On dimension and Borel reducibility

ESI W_OLC[&]DST Wien, June 2009

Samuel Coskey Department of Mathematics City University of New York

Standard Borel spaces

Many classification problems can be presented as equivalence relations on standard Borel spaces.

Definition

A standard Borel space is a Polish space equipped just with its σ -algebra of Borel sets.

Examples

- Any Borel subset of a Polish space X
- The space F(X) of closed subsets of a Polish space X

Countable groups

Many classification problems can be presented as equivalence relations on standard Borel spaces.

Example

The classification problem for countable groups.

Definition

- Let X_G denote the space of countable groups (think of it as a Borel subset of P(ω³))
- Let $\cong_{\mathcal{G}}$ denote the isomorphism equivalence relation on $X_{\mathcal{G}}$

Complexity of group isomorphism

• Let $X_{\mathcal{G}}$ denote the space of countable groups (think of it as a Borel subset of $\mathcal{P}(\omega^3)$)

Observation Groups $G, G' \in X_{\mathcal{G}}$ are isomorphic iff there exists $f: \omega \to \omega$ carrying the group operation of G to that of G'.

Remark This is a Σ_1^1 definition.

Theorem (Mekler)

In fact, $\cong_{\mathcal{G}}$ is a Σ_1^1 -complete set of pairs, and hence it is not Borel.

Torsion-free abelian groups of finite rank

Definition

If A is a torsion-free abelian group, then the rank of A is the size of a maximal \mathbb{Z} -independent set.

Fact

Any torsion-free abelian group of rank n is isomorphic to a subgroup of \mathbb{Q}^n .

Definition

- Let TFA_n denote the space of rank n subgroups of \mathbb{Q}^n
- Let \cong_n denote the isomorphism equivalence relation on TFA_n

Complexity of \cong_n

• Let TFA_n denote the space of rank *n* subgroups of \mathbb{Q}^n

Observation

Subgroups $A, B \leq \mathbb{Q}^n$ are isomorphic iff there exists $g \in \operatorname{GL}_n(\mathbb{Q})$ such that B = g(A).

Remark

This is a countable quantifier; it follows that \cong_n is Borel.

The Borel/non-Borel distinction is useful, but we have a finer notion of complexity in mind...

Smooth equivalence relations

Definition

The equivalence relation E on X is called smooth (or completely classifiable) iff there exists a standard Borel space \mathcal{I} of invariants and a Borel function $f: X \to \mathcal{I}$ such that

$$x E x' \iff f(x) = f(x')$$
.

The map f tells you how to find complete invariants for the classification problem up to E.

Example

The isomorphism problem for countable divisible groups is smooth. Just let $f(A) = \langle n_0, n_2, n_3, n_5, \ldots \rangle$, where

$$A \cong \mathbb{Q}^{n_0} \oplus \mathbb{Z}(2^{\infty})^{n_2} \oplus \mathbb{Z}(3^{\infty})^{n_3} \oplus \mathbb{Z}(5^{\infty})^{n_5} \oplus \cdots$$

Borel reducibility

Definition (H. Friedman–Stanley)

Let E, F be equivalence relations on standard Borel spaces X, Y. We say that E is Borel reducible to F (written $E \leq_B F$) iff there exists a Borel function $f: X \to Y$ satisfying

$$x E x' \iff f(x) F f(x')$$
.

We say that f is a Borel reduction from E to F.

Example

$$\cong_n \leq_B \cong_{n+1}$$
 via the map $A \mapsto A \oplus \mathbb{Q}$.

Countable Borel equivalence relations

Definition

The Borel equivalence relation E is said to be countable iff every E-class is countable.

e.g., locally finite graphs, f.g. groups

e.g., torsion-free abelian groups of finite rank

almost equality on 2^ω

equality on 2^ω

Big questions of the 90s

Question

Are there infinitely many countable Borel equivalence relations up to bireducibility?

Definition E, F are Borel bireducible (written $E \sim_B F$) iff $E \leq_B F$ and $F \leq_B E$.

Question

Are there infinite chains? Antichains?

Problem

Describe the structure of the (pre) partial order \leq_B on the countable Borel equivalence relations.

Orbit equivalence relations

Definition

Let X be a standard Borel space and $\Gamma \curvearrowright X$ the Borel action of some countable group. The orbit equivalence relation E_{Γ} is defined by

$$x E_{\Gamma} x' \iff \Gamma x = \Gamma x'$$
.

Example

The isomorphism relation \cong_n on the subspace $\mathsf{TFA}_n \subset \mathcal{P}(\mathbb{Q}^n)$ of torsion-free abelian groups of rank *n* is induced by the action $\mathrm{GL}_n(\mathbb{Q}) \curvearrowright \mathrm{TFA}_n$.

