

Joan Bagaria

ICREA and University of Barcelona

ESI Workshop on Large Cardinals and Descriptive Set Theory Vienna, 14 – 27 June 2009

Outline

1 $C^{(n)}$ -cardinals

- C⁽ⁿ⁾-superstrong cardinals
- C⁽ⁿ⁾-extendible cardinals

2 Vopěnka's Principle

- 3 VP & category theory
 - Boundedness
 - Accessibility
 - Orthogonality

Let $C^{(n)}$ denote the closed unbounded proper class of ordinals α that are Σ_n -correct in V. i.e., $V_{\alpha} \preceq_n V$.

Thus, $C^{(0)}$ is the class of all ordinals.

And $C^{(1)}$ is precisely the class of all uncountable cardinals α such that $V_{\alpha} = H(\alpha)$.

Thus, $C^{(1)}$ is Π_1 definable.

In general, the class $C^{(n)}$ is Π_n definable, for $n \ge 1$.

The $C^{(n)}$ -classes

The classes $C^{(n)}$, $n \in \omega$, form a basis for definable club proper classes of ordinals, in the sense that every Σ_n club proper class of ordinals contains $C^{(n)}$.

More generally, every club proper class *C* of ordinals that is \sum_{n} (i.e., \sum_{n} -definable with parameters) contains all $\alpha \in C^{(n)}$ that are greater than the rank of the parameters involved in some \sum_{n} definition of *C*.

 $C^{(n)}$ -embeddings

When considering non-trivial elementary embeddings $j: V \rightarrow M$, with *M* transitive, one would like to have some control over where the image $j(\kappa)$ of the critical point κ goes.

A especially interesting case is when one wants $V_{j(\kappa)}$ to reflect some specific property of *V* or, more generally, when one wants $j(\kappa)$ to belong to a particular club proper class of ordinals.

Since the $C^{(n)}$, $n \in \omega$, form a basis for such classes, the problem can be reformulated as follows:

When can we have $j(\kappa) \in C^{(n)}$, for a given $n \in \omega$?

Let us call a cardinal $\kappa C^{(n)}$ -measurable if there is an elementary embedding $j : V \to M$, some transitive class M, with critical point κ and with $j(\kappa) \in C^{(n)}$.

Proposition

 $C^{(n)}$ -cardinals

Every measurable cardinal is $C^{(n)}$ -measurable, for all n.

$C^{(n)}$ -cardinals

Proposition

- Every strong cardinal is $C^{(n)}$ -strong, for all n.
- Every supercompact cardinal is λ-C⁽ⁿ⁾-supercompact, for all λ ∈ OR and all n. Thus, every supercompact cardinal is C⁽ⁿ⁾-supercompact, for all n.

For superstrong cardinals κ , the requirement that $j(\kappa) \in C^{(n)}$, for n > 1, produces stronger large cardinal principles.

Definition

A cardinal κ is $C^{(n)}$ -superstrong if there exists an elementary embedding $j : V \to M$, M transitive, with critical point κ , $V_{j(\kappa)} \subseteq M$, and $j(\kappa) \in C^{(n)}$.

$C^{(n)}$ -superstrong cardinals

Proposition

- Every superstrong cardinal is $C^{(1)}$ -superstrong.
- Solution For every $n \ge 1$, if κ is $C^{(n+1)}$ -superstrong, then there is a κ -complete normal ultrafilter \mathcal{U} over κ such that

$$\{\alpha < \kappa : \kappa \text{ is } C^{(n)}\text{-superstrong}\} \in \mathcal{U}.$$

Hence, the first $C^{(n)}$ -superstrong cardinal κ , if it exists, is not $C^{(n+1)}$ -superstrong.

$C^{(n)}$ -superstrong cardinals

Proposition

If κ is 2^{κ} -supercompact and belongs to $C^{(n)}$, then there is a κ -complete normal ultrafilter \mathcal{U} over κ such that the set of $C^{(n)}$ -superstrong cardinals smaller than κ belongs to \mathcal{U} .

Extendible cardinals

Definition (Reinhardt, ca. 1970)

 κ is λ -extendible, for $\lambda > \kappa$, if there exists an elementary embedding $j : V_{\lambda} \to V_{\mu}$, some μ , such that κ is the critical point of j and $j(\kappa) > \lambda$.

 κ is extendible if it is λ -extendible for all $\lambda > \kappa$.

Extendible cardinals are supercompact, and the existence of, e.g., an almost-huge cardinal κ implies the existence of many extendible cardinals in V_{κ} .

