
C(n)-cardinals

Joan Bagaria

ICREA and University of Barcelona

ESI Workshop on Large Cardinals and Descriptive Set Theory
Vienna, 14 – 27 June 2009

Joan Bagaria C(n)-cardinals



Outline

1 C(n)-cardinals
C(n)-superstrong cardinals
C(n)-extendible cardinals
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C(n)-cardinals Vopěnka’s Principle VP & category theory C(n)-superstrong cardinals C(n)-extendible cardinals

The C(n)-classes

Let C(n) denote the closed unbounded proper class of ordinals
α that are Σn-correct in V . i.e., Vα �n V .

Thus, C(0) is the class of all ordinals.

And C(1) is precisely the class of all uncountable cardinals α
such that Vα = H(α).

Thus, C(1) is Π1 definable.

In general, the class C(n) is Πn definable, for n ≥ 1.
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The C(n)-classes

The classes C(n), n ∈ ω, form a basis for definable club proper
classes of ordinals, in the sense that every Σn club proper class
of ordinals contains C(n).

More generally, every club proper class C of ordinals that is Σ∼n
(i.e., Σn-definable with parameters) contains all α ∈ C(n) that
are greater than the rank of the parameters involved in some
Σn definition of C.
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C(n)-embeddings

When considering non-trivial elementary embeddings
j : V → M, with M transitive, one would like to have some
control over where the image j(κ) of the critical point κ goes.

A especially interesting case is when one wants Vj(κ) to reflect
some specific property of V or, more generally, when one wants
j(κ) to belong to a particular club proper class of ordinals.

Since the C(n), n ∈ ω, form a basis for such classes, the
problem can be reformulated as follows:

When can we have j(κ) ∈ C(n), for a given n ∈ ω?
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C(n)-cardinals

Let us call a cardinal κ C(n)-measurable if there is an
elementary embedding j : V → M, some transitive class M,
with critical point κ and with j(κ) ∈ C(n).

Proposition

Every measurable cardinal is C(n)-measurable, for all n.
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C(n)-cardinals

Proposition

1 Every strong cardinal is C(n)-strong, for all n.
2 Every supercompact cardinal is λ-C(n)-supercompact, for

all λ ∈ OR and all n.
Thus, every supercompact cardinal is C(n)-supercompact,
for all n.
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C(n)-superstrong cardinals

For superstrong cardinals κ, the requirement that j(κ) ∈ C(n),
for n > 1, produces stronger large cardinal principles.

Definition

A cardinal κ is C(n)-superstrong if there exists an elementary
embedding j : V → M, M transitive, with critical point κ,
Vj(κ) ⊆ M, and j(κ) ∈ C(n).
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C(n)-superstrong cardinals

Proposition

1 Every superstrong cardinal is C(1)-superstrong.
2 For every n ≥ 1, if κ is C(n+1)-superstrong, then there is a
κ-complete normal ultrafilter U over κ such that

{α < κ : κ is C(n)-superstrong} ∈ U .

Hence, the first C(n)-superstrong cardinal κ, if it exists, is
not C(n+1)-superstrong.
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C(n)-superstrong cardinals

Proposition

If κ is 2κ-supercompact and belongs to C(n), then there is a
κ-complete normal ultrafilter U over κ such that the set of
C(n)-superstrong cardinals smaller than κ belongs to U .
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Extendible cardinals

Definition (Reinhardt, ca. 1970)
κ is λ–extendible, for λ > κ, if there exists an elementary
embedding j : Vλ → Vµ, some µ, such that κ is the critical point
of j and j(κ) > λ.

κ is extendible if it is λ-extendible for all λ > κ.

Extendible cardinals are supercompact, and the existence of,
e.g., an almost-huge cardinal κ implies the existence of many
extendible cardinals in Vκ.
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C(n)-extendible cardinals

Definition

For a cardinal κ and λ > κ, we say that κ is λ-C(n)-extendible if
there is an elementary embedding j : Vλ → Vµ, some µ, with
critical point κ, and such that j(κ) > λ and j(κ) ∈ C(n).

