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Standard Borel spaces

Many classification problems can be presented as equivalence
relations on standard Borel spaces.

Definition
A standard Borel space is a Polish space equipped just with its
σ-algebra of Borel sets.

Examples

• Any Borel subset of a Polish space X

• The space F (X ) of closed subsets of a Polish space X
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Countable groups

Many classification problems can be presented as equivalence
relations on standard Borel spaces.

Example

The classification problem for countable groups.

Definition

• Let XG denote the space of countable groups (think of it as a
Borel subset of P(ω3))

• Let ∼=G denote the isomorphism equivalence relation on XG
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Complexity of group isomorphism

• Let XG denote the space of countable groups (think of it as a
Borel subset of P(ω3))

Observation
Groups G ,G ′ ∈ XG are isomorphic iff there exists f : ω → ω
carrying the group operation of G to that of G ′.

Remark
This is a Σ1

1 definition.

Theorem (Mekler)

In fact, ∼=G is a Σ1
1-complete set of pairs, and hence it is not Borel.
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Torsion-free abelian groups of finite rank

Definition
If A is a torsion-free abelian group, then the rank of A is the size
of a maximal Z-independent set.

Fact
Any torsion-free abelian group of rank n is isomorphic to a
subgroup of Qn.

Definition

• Let TFAn denote the space of rank n subgroups of Qn

• Let ∼=n denote the isomorphism equivalence relation on TFAn
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Complexity of ∼=n

• Let TFAn denote the space of rank n subgroups of Qn

Observation
Subgroups A,B ≤ Qn are isomorphic iff there exists g ∈ GLn(Q)
such that B = g(A).

Remark
This is a countable quantifier; it follows that ∼=n is Borel.

The Borel/non-Borel distinction is useful, but we have a finer
notion of complexity in mind. . .
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Smooth equivalence relations

Definition
The equivalence relation E on X is called smooth (or completely
classifiable) iff there exists a standard Borel space I of invariants
and a Borel function f : X → I such that

x E x ′ ⇐⇒ f (x) = f (x ′) .

The map f tells you how to find complete invariants for the
classification problem up to E .

Example

The isomorphism problem for countable divisible groups is smooth.
Just let f (A) = 〈n0, n2, n3, n5, . . .〉, where

A ∼= Qn0 ⊕ Z(2∞)n2 ⊕ Z(3∞)n3 ⊕ Z(5∞)n5 ⊕ · · ·
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Borel reducibility

Definition (H. Friedman–Stanley)

Let E ,F be equivalence relations on standard Borel spaces X ,Y .
We say that E is Borel reducible to F (written E ≤B F ) iff there
exists a Borel function f : X → Y satisfying

x E x ′ ⇐⇒ f (x) F f (x ′) .

We say that f is a Borel reduction from E to F .

Example
∼=n ≤B

∼=n+1 via the map A 7→ A⊕Q.
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Countable Borel equivalence relations

Definition
The Borel equivalence relation E is said to be countable iff every
E -class is countable.

E∞
e.g., locally finite graphs,

f.g. groups

many e.g., torsion-free abelian
groups of finite rank

=∗ almost equality on 2ω

=2ω equality on 2ω
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Big questions of the 90s

Question
Are there infinitely many countable Borel equivalence relations up
to bireducibility?

Definition
E ,F are Borel bireducible (written E ∼B F ) iff E ≤B F and
F ≤B E .

Question
Are there infinite chains? Antichains?

Problem
Describe the structure of the (pre) partial order ≤B on the
countable Borel equivalence relations.
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Orbit equivalence relations

Definition
Let X be a standard Borel space and Γ y X the Borel action of
some countable group. The orbit equivalence relation EΓ is defined
by

x EΓ x ′ ⇐⇒ Γx = Γx ′ .

Example

The isomorphism relation ∼=n on the subspace TFAn ⊂ P(Qn) of
torsion-free abelian groups of rank n is induced by the action
GLn(Q) y TFAn.

Theorem (Feldman–Moore)

If E is any countable Borel equivalence relation on X , then there
exists a countable group Γ and a Borel action Γ y X such that
E = EΓ.
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Rigidity for countable Borel equivalence relations

Theorem (Adams–Kechris)

There exists an uncountable family of pairwise Borel incomparable
countable Borel equivalence relations.

Idea
Use the concept of rigidity: in special cases, groups which are
highly incompatible give rise to orbit spaces which are highly
incompatible.

More precisely, Adams–Kechris used the following consequence of
Zimmer’s cocycle superrigidity theorem:

Theorem (Adams–Kechris)

Let Γi y Xi be free, ergodic actions of lattices in higher rank,
connected, centerless, simple Lie groups Gi . If EΓ0 ≤B EΓ1 , then
there exist N E H ≤ G1 such that G0

∼= H/N.
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TFA history

1937 Baer showed that ∼=1 lies at the level of =∗.

1938 Kurosh and Malcev “classified” the rank 2 and higher groups
by invariants consisting of a sequence of p-adic matrices
modulo certain operations.

1998 Hjorth proved that in fact ∼=2 is strictly more complex than
∼=1.

Question
Do the ∼=n increase strictly in complexity beyond n = 2?
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Try to use rigidity for the TFA problem

Suppose that f is a Borel reduction from ∼=n+1 to ∼=n.

