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PFA implies 2ℵ0 = ℵ2.
All known proofs of this implication use forcing notions that
collapse ω2 to ω1.

Question: Does FA({P : P proper, |P| = ℵ1}) imply 2ℵ0 = ℵ2?



I will isolate a certain subclass Γ of {P : P proper, |P| = ℵ1} and
will sketch a proof that FA(Γ) + 2ℵ0 > ℵ2 is consistent.

FA(Γ) will be strong enough to imply for example the negation
of Justin Moore’s f and other strong forms of the negation of
Club Guessing.
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Notation
If N is a set such that N ∩ ω1 ∈ ω1, set δN = N ∩ ω1.

IfW is a collection of countable sets and N is a set,W is
N–stationary if for every ordinal γ ∈ N and every function
Z : [γ]<ω −→ γ, Z ∈ N there is some M ∈ W ∩ N such that
Z “[M]<ω ⊆ M.

If P is a partial order, P is nice if
(a) conditions in P are functions with domain included in ω1,

and
(b) if p, q ∈ P are compatible, then the greatest lower bound r

of p and q exists, dom(r) = dom(p) ∪ dom(q), and
r(ν) = p(ν) ∪ q(ν) for all ν ∈ dom(r) (where f (ν) = ∅ if
ν /∈ dom(f )).

Exercise: Every set–forcing for which glb(p,q) exists whenever
p and q are compatible conditions is isomorphic to a nice
forcing.
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More notation

Given a nice partial order (P,≤), a P–condition p and a set M
such that δM exists, we say that M is good for p iff, letting

X = {s ∈ P ∩M : s ≤ p � δM , s compatible with p},

(i) X 6= ∅, and
(ii) for every s ∈ X there is some t ≤ s, t ∈ M, such that for all

t ′ ≤ t , if t ′ ∈ M, then t ′ ∈ X .



A class of posets

Let P be a nice poset. P is κ–suitable if there are a binary
relation R and a club C ⊆ ω1 satisfying the following properties.

(1) If p R (N,W), then the following conditions hold.

(1.1) N is a countable subset of H(κ),W is an N–stationary
subset of [H(κ)]ℵ0 , and all members ofW ∩ N are good for
p.

(1.2) If p′ is a P–condition extending p, then there is some
W ′ ⊆ W such that p′ R (N,W ′).

(1.3) IfW ′ ⊆ W is N–stationary, then p R (N,W ′).



A class of posets

(2) For every p ∈ P and every finite set {(Ni ,Wi) : i < m}
such that

(◦) each Ni is a countable subset of H(κ) containing p,
ωNi

1 = ω1, δNi ∈ C, Ni |= ZFC∗, and

(◦) eachWi is Ni–stationary

there is a condition q ∈ P extending p and there are
W ′i ⊆ Wi (i < m) such that q R (Ni ,W ′i ) for all i < m.

We will say that a nice partial order is absolutely κ–suitable if it
is κ–suitable in every inner model W containing it and such that
ωW

1 = ω1.
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A class of posets

Let Γκ denote the class of all absolutely κ–suitable posets
consisting of finite functions included in ω1 × [ω1]<ω.

Easy: For all κ ≥ ω2, Γκ ⊆ Proper .

FA(Γκ): For every P ∈ Γκ and every collection D of size ℵ1
consisting of dense subsets of P there is a filter G ⊆ P such
that G ∩ D 6= ∅ for all D ∈ D.
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One application of FA(Γκ): Ω

Definition (Moore) f: There is a sequence 〈gδ : δ < ω1〉
such that each gδ : δ −→ ω is continuous with respect to the
order topology and such that for every club C ⊆ ω1 there is
some δ ∈ C with gδ“C = ω.

(◦) Club Guessing implies f.

(◦) f preserved by ccc forcing, and in fact by ω–proper forcing.

(◦) Each of BPFA and MRP implies Ω := ¬f.
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Theorem (Moore) f implies the existence of an Aronszajn line
which does not contain any Contryman suborder.

Question (Moore):

Does Ω imply 2ℵ0 ≤ ℵ2?
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Proposition: For every κ ≥ ω2, FA(Γκ) implies Ω.