We say that κ is C(n)–extendible if it is λ-C(n)-extendible for all
λ > κ.

Proposition

Every extendible cardinal is C(1)-extendible.
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C(n)-extendible cardinals

Proposition

For every n ≥ 1, if κ is C(n)-extendible and
κ+ 1-C(n+1)-extendible, then the set of C(n)-extendible
cardinals is unbounded below κ.

Hence, the first C(n)-extendible cardinal κ, if it exists, is not
κ+ 1-C(n+1)-extendible. In particular, the first extendible
cardinal κ is not κ+ 1-C(2)-extendible.

Proposition

If κ is κ+ 1-C(n)-extendible, then κ is C(n)-superstrong, and
there is a κ-complete normal ultrafilter U over κ such that the
set of C(n)-superstrong cardinals smaller than κ belongs to U .
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Vopěnka’s Principle

Definition (Vopěnka’s Principle (VP). P. Vopěnka, ca. 1960)
There is no rigid proper class of graphs.

Equivalently, for every proper class C of structures of the same
type, there exist A 6= B in C such that A is elementarily
embeddable into B.
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VP and extendible cardinals

Theorem (M. Magidor, 1970)

VP implies that there exists a proper class of extendible
cardinals.

VP can be characterized in terms of extendibility.

Theorem (Solovay-Reinhardt-Kanamori, 1978)
VP holds iff for every proper class A there is a cardinal κ that is
λ-extendible for A, for every ordinal λ > κ.
i.e., there is an ordinal µ and an elementary embedding

j : 〈Vλ,∈,A ∩ Vλ〉 → 〈Vµ,∈,A ∩ Vµ〉

with critical point κ and j(κ) > λ.
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Notation

If Γ is one of Σ∼n, Π∼n, ∆∼n, where n ∈ ω, and κ is an infinite
cardinal, then we write VP(κ, Γ) for the following assertion:

For every Γ proper class C of structures of the same type τ
such that both τ and the parameters of some Γ-definition of C, if
any, belong to H(κ), and for every B ∈ C, there exists
A ∈ C ∩ H(κ) that is elementarily embeddable into B.

If Γ is one of Σ∼n, Π∼n, ∆∼n, or Σn, Πn, ∆n, where n ∈ ω, we write
VP(Γ) for the following statement:

For every Γ proper class C of structures of the language of set
theory with one (equivalently, finitely-many) additional 1-ary
relation symbol, there exist distinct A and B in C with an
elementary embedding of A into B.
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Vopěnka’s Principle

Proposition

VP(κ,Σ∼1) holds for every uncountable cardinal κ.

Proposition

If VP(Π1) holds, then there exists a λ-supercompact cardinal κ,
for some λ in C(1) greater than κ.
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VP and supercompact cardinals

Theorem (B-Casacuberta-Mathias-Rosičky, 2008)

The following are equivalent:
1 VP(κ,∆∼2), for some κ.
2 VP(∆2).
3 VP(κ,Σ∼2), for some κ.
4 VP(Σ2).
5 There exists a supercompact cardinal.
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VP and supercompact cardinals

Theorem (B-C-M-R, 2008)

The following are equivalent:
1 VP(κ,∆∼2), for a proper class of cardinals κ.
2 VP(∆∼2).
3 VP(κ,Σ∼2), for a proper class of cardinals κ.
4 VP(Σ∼2).
5 There exists a proper class of supercompact cardinals.

What about the more complex classes, e.g., the Σ∼3?
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VP and C(n)-extendible cardinals

Theorem

For every n ≥ 1, if κ is a C(n)–extendible cardinal, then
VP(κ,Σ∼n+2) holds.

Theorem (B-C-M-R, 2008)

Let n ≥ 1, and suppose that VP(Σn+1 ∧ Πn+1) holds. Then
there exists a C(n)+-extendible cardinal.
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VP and C(n)-extendible cardinals

Corollary

The following are equivalent for n ≥ 1:
1 VP(Σn+1 ∧ Πn+1).
2 VP(κ,Σ∼n+2), for some κ.
3 There exists a C(n)-extendible cardinal.

