Tukey Degrees of Ultrafilters

Natasha Dobrinen
University of Denver

joint work with

Stevo Todorcevic
University of Toronto
Université Paris VII
Def. \(\mathcal{U} \leq_T \mathcal{V} \) iff there is a *Tukey map* \(g : \mathcal{U} \rightarrow \mathcal{V} \) taking unbounded subsets of \(\mathcal{U} \) to unbounded subsets of \(\mathcal{V} \).

Equivalently, \(\mathcal{U} \leq_T \mathcal{V} \) iff there is a *cofinal map* \(f : \mathcal{V} \rightarrow \mathcal{U} \) taking cofinal subsets of \(\mathcal{U} \) to cofinal subsets of \(\mathcal{V} \).

\(\mathcal{U} \equiv_T \mathcal{V} \) iff \(\mathcal{U} \leq_T \mathcal{V} \) and \(\mathcal{V} \leq_T \mathcal{U} \).

Fact. \(\equiv_T \) is an equivalence relation. \(\leq_T \) is a partial ordering on the equivalence classes.
Motivations

1. A special class of directed systems of size \mathfrak{c}.

2. $\mathcal{V} \geq_{RK} \mathcal{U}$ implies $\mathcal{V} \geq_{T} \mathcal{U}$.
What is the structure of Tukey degrees of ultrafilters on ω?
There is an ultrafilter \(U_{\text{top}} \equiv_T [\mathcal{C}]^{<\omega} \).

Note: \(\mathcal{V} \equiv_T [\mathcal{C}]^{<\omega} \) iff \(\neg (\forall S \in [\mathcal{V}]^c \exists T \in [S]^\omega (\bigcap T \in \mathcal{V})) \).

Question. [Isbell 65] Is there always (in ZFC) an ultrafilter \(U \) such that \(U <_T U_{\text{top}} \)?
Note: $\mathcal{V} \equiv_T [c]^\omega$ iff $\neg (\forall S \in [\mathcal{V}]^c \exists T \in [S]^\omega (\cap T \in \mathcal{V}))$.

Def. [Solecki/Todorcevic 04] An ultrafilter \mathcal{V} is *basic* if each convergent sequence has a bounded subsequence.

Fact. Each basic ultrafilter does not have top Tukey degree.
Note: $\mathcal{V} \equiv_T [c]^{<\omega}$ iff $\neg(\forall S \in [\mathcal{V}]^c \exists T \in [S]^\omega (\cap T \in \mathcal{V}))$.

Def. An ultrafilter \mathcal{V} is *basic* if each convergent sequence has a bounded subsequence.

Fact. A basic ultrafilter is does not have top Tukey degree.

Thm. An ultrafilter is basic iff it is a p-point.
Are there Tukey non-top ultrafilters which are not p-points?
Def. \(U \) is *basically generated* if there is a filter base \(B \subseteq U \) \((\forall X \in U \ \exists Y \in B \ Y \subseteq X)\) such that whenever \(A, A_n \in B \) and \(A_n \to A \), then there is a subsequence such that \(\bigcap_{k<\omega} A_{n_k} \in U \).

Fact. A basically generated ultrafilter is not Tukey top.

Thm. If \(U, U_n \) are p-points, then \(\lim_{n \to U} U_n \) is basically generated (but not a p-point).
We now focus on the structure of Tukey degrees of p-points and ultrafilters below them.
Key Theorem. If \mathcal{U} is a p-point and $\mathcal{U} \geq_T \mathcal{V}$, then there is a continuous monotone map $f : \mathcal{P}(\omega) \to \mathcal{P}(\omega)$ such that $f \upharpoonright \mathcal{U} : \mathcal{U} \to \mathcal{V}$ is a cofinal map.

Note: f is definable from its values on the Fréchet filter.
Thm. Every family of p-points of cardinality $> c^+$ contains a subfamily of equal size of pairwise Tukey incomparable p-points.

Thm. Every \leq_T chain of p-points has cardinality $\leq c^+$.

Thm. If $\mathcal{U} \geq_T \mathcal{V}$ and \mathcal{U} is selective, then \mathcal{V} is basically generated.
Comparing with ω^ω.

Fact. If \mathcal{U} is rapid, then $\mathcal{U} \geq_T \omega^\omega$.

Fact. For each ultrafilter \mathcal{U}, $\mathcal{U} \cdot \mathcal{U} \geq_T \omega^\omega$.

