \in D_\epsilon)) \in \mathbb{P}_G$ for $\epsilon \in \{0, 1\}$, p_1 extends p_0 iff

(i) $f_0 \subseteq f_1$,

(ii) $D_0 \subseteq D_1$, and

(iii) $k_{\xi}^1 = k_{\xi}^0$ for all $\xi \in D_0$.

Easy: If G is \mathbb{P}_G–generic and $C = \text{range}(\bigcup\{ f : (\exists \vec{k})(\langle f, \vec{k} \rangle \in G) \})$, then C is a club of ω_1^Y and for every $\delta \in C$ there is $k_\delta \in \omega$ such that $g_\delta''C \subseteq \omega \setminus \{k_\delta\}$.
\(\mathbb{P}_G \in \Gamma_\kappa \) for every \(\kappa \geq \omega_2 \):

\((\bullet)\) We may easily translate \(\mathbb{P}_G \) into a nice forcing consisting of finite functions contained in \(\omega_1 \times [\omega_1]^{<\omega} \).

\((\bullet)\) Given \(p = (f, \langle k_\xi : \xi \in D \rangle) \in \mathbb{P}_G, N \subseteq H(\kappa) \) countable such that \(N \models ZFC^* \) and \(\delta_N \) exists, and given \(\mathcal{W} \) an \(N \)-stationary set, set \(p \mathrel{R} (N, \mathcal{W}) \) if and only if

\((a)\) \(\delta_N \) is a fixed point of \(f \),

\((b)\) \(\delta_N \in D \), and

\((c)\) for every \(M \in \mathcal{W} \), \(g_{\delta_N}(\delta_M) \neq k_{\delta_N} \).
\(P_G \in \Gamma_\kappa \) for every \(\kappa \geq \omega_2 \):

\[
\begin{align*}
\bullet & \quad \text{We may easily translate } P_G \text{ into a nice forcing consisting} \\
& \quad \text{of finite functions contained in } \omega_1 \times [\omega_1]^{<\omega}.
\end{align*}
\]

\[
\begin{align*}
\bullet & \quad \text{Given } p = (f, \langle k_\xi : \xi \in D \rangle) \in P_G, N \subseteq H(\kappa) \text{ countable} \\
& \quad \text{such that } N \models ZFC^* \text{ and } \delta_N \text{ exists, and given } \mathcal{W} \text{ an} \\
& \quad N\text{-stationary set, set} \\
& \quad \quad p R (N, \mathcal{W}) \\
& \quad \text{if and only if} \\
& \quad \quad (a) \ \delta_N \text{ is a fixed point of } f, \\
& \quad \quad (b) \ \delta_N \in D, \text{ and} \\
& \quad \quad (c) \ \text{for every } M \in \mathcal{W}, g_{\delta_N}(\delta_M) \neq k_{\delta_N}.
\end{align*}
\]
Easy to verify:

(1) in the definition of κ–suitable

[that is:

If $p R (N, \mathcal{W})$, then

(1.1) N is a countable subset of $H(\kappa)$, \mathcal{W} is an N–stationary subset of $[H(\kappa)]^{\aleph_0}$, and all members of $\mathcal{W} \cap N$ are good for p,

(1.2) if p' is a \mathcal{P}–condition extending p, then there is some $\mathcal{W}' \subseteq \mathcal{W}$ such that $p' R (N, \mathcal{W}')$, and

(1.3) if $\mathcal{W}' \subseteq \mathcal{W}$ is N–stationary, then $p R (N, \mathcal{W}')$.]

Let us check (2) in the definition of \(\kappa \)-suitable (with \(C = \omega_1 \))

[that is:

(2) For every \(p \in \mathcal{P} \) and every finite set \(\{(N_i, \mathcal{W}_i) : i < m\} \) such that

(a) each \(N_i \) is a countable subset of \(H(\kappa) \) containing \(p \), \(\omega_1^{N_i} = \omega_1 \), \(\delta_{N_i} \in C \), \(N_i \models ZFC^* \), and

(b) each \(\mathcal{W}_i \) is \(N_i \)-stationary

there is a condition \(q \in \mathcal{P} \) extending \(p \) and there are \(\mathcal{W}_i' \subseteq \mathcal{W}_i \) (\(i < m \)) such that \(q R (N_i, \mathcal{W}_i') \) for all \(i < m \).]
Let \(p = (f, \langle k_\xi : \xi \in D \rangle) \in \mathcal{P}_g \). Let \(\{ (N_i, \mathcal{W}_i) : i < m \} \) satisfy (a) and (b).

Let \((\delta_j)_{j<n} \) be the increasing enumeration of \(\{ \delta_{N_i} : i < m \} \).

Suppose \(\{ N_i : \delta_{N_i} = \delta_0 \} = \{ N_0, N_1, N_2 \} \).

Let \(\{ k_0, \ldots k_{2^3-1} \} \) be 8 colours not touched by \(g_{\delta_0} \) “range(f).”

There is \(k^0 \in \{ k_0, \ldots k_7 \} \) such that, for all \(i < 3 \), \(\mathcal{W}'_i = \{ M \in \mathcal{W}_i : \delta_M \neq k^0 \} \) is \(N_i \)-stationary.

Hence we may make the promise to avoid the colour \(k^0 \) in the colouring \(g_{\delta_0} \).
Let $p = (f, \langle k_\xi : \xi \in D \rangle) \in \mathbb{P}_g$. Let $\{(N_i, \mathcal{W}_i) : i < m\}$ satisfy (a) and (b).

