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Motivation - a fundamental example

Let Λ be a non-empty set.

• Tr(Λ) is the set of all trees on Λ.

• WF(Λ) is the set of all well-founded trees on Λ.

• For every T ∈ Tr(Λ), ̺(T ) stands for the rank of T .

Fact
If A ⊆ WF(N) is analytic, then sup{̺(T ) : T ∈ A} < ω1.



First approach

• The map T 7→ ̺(T ) is a co-analytic rank on WF(N); that is,
the relations

S ≤Σ T ⇔ T /∈ WF(N) or (T ∈ WF(N) and ̺(S) ≤ ̺(T ))

and

S <Σ T ⇔ T /∈ WF(N) or (T ∈ WF(N) and ̺(S) < ̺(T ))

are both analytic.

• We use boundedness.



Second approach

• We select F ⊆ Tr × N
N closed such that projTrF = A and

we define R ∈ Tr(N × N) by the rule

(t , s) ∈ R ⇔ ∃(T , x) ∈ F with t ∈ T and s = x |ℓ(s).

• The tree R is well-founded.

• For every T ∈ A there exists a natural monotone map
ψ : T → R. Hence,

sup{̺(T ) : T ∈ A} ≤ ̺(R) < ω1.



Generalizing the second approach

Definition (Informal statement)
Suppose that B is a subset of a Polish space X and that
φ : B → ω1 is an ordinal rank on B. Suppose, further, that there
exists a natural notion of embedding between elements of B
which is coherent with the rank φ in the sense that if x , y ∈ B
and x embeds into y , then φ(x) ≤ φ(y). We will say that B is
strongly bounded if for every analytic subset A of B there exists
y ∈ B such that every x ∈ A embeds into y .



Comments

• Strong boundedness implies boundedness.

• The set WF(N) is strongly bounded; but in this case strong
boundedness is equivalent to boundedness.

• The first non-trivial example of a strongly bounded class
was discovered by A. S. Kechris and W. H. Woodin (1991).
The class was Π1

2 (dilators).



The content of the lectures

• Several natural classes of separable Banach spaces are
strongly bounded. This structural information can be used
to answer a number of basic problems in the Geometry of
Banach spaces.

• We will review part of the mathematics involved and
present some consequences.



Functional analytic background, I

Definition
A Banach space X is a vector space (over the real R or the
complex C field) together with a norm ‖ · ‖ with which it is
complete.

• In this talk we will consider only real Banach spaces.

• We notice, however, that a number of important tools in
Banach Space Theory require complex structure.



Functional analytic background, II

• Examples of classical Banach spaces:

c0 , ℓp , C[0,1] , Lp.

• Non-classical examples but fundamental for the
development of the theory:

Tsirelson’s space T ,

James tree space JT ,

Gowers-Maurey space GM,

Argyros-Haydon space AH.



Functional analytic background, III

• Problems of subspace structure (called by Banach as
problems of linear dimension).

• Embedding problems.

• Problems of global structure (also discussed by Banach in
his book).

Fact (Banach-Mazur)
Every separable Banach space X is isometric to a subspace of
C[0,1].



Functional analytic background, IV

Problem
Suppose that (P) is a property of Banach spaces and suppose
that we are given a class C of separable Banach spaces all of
which have property (P). When can we find a space Y which
has property (P) and is universal for C (i.e. Y contains an
isomorphic copy of every X ∈ C)?

Example
If (P) is the property of having “separable dual” and C is the
class of all spaces having separable dual, then this problem
was asked by S. Banach and answered negatively by W. Szlenk
(1968).



Functional analytic background, V

• An affirmative answer to the previous problem (for most
natural properties) is related to the complexity of the given
class C viewed as a subset of a natural coding of separable
Banach spaces.



The standard Borel space SB of separable Banach
spaces, I

• Let U be any separable Banach space universal for all
separable Banach spaces. For concreteness, we will work
with the space C[0,1].

• Let F (C[0,1]) be the set of all closed subsets of C[0,1].
We equip F (C[0,1]) with the Effros-Borel structure, i.e.
with the σ-algebra Σ generated by the sets

{F ∈ F (C[0,1]) : F ∩ V 6= ∅}

where V ranges over all open subsets of C[0,1].

• The measurable space
(

F (C[0,1]),Σ
)

is standard (i.e. it is
Borel isomorphic to the reals).



The standard Borel space SB of separable Banach
spaces, II

Definition (Bossard)
By SB we shall denote the set

{X ∈ F (C[0,1]) : X is a linear subspace}

equipped with the relative Effros-Borel structure.

Fact
The space SB is standard.



The standard Borel space SB of separable Banach
spaces, III

• The space C[0,1] is universal for all separable Banach
spaces. Hence, we may identify every class of separable
Banach spaces with a subset of SB. With this identification
properties of separable Banach spaces become sets in SB.
So, we define the following subsets of SB by considering
classical properties of Banach spaces.