Proof sketch:

Notation: Given X , a set of ordinals, and δ, an ordinal, set

(◦) rank(X , δ) = 0 iff δ is not a limit point of X , and

(◦) rank(X , δ) > η
if and only if δ is a limit of ordinals ε such that rank(X , ε) ≥ η.

Given a sequence G = 〈gδ : δ < ω1〉 of continuous colourings,
let PG be the following poset:
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Conditions in PG are pairs p = (f , 〈kξ : ξ ∈ D〉) satisfying the
following properties:

(1) f is a finite function that can be extended to a normal
function F : ω1 −→ ω1.

(2) For every ξ ∈ dom(f ), rank(f (ξ), f (ξ)) ≥ ξ.

(3) D ⊆ dom(f ) and for every ξ ∈ dom(f ),

(3.1) kξ < ω,
(3.2) gf (ξ)“range(f ) ⊆ ω\{kξ}, and
(3.3) rank({γ < f (ξ) : gf (ξ)(γ) 6= kξ}, f (ξ)) = rank(f (ξ), f (ξ)).



Given conditions pε = (fε, (k εξ : ξ ∈ Dε)) ∈ PG for ε ∈ {0,1}, p1
extends p0 iff

(i) f0 ⊆ f1,

(ii) D0 ⊆ D1, and

(iii) k1
ξ = k0

ξ for all ξ ∈ D0.

Easy: If G is PG–generic and
C = range(

⋃
{f : (∃~k)(〈f , ~k〉 ∈ G)}), then C is a club of ωV

1 and
for every δ ∈ C there is kδ ∈ ω such that gδ“C ⊆ ω\{kδ}.
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PG ∈ Γκ for every κ ≥ ω2:

(•) We may easily translate PG into a nice forcing consisting
of finite functions contained in ω1 × [ω1]<ω.

(•) Given p = (f , 〈kξ : ξ ∈ D〉) ∈ PG , N ⊆ H(κ) countable
such that N |= ZFC∗ and δN exists, and givenW an
N–stationary set, set

p R (N,W)

if and only if

(a) δN is a fixed point of f ,

(b) δN ∈ D, and

(c) for every M ∈ W, gδN (δM) 6= kδN .
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Easy to verify:

(1) in the definition of κ–suitable

[that is:

If p R (N,W), then

(1.1) N is a countable subset of H(κ),W is an N–stationary
subset of [H(κ)]ℵ0 , and all members ofW ∩ N are good for
p,

(1.2) if p′ is a P–condition extending p, then there is some
W ′ ⊆ W such that p′R (N,W ′), and

(1.3) ifW ′ ⊆ W is N–stationary, then p R (N,W ′).

]



Let us check (2) in the definition of κ–suitable (with C = ω1)

[that is:

(2) For every p ∈ P and every finite set {(Ni ,Wi) : i < m}
such that

(a) each Ni is a countable subset of H(κ) containing p,
ωNi

1 = ω1, δNi ∈ C, Ni |= ZFC∗, and

(b) eachWi is Ni–stationary

there is a condition q ∈ P extending p and there are
W ′i ⊆ Wi (i < m) such that q R (Ni ,W ′i ) for all i < m.

]



Let p = (f , 〈kξ : ξ ∈ D〉) ∈ PG . Let {(Ni ,Wi) : i < m} satisfy (a)
and (b).

Let (δj)j<n be the increasing enumeration of {δNi : i < m}.

Suppose {Ni : δNi = δ0} = {N0,N1,N2}.
Let {k0, . . . k23−1} be 8 colours not touched by gδ0“range(f ).

There is k0 ∈ {k0, . . . k7} such that, for all i < 3,
W ′i = {M ∈ Wi : δM 6= k0} is Ni–stationary.

Hence we may make the promise to avoid the colour k0 in the
colouring gδ0 .
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Now we continue with δ1,
and get a colour k1 we may avoid in the colouring gδ1 . And so on.