Theorem (Feldman–Moore)

If E is any countable Borel equivalence relation on X, then there exists a countable group Γ and a Borel action $\Gamma \curvearrowright X$ such that $E = E_{\Gamma}$.

Rigidity for countable Borel equivalence relations

Theorem (Adams–Kechris)

There exists an uncountable family of pairwise Borel incomparable countable Borel equivalence relations.

Idea

Use the concept of rigidity: in special cases, groups which are highly incompatible give rise to orbit spaces which are highly incompatible.

More precisely, Adams–Kechris used the following consequence of Zimmer's cocycle superrigidity theorem:

Theorem (Adams-Kechris)

Let $\Gamma_i \curvearrowright X_i$ be free, ergodic actions of lattices in higher rank, connected, centerless, simple Lie groups G_i . If $E_{\Gamma_0} \leq_B E_{\Gamma_1}$, then there exist $N \leq H \leq G_1$ such that $G_0 \cong H/N$.

TFA history

- 1937 Baer showed that \cong_1 lies at the level of $=^*$.
- 1938 Kurosh and Malcev "classified" the rank 2 and higher groups by invariants consisting of a sequence of *p*-adic matrices modulo certain operations.
- 1998 Hjorth proved that in fact \cong_2 is strictly more complex than \cong_1 .

Question

Do the \cong_n increase strictly in complexity beyond n = 2?

Try to use rigidity for the TFA problem

Suppose that f is a Borel reduction from \cong_{n+1} to \cong_n .

Idea

Recall that \cong_n is induced by the action $\operatorname{GL}_n(\mathbb{Q}) \curvearrowright \mathsf{TFA}_n$. Try to use Adams–Kechris to reach a contradiction.

Theorem (Adams-Kechris)

Let $\Gamma_i \curvearrowright X_i$ be free ergodic actions of lattices in higher rank, connected centerless simple Lie groups G_i . If $E_{\Gamma_0} \leq_B E_{\Gamma_1}$, then there exist $N \leq H \leq G_1$ such that $G_0 \cong H/N$.

Theorem (Hjorth)

There exists an ergodic, $SL_n(\mathbb{Z})$ -invariant measure on TFA_n .

A chain of TFAs

Theorem (Adams–Kechris)

Let \cong_n^* denote the restriction of \cong_n to the subspace $S(n) \subset \mathsf{TFA}_n$ of rigid TFAs of rank n. Then:

$$\cong_2^* <_B \cong_3^* <_B \cong_4^* <_B \cdots$$

Definition

A subgroup $A \leq \mathbb{Q}^n$ is said to be rigid iff $\operatorname{Aut}(A) = \{\pm Id\}$.

More chains of TFAs

Thomas completed the Hjorth/Adams/Kechris analysis to obtain: Theorem (Thomas)

$$\cong_2 <_B \cong_3 <_B \cong_4 <_B \cdots$$

Other cases where the complexity increases strictly with the rank:

- Dimension groups
- *p*-local groups (next slide)
- TFAs, but considered up to quasi-isomorphism

Definition

Subgroups $A, B \leq \mathbb{Q}^n$ are said to be quasi-isomorphic iff B is commensurable with an isomorphic copy of A.

Antichains of local TFAs

Definition

An abelian group is said to be *p*-local iff it is *q*-divisible for every $q \neq p$.

Definition

Let $\cong_n^{(p)}$ denote the restriction of \cong_n to the subspace $\mathsf{TFA}_n^{(p)}$ of *p*-local torsion-free abelian groups of rank *n*.

Theorem (Thomas)

If $n \ge 2$ and $p \ne q$, then $\cong_n^{(p)}$ is Borel incomparable with $\cong_n^{(q)}$.

The main theorem statement

Question (Thomas)

What role does "dimension" play in deciding whether $E \leq_B F$?

Lemma (🏝)

Suppose that $3 \leq m < n$ and that $p \neq q$. Then $\operatorname{SL}_m(\mathbb{Z}) \curvearrowright \operatorname{SL}_m(\mathbb{Z}_p)$ is Borel incomparable with $\operatorname{SL}_n(\mathbb{Z}) \curvearrowright \operatorname{SL}_n(\mathbb{Z}_q)$.

Theorem (🏝)

Suppose that $3 \le m < n$ and that $p \ne q$. Then $\cong_m^{(p)}$ is Borel incomparable with $\cong_n^{(q)}$.

→ So the locality prime can be used as an invariant, regardless of the dimension.