Let $(\delta_j)_{j<n}$ be the increasing enumeration of $\{\delta_{N_i} : i < m\}$.

Suppose $\{N_i : \delta_{N_i} = \delta_0\} = \{N_0, N_1, N_2\}$.

Let $\{k_0, \ldots k_{2^3-1}\}$ be 8 colours not touched by g_{δ_0} “range(f).

There is $k^0 \in \{k_0, \ldots k_7\}$ such that, for all $i < 3$, $\mathcal{W}_i' = \{M \in \mathcal{W}_i : \delta_M \neq k^0\}$ is N_i–stationary.

Hence we may make the promise to avoid the colour k^0 in the colouring g_{δ_0}.
Let \(p = (f, \langle k_\xi : \xi \in D \rangle) \in \mathcal{P}_g \). Let \(\{(N_i, \mathcal{W}_i) : i < m\} \) satisfy (a) and (b).

Let \((\delta_j)_{j<n} \) be the increasing enumeration of \(\{\delta_{N_i} : i < m\} \).

Suppose \(\{N_i : \delta_{N_i} = \delta_0\} = \{N_0, N_1, N_2\} \). Let \(\{k_0, \ldots, k_{2^3-1}\} \) be 8 colours not touched by \(g_{\delta_0} \) "range(f)."

There is \(k^0 \in \{k_0, \ldots, k_7\} \) such that, for all \(i < 3 \), \(\mathcal{W}_i' = \{M \in \mathcal{W}_i : \delta_M \neq k^0\} \) is \(N_i \)--stationary.

Hence we may make the promise to avoid the colour \(k^0 \) in the colouring \(g_{\delta_0} \).
Now we continue with δ_1, and get a colour k^1 we may avoid in the colouring g_{δ_1}. And so on.

In the end there is a condition $q = (f', \langle k'_\xi : \xi \in D' \rangle), q \leq p$, and N_i–stationary $\mathcal{W}'_i \subseteq \mathcal{W}_i$ ($i < m$) such that

(a) f' has all δ_j ($j < n$) as limit points and makes the promise k^j at each δ_j, and

(b) $q R (N_i, \mathcal{W}'_i)$ for all $i < m$.

Hence, \mathbb{P}_G is (isomorphic to) a forcing in Γ_κ.

An application of $\text{FA}(\{\mathbb{P}_G\})$ gives now a witness of Ω for G. □
Now we continue with δ_1, and get a colour k^1 we may avoid in the colouring g_{δ_1}. And so on.

In the end there is a condition $q = (f', \langle k'_{\xi} : \xi \in D' \rangle)$, $q \leq p$, and N_i–stationary $\mathcal{W}'_i \subseteq \mathcal{W}_i$ ($i < m$) such that

(a) f' has all δ_j ($j < n$) as limit points and makes the promise k^j at each δ_j, and

(b) $q R (N_i, \mathcal{W}'_i)$ for all $i < m$.

Hence, \mathbb{P}_g is (isomorphic to) a forcing in Γ_κ.

An application of $\text{FA}(\{\mathbb{P}_g\})$ gives now a witness of Ω for G. \square
Now we continue with δ_1, and get a colour k^1 we may avoid in the colouring g_{δ_1}. And so on.

In the end there is a condition $q = (f', \langle k'_\xi : \xi \in D' \rangle), q \leq p$, and N_i–stationary $\mathcal{W}'_i \subseteq \mathcal{W}_i (i < m)$ such that

(a) f' has all $\delta_j (j < n)$ as limit points and makes the promise k^j at each δ_j, and

(b) $q \not\in R (N_i, \mathcal{W}'_i)$ for all $i < m$.

Hence, \mathbb{P}_G is (isomorphic to) a forcing in Γ_κ.

An application of $\text{FA} (\{\mathbb{P}_G\})$ gives now a witness of Ω for G.

\square
Another application of \(FA(\Gamma_{\kappa}) \)

Proposition: For every \(\kappa \geq \omega_2 \), \(FA(\Gamma_{\kappa}) \) implies:

\[\neg VWCG: \quad \text{For every } C, \text{ if} \]

(a) \(|C| = \aleph_1 \) and

(b) for all \(X \in C, X \subseteq \omega_1 \) and \(\text{ot}(X) = \omega \),

then there is a club \(C \subseteq \omega_1 \) such that \(|X \cap C| < \omega \) for all \(X \in C \).

\(\neg VWCG \) is equivalent to the following statement:

For every \(C \), if

(a) \(|C| = \aleph_1 \) and

(b) for all \(X \in C, X \subseteq \omega_1 \) and \(X \) is such that for all nonzero \(\gamma < \omega_1 \), \(\text{rank}(X, \gamma) < \gamma \) (equivalently, \(\text{ot}(X \cap \gamma) < \omega_\gamma \)),

then there is a club \(C \subseteq \omega_1 \) such that \(|X \cap C| < \omega \) for all \(X \in C \).
Another application of $FA(\Gamma_{\kappa})$

Proposition: For every $\kappa \geq \omega_2$, $FA(\Gamma_{\kappa})$ implies:

$\neg VWCG$: For every C, if

(a) $|C| = \aleph_1$ and

(b) for all $X \in C$, $X \subseteq \omega_1$ and $ot(X) = \omega$,

then there is a club $C \subseteq \omega_1$ such that $|X \cap C| < \omega$ for all $X \in C$.

