> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinac Axioms

Main Results

Work in Progress

Open Problems

Non proper elementary embeddings beyond $L(V_{\lambda+1})$

Vincenzo Dimonte

Università di Torino

19 June 2009

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinac Axioms

Main Results

Work in Progress

Open Problems

Chart of Cardinals

The arrows indicates direct implications or relative consistency implications, often both.

Materiale protetto da copyright

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinac Axioms

Main Results

Work in Progress

Open Problems

Chart of Cardinals

The arrows indicates direct implications or relative consistency implications, often both.

Materiale protetto da copyright

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinacy Axioms

Main Results

Work in Progress

Open Problems Reinhardt Hypothesis: there exists an elementary embedding $j: V \prec V$.

It's a natural strengthening of the hypothesis with a $j: V \prec M$.

Theorem (Kunen, 1971)

If $j: V \prec M$, then $M \neq V$.

The critical sequence has an important role in the proof:

Definition

$$\kappa_0 = crit(j), \ \kappa_{n+1} = j(\kappa_n), \ \lambda = \sup_{n \in \omega} \kappa_n.$$

Kunen's proof uses a choice function that is in $V_{\lambda+2}$. So

Corollary

There is no $j: V_{\eta} \prec V_{\eta}$, with $\eta \geq \lambda + 2$.

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinae Axioms

Main Results

Work in Progress

Open Problems It is natural to define the following Hypoteses-Axioms, also called rank-to-rank

Definition

■ I3: There exists an elementary embedding $j: V_{\lambda} \prec V_{\lambda}$.

■ I1: There exists an elementary embedding

$$: V_{\lambda+1} \prec V_{\lambda+1}.$$

■ 10 (or Woodin's Axiom): There exists an elementary embedding $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$ with critical point less than λ .

The last one was proposed by Woodin to prove the consistency of $AD_{\mathbb{R}}$, but it became obsolete for that purpose. Nonetheless, I0 leads to interesting results.

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinac Axioms

Main Results

Work in Progress

Open Problems Since the cofinality of λ is ω , $V_{\lambda+1}$ is quite similar to $V_{\omega+1}$. So $L(V_{\lambda+1})$ is quite similar to $L(\mathbb{R})$, e.g.:

• $L(V_{\lambda+1}) \vDash \mathsf{DC}_{\lambda};$

• we can define $\Theta = \sup\{\alpha : \exists \pi : V_{\lambda+1} \twoheadrightarrow \alpha, \pi \in L(V_{\lambda+1})\}$ and it is regular...

Quite surprisingly, I0 is similar to $AD^{L(\mathbb{R})}$.

- I0 \rightarrow the Coding Lemma is true in $L(V_{\lambda+1})$;
- \blacksquare I0 \rightarrow Θ is a limit of measurable cardinals. . .

So, I0 is the first example of what we can call "Higher Determinacy Axiom".

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinacy Axioms

Main Results

Work in Progress

Open Problems

Are there other examples?

Is there a higher correspondent of $AD^{L(\mathbb{R},X)}$, with $X \subseteq \mathbb{R}$? Intuitevely, it must be "There is an elementary embedding $j: L(V_{\lambda+1}, X) \prec L(V_{\lambda+1}, X)$, with $X \subseteq V_{\lambda+1}$ ".

This suffices to prove the Coding Lemma, but there aren't proofs that it implies that the corresponding Θ is a limit of measurable cardinals.

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinacy Axioms

Main Results

Work in Progress

Open Problems However, the problem is resolved if we put another condition on the elementary embedding:

Definition

 $j : L(X, V_{\lambda+1}) \prec L(X, V_{\lambda+1})$ is *proper* if the fixed points of j are cofinal in Θ .

(Actually this is not the original definition of properness, but for the purposes of the talk this is an equivalent definition)

Is there a higher correspondent of $AD_{\mathbb{R}}$? There is no evident elementary embedding form... so the way chose by Woodin is defining an analogous of the minimum model of $AD_{\mathbb{R}}$.