Idea
Recall that ∼=n is induced by the action GLn(Q) y TFAn. Try to
use Adams–Kechris to reach a contradiction.

Theorem (Adams–Kechris)

Let Γi y Xi be free ergodic actions of lattices in higher rank,
connected centerless simple Lie groups Gi . If EΓ0 ≤B EΓ1 , then
there exist N E H ≤ G1 such that G0

∼= H/N.

Theorem (Hjorth)

There exists an ergodic, SLn(Z)-invariant measure on TFAn.
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A chain of TFAs

Theorem (Adams–Kechris)

Let ∼=∗n denote the restriction of ∼=n to the subspace S(n) ⊂ TFAn

of rigid TFAs of rank n. Then:

∼=∗2 <B
∼=∗3 <B

∼=∗4 <B · · ·

Definition
A subgroup A ≤ Qn is said to be rigid iff Aut(A) = {±Id}.
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More chains of TFAs

Thomas completed the Hjorth/Adams/Kechris analysis to obtain:

Theorem (Thomas)

∼=2 <B
∼=3 <B

∼=4 <B · · ·

Other cases where the complexity increases strictly with the rank:

• Dimension groups

• p-local groups (next slide)

• TFAs, but considered up to quasi-isomorphism

Definition
Subgroups A,B ≤ Qn are said to be quasi-isomorphic iff B is
commensurable with an isomorphic copy of A.
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Antichains of local TFAs

Definition
An abelian group is said to be p-local iff it is q-divisible for every
q 6= p.

Definition
Let ∼=(p)

n denote the restriction of ∼=n to the subspace TFA
(p)
n of

p-local torsion-free abelian groups of rank n.

Theorem (Thomas)

If n ≥ 2 and p 6= q, then ∼=(p)
n is Borel incomparable with ∼=(q)

n .
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The main theorem statement

Question (Thomas)

What role does “dimension” play in deciding whether E ≤B F ?

Lemma ( )

Suppose that 3 ≤ m < n and that p 6= q. Then
SLm(Z) y SLm(Zp) is Borel incomparable with
SLn(Z) y SLn(Zq).

Theorem ( )

Suppose that 3 ≤ m < n and that p 6= q. Then ∼=(p)
m is Borel

incomparable with ∼=(q)
n .

−→ So the locality prime can be used as an invariant,
regardless of the dimension.
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Proving the lemma

Lemma ( )

Suppose that 3 ≤ m < n and that p 6= q. Then
SLm(Z) y SLm(Zp) is Borel incomparable with
SLn(Z) y SLn(Zq).

Proof sketch
Suppose, towards a contradiction, that f : SLm(Zp)→ SLn(Zp) is
a Borel reduction from E SLm Z to E SLn Z.

Idea
Use rigidity to replace f by a map which not only takes orbits to
orbits, but also carries one action to the other.
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What we seek from ergodic theory

Definition
Let Γ y X and Λ y Y .

• Borel homomorphism from EΓ to EΛ: A Borel function
f : X → Y such that

Γx = Γx ′ =⇒ Λf (x) = Λf (x ′)

• Permutation group homomorphism from Γ y X to Λ y Y : a
Borel homomorphism f together with a group homomorphism
φ : Γ→ Λ such that

f (γx) = φ(γ)f (x)

We want to replace a Borel homomorphism with a permutation
group homomorphism.
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Superrigidity for profinite actions

Theorem (A. Ioana)

And suppose that f is a Borel homomorphism from EΓ to EΛ, and
that the following hypotheses are satisfied.

• Γ has property (T )

• Γ y X is profinite, free, and ergodic

• Λ y Y is free

Then (after a finite error), f is equivalent to a permutation group
homomorphism from Γ y X to Λ y Y .

Remark
We are interested in the action SLm(Z) y SLm(Zp); this satisfies
all of the hypotheses on Γ y X .
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The conclusion of the proof
Dense subgroups of compact groups

We have: a permutation group homomorphism (φ, f ) from
SLm(Z) y SLm(Zp) to SLn(Z) y SLn(Zq).

Lemma (Gefter, Furman)

Suppose that K0,K1 are compact groups and Γi ≤ Ki are dense
subgroups. Let (φ, f ) be a permutation group homomorphism from
Γ0 y K0 to Γ1 y K1. Then (off of a null set) f an affine mapping.

Definition
f : K0 → K1 is said to be an affine mapping iff f (k) = Φ(k)t for
some homomorphism Φ: K0 → K1 and t ∈ K1.

In particular there exists a homomorphism SLm(Zp)→ SLn(Zq);
this is a contradiction!
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Deriving the main theorem

Theorem ( )

Suppose that 3 ≤ m < n and that p 6= q. Then ∼=(p)
m is not Borel

reducible to ∼=(q)
n .

The main ingredient is the Kurosh-Malcev classification:

Theorem (Kurosh-Malcev)

The map A 7→ A⊗ Zp is a GLn(Q)-preserving isomorphism

between TFA
(p)
n and the space of Zp-submodules of Qn

p.

Lemma
SLn(Zp) acts on the space of Zp-submodules of Qn

p, and any of its
orbits meets every GLn(Q)-orbit.

One applies the methods we have outlined to the action of SLn(Z)
on some SLn(Zp) orbit, which is a transitive SLn(Zp)-space.
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