$\neg VWCG$ is equivalent to the following statement:

For every C, if

(a) $|C| = \aleph_1$ and

(b) for all $X \in C$, $X \subseteq \omega_1$ and X is such that for all nonzero $\gamma < \omega_1$, $\text{rank}(X, \gamma) < \gamma$ (equivalently, $ot(X \cap \gamma) < \omega^\gamma$),

then there is a club $C \subseteq \omega_1$ such that $|X \cap C| < \omega$ for all $X \in C$.
Main Theorem \((CH)\) Let \(\kappa\) be a cardinal such that \(2^{<\kappa} = \kappa\), \(\kappa^{\aleph_1} = \kappa\) and \(\mu^{\aleph_0} < \kappa\) for all \(\mu < \kappa\). Then there is a partial order \(\mathcal{P}\) such that

1. \(\mathcal{P}\) is proper,

2. \(\mathcal{P}\) has the \(\aleph_2\)–chain condition,

3. \(\mathcal{P}\) forces
 - (\(\bullet\)) \(FA(\Gamma_{\kappa})\)
 - (\(\bullet\)) \(2^{\aleph_0} = \kappa\)
Proof sketch

Let \(\Phi : \kappa \rightarrow H(\kappa) \) be a bijection.

(\(\Phi \) exists by \(2^{<\kappa} = \kappa \).
Note: There is an \(\omega_1 \)–club of \(\gamma < \kappa \) such that \(\Phi \upharpoonright \gamma \) enumerates \([\gamma]^\kappa_0 \).)
Proof sketch (continued)

Coherent systems of structures

\(\{ N_i : i < m \} \) is a coherent systems of structures if

1. \(m < \omega \) and every \(N_i \) is a countable subset of \(H(\kappa) \) such that \((N_i, \in, \Phi \cap N_i) \preceq (H(\kappa), \in, \Phi) \).

2. Given distinct \(i, i' \) in \(m \), if \(\delta_{N_i} = \delta_{N_{i'}} \), then there is an isomorphism

\[\Psi_{N_i, N_{i'}} : (N_i, \in, \Phi \cap N_i) \longrightarrow (N_{i'}, \in, \Phi \cap N_{i'}) \]

Furthermore, \(\Psi_{N_i, N_{i'}} \) is the identity on \(\kappa \cap N_i \cap N_{i'} \).
Proof sketch (continued)

\(a3\) For all \(i, j\) in \(m\), if \(\delta_{N_j} < \delta_{N_i}\), then there is some \(i' < m\) such that \(\delta_{N_{i'}} = \delta_{N_i}\) and \(N_j \in N_{i'}\).

\(a4\) For all \(i, i', j\) in \(m\), if \(N_j \in N_i\) and \(\delta_{N_i} = \delta_{N_{i'}}\), then there is some \(j' < m\) such that \(N_{j'} = \psi_{N_i,N_{i'}}(N_j)\).
Proof sketch (continued)

Our forcing will be the direct limit \mathcal{P}_{ω_2} of a sequence $\langle \mathcal{P}_\alpha : \alpha < \omega_2 \rangle$ of posets such that

\begin{itemize}
 \item[(\circ)] \mathcal{P}_α is a complete suborder of \mathcal{P}_β if $\alpha < \beta \leq \omega_2$, and
 \item[(\circ)] a condition q in \mathcal{P}_α is an α–sequence p together with a certain system Δ_q of side conditions.
\end{itemize}

Unlike in a usual iteration, p will not consist of names, but of well–determined objects (finite functions included in $\omega_1 \times [\omega_1]^{<\omega}$).
Our forcing will be the direct limit \mathcal{P}_{ω_2} of a sequence $\langle \mathcal{P}_\alpha : \alpha < \omega_2 \rangle$ of posets such that

(◦) \mathcal{P}_α is a complete suborder of \mathcal{P}_β if $\alpha < \beta \leq \omega_2$, and

(◦) a condition q in \mathcal{P}_α is an α–sequence p together with a certain system Δ_q of side conditions.

Unlike in a usual iteration, p will not consist of names, but of well–determined objects (finite functions included in $\omega_1 \times [\omega_1]^{<\omega}$).
Defining $\langle P_{\alpha} : \alpha \leq \omega_2 \rangle$

P_0: Conditions are $p = \{(N_i, 0) : i < m\}$ where $\{N_i : i < m\}$ is a coherent system of structures.

\leq_0 is \supseteq.
Defining $\langle P_\alpha : \alpha \leq \omega_2 \rangle$ (continued)

Suppose P_α defined and suppose conditions in P_α are pairs (p, Δ_p) with p an α–sequence and $\Delta_p = \{(N, \beta_i) : i < m\}$.

Suppose P_α has the \aleph_2–chain condition and $|P_\alpha| = \kappa$.

By $\kappa^{\aleph_1} = \kappa$ we may fix an enumeration \dot{Q}_i^α (for $i < \kappa$) of nice κ–suitable partial orders consisting of finite functions included in $\omega_1 \times [\omega_1]^{<\omega}$ such that for every P_α–name \dot{Q} for such a poset there are κ–many $i < \kappa$ such that $\models_{P_\alpha} \dot{Q} = \dot{Q}_i^\alpha$.