$C^{(n)}$ -extendible cardinals

Definition

For a cardinal κ and $\lambda > \kappa$, we say that κ is λ - $C^{(n)}$ -extendible if there is an elementary embedding $j : V_{\lambda} \to V_{\mu}$, some μ , with critical point κ , and such that $j(\kappa) > \lambda$ and $j(\kappa) \in C^{(n)}$.

We say that κ is $C^{(n)}$ -extendible if it is λ - $C^{(n)}$ -extendible for all $\lambda > \kappa$.

Proposition

Every extendible cardinal is $C^{(1)}$ -extendible.

$C^{(n)}$ -extendible cardinals

Proposition

For every $n \ge 1$, if κ is $C^{(n)}$ -extendible and $\kappa + 1 \cdot C^{(n+1)}$ -extendible, then the set of $C^{(n)}$ -extendible cardinals is unbounded below κ .

Hence, the first $C^{(n)}$ -extendible cardinal κ , if it exists, is not $\kappa + 1$ - $C^{(n+1)}$ -extendible. In particular, the first extendible cardinal κ is not $\kappa + 1$ - $C^{(2)}$ -extendible.

Proposition

If κ is $\kappa + 1$ - $C^{(n)}$ -extendible, then κ is $C^{(n)}$ -superstrong, and there is a κ -complete normal ultrafilter \mathcal{U} over κ such that the set of $C^{(n)}$ -superstrong cardinals smaller than κ belongs to \mathcal{U} .

Vopěnka's Principle

Definition (Vopěnka's Principle (VP). P. Vopěnka, ca. 1960)

There is no rigid proper class of graphs.

Equivalently, for every proper class C of structures of the same type, there exist $A \neq B$ in C such that A is elementarily embeddable into B.

VP and extendible cardinals

Theorem (M. Magidor, 1970)

VP implies that there exists a proper class of extendible cardinals.

VP can be characterized in terms of extendibility.

Theorem (Solovay-Reinhardt-Kanamori, 1978)

VP holds iff for every proper class A there is a cardinal κ that is λ -extendible for A, for every ordinal $\lambda > \kappa$.

i.e., there is an ordinal μ and an elementary embedding

$$j: \langle V_{\lambda}, \in, \mathcal{A} \cap V_{\lambda}
angle o \langle V_{\mu}, \in, \mathcal{A} \cap V_{\mu}
angle$$

with critical point κ and $j(\kappa) > \lambda$.

Notation

If Γ is one of \sum_{n} , \prod_{n} , Δ_{n} , where $n \in \omega$, and κ is an infinite cardinal, then we write $VP(\kappa, \Gamma)$ for the following assertion:

For every Γ proper class C of structures of the same type τ such that both τ and the parameters of some Γ -definition of C, if any, belong to $H(\kappa)$, and for every $B \in C$, there exists $A \in C \cap H(\kappa)$ that is elementarily embeddable into B.

If Γ is one of \sum_{n} , \prod_{n} , Δ_n , or Σ_n , \prod_n , Δ_n , where $n \in \omega$, we write $VP(\Gamma)$ for the following statement:

For every Γ proper class C of structures of the language of set theory with one (equivalently, finitely-many) additional 1-ary relation symbol, there exist distinct A and B in C with an elementary embedding of A into B.

Vopěnka's Principle

Proposition

 $VP(\kappa, \sum_{i=1}^{n})$ holds for every uncountable cardinal κ .

Proposition

If VP(Π_1) holds, then there exists a λ -supercompact cardinal κ , for some λ in C⁽¹⁾ greater than κ .

VP and supercompact cardinals

Theorem (B-Casacuberta-Mathias-Rosičky, 2008)

The following are equivalent:

- $VP(\kappa, \Delta_2)$, for some κ .
- **2** $VP(\Delta_2).$
- 3 $VP(\kappa, \sum_{n \geq 2})$, for some κ .
- VP(Σ₂).
- There exists a supercompact cardinal.

VP and supercompact cardinals

Theorem (B-C-M-R, 2008)

The following are equivalent:

- $VP(\kappa, \Delta_2)$, for a proper class of cardinals κ .
- **2** $VP(\Delta_2).$
- $VP(\kappa, \Sigma_2)$, for a proper class of cardinals κ .
- $VP(\sum_{\sim} 2)$.
- 5 There exists a proper class of supercompact cardinals.

What about the more complex classes, e.g., the $\sum_{i=1}^{n} 3^{i}$?