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinacy Axioms

Main Results

Work in Progress

Open Problems

Definition

Define a sequence of $\Gamma_{\alpha} \subseteq \wp(\mathbb{R})$ by induction on α : $\Gamma_0 = \mathcal{L}(\mathbb{R}) \cap \wp(\mathbb{R});$

If α is a limit ordinal then $\Gamma_{\alpha} = L((\bigcup_{\beta < \alpha} \Gamma_{\beta})^{\omega}) \cap \wp(\mathbb{R});$

If $\operatorname{cof}(\Theta^{L(\Gamma_{\alpha})}) = \omega$, then $\Gamma_{\alpha+1} = L((\Gamma_{\alpha})^{\omega}, \mathbb{R}) \cap \wp(\mathbb{R})$, otherwise $\Gamma_{\alpha+1} = L(\Gamma_{\alpha})[\mathcal{F}] \cap \wp(\mathbb{R})$, where \mathcal{F} is the ω -club filter in $\Theta^{L(\Gamma_{\alpha})}$.

The sequence stops when $L(\Gamma_{\alpha}) \nvDash AD$ or $\Gamma_{\alpha} = \Gamma_{\alpha+1}$

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinacy Axioms

Main Results

Work in Progress

Open Problems So, Woodin defined a sequence $\langle {\it E}^{0}_{\alpha}:\alpha<\Upsilon\rangle$ such that

- $V_{\lambda+1} \subset E^0_{\alpha} \subset V_{\lambda+2};$
- if $\beta < \alpha$ then $E_{\beta}^{0} \subset E_{\alpha}^{0}$;

•
$$E_0^0 = L(V_{\lambda+1}) \cap V_{\lambda+2};$$

- for α limit, $E^0_{\alpha} = L(\bigcup_{\beta < \alpha} E^0_{\beta}) \cap V_{\lambda+2};$
- for every α there exists $X \subseteq V_{\lambda+1}$ such that $L(E^0_{\alpha+1}) = L(X, V_{\lambda+1});$
- $E^0_{\alpha+2} = L((X, V_{\lambda+1})^{\sharp}) \cap V_{\lambda+2};$
- for every $\alpha < \Upsilon$ there exists an elementary embedding $j : L(E_{\alpha}^{0}) \prec L(E_{\alpha}^{0});$
- the sequence E_{α} has absoluteness properties.

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinac Axioms

Main Results

Work in Progress

Open Problems In this definition new kinds of elementary embedding appear, i.e $j : L(E) \prec L(E)$, with $V_{\lambda+1} \subset E \subset V_{\lambda+2}$ and $L(E) \cap V_{\lambda+2} = E$.

This sequence creates a whole new playground, where the main characters are:

$$\mathsf{E}^0_{\alpha} \quad \Theta^{L(\mathsf{E}^0_{\alpha})} \quad (\mathsf{E}^0_{\alpha})^{\sharp}$$

and their correlation, expecially at limit points. Examples:

If
$$E^0_{\beta} = \bigcup_{\gamma < \beta} E^0_{\beta}$$
, then $\Theta^{E^0_{\beta}} = \sup_{\gamma < \beta} \Theta^{E^0_{\gamma}}$.

• If $L(E^0_\beta) = L(X, V_{\lambda+1})$, then $(E^0_\beta)^{\sharp}$ has no predecessor.

Lemma (Woodin)

Let $\eta < \Upsilon_{V_{\lambda+1}}$ be a limit ordinal. If $\Theta^{E_{\eta}^{0}} > \sup_{\beta < \eta} \Theta^{E_{\beta}^{0}}$, then there exists $Y \in E_{\eta}^{0}$ such that $L(E_{\eta}^{0}) = L(Y, V_{\lambda+1})$.

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinae Axioms

Main Results

Work in Progress

Open Problems This correlations are more significant when $L(E_{\beta}^{0}) \vDash V = HOD_{V_{\lambda+1}}$, i.e in an initial segment fo Υ . Examples:

- $\Theta^{E^0_\beta}$ is regular.
- If $E^0_{\beta} = \bigcup_{\gamma < \beta} E^0_{\beta}$, then $\beta = \Theta^{E^0_{\beta}}$.
- (Woodin) If j : L(E⁰_β) ≺ L(E⁰_β) is proper, then the Coding Lemma holds and Θ is limit of measurables.