We also fix P_α–names \dot{R}_i^α and \dot{C}_i^α (for $i < \kappa$) such that P_α forces that \dot{R}_i^α and \dot{C}_i^α witness that \dot{Q}_i^α is κ–suitable.
Defining $\langle P_\alpha : \alpha \leq \omega_2 \rangle$ (continued)

Suppose P_α defined and suppose conditions in P_α are pairs $(p, \Delta p)$ with p an α–sequence and $\Delta p = \{(N, \beta_i) : i < m\}$.

Suppose P_α has the \aleph_2–chain condition and $|P_\alpha| = \kappa$.

By $\kappa^{\aleph_1} = \kappa$ we may fix an enumeration \dot{Q}_i^α (for $i < \kappa$) of nice κ–suitable partial orders consisting of finite functions included in $\omega_1 \times [\omega_1]^{<\omega}$ such that for every P_α–name \dot{Q} for such a poset there are κ–many $i < \kappa$ such that $\models_{P_\alpha} \dot{Q} = \dot{Q}_i^\alpha$.

We also fix P_α–names \dot{R}_i^α and \dot{C}_i^α (for $i < \kappa$) such that P_α forces that \dot{R}_i^α and \dot{C}_i^α witness that \dot{Q}_i^α is κ–suitable.
Defining \(\langle P_\alpha : \alpha \leq \omega_2 \rangle \) (continued)

\(P_{\alpha+1} \): Conditions are

\[
q = (p\langle f_i : i \in a \rangle, \{(N_i, \beta_i) : i < m\})
\]

satisfying the following conditions.

\(b_1 \) For all \(i < m \), \(\beta_i \leq (\alpha + 1) \cap \sup(N_i \cap \omega_2) \).

\(b_2 \) The restriction of \(q \) to \(\alpha \) is a condition in \(P_\alpha \). This restriction is defined as the object \(q|_\alpha := (p, \{(N_i, \beta_i^\alpha) : i < m\}) \); where \(\beta_i^\alpha = \beta_i \) if \(\beta_i < \alpha + 1 \), and \(\beta_i^\alpha = \alpha \) if \(\beta_i = \alpha + 1 \). We denote \(\{(N_i, \beta_i) : i < m\} \) by \(\Delta_q \).

\(b_3 \) \(a \) is a finite subset of \(\kappa \).
Defining $\langle P_\alpha : \alpha \leq \omega_2 \rangle$ (continued)

\textit{b4)} For each $i \in a$, f_i is a finite function included in $\omega_1 \times [\omega_1]^{<\omega}$ and $q|_{\alpha}$ forces (in P_α) that $f_i \in \dot{Q}_i^\alpha$.

\textit{b5)} For every N such that $(N, \alpha + 1) \in \Delta_q$ and $\alpha \in N$, $q|_{\alpha}$ forces that there is some $\mathcal{W}_N \subseteq \mathcal{W}^\alpha$ such that

$$f_i \dot{R}_i^\alpha(N, \mathcal{W}_N)$$

for all $i \in a \cap N$.

Here, \mathcal{W}^α denotes the collection of all M such that $(M, \alpha) \in \Delta_u$ for some $u \in \dot{G}_\alpha$.
Defining $\langle P_\alpha : \alpha \leq \omega_2 \rangle$ (continued)

Given conditions

$$q_\epsilon = (p_\epsilon \langle f^\epsilon_i : i \in a_\epsilon \rangle, \set{(N^\epsilon_i, \beta^\epsilon_i) : i < m_\epsilon})$$

(for $\epsilon \in \{0, 1\}$), we will say that $q_1 \leq_{\alpha+1} q_0$ if and only if the following holds.

\[\begin{align*}
\text{c 1)} & \quad q_1|_\alpha \leq_\alpha q_0|_\alpha \\
\text{c 2)} & \quad a_0 \subseteq a_1 \\
\text{c 3)} & \quad \text{For all } i \in a_0, q|_\alpha \text{ forces in } P_\alpha \text{ that } f^1_i \leq_{\dot{Q}_\alpha} f^0_i. \\
\text{c 4)} & \quad \text{For all } i < m_0 \text{ there exists } \tilde{\beta}_i \geq \beta^0_i \text{ such that } (N^0_i, \tilde{\beta}_i) \in \Delta_{q_1}.
\end{align*}\]
Defining $\langle \mathcal{P}_\alpha : \alpha \leq \omega_2 \rangle$ (continued)

Suppose $\alpha \leq \omega_2$ is a nonzero limit ordinal. Conditions are $q = (p, \{(N_i, \beta_i) : i < m\})$ such that:

$d\, 1)$ p is a sequence of length α.

$d\, 2)$ For all $i < m$, $\beta_i \leq \alpha \cap \sup(X_i \cap \omega_2)$. (Note that β_i is always less than ω_2, even when $\alpha = \omega_2$.)

$d\, 3)$ For every $\varepsilon < \alpha$, the restriction $q|_\varepsilon := (p | \varepsilon, \{(X_i, \beta_i^\varepsilon) : i < m\})$ is a condition in \mathcal{P}_ε; where $\beta_i^\varepsilon = \beta_i$ if $\beta_i \leq \varepsilon$, and $\beta_i^\varepsilon = \varepsilon$ if $\beta_i > \varepsilon$.

