Standard universal dendrites as small Polish structures

The concept of small Polish structures has been introduced and studied in
K. Krupiński, Some model theory of Polish structures, TAMS

Goals:

- Provide a setting which allows simultaneous application of ideas and techniques from model theory and descriptive set theory.
In particular:
- prove counterparts of some results from stability theory;
- find, in this wider context, counterexamples to open problems;
- provide a (yet another) tool to measure complexity of dinamycal systems.

Polish structures

A Polish structure is a pair (X, G) where:

- G is a Polish group acting faithfully on a set X i.e $\forall g, g^{\prime} \in G\left(g \neq g^{\prime} \Rightarrow \exists a \in X g a \neq g^{\prime} a\right)$
- the stabilisers of all singletons are closed

This generalises the notion of a profinite structure.
Notation: For $A \subseteq X, G_{A}$ will denote the pointwise stabiliser of A.

Independence

A notion of independence in Polish structures is introduce.
Let $\vec{a} \in X^{<\omega}$ and $A \subseteq B \subseteq X$ finite.
The idea is to say that \vec{a} is independent from B over A if, once A has been fixed, asking to fix B does not add too much constraint on ä, i.e.
$G_{B} \vec{a}$ is big in $G_{A} \vec{a}$.

Some topological notions of bigness: Open, non-meagre,...
However:

- X does not necessarily have a topology.
- Even if X has a nice topology, some orbits $G_{A} \vec{a}$ might behave badly, like being meagre in themselves.

Thus the relations of independence are defined via a pull back to the group G.

Let $\quad \pi_{A}: G_{A} \rightarrow G_{A} \vec{a} \quad$ and check whether

$$
g \mapsto g \vec{a}
$$

$$
\pi_{A}^{-1}\left(G_{B} \vec{a}\right) \text { is big in } \pi_{A}^{-1}\left(G_{A} \vec{a}\right)=G_{A} .
$$

Definitions.

Let $\vec{a} \in X^{<\omega}$ and $A, B \subseteq_{f i n} X$ (most often $A \subseteq B$).
$\vec{a} \downarrow_{A}^{o} B$: \vec{a} is o-independent from B over A if $\pi_{A}^{-1}\left(G_{A \cup B} \vec{a}\right)$ is open in $G_{A}\left(\right.$ written $\left.\pi_{A}^{-1}\left(G_{A \cup B} \vec{a}\right) \subseteq_{o} G_{A}\right)$.
$\vec{a} \downarrow_{A}^{n m} B: \vec{a}$ is nm-independent from B over A if $\pi_{A}^{-1}\left(G_{A \cup B} \vec{a}\right)$ is non-meagre in $G_{A}\left(\right.$ written $\left.\pi_{A}^{-1}\left(G_{A \cup B} \vec{a}\right) \subseteq_{n m} G_{A}\right)$.

Remark. If X is separable metrisable, the action $G \times X \rightarrow X$ is continuous and $G_{A} \vec{a}$ is not meagre in itself, then

$$
\vec{a}_{A}^{*} B \Leftrightarrow G_{A \cup B} \vec{a} \subseteq_{*} G_{A} \vec{a}
$$

(for $*=n m$ it is enough X being Hausdorff)

Example: $A=\varnothing$.

$$
\vec{a} \downarrow_{\varnothing}^{*} B \text { iff }\left\{g \in G \mid \exists h \in G_{B} g \vec{a}=h \vec{a}\right\} \subseteq_{*} G
$$

The opposite situation: small orbits. Let $A \subseteq_{f i n} X$.

- $d c l(A)=\left\{a \in X \mid G_{A} a=\{a\}\right\}$: definable closure of A
- $\operatorname{acl}(A)=\left\{a \in X \mid G_{A} a\right.$ is finite $\}$: strong algebraic closure of A
- $\operatorname{Acl}(A)=\left\{a \in X \mid G_{A} a\right.$ is at most countable $\}$: algebraic closure of A

For any $A \subseteq X$, define

$$
d c l(A)=\bigcup_{A_{0} \subseteq \text { fin } x} d c l\left(A_{0}\right)
$$

etc.

Basic properties of independence

To develop a counterpart of basic geometric stability theory, five properties of the independence relation are needed

- Invariance: $\vec{a} \downarrow_{A}^{*} B \Leftrightarrow g \vec{a} \downarrow_{g A}^{*} g B$
- Simmetry: $\vec{a} \downarrow_{A}^{*} \vec{b} \Leftrightarrow \vec{b} \downarrow_{A}^{*} \vec{a}$
- Transitivity: $\vec{a} \downarrow{ }_{A}^{*} B \wedge \vec{a} \downarrow_{B}^{*} C \Leftrightarrow \vec{a} \downarrow_{A}^{*} C$
- $a \in \operatorname{Acl}(A) \Leftrightarrow \forall B \vec{a} \downarrow_{A}^{*} B$
- Existence of independent extensions

Small Polish structures

A Polish structure (X, G) is small if
$\forall n, G \times X^{n} \rightarrow X^{n}$ has at most countably many orbits
(iff $\forall a_{1}, \ldots, a_{n} \in X, G_{a_{1}, \ldots, a_{n}} \times X \rightarrow X$ has at most countably many orbits)

Existence of independent extensions

Theorem. Let (X, G) be a small Polish structure. Then

$$
\forall \vec{a}, \forall A \subseteq B \subseteq_{\text {fin }} X, \exists \vec{b} \in G_{A} \vec{a}
$$

such that

$$
\vec{b} \downarrow{ }_{A}^{n m} B
$$

Remark. The same is not true for o-independent extensions.

