Tukey Degrees of Ultrafilters

Natasha Dobrinen

University of Denver

joint work with

Stevo Todorcevic

University of Toronto Université Paris VII **Def.** $\mathcal{U} \leq_T \mathcal{V}$ iff there is a *Tukey* map $g : \mathcal{U} \to \mathcal{V}$ taking unbounded subsets of \mathcal{U} to unbounded subsets of \mathcal{V} .

Equivalently, $\mathcal{U} \leq_T \mathcal{V}$ iff there is a *cofinal* map $f : \mathcal{V} \to \mathcal{U}$ taking cofinal subsets of \mathcal{U} to cofinal subsets of \mathcal{V} .

 $\mathcal{U} \equiv_T \mathcal{V} \text{ iff } \mathcal{U} \leq_T \mathcal{V} \text{ and } \mathcal{V} \leq_T \mathcal{U}.$

Fact. \equiv_T is an equivalence relation. \leq_T is a partial ordering on the equivalence classes.

Motivations

- 1. A special class of directed systems of size $\mathfrak{c}.$
- 2. $\mathcal{V} \geq_{RK} \mathcal{U}$ implies $\mathcal{V} \geq_T \mathcal{U}$.

What is the structure of Tukey degrees of ultrafilters on ω ?

[Isbell 65] There is an ultrafilter $\mathcal{U}_{top} \equiv_T [\mathfrak{c}]^{<\omega}$.

Note: $\mathcal{V} \equiv_T [\mathfrak{c}]^{<\omega}$ iff $\neg (\forall S \in [\mathcal{V}]^{\mathfrak{c}} \exists T \in [S]^{\omega} (\cap T \in \mathcal{V})).$

Question. [Isbell 65] Is there always (in ZFC) an ultrafilter \mathcal{U} such that $\mathcal{U} <_T \mathcal{U}_{top}$?

Note: $\mathcal{V} \equiv_T [\mathfrak{c}]^{<\omega}$ iff $\neg (\forall S \in [\mathcal{V}]^{\mathfrak{c}} \exists T \in [S]^{\omega} (\cap T \in \mathcal{V})).$

Def. [Solecki/Todorcevic 04] An ultrafilter \mathcal{V} is *basic* if each convergent sequence has a bounded subsequence.

Fact. Each basic ultrafilter does not have top Tukey degree.

Note: $\mathcal{V} \equiv_T [\mathfrak{c}]^{<\omega}$ iff $\neg (\forall S \in [\mathcal{V}]^{\mathfrak{c}} \exists T \in [S]^{\omega} (\cap T \in \mathcal{V})).$

Def. An ultrafilter \mathcal{V} is *basic* if each convergent sequence has a bounded subsequence.

Fact. A basic ultrafilter is does not have top Tukey degree.

Thm. An ultrafilter is basic iff it is a p-point.

Are there Tukey non-top ultrafilters which are not p-points?

Def. \mathcal{U} is *basically generated* if there is a filter base $\mathcal{B} \subseteq \mathcal{U}$ $(\forall X \in \mathcal{U} \exists Y \in \mathcal{B} \ Y \subseteq X)$ such that whenever $A, A_n \in \mathcal{B}$ and $A_n \to A$, then there is a subsequence such that $\bigcap_{k \leq \omega} A_{n_k} \in \mathcal{U}$.

Fact. A basically generated ultrafilter is not Tukey top.

Thm. If $\mathcal{U}, \mathcal{U}_n$ are p-points, then $\lim_{n \to \mathcal{U}} \mathcal{U}_n$ is basically generated (but not a p-point).

We now focus on the structure of Tukey degrees of p-points and ultrafilters below them.

Key Theorem. If \mathcal{U} is a p-point and $\mathcal{U} \geq_T \mathcal{V}$, then there is a continuous monotone map $f : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$ such that $f \upharpoonright \mathcal{U} : \mathcal{U} \to \mathcal{V}$ is a cofinal map.

Note: f is definable from its values on the Fréchet filter.

Thm. Every family of p-points of cardinality $> c^+$ contains a subfamily of equal size of pairwise Tukey incomparable p-points.

Thm. Every \leq_T chain of p-points has cardinality $\leq \mathfrak{c}^+$.

Thm. If $\mathcal{U} \geq_T \mathcal{V}$ and \mathcal{U} is selective, then \mathcal{V} is basically generated.

Comparing with ω^{ω} .

Fact. If \mathcal{U} is rapid, then $\mathcal{U} \geq_T \omega^{\omega}$.