Corollary

The following are equivalent:
1 VP(Σ3).
2 VP(κ,Σ∼3), for some κ.
3 There exists an extendible cardinal.
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VP and C(n)-extendible cardinals

Corollary

The following are equivalent:
1 VP.
2 VP(κ,Σ∼n) holds for a proper class of cardinals κ, for every

n.
3 For every n, there exists a C(n)-extendible cardinal.
4 For every n, there is a stationary proper class of

C(n)-extendible cardinals. i.e., every definable club proper
class contains a C(n)-extendible cardinal.
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C(n)-cardinals Vopěnka’s Principle VP & category theory Boundedness Accessibility Orthogonality

Bounded categories

A full subcategory D of a category C is called dense in C if
every object C ∈ C is a canonical colimit of objects from D.

Examples
1 In Set every singleton is dense.
2 In Gra, the one-point graph with no edges and the

two-point graph with only one edge between them form a
dense subcategory.

3 Finitely-generated Abelian groups are dense in Ab.

C is bounded if it has a small (i.e., a set) dense subcategory.
Thus Set, Gra, and Ab are bounded. But Top is not.
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Question
When is a category bounded?

A small full subcategory A of a category C is called
colimit-dense if every object of C is a colimit of a diagram in A.

Question
Is every category that has a colimit-dense subcategory
bounded?
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C(n)-cardinals Vopěnka’s Principle VP & category theory Boundedness Accessibility Orthogonality

Theorem (Adámek, Rosický, Trnková, 1990)
The following are equivalent:

1 A category is bounded iff it has a colimit-dense
subcategory.

2 VP.
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Accessible categories

Definition (Makkai - Paré, 1989)
A category K is accessible if it has λ-directed colimits (some
regular cardinal λ), and it has a set A of λ-presentable objects
such that every object is a λ-directed colimit of objects from A.

Definition (Adámek - Rosický, 1994)
A formula of Lλ is called basic if it has the form
∀x(ϕ(x)→ ψ(x)), where ϕ and ψ are disjunctions of formulas
of type ∃y ζ(x , y) in which ζ is a conjunction of atomic formulas.

A basic theory is a theory of basic sentences.

The accessible categories are the categories equivalent to
categories of models of basic theories.
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Accessible categories

Examples
1 For every theory T in Lλ, the category of models of T and

homomorphisms is accessible.
2 Top is not accessible.
3 The category of complete metric spaces is accessible.
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Accessible categories

Under VP, boundedness can be easily characterized.

Theorem (Fisher, 1987)
The following are equivalent:

1 A category is bounded and has λ-directed colimits for
some regular cardinal λ iff it is accessible.

2 VP.
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An Application of VP in Algebraic Topology

Question (D. Farjoun, ca. 1990)
Is every functor on simplicial sets that is idempotent up to
homotopy equivalent to f –localization for some map?

Theorem (Casacuberta – Scevenels – Smith, Adv. Math. 2005)
If there are no measurable cardinals, then there is a
counterexample.
If VP holds, then the answer is yes.
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Orthogonality

Definition
A morphism f : A→ B and an object X are called orthogonal in
a category C if for each g : A→ X there is a unique g′ : B → X
with g′ ◦ f = g:

A
∀g

��

f // B

∃! g′��
X
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Small-orthogonality classes

Definition
A small-orthogonality class in a category C is the class of
objects orthogonal to some set of morphisms
F = {fi : Pi → Qi | i ∈ I}.
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Boundedness and orthogonality for definable
categories

Theorem (B-C-M-R, 2009)

If there is a proper class of C(n)–extendible cardinals, then
1 Every Σ∼n+1 ∧ Π∼n+1 full subcategory of an accessible

category is bounded.

2 Every ∆∼n orthogonality class in an accessible category is a
small-orthogonality class.
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