$d\, 4)$ The set of $\zeta < \alpha$ such that $p(\zeta) \neq \emptyset$ is finite.
Given conditions $q_1 = (p_1, \Delta_1)$ and $q_0 = (p_0, \Delta_0)$ in \mathcal{P}_α, $q_1 \preceq_\alpha q_0$ if and only if:

\begin{enumerate}
\item[(e1)] For every $(X_i, \beta_i) \in \Delta_0$ there exists $\tilde{\beta}_i \geq \beta_i$ such that $(X_i, \tilde{\beta}_i) \in \Delta_1$.
\item[(e2)] For every $\beta < \alpha$, $q_1|_\beta \preceq_\beta q_0|_\beta$.
\end{enumerate}

Notation: If $\alpha \leq \omega_2$ and $q = (p, \{(N_i, \beta_i) : i < m\}) \in \mathcal{P}_\alpha$, we set $x_q = \{N_i : i < m\}$.
Main facts about $\langle \mathcal{P}_\alpha : \alpha \leq \omega_2 \rangle$

Lemma Let $\alpha \leq \beta \leq \omega_2$.

If $q = (p, \Delta_q) \in \mathcal{P}_\alpha$, $s = (r, \Delta_s) \in \mathcal{P}_\beta$ and $q \leq_\alpha s|_\alpha$, then $(p \upharpoonright (r \upharpoonright [\alpha, \beta)), \Delta_q \cup \Delta_s)$ is a condition in \mathcal{P}_β extending s.

Therefore, \mathcal{P}_α can be seen as a complete suborder of \mathcal{P}_β.

Lemma For every $\alpha \leq \omega_2$, \mathcal{P}_α is \aleph_2–Knaster.
Main facts about $\langle \mathcal{P}_\alpha : \alpha \leq \omega_2 \rangle$

Lemma Let $\alpha \leq \beta \leq \omega_2$.

If $q = (p, \Delta_q) \in \mathcal{P}_\alpha$, $s = (r, \Delta_s) \in \mathcal{P}_\beta$ and $q \leq_{\alpha} s|_{\alpha}$, then

\[(p \upharpoonright (r \upharpoonright [\alpha, \beta])), \Delta_q \cup \Delta_s)\]

is a condition in \mathcal{P}_β extending s.

Therefore, \mathcal{P}_α can be seen as a complete suborder of \mathcal{P}_β.

Lemma For every $\alpha \leq \omega_2$, \mathcal{P}_α is \aleph_2–Knaster.
Let $\langle \theta_\alpha : \alpha \leq \omega_2 \rangle$ be the following sequence of regular cardinals: $\theta_0 = (2^\kappa)^+$, $\theta_\gamma = (\sup_{\alpha < \gamma} \theta_\alpha)^+$ if γ is a nonzero limit ordinal, and $\theta_{\alpha+1} = (2^{\theta_\alpha})^+$.

Also, for each $\alpha \leq \omega_2$ let \mathcal{M}_α be the collection of all countable elementary substructures of $H(\theta_\alpha)$ containing $\langle \theta_\beta : \beta < \alpha \rangle$, Φ and \mathcal{P}_α.

All \mathcal{P}_α are proper:
Let \(\langle \theta_\alpha : \alpha \leq \omega_2 \rangle \) be the following sequence of regular cardinals: \(\theta_0 = (2^\kappa)^+ \), \(\theta_\gamma = (\sup_{\alpha < \gamma} \theta_\alpha)^+ \) if \(\gamma \) is a nonzero limit ordinal, and \(\theta_{\alpha+1} = (2^{\theta_\alpha})^+ \).

Also, for each \(\alpha \leq \omega_2 \) let \(\mathcal{M}_\alpha \) be the collection of all countable elementary substructures of \(H(\theta_\alpha) \) containing \(\langle \theta_\beta : \beta < \alpha \rangle \), \(\Phi \) and \(\mathcal{P}_\alpha \).

All \(\mathcal{P}_\alpha \) are proper:
Lemma Suppose $\alpha \leq \omega_2$ and $N^* \in M_\alpha$. Then,

(1)α for every $q \in N^* \cap P_\alpha$ there is $q' \leq_\alpha q$ such that $(N^* \cap H(\kappa), \alpha \cap \sup(N^* \cap \omega_2)) \in \Delta_{q'}$, and

(2)α for every $q \in P_\alpha$, if there is some N such that $(N, \alpha \cap \sup(N \cap \omega_2)) \in \Delta_q$ and such that either

(a) $N^* \cap H(\kappa) = N$ or

(b) $N^* \cap H(\kappa) = \Phi"(\gamma \cap N)$ for some $\gamma \in N \cap \kappa$ such that $\Phi \upharpoonright \gamma$ enumerates $[\gamma]^{\aleph_0}$,

then q is (N^*, P_α)–generic.
The proof is by induction on α.

Proof sketch of $(2)_\alpha$ in the case $\alpha = \sigma + 1$:

Let E be an open and dense subset of P_α in N^*. It suffices to show that every q satisfying the hypothesis of $(2)_\alpha$ is compatible with some condition in $E \cap N^*$. By density of E we may assume, without loss of generality, that $q \in E$. We may also assume that $a^q \neq \emptyset$.
The proof is by induction on α.

Proof sketch of $(2)_\alpha$ in the case $\alpha = \sigma + 1$:

Let E be an open and dense subset of \mathcal{P}_α in N^*. It suffices to show that every q satisfying the hypothesis of $(2)_\alpha$ is compatible with some condition in $E \cap N^*$. By density of E we may assume, without loss of generality, that $q \in E$. We may also assume that $a^q \neq \emptyset$.
Claim
For every $i \in \kappa \setminus N^*$ there are ordinals $\alpha_i < \beta_i$ such that

(a) $\alpha_i \in N^*$ and $\beta_i \in (\kappa \cap N^*) \cup \{\kappa\}$,
(b) $\alpha_i < i < \beta_i$, and
(c) $[\alpha_i, \beta_i) \cap N' \cap N^* = \emptyset$ whenever $N' \in \mathcal{X}_q \setminus N^*$ is such that $\delta_{N'} < \delta_{N^*}$.