In the end there is a condition q = (f ′, 〈k ′ξ : ξ ∈ D′〉), q ≤ p, and
Ni–stationaryW ′i ⊆ Wi (i < m) such that

(a) f ′ has all δj (j < n) as limit points and makes the promise k j

at each δj , and

(b) q R (Ni ,W ′i ) for all i < m.

Hence, PG is (isomorphic to) a forcing in Γκ.

An application of FA({PG}) gives now a witness of Ω for G.
�
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Another application of FA(Γκ)

Proposition: For every κ ≥ ω2, FA(Γκ) implies:

¬VWCG: For every C, if

(a) |C| = ℵ1 and
(b) for all X ∈ C, X ⊆ ω1 and ot(X ) = ω,

then there is a club C ⊆ ω1 such that |X ∩ C| < ω for all X ∈ C.

¬VWCG is equivalent to the following statement:

For every C, if

(a) |C| = ℵ1 and
(b) for all X ∈ C, X ⊆ ω1 and X is such that for all nonzero

γ < ω1, rank(X , γ) < γ (equivalently, ot(X ∩ γ) < ωγ),

then there is a club C ⊆ ω1 such that |X ∩ C| < ω for all X ∈ C.
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The main theorem

Main Theorem (CH) Let κ be a cardinal such that 2<κ = κ,
κℵ1 = κ and µℵ0 < κ for all µ < κ. Then there is a partial order
P such that

(1) P is proper,

(2) P has the ℵ2–chain condition,

(3) P forces

(•) FA(Γκ)

(•) 2ℵ0 = κ



Proof sketch

Let Φ : κ −→ H(κ) be a bijection.

(Φ exists by 2<κ = κ.
Note: There is an ω1–club of γ < κ such that Φ“γ enumerates
[γ]ℵ0 .)



Proof sketch (continued)

Coherent systems of structures

{Ni : i < m} is a coherent systems of structures if

a 1) m < ω and every Ni is a countable subset of H(κ) such
that (Ni ,∈,Φ ∩ Ni) 4 (H(κ),∈,Φ).

a 2) Given distinct i , i ′ in m, if δNi = δNi′
, then there is an

isomorphism

ΨNi ,Ni′
: (Ni ,∈,Φ ∩ Ni) −→ (Ni ′ ,∈,Φ ∩ Ni ′)

Furthermore, ΨNi ,Ni′
is the identity on κ ∩ Ni ∩ Ni ′ .



Proof sketch (continued)

a 3) For all i , j in m, if δNj < δNi , then there is some i ′ < m such
that δNi′

= δNi and Nj ∈ Ni ′ .

a 4) For all i , i ′, j in m, if Nj ∈ Ni and δNi = δNi′
, then there is

some j ′ < m such that Nj ′ = ΨNi ,Ni′
(Nj).



Proof sketch (continued)

Our forcing will be the direct limit Pω2 of a sequence
〈Pα : α < ω2〉 of posets such that

(◦) Pα is a complete suborder of Pβ if α < β ≤ ω2, and

(◦) a condition q in Pα is an α–sequence p together with a
certain system ∆q of side conditions.

Unlike in a usual iteration, p will not consist of names, but of
well–determined objects (finite functions included in
ω1 × [ω1]<ω).
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(◦) Pα is a complete suborder of Pβ if α < β ≤ ω2, and
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certain system ∆q of side conditions.

Unlike in a usual iteration, p will not consist of names, but of
well–determined objects (finite functions included in
ω1 × [ω1]<ω).



Defining 〈Pα : α ≤ ω2〉

P0: Conditions are p = {(Ni ,0) : i < m} where
{Ni : i < m} is a coherent system of structures.

≤0 is ⊇.



Defining 〈Pα : α ≤ ω2〉 (continued)

Suppose Pα defined and suppose conditions in Pα are
pairs (p,∆p) with p an α–sequence and ∆p = {(N, βi) : i < m}.

Suppose Pα has the ℵ2–chain condition and |Pα| = κ.

By κℵ1 = κ we may fix an enumeration Q̇αi (for i < κ) of nice
κ–suitable partial orders consisting of finite functions included
in ω1 × [ω1]<ω such that for every Pα–name Q̇ for such a poset
there are κ–many i < κ such that Pα Q̇ = Q̇αi .