Fact. For each ultrafilter \mathcal{U} , $\mathcal{U} \cdot \mathcal{U} \geq_T \omega^{\omega}$.

Fact. If \mathcal{U} is a p-point, then $\mathcal{U}^{\omega} \equiv_T \mathcal{U} \times \omega^{\omega}$.

Thm. If \mathcal{U} is a p-point, then $\mathcal{U}^{\omega} \geq_T \mathcal{U} \cdot \mathcal{U}$.

Thm. The following are equivalent for a p-point \mathcal{U}

- 1. $\mathcal{U} \geq_T \omega^{\omega}$;
- 2. $\mathcal{U} \equiv_T \mathcal{U} \cdot \mathcal{U};$
- 3. $\mathcal{U} \equiv_T \mathcal{U}^{\omega}$.

Cor. If \mathcal{U} is a rapid ultrafilter then $\mathcal{U} \cdot \mathcal{U} \equiv_T \mathcal{U}$.

Cor. If \mathcal{U} is a p-point and $\mathcal{U} \geq_T \omega^{\omega}$, then $\mathcal{U} \in_T \mathcal{U}$.

Cor. If \mathcal{U} is a p-point of cofinality $< \mathfrak{d}$, then $\mathcal{U} \geq_T \omega^{\omega}$ and therefore $\mathcal{U} \cdot \mathcal{U} >_T \mathcal{U}$.

Thm. Assuming $\mathfrak{p} = \mathfrak{c}$, there is a p-point \mathcal{U} such that $\mathcal{U} \not\geq_T \omega^{\omega}$ and therefore $\mathcal{U} <_T \mathcal{U} \cdot \mathcal{U} <_T \mathcal{U}_{top}$.

Antichains

Thm. 1. If $cov(\mathcal{M}) = \mathfrak{c}$, and $2^{<\kappa} = \mathfrak{c}$, then there are 2^{κ} pairwise incomparable selective ultrafilters.

2. If $\mathfrak{d} = \mathfrak{u} = \mathfrak{c}$ and $2^{<\kappa} = \mathfrak{c}$, then there are 2^{κ} pairwise incomparable p-points.

Chains

[Kunen 78] If \mathcal{U} is κ -OK and $\kappa > cof(\mathcal{U})$, then \mathcal{U} is a p-point.

[Milovich 08] \mathcal{U} is a p-point iff it is c-OK and not Tukey top.

Fact. If \mathcal{U} is κ -OK but not a p-point, then $\mathcal{U} \ge_T [\kappa]^{<\omega}$. Hence, if \mathcal{U} is κ -OK but not a p-point, then $\operatorname{cof}(\mathcal{U}) = \kappa$ iff $\mathcal{U} \equiv_T [\kappa]^{<\omega}$.

If there are κ -OK non p-points with cofinality κ for each uncountable $\kappa < \mathfrak{c}$, then there is a strictly increasing chain of ultrafilters of length α , where α is such that $\aleph_{\alpha} = \mathfrak{c}$. **Thm.** (also independently by Dilip Raghavan) CH implies for each p-point \mathcal{U} there is a p-point \mathcal{V} such that $\mathcal{V} >_T \mathcal{U}$.

Cor. (CH) There is a Tukey strictly increasing chain of p-points of length ω_1 .

Question. Is it true that there is a p-point Tukey above ANY Tukey strictly increasing chain of p-points?

Incomparable Predecessors

Thm. (MA) There is a p-point with 2 Tukey incomparable predecessors, each of which is also a p-point.

Thm. (CH) There is a block-basic ultrafilter \mathcal{U} on FIN such that \mathcal{U}_{\min} and \mathcal{U}_{\max} are Tukey incomparable selective ultrafilters, and $\mathcal{U} >_T \mathcal{U}_{\min,\max} >_T \mathcal{U}_{\min}, \mathcal{U}_{\max}$.

- 1. Is it true in ZFC that there is an ultrafilter $\mathcal{U} <_T \mathcal{U}_{top}$ [Isbell]?
- 2. Is Tukey equivalent to Rudin-Keisler for selective ultrafilters?
- 3. Assuming the consistency of a supercompact cardinal, is there is a block-basic ultrafilter \mathcal{U} on FIN such that there are exactly 5 Tukey degrees in $L(\mathbb{R})[\mathcal{U}]$?
- 4. Is there an ultrafilter \mathcal{U} on ω such that $\mathcal{U} <_T \mathcal{U} \cdot \mathcal{U} <_T \mathcal{U} \cdot \mathcal{U} \cdot \mathcal{U}$?
- 5. What properties are preserved Tukey downwards?