[This is proved using the fact that all $\psi_{\overline{N},N}$ fix $\kappa \cap \overline{N} \cap N$ and are continuous (for $\overline{N} \in \mathcal{X}_q$ with $\delta_{\overline{N}} = \delta_N$), meaning that $\psi_{\overline{N},N}(\xi) = sup(\psi_{\overline{N},N} ''\xi)$ whenever $\xi \in \overline{N}$ is an ordinal of countable cofinality.]
Suppose \(a^q \setminus N^* = \{ i_0, \ldots, i_{n-1} \} \), and for each \(k < n \) let \(\alpha_k < \beta_k \) be ordinals realizing the above claim for \(i_k \).

Let us work in \(V^{P_\sigma \upharpoonright (q, \sigma)} \). By condition b5) in the definition of \(P_{\sigma+1} \) we know that there is a stationary \(\mathcal{W}_N \subseteq \mathcal{W}^\sigma \) such that \(f^q_i \dot{R}^\sigma_i (N, \mathcal{W}_N) \) for all \(i \in a^q \cap N \).

By an inductive construction (using (1) in the definition of \(\kappa \)-suitable) we may find an \(N \)-stationary \(\mathcal{W} \subseteq \mathcal{W}_N \) such that \(f^q_i \dot{R}^\sigma_i (N, \mathcal{W}) \) for all \(i \in a^q \cap N \) and such that each \(M \in \mathcal{W} \) is good for \(f^q_j \) for every \(j \in a^q \cap M \).
Since \(N^* \cap H(\kappa) \) is an \(\in \)-initial segment of \(N \) and since
\[[N^* \cap H(\kappa)]^{\aleph_0} \subseteq N^* \text{, every } N-\text{stationary subset of } [H(\kappa)]^{\aleph_0} \]
is also \(N^* \)-stationary.

Hence, we may find \(M^* \) and \(M \) in \(N^* \) such that

(a) \(M^* \in M_\sigma \) and \(M^* \) contains \(\mathcal{P}_{\sigma+1}, E, a^q \cap N^*, f_i^q \upharpoonright \delta_{N^*} \) for
every \(i \in a^q \cap N^*, \alpha_k \) for every \(k < n \), and \(\beta_k \) for every
\(k < n \) with \(\beta_k < \kappa \).

(b) \((M, \sigma) \in \Delta_u \) for some \(u \in \dot{\mathcal{G}}_\sigma \),

(c) \(M^* \cap H(\kappa) = \Phi^{\sigma}((\gamma \cap M)) \) for some ordinal \(\gamma \in M \) such that
\(\Phi \upharpoonright \gamma \) enumerates \([\gamma]^{\aleph_0} \), and

(d) \(M \) is good for \(f_i^q \) for every \(i \in a^q \cap N^* \).
Since $N^* \cap H(\kappa)$ is an \in–initial segment of N and since $[N^* \cap H(\kappa)]^{\aleph_0} \cap N \subseteq N^*$, every N–stationary subset of $[H(\kappa)]^{\aleph_0}$ is also N^*–stationary.

Hence, we may find M^* and M in N^* such that

(a) $M^* \in \mathcal{M}_\sigma$ and M^* contains $\mathcal{P}_{\sigma+1}$, E, $a^q \cap N^*$, $f^q_i \upharpoonright \delta_{N^*}$ for every $i \in a^q \cap N^*$, α_k for every $k < n$, and β_k for every $k < n$ with $\beta_k < \kappa$.

(b) $(M, \sigma) \in \Delta_u$ for some $u \in \dot{G}_\sigma$,

(c) $M^* \cap H(\kappa) = \Phi^{\langle \gamma \cap M \rangle}$ for some ordinal $\gamma \in M$ such that $\Phi \upharpoonright \gamma$ enumerates $[\gamma]^{\aleph_0}$, and

(d) M is good for f^q_i for every $i \in a^q \cap N^*$.
From (d), together with $\delta_M = \delta_{M^*}$, we have that M^* is good for f_i^q for every $i \in a^q \cap N^*$. For every such i let f_i be a \dot{Q}_i^σ–condition in M^* extending $f_i^q \upharpoonright \delta_{M^*} = f_i^q \upharpoonright \delta_N$ and such that every \dot{Q}_i^σ–condition in M^* extending f_i is compatible with f_i^q.

By extending q below σ we may assume that $(M, \sigma) \in \Delta_q$ and that q_σ decides f_i for every $i \in a^q$.

The result of replacing f_i^q with $\text{glb}(f_i, f_i^q)$ in q for every $i \in a^q \cap N^*$ is a $\mathcal{P}_{\sigma+1}$–condition.

Hence, by further extending q if necessary we may assume that every \dot{Q}_i^σ–condition in M^* extending $f_i^q \upharpoonright \delta_{M^*}$ is compatible with f_i^q.
From (d), together with $\delta_M = \delta_{M^*}$, we have that M^* is good for f_i^q for every $i \in a^q \cap N^*$. For every such i let f_i be a \dot{Q}_i^σ–condition in M^* extending $f_i^q \upharpoonright \delta_{M^*} = f_i^q \upharpoonright \delta_N$ and such that every \dot{Q}_i^σ–condition in M^* extending f_i is compatible with f_i^q.