Adaptation of some concepts from stability theory

- $X^{e q}=\bigcup\left\{X^{n} / E \mid E\right.$ invariant eq. rel. on X^{n}, s.t $\operatorname{Stab}\left([a]_{E}\right) \leq_{c}$ $G\}$, the imaginary extension of X
- Sets X^{n} / E are the sorts of $X^{e q}$
- $D \subseteq X^{n} / E$, for X^{n} / E a sort, is definable on $A \subseteq_{f i n} X^{e q}$ if $G_{A} D=D$ and $\operatorname{Stab}(D) \leq_{c} G$
- $d \in X^{e q}$ is a name for D if $\forall g \in G(g D=D \Leftrightarrow g d=d)$

Proposition. Every definable set in $X^{e q}$ has a name in $X^{e q}$.

Ranks

Assume (X, G) is a small Polish structure (but in most situations it is enough to ask for the existence of $n m$-independent extensions)

Definition. $\mathcal{N} \mathcal{M}$ is the function from the collection of orbits over finite sets (in X or $X^{e q}$) to $\operatorname{Ord} \cup\{\infty\}$,

$$
\mathcal{N} \mathcal{M}:(a, A) \mapsto \mathcal{N} \mathcal{M}(a, A) \in \operatorname{Ord} \cup\{\infty\}
$$

satisfying

$$
\mathcal{N M}(a, A) \geq \alpha+1 \Leftrightarrow \exists B \supseteq_{f i n} A\left(\mathcal{N} \mathcal{M}(a, B) \geq \alpha \wedge \neg a \downarrow_{A}^{n m} B\right)
$$

Example. $\mathcal{N \mathcal { M }}(a, A)=0 \Leftrightarrow a \in A \mathcal{l}^{e q}(A)$.

Definition. (X, G) is nm-stable if every 1-orbit has ordinal rank, i.e. there is no infinite sequence $A_{0} \subseteq A_{1} \subseteq \ldots \subseteq_{\text {fin }} X$ and $a \in X$ such that a is nm-dependent from A_{i+1} over A_{i}.

Definition. If D is definable over A in $X^{e q}$, the $\mathcal{N} \mathcal{M}$-rank of D is

$$
\mathcal{N} \mathcal{M}(D)=\sup \{\mathcal{N} \mathcal{M}(d, A) \mid d \in D\}
$$

Examples (Krupiński)

- $\left(S^{n}, \operatorname{Homeo}\left(S^{n}\right)\right)$ has rank 1
- $\left(\left(S^{1}\right)^{n}, \operatorname{Homeo}\left(\left(S^{1}\right)^{n}\right)\right)$ has rank 1
- $\left([0,1]^{\mathbb{N}}, \operatorname{Homeo}\left([0,1]^{\mathbb{N}}\right)\right)$ has rank 1
- if (X, G) has rank 1 , then $\left(X^{n}, G\right)$ has rank n

Continua

Definitions.

- A continuum is a compact connected metric space; it is non-degenerate if it has more than one point
- A non-degenerate continuum X is decomposable if $X=Y \cup Z$, for Y, Z some proper subcontinua of X. Otherwise it is indecomposable
- A non-degenerate continuum is hereditarily (in)decomposable if all its subcontinua are (in)decomposable

The pseudo-arc

Definition. The pseudo-arc is the unique continuum that is hereditarily indecomposable and arc-like:

$$
\forall \varepsilon, \exists f: P \rightarrow[0,1] \text { continuous }, \forall y, \operatorname{diam}\left(f^{-1}(y)\right)<\varepsilon
$$

A construction of the pseudoarc:

Fix distinct point $p, q \in \mathbb{R}^{2}$.
Step 0 Draw a simple chain $\mathcal{U}_{0}=\left\{U_{00}, \ldots, U_{0 r_{0}}\right\}$ from p to q of connected open sets of diameter less than 1 . Being a simple chain from p to q means:

- $U_{i} \cap U_{j} \Leftrightarrow|i-j| \leq 1$
- $p \in U_{0 i} \Leftrightarrow i=0$
- $q \in U_{0 i} \Leftrightarrow i=r_{0}$