We also fix Pα–names Ṙα
i and Ċα

i (for i < κ) such that Pα
forces that Ṙα

i and Ċα
i witness that Q̇αi is κ–suitable.
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i and Ċα
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i witness that Q̇αi is κ–suitable.



Defining 〈Pα : α ≤ ω2〉 (continued)
Pα+1: Conditions are

q = (pa〈fi : i ∈ a〉, {(Ni , βi) : i < m})

satisfying the following conditions.

b 1) For all i < m, βi ≤ (α + 1) ∩ sup(Ni ∩ ω2).

b 2) The restriction of q to α is a condition in Pα. This restriction
is defined as the object q|α := (p, {(Ni , β

α
i ) : i < m});

where βαi = βi if βi < α + 1, and βαi = α if βi = α + 1.
We denote {(Ni , βi) : i < m} by ∆q.

b 3) a is a finite subset of κ.



Defining 〈Pα : α ≤ ω2〉 (continued)

b 4) For each i ∈ a, fi is a finite function included in ω1 × [ω1]<ω

and q|α forces (in Pα) that fi ∈ Q̇αi .

b 5) For every N such that (N, α + 1) ∈ ∆q and α ∈ N, q|α
forces that there is someWN ⊆ Wα such that

fi Ṙα
i (N,WN)

for all i ∈ a ∩ N.

Here,Wα denotes the collection of all M such that
(M, α) ∈ ∆u for some u ∈ Ġα.



Defining 〈Pα : α ≤ ω2〉 (continued)
Given conditions

qε = (paε 〈f εi : i ∈ aε〉, {(Nε
i , β

ε
i ) : i < mε})

(for ε ∈ {0,1}), we will say that q1 ≤α+1 q0 if and only if the
following holds.

c 1) q1|α ≤α q0|α

c 2) a0 ⊆ a1

c 3) For all i ∈ a0, q|α forces in Pα that f 1
i ≤Q̇α

i
f 0
i .

c 4) For all i < m0 there exists β̃i ≥ β0
i such that (N0

i , β̃i) ∈ ∆q1 .



Defining 〈Pα : α ≤ ω2〉 (continued)

Suppose α ≤ ω2 is a nonzero limit ordinal.
Pα Conditions are q = (p, {(Ni , βi) : i < m}) such that:

d 1) p is a sequence of length α.

d 2) For all i < m, βi ≤ α ∩ sup(Xi ∩ ω2). (Note that βi is always
less than ω2, even when α = ω2.)

d 3) For every ε < α, the restriction
q|ε := (p � ε, {(Xi , β

ε
i ) : i < m}) is a condition in Pε; where

βεi = βi if βi ≤ ε, and βεi = ε if βi > ε.

d 4) The set of ζ < α such that p(ζ) 6= ∅ is finite.



Defining 〈Pα : α ≤ ω2〉 (continued)

Given conditions q1 = (p1,∆1) and q0 = (p0,∆0) in Pα,
q1 ≤α q0 if and only if:

e 1) For every (Xi , βi) ∈ ∆0 there exists β̃i ≥ βi such that
(Xi , β̃i) ∈ ∆1.

e 2) For every β < α, q1|β ≤β q0|β.

Notation: If α ≤ ω2 and q = (p, {(Ni , βi) : i < m} ∈ Pα, we set
Xq = {Ni : i < m}.



Main facts about 〈Pα : α ≤ ω2〉

Lemma Let α ≤ β ≤ ω2.

If q = (p,∆q) ∈ Pα, s = (r ,∆s) ∈ Pβ and q ≤α s|α, then
(pa(r � [α, β)),∆q ∪∆s) is a condition in Pβ extending s.

Therefore, Pα can be seen as a complete suborder of Pβ.

Lemma For every α ≤ ω2, Pα is ℵ2–Knaster.
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Let 〈θα : α ≤ ω2〉 be the following sequence of regular
cardinals: θ0 = (2κ)+, θγ = (supα<γθα)+ if γ is a nonzero limit
ordinal, and θα+1 = (2θα)+.