By extending q below σ we may assume that $(M, \sigma) \in \Delta_q$ and that q_σ decides f_i for every $i \in a^q$.

The result of replacing f_i^q with $\text{glb}(f_i, f_i^q)$ in q for every $i \in a^q \cap N^*$ is a $\mathcal{P}_{\sigma+1}$–condition.

Hence, by further extending q if necessary we may assume that every \dot{Q}_i^σ–condition in M^* extending $f_i^q \upharpoonright \delta_{M^*}$ is compatible with f_i^q.
Let now G be a \mathcal{P}_σ–generic filter over the ground model with $q|_\sigma \in G$.

By correctness of $M^*[G]$ within $H(\theta_\sigma)[G]$ we know that in $M^*[G]$ there is a condition q° satisfying the following conditions.

(a) $q^\circ \in E$ and $q^\circ|_\sigma \in G$.

(b) $a^{q^\circ} = (a^q \cap N^*) \cup \{i_0^\circ, \ldots, i_{n-1}\}$ with $\alpha_k < i_k^\circ < \beta_k$ for all $k < n$.

(c) For all $i \in a^q \cap N^*$, $f_i^{q^\circ}$ extends $f_i^q \upharpoonright \delta_{M^*}$ in Q_i^σ.

(the existence of such a q° is witnessed, in $V[G]$, by q itself).
By induction hypothesis, $q|_\sigma$ is (M^*, P_σ)–generic. Hence, $M^*[G] \cap V = M^*$. It follows that q° is in M^*.

By extending q below σ we may assume that q decides q° and also that it extends $q^\circ|_\sigma$. The proof in this case will be finished if we show that q and q° are compatible.

It is not difficult to find f_i^* (for $i \in a^q \cup \{i_0^\circ, \ldots, i_{n_1}^*\}$) extending f_i^q and/or $f_{i_k}^{q^\circ}$ (for $k < n$) for which, in $V^{P_\sigma}|(q|_\sigma)$, we can verify condition $b5$) with respect to all N' such that $(N', \sigma + 1) \in \Delta_q \cup \Delta_{q^\circ}$ and $\sigma \in N'$.

If $\delta_{N'} \geq \delta_N$, we use condition (2) (and (1)) in the definition of κ–suitable.

If $\delta_{N'} < \delta_N$ and $N' \in M^*$ (that is, $(N', \sigma + 1) \in \Delta_{q^\circ}$), we use condition (1) in the definition of κ–suitable.
By induction hypothesis, $q|_\sigma$ is $(M^*, \mathcal{P}_\sigma)$–generic. Hence, $M^*[G] \cap V = M^*$. It follows that q° is in M^*.

By extending q below σ we may assume that q decides q° and also that it extends $q^\circ|_\sigma$. The proof in this case will be finished if we show that q and q° are compatible.

It is not difficult to find f^*_i (for $i \in a^q \cup \{i^*_0, \ldots, i^*_{n_1}\}$) extending f^q_i and/or $f^q_{{i^*_k}}$ (for $k < n$) for which, in $V^{\mathcal{P}_\sigma}|(q|_\sigma)$, we can verify condition (b5) with respect to all N' such that $(N', \sigma + 1) \in \Delta_q \cup \Delta_{q^\circ}$ and $\sigma \in N'$.

If $\delta_{N'} \geq \delta_N$, we use condition (2) (and (1)) in the definition of κ–suitable.

If $\delta_{N'} < \delta_N$ and $N' \in M^*$ (that is, $(N', \sigma + 1) \in \Delta_{q^\circ}$), we use condition (1) in the definition of κ–suitable.
By induction hypothesis, \(q|_\sigma \) is \((M^*, P_\sigma)\)–generic. Hence, \(M^* [G] \cap V = M^* \). It follows that \(q^\circ \) is in \(M^* \).

By extending \(q \) below \(\sigma \) we may assume that \(q \) decides \(q^\circ \) and also that it extends \(q^\circ|_\sigma \). The proof in this case will be finished if we show that \(q \) and \(q^\circ \) are compatible.

It is not difficult to find \(f_i^* \) (for \(i \in a^q \cup \{i_0^\circ, \ldots i_{n_1}^*\} \)) extending \(f_i^q \) and/or \(f_{i_k}^{q^\circ} \) (for \(k < n \)) for which, in \(V^{P_\sigma}|(q|_\sigma) \), we can verify condition \(b5 \) with respect to all \(N' \) such that \((N', \sigma + 1) \in \Delta_q \cup \Delta_{q^\circ} \) and \(\sigma \in N' \).

If \(\delta_{N'} \geq \delta_N \), we use condition (2) (and (1)) in the definition of \(\kappa \)–suitable.

If \(\delta_{N'} < \delta_N \) and \(N' \in M^* \) (that is, \((N', \sigma + 1) \in \Delta_{q^\circ} \)), we use condition (1) in the definition of \(\kappa \)–suitable.
The only potentially problematic case is when $\delta_{N'} < \delta_N$ and $N' \in \mathcal{X}_q \setminus M^*$. But we are safe also in this case since then $(a^q \cup \{i_0^*, \ldots, i_{n_1}^*\}) \cap N' = a^q \cap N'$. We apply again (1) in the definition of κ–suitable.