Step $\mathbf{k}+\mathbf{1}$ Draw a simple chain $\mathcal{U}_{k+1}=\left\{U_{k+1,0}, \ldots, U_{k+1, r_{k+1}}\right\}$ from p to q of connected open sets of diameter less than $\frac{1}{k+2}$ such that

- the closure of each link of \mathcal{U}_{k+1} is contained in some link of \mathcal{U}_{k}
- \mathcal{U}_{k+1} is crooked in \mathcal{U}_{k}

This last condition means that for all i, j, m, n, if

$$
m+2<n, \quad U_{k+1, i} \cap U_{k m} \neq \varnothing, \quad U_{k+1, j} \cap U_{k n} \neq \varnothing
$$

then there are s, t with $i<s<t<j$ or $i>t>I>j$ such that

$$
U_{k+1, s} \subseteq U_{k, n-1} \text { and } U_{k+1, t} \subseteq U_{k, m+1}
$$

Final step $P=\bigcap_{k \in \mathbb{N}} \cup \mathcal{U}_{k}$ is the pseudoarc.

The pseudo-arc is a quite complicated continuum. Nevertheless it is the generic continuum: the class of pseudo-arcs is dense G_{δ} in the space of all continua.

Theorem. (Krupiński) Let P be the pseudo-arc. Then (P, Homeo (P)) is a small, not nm-stable, Polish structure.

In particular, the $\mathcal{N} \mathcal{M}$-rank of P is ∞.
Moreover P is an example of a small Polish structure not admitting o-independent extensions.

Dendrites

Among simplest continua are dendrites.
A dendrite is a locally connected continuum that does not contain simple closed curves.

Definition. Given a point x in a continuum X, its order $\operatorname{ord}(x, X)$ is the smallest cardinal β such that x has a basis of open neighbourhoods whose boundaries have cardinality $\leq \beta$.

All points of a dendrite have order $\leq \kappa_{0}$. Points of order 1 are called end points; points of order ≥ 3 are branching points.

The following property might help to visualise a dendrite:
If X is a non-degenerate dendrite, then

$$
X=\bigcup_{i \in \mathbb{N}} A_{i} \cup E(X)
$$

where:

- each A_{i} is an arc, with end points p_{i}, q_{i}
- $A_{i+1} \cap \bigcup_{j=0}^{i} A_{j}=\left\{p_{i+1}\right\}$
- $\operatorname{diam}\left(A_{i}\right) \rightarrow 0$
- $E(X)$ is the set of end points of X

The goal is to study Polish structures of the form $(D, \operatorname{Homeo}(D))$ where D is a dendrite.

Remark. Not all dendrites are small Polish structures. Let $D \subseteq \mathbb{R}^{2}$ be obtained by starting with $[0,1] \times\{0\}$ as follows:

- enumerate $\left\{q_{n}\right\}_{n \in \mathbb{N}}=(] 0,1[\cap \mathbb{Q}) \times\{0\}$
- at step n add n arcs of diameter $\leq \frac{1}{2^{n}}$ intersecting each other and the already achieved construction only in q_{n}
Then all point of $] 0,1[\times\{0\}$ are in distinct orbits.

Ważewski's universal dendrites

Let $\varnothing \neq J \subseteq\{3,4 \ldots, \omega\}$.
There is a unique dendrite D_{J} such that

- each branching point of D_{J} has order in J
- each subarc of D_{J} contains points of any order in J

Universality property

D_{J} is universal for the class of dendrites whose branching points have order in J : any such dendrite embeds in D_{J}.

Theorem. Each $\left(D_{J}, \operatorname{Homeo}\left(D_{J}\right)\right)$ is a small Polish structure of $\mathcal{N} \mathcal{M}$-rank 1

Conjectures.

- Each dendrite admits $n m$-independent extensions
- If D is a dendrite and $(D, \operatorname{Homeo}(D))$ is small, then $\mathcal{N M}(D)=1$

Some questions.

- Characterise dendrites D such that $(D, \operatorname{Homeo}(D))$ is small.
- Find examples of continua C with $1<\mathcal{N} \mathcal{M}(C)<\infty$.
- The $\mathcal{N} \mathcal{M}$-gap conjecture.

An example of a small Polish structure (X, G) with $\mathcal{N} \mathcal{M}(X)=\omega$ can be obtained as a disjoint sum of small Polish structures of increasing natural rank.
E.g., take (Y, G) of rank 1 an let $X=\cup_{n \geq 1} X^{n}$.

However, in this example the is no single orbit over finite sets with rank $\geq \omega$ (and $\neq \infty$).

The $\mathcal{N} \mathcal{M}$-gap conjecture. Let (X, G) be a small Polish structure. Then, for any orbit o of a finite set $A \subseteq X$, one has

$$
\mathcal{N} \mathcal{M}(o) \in \omega \cup\{\infty\}
$$

This conjecture is open in the class of small profinite structures; it has been proved for small m-stable profinite groups. In this wider context it might be easier to find a counterexample.