Also, for each α ≤ ω2 letMα be the collection of all countable
elementary substructures of H(θα) containing 〈θβ : β < α〉, Φ
and Pα.

All Pα are proper:
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Lemma Suppose α ≤ ω2 and N∗ ∈Mα. Then,

(1)α for every q ∈ N∗ ∩ Pα there is q′ ≤α q such that
(N∗ ∩ H(κ), α ∩ sup(N∗ ∩ ω2)) ∈ ∆q′ , and

(2)α for every q ∈ Pα, if there is some N such that
(N, α ∩ sup(N ∩ ω2)) ∈ ∆q and such that either

(a) N∗ ∩ H(κ) = N or

(b) N∗ ∩ H(κ) = Φ“(γ ∩ N) for some γ ∈ N ∩ κ such that Φ � γ
enumerates [γ]ℵ0 ,

then q is (N∗,Pα)–generic.



The proof is by induction on α.

Proof sketch of (2)α in the case α = σ + 1:

Let E be an open and dense subset of Pα in N∗.
It suffices to show that every q satisfying the hypothesis of (2)α
is compatible with some condition in E ∩ N∗.
By density of E we may assume, without loss of generality, that
q ∈ E .
We may also assume that aq 6= ∅.
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Claim
For every i ∈ κ\N∗ there are ordinals αi < βi such that

(a) αi ∈ N∗ and βi ∈ (κ ∩ N∗) ∪ {κ},
(b) αi < i < βi , and
(c) [αi , βi) ∩ N ′ ∩ N∗ = ∅ whenever N ′ ∈ Xq\N∗ is such that

δN′ < δN∗ .

[This is proved using the fact that all ΨN,N fix κ ∩ N ∩ N and are
continuous (for N ∈ Xq with δN = δN ), meaning that
ΨN,N(ξ) = sup(ΨN,N“ξ) whenever ξ ∈ N is an ordinal of
countable cofinality.]



Suppose aq\N∗ = {i0, . . . in−1}, and for each k < n let αk < βk
be ordinals realizing the above claim for ik .

Let us work in VPσ�(q|σ). By condition b 5) in the definition of
Pσ+1 we know that there is a stationaryWN ⊆ Wσ such that
f q
i Ṙσ

i (N,WN) for all i ∈ aq ∩ N.

By an inductive construction (using (1) in the definition of
κ–suitable) we may find an N–stationaryW ⊆WN such that
f q
i Ṙσ

i (N,W) for all i ∈ aq ∩ N and such that each M ∈ W is
good for f q

j for every j ∈ aq ∩M.



Since N∗ ∩ H(κ) is an ∈–initial segment of N and since
[N∗ ∩ H(κ)]ℵ0 ∩ N ⊆ N∗, every N–stationary subset of [H(κ)]ℵ0

is also N∗–stationary.

Hence, we may find M∗ and M in N∗ such that

(a) M∗ ∈Mσ and M∗ contains Pσ+1, E , aq ∩ N∗, f q
i � δN∗ for

every i ∈ aq ∩ N∗, αk for every k < n, and βk for every
k < n with βk < κ.

(b) (M, σ) ∈ ∆u for some u ∈ Ġσ,

(c) M∗ ∩ H(κ) = Φ“(γ ∩M) for some ordinal γ ∈ M such that
Φ � γ enumerates [γ]ℵ0 , and

(d) M is good for f q
i for every i ∈ aq ∩ N∗.
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From (d), together with δM = δM∗ , we have that M∗ is good for
f q
i for every i ∈ aq ∩ N∗. For every such i let fi be a
Q̇σi –condition in M∗ extending f q

i � δM∗ = f q
i � δN and such that

every Q̇σi –condition in M∗ extending fi is compatible with f q
i .

By extending q below σ we may assume that (M, σ) ∈ ∆q and
that qσ decides fi for every i ∈ aq.

The result of replacing f q
i with glb(fi , f

q
i ) in q for every

i ∈ aq ∩ N∗ is a Pσ+1–condition.