Proving the lemma

Lemma (🏝)

Suppose that $3 \leq m < n$ and that $p \neq q$. Then $\operatorname{SL}_m(\mathbb{Z}) \curvearrowright \operatorname{SL}_m(\mathbb{Z}_p)$ is Borel incomparable with $\operatorname{SL}_n(\mathbb{Z}) \curvearrowright \operatorname{SL}_n(\mathbb{Z}_q)$.

Proof sketch

Suppose, towards a contradiction, that $f \colon \mathrm{SL}_m(\mathbb{Z}_p) \to \mathrm{SL}_n(\mathbb{Z}_p)$ is a Borel reduction from $E_{\mathrm{SL}_m\mathbb{Z}}$ to $E_{\mathrm{SL}_n\mathbb{Z}}$.

Idea

Use rigidity to replace f by a map which not only takes orbits to orbits, but also carries one action to the other.

What we seek from ergodic theory Definition Let $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$.

• Borel homomorphism from E_{Γ} to E_{Λ} : A Borel function $f: X \to Y$ such that

$$\Gamma x = \Gamma x' \implies \Lambda f(x) = \Lambda f(x')$$

• Permutation group homomorphism from $\Gamma \curvearrowright X$ to $\Lambda \curvearrowright Y$: a Borel homomorphism f together with a group homomorphism $\phi \colon \Gamma \to \Lambda$ such that

$$f(\gamma x) = \phi(\gamma)f(x)$$

We want to replace a Borel homomorphism with a permutation group homomorphism.

On dimension and Borel reducibility

Samuel Coskey (CUNY)

Superrigidity for profinite actions

Theorem (A. Ioana)

And suppose that f is a Borel homomorphism from E_{Γ} to E_{Λ} , and that the following hypotheses are satisfied.

- Γ has property (T)
- $\Gamma \curvearrowright X$ is profinite, free, and ergodic
- $\Lambda \curvearrowright Y$ is free

Then (after a finite error), f is equivalent to a permutation group homomorphism from $\Gamma \curvearrowright X$ to $\Lambda \curvearrowright Y$.

Remark

We are interested in the action $\mathrm{SL}_m(\mathbb{Z}) \curvearrowright \mathrm{SL}_m(\mathbb{Z}_p)$; this satisfies all of the hypotheses on $\Gamma \curvearrowright X$.

The conclusion of the proof

Dense subgroups of compact groups

We have: a permutation group homomorphism (ϕ, f) from $\operatorname{SL}_m(\mathbb{Z}) \curvearrowright \operatorname{SL}_m(\mathbb{Z}_p)$ to $\operatorname{SL}_n(\mathbb{Z}) \curvearrowright \operatorname{SL}_n(\mathbb{Z}_q)$.

Lemma (Gefter, Furman)

Suppose that K_0, K_1 are compact groups and $\Gamma_i \leq K_i$ are dense subgroups. Let (ϕ, f) be a permutation group homomorphism from $\Gamma_0 \curvearrowright K_0$ to $\Gamma_1 \curvearrowright K_1$. Then (off of a null set) f an affine mapping.

Definition

 $f: K_0 \to K_1$ is said to be an affine mapping iff $f(k) = \Phi(k)t$ for some homomorphism $\Phi: K_0 \to K_1$ and $t \in K_1$.

In particular there exists a homomorphism $\mathrm{SL}_m(\mathbb{Z}_p) \to \mathrm{SL}_n(\mathbb{Z}_q)$; this is a contradiction!

Deriving the main theorem

Theorem (🏝)

Suppose that $3 \leq m < n$ and that $p \neq q$. Then $\cong_m^{(p)}$ is not Borel reducible to $\cong_n^{(q)}$.

The main ingredient is the Kurosh-Malcev classification:

Theorem (Kurosh-Malcev)

The map $A \mapsto A \otimes \mathbb{Z}_p$ is a $\operatorname{GL}_n(\mathbb{Q})$ -preserving isomorphism between $\operatorname{TFA}_n^{(p)}$ and the space of \mathbb{Z}_p -submodules of \mathbb{Q}_p^n .

Lemma

 $SL_n(\mathbb{Z}_p)$ acts on the space of \mathbb{Z}_p -submodules of \mathbb{Q}_p^n , and any of its orbits meets every $GL_n(\mathbb{Q})$ -orbit.

One applies the methods we have outlined to the action of $\mathrm{SL}_n(\mathbb{Z})$ on some $\mathrm{SL}_n(\mathbb{Z}_p)$ orbit, which is a transitive $\mathrm{SL}_n(\mathbb{Z}_p)$ -space.