Finally we extend q below σ once more to a condition q' deciding f_i^*. Now we amalgamate q' and q° and get a legal \mathcal{P}_α–condition (note that in extending q below σ we are not adding new pairs $(N', \sigma + 1)$ to Δ).

This finishes the (very sketchy) proof of the lemma in this case. □
The only potentially problematic case is when $\delta_{N'} < \delta_N$ and $N' \in X_q \setminus M^*$. But we are safe also in this case since then $(a^q \cup \{i_0^\circ, \ldots, i_{n_1}^*\}) \cap N' = a^q \cap N'$. We apply again (1) in the definition of κ–suitable.

Finally we extend q below σ once more to a condition q' deciding f_{i^*}. Now we amalgamate q' and q° and get a legal \mathcal{P}_α–condition (note that in extending q below σ we are not adding new pairs $(N', \sigma + 1)$ to Δ).

This finishes the (very sketchy) proof of the lemma in this case. \square
Given ordinals $\alpha < \omega_2$ and $i < \kappa$, we let \dot{G}_i^α be a $\mathcal{P}_{\alpha+1}$ for the collection of all f_i^q, where $q \in \dot{G}_{\alpha+1}$, $\alpha \in \text{Psupp}(q)$, and $i \in a^q$.

Lemma
For every $\alpha < \omega_2$ and every $i < \kappa$, $\mathcal{P}_{\alpha+1}$ forces that \dot{G}_i^α is a $V^{\mathcal{P}_\alpha}$–generic filter over \dot{Q}_i^α.

From the above lemmas it is easy to see by standard arguments that \mathcal{P}_{ω_2} forces $FA(\Gamma_\kappa)$ and $2^{\aleph_0} = \kappa$. □
Given ordinals $\alpha < \omega_2$ and $i < \kappa$, we let \dot{G}_i^α be a $\mathcal{P}_{\alpha+1}$ for the collection of all f_i^q, where $q \in \dot{G}_{\alpha+1}$, $\alpha \in \text{Psupp}(q)$, and $i \in a^q$.

Lemma

For every $\alpha < \omega_2$ and every $i < \kappa$, $\mathcal{P}_{\alpha+1}$ forces that \dot{G}_i^α is a $V^{\mathcal{P}_\alpha}$–generic filter over \dot{Q}_i^α.

From the above lemmas it is easy to see by standard arguments that \mathcal{P}_{ω_2} forces $FA(\Gamma_\kappa)$ and $2^{\aleph_0} = \kappa$. □
An enhanced version of the Main Theorem

Given a class Γ of partial orders and a cardinal λ, $FA(\Gamma)_{<\lambda}$ means:

For every $P \in \Gamma$ and collection D of size less than λ consisting of dense subsets of P there is a filter $G \subseteq P$ such that $G \cap D \neq \emptyset$ for every $D \in D$.
An enhanced version of the Main Theorem

Theorem \((CH)\) Let \(\kappa\) be a cardinal such that \(2^{<\kappa} = \kappa\), \(\kappa^{\aleph_1} = \kappa\) and \(\mu^{\aleph_0} < \kappa\) for all \(\mu < \kappa\). Then there is a partial order \(\mathcal{P}\) such that

1. \(\mathcal{P}\) is proper,
2. \(\mathcal{P}\) has the \(\aleph_2\)–chain condition,
3. \(\mathcal{P}\) forces
 - \((\bullet)\) \(FA(\Gamma_\kappa) < cf(\kappa)\)
 - \((\bullet)\) \(2^{\aleph_0} = \kappa\)
Another strong failure of Club Guessing

Definition (Moore): *Measuring:* For every sequence \((C_\delta : \delta < \omega_1)\) such that each \(C_\delta\) is a closed subset of \(\delta\) there is a club \(D \subseteq \omega_1\) such that for every limit point \(\delta \in D\) of \(D\),

(a) either a tail of \(D \cap \delta\) is contained in \(C_\delta\),

(b) or a tail of \(D \cap \delta\) is disjoint from \(C_\delta\).

(◦) *Measuring* follows from *BPFA* and also from *MRP*.

(◦) *Measuring* implies the negation of Weak Club Guessing and implies \(\Omega\).
Another strong failure of Club Guessing

Definition (Moore): *Measuring*: For every sequence $(C_\delta : \delta < \omega_1)$ such that each C_δ is a closed subset of δ there is a club $D \subseteq \omega_1$ such that for every limit point $\delta \in D$ of D,

(a) either a tail of $D \cap \delta$ is contained in C_δ,

(b) or a tail of $D \cap \delta$ is disjoint from C_δ.

(◦) *Measuring* follows from BPFA and also from MRP.

(◦) *Measuring* implies the negation of Weak Club Guessing and implies Ω.
We do not know how to derive Measuring from any “natural” forcing axiom that we can force together with the continuum large.

However,
We do not know how to derive Measuring from any "natural" forcing axiom that we can force together with the continuum large.

However,
Theorem \((CH)\) Let \(\kappa\) be a cardinal such that \(2^{<\kappa} = \kappa\), \(\kappa^\aleph_1 = \kappa\) and \(\mu^\aleph_0 < \kappa\) for all \(\mu < \kappa\). Then there is a partial order \(\mathcal{P}\) such that

1. \(\mathcal{P}\) is proper,

2. \(\mathcal{P}\) has the \(\aleph_2\)–chain condition,

3. \(\mathcal{P}\) forces
 - Measuring
 - \(2^{\aleph_0} = \kappa\)