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Reinhardt Hypothesis: there exists an elementary embedding
j : V ≺ V .
It’s a natural strengthening of the hypothesis with a j : V ≺ M.

Theorem (Kunen, 1971)

If j : V ≺ M, then M 6= V .

The critical sequence has an important role in the proof:

Definition

κ0 = crit(j), κn+1 = j(κn), λ = supn∈ω κn.

Kunen’s proof uses a choice function that is in Vλ+2. So

Corollary

There is no j : Vη ≺ Vη,with η ≥ λ+ 2.
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It is natural to define the following Hypoteses-Axioms, also
called rank-to-rank
Definition

I3: There exists an elementary embedding j : Vλ ≺ Vλ.

I1: There exists an elementary embedding
j : Vλ+1 ≺ Vλ+1.

I0 (or Woodin’s Axiom): There exists an elementary
embedding j : L(Vλ+1) ≺ L(Vλ+1) with critical point less
than λ.

The last one was proposed by Woodin to prove the consistency
of ADR, but it became obsolete for that purpose.
Nonetheless, I0 leads to interesting results.
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Since the cofinality of λ is ω, Vλ+1 is quite similar to Vω+1.
So L(Vλ+1) is quite similar to L(R), e.g.:

L(Vλ+1) � DCλ;

we can define Θ = sup{α : ∃π : Vλ+1 � α, π ∈ L(Vλ+1)}
and it is regular. . .

Quite surprisingly, I0 is similar to ADL(R).

I0 → the Coding Lemma is true in L(Vλ+1);

I0 → Θ is a limit of measurable cardinals. . .

So, I0 is the first example of what we can call “Higher
Determinacy Axiom”.
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Are there other examples?
Is there a higher correspondent of ADL(R,X ), with X ⊆ R?
Intuitevely, it must be “There is an elementary embedding
j : L(Vλ+1,X ) ≺ L(Vλ+1,X ), with X ⊆ Vλ+1”.
This suffices to prove the Coding Lemma, but there aren’t
proofs that it implies that the corresponding Θ is a limit of
measurable cardinals.
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However, the problem is resolved if we put another condition
on the elementary embedding:

Definition

j : L(X ,Vλ+1) ≺ L(X ,Vλ+1) is proper if the fixed points of j
are cofinal in Θ.

(Actually this is not the original definition of properness, but
for the purposes of the talk this is an equivalent definition)

Is there a higher correspondent of ADR?
There is no evident elementary embedding form. . . so the way
chose by Woodin is defining an analogous of the minimum
model of ADR.
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Definition

Define a sequence of Γα ⊆ ℘(R) by induction on α:

Γ0 = L(R) ∩ ℘(R);

If α is a limit ordinal then Γα = L((
⋃
β<α Γβ)ω) ∩ ℘(R);

If cof(ΘL(Γα)) = ω, then Γα+1 = L((Γα)ω,R) ∩ ℘(R),
otherwise Γα+1 = L(Γα) [F ]∩℘(R), where F is the ω-club
filter in ΘL(Γα).

The sequence stops when L(Γα) 2 AD or Γα = Γα+1
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So, Woodin defined a sequence 〈E 0
α : α < Υ〉 such that

Vλ+1 ⊂ E 0
α ⊂ Vλ+2;

if β < α then E 0
β ⊂ E 0

α;

E 0
0 = L(Vλ+1) ∩ Vλ+2;

for α limit, E 0
α = L(

⋃
β<α E 0

β ) ∩ Vλ+2;

for every α there exists X ⊆ Vλ+1 such that
L(E 0

α+1) = L(X ,Vλ+1);

E 0
α+2 = L((X ,Vλ+1)]) ∩ Vλ+2;

for every α < Υ there exists an elementary embedding
j : L(E 0

α) ≺ L(E 0
α);

the sequence Eα has absoluteness properties.
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In this definition new kinds of elementary embedding appear,
i.e j : L(E ) ≺ L(E ), with Vλ+1 ⊂ E ⊂ Vλ+2 and
L(E ) ∩ Vλ+2 = E .
This sequence creates a whole new playground, where the main
characters are:

E 0
α ΘL(E0

α) (E 0
α)]

and their correlation, expecially at limit points. Examples:

If E 0
β =

⋃
γ<β E 0

β , then ΘE0
β = supγ<β ΘE0

γ .