VP and $C^{(n)}$ -extendible cardinals

Theorem

For every $n \ge 1$, if κ is a $C^{(n)}$ -extendible cardinal, then $VP(\kappa, \sum_{n+2})$ holds.

Theorem (B-C-M-R, 2008)

Let $n \ge 1$, and suppose that $VP(\Sigma_{n+1} \land \Pi_{n+1})$ holds. Then there exists a $C^{(n)+}$ -extendible cardinal.

VP and $C^{(n)}$ -extendible cardinals

Corollary

The following are equivalent for $n \ge 1$:

•
$$VP(\Sigma_{n+1} \wedge \Pi_{n+1}).$$

2
$$VP(\kappa, \sum_{n+2})$$
, for some κ .

There exists a C⁽ⁿ⁾-extendible cardinal.

Corollary

The following are equivalent:

- $VP(\Sigma_3)$.
- **2** $VP(\kappa, \sum_{i=3})$, for some κ .
- There exists an extendible cardinal.

VP and $C^{(n)}$ -extendible cardinals

Corollary

The following are equivalent:

VP.

- VP(κ, Σ_n) holds for a proper class of cardinals κ, for every n.
- Solution For every n, there exists a $C^{(n)}$ -extendible cardinal.
- For every n, there is a stationary proper class of C⁽ⁿ⁾-extendible cardinals. i.e., every definable club proper class contains a C⁽ⁿ⁾-extendible cardinal.

Bounded categories

A full subcategory \mathcal{D} of a category \mathcal{C} is called dense in \mathcal{C} if every object $C \in \mathcal{C}$ is a canonical colimit of objects from \mathcal{D} .

Examples

- In Set every singleton is dense.
- In Gra, the one-point graph with no edges and the two-point graph with only one edge between them form a dense subcategory.
- Sinitely-generated Abelian groups are dense in Ab.

C is **bounded** if it has a small (i.e., a set) dense subcategory. Thus **Set**, **Gra**, and **Ab** are bounded. But **Top** is not.

Question

When is a category bounded?

A small full subcategory A of a category C is called colimit-dense if every object of C is a colimit of a diagram in A.

Question

Is every category that has a colimit-dense subcategory bounded?

Theorem (Adámek, Rosický, Trnková, 1990)

The following are equivalent:

- A category is bounded iff it has a colimit-dense subcategory.
- 2 VP.

Accessible categories

Definition (Makkai - Paré, 1989)

A category \mathcal{K} is accessible if it has λ -directed colimits (some regular cardinal λ), and it has a set \mathcal{A} of λ -presentable objects such that every object is a λ -directed colimit of objects from \mathcal{A} .

Definition (Adámek - Rosický, 1994)

A formula of L_{λ} is called **basic** if it has the form $\forall x(\varphi(x) \rightarrow \psi(x))$, where φ and ψ are disjunctions of formulas of type $\exists y \zeta(x, y)$ in which ζ is a conjunction of atomic formulas.

A basic theory is a theory of basic sentences.

The accessible categories are the categories equivalent to categories of models of basic theories.

Accessible categories

Examples

- For every theory *T* in L_{λ} , the category of models of *T* and homomorphisms is accessible.
- **2** Top is not accessible.
- The category of complete metric spaces is accessible.

Accessible categories

Under VP, boundedness can be easily characterized.

Theorem (Fisher, 1987)

The following are equivalent:

- A category is bounded and has λ-directed colimits for some regular cardinal λ iff it is accessible.
- 2 VP.

An Application of VP in Algebraic Topology

Question (D. Farjoun, ca. 1990)

Is every functor on simplicial sets that is idempotent up to homotopy equivalent to f-localization for some map?

Theorem (Casacuberta – Scevenels – Smith, Adv. Math. 2005)

If there are no measurable cardinals, then there is a counterexample. If VP holds, then the answer is yes.

Orthogonality

Definition

A morphism $f: A \to B$ and an object X are called orthogonal in a category C if for each $g: A \to X$ there is a unique $g': B \to X$ with $g' \circ f = g$:

Small-orthogonality classes

Definition

A small-orthogonality class in a category C is the class of objects orthogonal to some set of morphisms $\mathcal{F} = \{f_i \colon P_i \to Q_i \mid i \in I\}.$

Boundedness Accessibility Orthogonality

Boundedness and orthogonality for definable categories

Theorem (B-C-M-R, 2009)

If there is a proper class of $C^{(n)}$ -extendible cardinals, then

- Every $\sum_{n+1} \land \prod_{n+1}$ full subcategory of an accessible category is bounded.
- ② Every △_n orthogonality class in an accessible category is a small-orthogonality class.