Hence, by further extending q if necessary we may assume
that every Q̇σi –condition in M∗ extending f q

i � δM∗ is compatible
with f q

i .
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Let now G be a Pσ–generic filter over the ground model with
q|σ ∈ G.
By correctness of M∗[G] within H(θσ)[G] we know that in M∗[G]
there is a condition q◦ satisfying the following conditions.

(a) q◦ ∈ E and q◦|σ ∈ G.

(b) aq◦ = (aq ∩ N∗) ∪ {i◦0 , . . . i◦n−1} with αk < i◦k < βk for all
k < n.

(c) For all i ∈ aq ∩ N∗, f q◦
i extends f q

i � δM∗ in Q̇σi .

(the existence of such a q◦ is witnessed, in V [G], by q itself).



By induction hypothesis, q|σ is (M∗,Pσ)–generic. Hence,
M∗[G] ∩ V = M∗. It follows that q◦ is in M∗.

By extending q below σ we may assume that q decides q◦ and
also that it extends q◦|σ. The proof in this case will be finished if
we show that q and q◦ are compatible.

It is not difficult to find f ∗i (for i ∈ aq ∪ {i◦0 , . . . i∗n1
}) extending f q

i

and/or f q◦
i◦k

(for k < n) for which, in VPσ�(q|σ), we can verify
condition b 5) with respect to all N ′ such that
(N ′, σ + 1) ∈ ∆q ∪∆q◦ and σ ∈ N ′.

If δN′ ≥ δN , we use condition (2) (and (1)) in the definition of
κ–suitable.

If δN′ < δN and N ′ ∈ M∗ (that is, (N ′, σ + 1) ∈ ∆q◦), we use
condition (1) in the definition of κ–suitable.
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The only potentially problematic case is when δN′ < δN and
N ′ ∈ Xq\M∗. But we are safe also in this case since then
(aq ∪ {i◦0 , . . . i∗n1

}) ∩ N ′ = aq ∩ N ′. We apply again (1) in the
definition of κ–suitable.

Finally we extend q below σ once more to a condition q′

deciding f ∗i . Now we amalgamate q′ and q◦ and get a legal
Pα–condition (note that in extending q below σ we are not
adding new pairs (N ′, σ + 1) to ∆).

This finishes the (very sketchy) proof of the lemma in this case.
�
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Given ordinals α < ω2 and i < κ, we let Ġα
i be a Pα+1 for the

collection of all f q
i , where q ∈ Ġα+1, α ∈ Psupp(q), and i ∈ aq.

Lemma
For every α < ω2 and every i < κ, Pα+1 forces that Ġα

i is a
VPα–generic filter over Q̇αi .

From the above lemmas it is easy to see by standard
arguments that Pω2 forces FA(Γκ) and 2ℵ0 = κ. �
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An enhanced version of the Main
Theorem

Given a class Γ of partial orders and a cardinal λ, FA(Γ)<λ
means:

For every P ∈ Γ and collection D of size less than λ consisting
of dense subsets of P there is a filter G ⊆ P such that G ∩D 6= ∅
for every D ∈ D.



An enhanced version of the Main
Theorem

Theorem (CH) Let κ be a cardinal such that 2<κ = κ, κℵ1 = κ
and µℵ0 < κ for all µ < κ. Then there is a partial order P such
that

(1) P is proper,

(2) P has the ℵ2–chain condition,

(3) P forces

(•) FA(Γκ)<cf (κ)

(•) 2ℵ0 = κ



Another strong failure of Club Guessing

Definition (Moore): Measuring: For every sequence
(Cδ : δ < ω1) such that each Cδ is a closed subset of δ there is
a club D ⊆ ω1 such that for every limit point δ ∈ D of D,

(a) either a tail of D ∩ δ is contained in Cδ,
(b) or a tail of D ∩ δ is disjoint from Cδ.

(◦) Measuring follows from BPFA and also from MRP.

(◦) Measuring implies the negation of Weak Club Guessing
and implies Ω.
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We do not know how to derive Measuring from any “natural”
forcing axiom that we can force together with the continuum
large.

However,
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