Fact. If \mathcal{U} is a p-point, then $\mathcal{U}^\omega \equiv_T \mathcal{U} \times \omega^\omega$.

Thm. If \mathcal{U} is a p-point, then $\mathcal{U}^\omega \geq_T \mathcal{U} \cdot \mathcal{U}$.

Thm. The following are equivalent for a p-point \mathcal{U}

1. $\mathcal{U} \geq_T \omega^\omega$;
2. $\mathcal{U} \equiv_T \mathcal{U} \cdot \mathcal{U}$;
3. $\mathcal{U} \equiv_T \mathcal{U}^\omega$.
Cor. If \mathcal{U} is a rapid ultrafilter then $\mathcal{U} \cdot \mathcal{U} \equiv_T \mathcal{U}$.

Cor. If \mathcal{U} is a p-point and $\mathcal{U} \geq_T \omega^\omega$, then $\mathcal{U} \cdot \mathcal{U} \equiv_T \mathcal{U}$.

Cor. If \mathcal{U} is a p-point of cofinality $< \varnothing$, then $\mathcal{U} \not\geq_T \omega^\omega$ and therefore $\mathcal{U} \cdot \mathcal{U} >_T \mathcal{U}$.

Thm. Assuming $p = c$, there is a p-point \mathcal{U} such that $\mathcal{U} \not\geq_T \omega^\omega$ and therefore $\mathcal{U} <_T \mathcal{U} \cdot \mathcal{U} <_T \mathcal{U}_{top}$.
Antichains

Thm. 1. If $\text{cov}(\mathcal{M}) = c$, and $2^{<\kappa} = c$, then there are 2^κ pairwise incomparable selective ultrafilters.

2. If $\mathfrak{d} = \mathfrak{u} = c$ and $2^{<\kappa} = c$, then there are 2^κ pairwise incomparable p-points.
Chains

[Kunen 78] If \(\mathcal{U} \) is \(\kappa \)-OK and \(\kappa > \text{cof}(\mathcal{U}) \), then \(\mathcal{U} \) is a p-point.

[Milovich 08] \(\mathcal{U} \) is a p-point iff it is \(\mathfrak{c} \)-OK and not Tukey top.

Fact. If \(\mathcal{U} \) is \(\kappa \)-OK but not a p-point, then \(\mathcal{U} \geq_T [\kappa]^{<\omega} \). Hence, if \(\mathcal{U} \) is \(\kappa \)-OK but not a p-point, then \(\text{cof}(\mathcal{U}) = \kappa \) iff \(\mathcal{U} \equiv_T [\kappa]^{<\omega} \).

If there are \(\kappa \)-OK non p-points with cofinality \(\kappa \) for each uncountable \(\kappa < \mathfrak{c} \), then there is a strictly increasing chain of ultrafilters of length \(\alpha \), where \(\alpha \) is such that \(\aleph_\alpha = \mathfrak{c} \).
Thm. (also independently by Dilip Raghavan) CH implies for each p-point \mathcal{U} there is a p-point \mathcal{V} such that $\mathcal{V} >_T \mathcal{U}$.

Cor. (CH) There is a Tukey strictly increasing chain of p-points of length ω_1.

Question. Is it true that there is a p-point Tukey above ANY Tukey strictly increasing chain of p-points?
Incomparable Predecessors

Thm. (MA) There is a p-point with 2 Tukey incomparable predecessors, each of which is also a p-point.

Thm. (CH) There is a block-basic ultrafilter \mathcal{U} on FIN such that \mathcal{U}_{\min} and \mathcal{U}_{\max} are Tukey incomparable selective ultrafilters, and $\mathcal{U} >_T \mathcal{U}_{\min,\max} >_T \mathcal{U}_{\min} \cup \mathcal{U}_{\max}$.
Some Open Problems

1. Is it true in ZFC that there is an ultrafilter $\mathcal{U} <_T \mathcal{U}_{top}$ [Isbell]?

2. Is Tukey equivalent to Rudin-Keisler for selective ultrafilters?

3. Assuming the consistency of a supercompact cardinal, is there a block-basic ultrafilter \mathcal{U} on FIN such that there are exactly 5 Tukey degrees in $L(\mathbb{R})[\mathcal{U}]$?

4. Is there an ultrafilter \mathcal{U} on ω such that $\mathcal{U} <_T \mathcal{U} \cdot \mathcal{U} <_T \mathcal{U} \cdot \mathcal{U} \cdot \mathcal{U}$?

5. What properties are preserved Tukey downwards?