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinac Axioms

Main Results

Work in Progress

Open Problems We can extend the definition of proper to this embeddings: j is proper if the fixed points of j are cofinal in Θ . Is this definition really relevant? Is it possible that all the elementary embeddings are proper? Fact: if α is a successor ordinal or a limit ordinal with cofinality $> \omega$, every embedding is proper; Fact 2: if we have $j : L(X, V_{\lambda+1}) \prec L(X, V_{\lambda+1})$ and $k \supset j \upharpoonright L(X, V_{\lambda+1}) \cap V_{\lambda+2}$, $k : L((X, V_{\lambda+1})^{\sharp}) \prec L((X, V_{\lambda+1})^{\sharp})$,

then k is proper.

Theorem 1

Let α be the least such that $L((E_{\alpha}^{0})^{\sharp}) \cap V_{\lambda+2} = E_{\alpha}^{0}$. Then there exists an elementary embedding $j : L(E_{\alpha}^{0}) \prec L(E_{\alpha}^{0})$ that is not proper.

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinac Axioms

Main Results

Work in Progress

Open Problems The fundamental property of such α is that

 $\alpha = \Theta^{L(E_{\alpha}^{0})} = \Theta^{L((E_{\alpha}^{0})^{\sharp})}$, so this provides a model, $L((E_{\alpha}^{0})^{\sharp})$ that is big enough to "know" deeply $L(E_{\alpha}^{0})$, but such that α is not too small in it.

Another important consideration is that even if $(E_{\gamma}^{0})^{\sharp} \notin L(E_{\gamma}^{0})$, its fragments are in E_{γ}^{0} , so if we have an elementary embedding from E_{α}^{0} to itself that conserves the fragments (\sharp -friendly?), it can be easily lifted to $L(E_{\alpha}^{0})$.

In a big enough model, we can treat elementary embeddings as sets.

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinac Axioms

Main Results

Work in Progress

Open Problems The proof of Theorem 1 uses this game: $\begin{array}{cccc} I & k_0 & k_1 & k_2 \\ & & & & \\ II & \eta_0 & \eta_1 \end{array}$

where the ks are \sharp -friendly elementary embeddings from $E_{\beta_i}^0$ to $E_{\beta_{i+1}}^0$, $\beta_i < \eta_1 < \beta_{i+1}$ and $k_i \subseteq k_{i+1}$. In $L((E_{\alpha}^0)^{\sharp})$ I has a winning strategy.

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinac Axioms

Main Results

Work in Progress

Open Problems

Theorem

Let α be the least such that $L((E_{\alpha}^{0})^{\sharp}) \cap V_{\lambda+2} = E_{\alpha}^{0}$. Then there exists an elementary embedding $j : L(E_{\alpha}^{0}) \prec L(E_{\alpha}^{0})$ that is proper.

There are two proofs of that. One can use *j* from $L((E_{\alpha}^{0})^{\sharp\sharp})$ to itself or we can use again the game.

Theorem 2

Let α be such that $\{\gamma < \alpha : (E_{\gamma}^{0})^{\sharp} \subseteq (E_{\alpha}^{0})^{\sharp}\}$ has ordertype λ . Then every $j : L(E_{\alpha}^{0}) \prec L(E_{\alpha}^{0})$ is not proper.

> Vincenzo Dimonte

Large Cardinals Map

Introductior

Higher Determinac Axioms

Main Results

Work in Progress

Open Problems We call α the ordinal from Theorem 1 and β the least one between those from Theorem 2

 $\bullet \ \alpha > \beta$

■ If $j, k : L(E^0_\beta) \prec L(E^0_\beta)$ agree upon $V_{\lambda+1}$ and the indiscernibles, than they are equal.

> Vincenzo Dimonte

Large Cardinals Map

Introduction

Higher Determinac<u>:</u> Axioms

Main Results

Work in Progress

Open Problems

- Is it possible to use the game from Theorem 1 to prove other things? E.g. there are 2^λ possible elementary embeddings from L(E⁰_α) to itself that agree on V_{λ+1}, or there are two elementary embeddings with no fixed points in common.
- Is the definition of proper relevant for the elementary embeddings between *L*(*X*, *V*_{λ+1})?
- Is there a value of Υ that is inconsistent?