If L(E 0
β ) = L(X ,Vλ+1), then (E 0

β )] has no predecessor.

Lemma (Woodin)

Let η < ΥVλ+1
be a limit ordinal. If ΘE0

η > supβ<η ΘE0
β , then

there exists Y ∈ E 0
η such that L(E 0

η ) = L(Y ,Vλ+1).
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This correlations are more significant when
L(E 0

β ) � V = HODVλ+1
, i.e in an initial segment fo Υ.

Examples:

ΘE0
β is regular.

If E 0
β =

⋃
γ<β E 0

β , then β = ΘE0
β .

(Woodin) If j : L(E 0
β ) ≺ L(E 0

β ) is proper, then the Coding
Lemma holds and Θ is limit of measurables.
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We can extend the definition of proper to this embeddings: j is
proper if the fixed points of j are cofinal in Θ.
Is this definition really relevant? Is it possible that all the
elementary embeddings are proper?
Fact: if α is a successor ordinal or a limit ordinal with cofinality
> ω, every embedding is proper;
Fact 2: if we have j : L(X ,Vλ+1) ≺ L(X ,Vλ+1) and
k ⊃ j � L(X ,Vλ+1) ∩ Vλ+2, k : L((X ,Vλ+1)]) ≺ L((X ,Vλ+1)]),
then k is proper.

Theorem 1

Let α be the least such that L((E 0
α)])∩Vλ+2 = E 0

α. Then there
exists an elementary embedding j : L(E 0

α) ≺ L(E 0
α) that is not

proper.
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The fundamental property of such α is that
α = ΘL(E0

α)= ΘL((E0
α)]), so this provides a model, L((E 0

α)]) that
is big enough to “know” deeply L(E 0

α), but such that α is not
too small in it.
Another important consideration is that even if (E 0

γ )] /∈ L(E 0
γ ),

its fragments are in E 0
γ , so if we have an elementary embedding

from E 0
α to itself that conserves the fragments (]-friendly?), it

can be easily lifted to L(E 0
α).

In a big enough model, we can treat elementary embeddings as
sets.
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The proof of Theorem 1 uses this game:

I k0 k1 k2

· · ·
II η0 η1

where the ks are ]-friendly elementary embeddings from E 0
βi

to

E 0
βi+1

, βi < η1 < βi+1 and ki ⊆ ki+1.

In L((E 0
α)]) I has a winning strategy.
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Theorem

Let α be the least such that L((E 0
α)]) ∩ Vλ+2 = E 0

α. Then
there exists an elementary embedding j : L(E 0

α) ≺ L(E 0
α) that is

proper.

There are two proofs of that. One can use j from L((E 0
α)]]) to

itself or we can use again the game.

Theorem 2

Let α be such that {γ < α : (E 0
γ )] ⊆ (E 0

α)]} has ordertype λ.
Then every j : L(E 0

α) ≺ L(E 0
α) is not proper.
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We call α the ordinal from Theorem 1 and β the least one
between those from Theorem 2

α > β

If j , k : L(E 0
β ) ≺ L(E 0

β ) agree upon Vλ+1 and the
indiscernibles, than they are equal.
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Is it possible to use the game from Theorem 1 to prove
other things? E.g. there are 2λ possible elementary
embeddings from L(E 0

α) to itself that agree on Vλ+1, or
there are two elementary embeddings with no fixed points
in common.

Is the definition of proper relevant for the elementary
embeddings between L(X ,Vλ+1)?

Is there a value of Υ that is inconsistent?
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