PROPERTY CORRESPONDING SET

being uniformly convex UC
being reflexive REFL

having separable dual SD
not containing X NCX

being non-universal NU



The standard Borel space SB of separable Banach
spaces, IV

• The set UC is Borel.

• The sets REFL, SD, NCX and NU are complete co-analytic.
Moreover, natural ordinal ranks defined by Banach space
theorists turned out to be co-analytic ranks.

SET CORRESPONDING RANK

REFL φREFL (Argyros - D)
SD Sz (Szlenk)

NCX φNCX (Bourgain)
NU φNU (Bourgain)



Schauder bases

Definition
A sequence (xn) of non-zero vectors in a Banach space X is
called a Schauder basis of X if for every x ∈ X there exists a
unique sequence (an) of reals such that x =

∑

n∈N
anxn.

• All “classical” Banach spaces have Schauder bases.

• There exists a separable Banach space without a
Schauder basis (P. Enflo, 1973).

• Every separable Banach space which is not “too
Euclidean” contains a subspace without a Schauder basis
(B. Maurey, G. Pisier, A. Szankowski, 1978).

• On the other hand, every Banach space contains a
subspace with a Schauder basis (S. Banach, S. Mazur).



The rank φNU, I

• We fix a normalized Schauder basis (en) of the space
C[0,1].

• Let X be a separable Banach space and δ ≥ 1. We
consider the tree T (X , (en), δ) in X consisting of all finite
sequences (xn)k

n=0 such that for every a0, ...,ak ∈ R

1
δ
‖

k
∑

n=0

anen‖ ≤ ‖

k
∑

n=0

anxn‖ ≤ δ‖

k
∑

n=0

anen‖.

Fact (Bourgain)
X is non-universal if and only if for every δ ≥ 1 the tree
T (X , (en), δ) is well-founded.



The rank φNU, II

Definition (Bourgain)
For every non-universal separable Banach space X we set

φNU(X ) = sup{̺(T (X , (en), δ)) : δ ≥ 1}.

If X is universal, then we set φNU(X ) = ω1.

Theorem (Bourgain)

X is non-universal if and only if φNU(X ) < ω1.

Theorem (Bossard)
The set NU is complete co-analytic and the map
NU ∋ X 7→ φNU(X ) is a co-analytic rank on NU.



Strongly bounded classes of Banach spaces, I

Definition (Argyros-D)
Let C ⊆ SB. The class C is said to be strongly bounded if for
every analytic subset A of C there exists Y ∈ C that contains an
isomorphic copy of every X ∈ A.



Strongly bounded classes of Banach spaces, II

Theorem
The following classes are strongly bounded.

• [Argyros − D; D − Ferenczi] The class REFL.

• [Argyros − D; D − Ferenczi] The class SD.

• [D] The class NCX where X is a minimal Banach space not
containing ℓ1.

• [D] The class NU.

• [D − Lopez Abad] The class US of all unconditionally
saturated separable Banach spaces.



Consequences, I

• The problem whether the classes SD and NU are strongly
bounded was posed by Alekos Kechris (mid-1980s).

• The structural information that a certain class is strongly
bounded has a number of consequences.

Theorem (D)
Let C ⊆ SB. Then the following are equivalent.

(i) There exists a non-universal separable Banach space Y
that contains an isomorphic copy of every X ∈ C.

(ii) We have sup{φNU(X ) : X ∈ C} < ω1.

(iii) There exists an analytic subset A of NU such that C ⊆ A.



Consequences, II

• The corresponding results for the classes REFL, SD and
NCX are also true. For instance:

Theorem (D-Ferenczi)
Let C ⊆ SB. Then the following are equivalent.

(i) There exists a separable reflexive Banach space Y that
contains an isomorphic copy of every X ∈ C.

(ii) We have sup{φREFL(X ) : X ∈ C} < ω1.

(iii) There exists an analytic subset A of REFL such that C ⊆ A.



Consequences, III

• The class UC of all separable uniformly convex Banach
spaces is Borel and UC ⊆ REFL. Hence:

Corollary (Odell-Schlumprecht)
There exists a separable reflexive Banach space R that
contains an isomorphic copy of every separable uniformly
convex Banach space.

The problem of the existence of such a space was posed
by J. Bourgain (1980).



Consequences, IV

• For every countable ordinal ξ the set
Sξ = {X ∈ SB : Sz(X ) ≤ ξ} is a Borel subset of SD. Hence:

Corollary (D-Ferenczi)
There exists a family {Yξ : ξ < ω1} of Banach spaces with
separable dual such that for every countable ordinal ξ and
every Banach space X with Sz(X ) ≤ ξ the space Yξ contains
an isomorphic copy of X .

The problem of the existence of such a family was posed
by H. P. Rosenthal (1979).



The “dual” property, I

• Recently, the “dual” theory was developed to treat
quotients instead of embeddings.

Definition (D)
Let C ⊆ SB. We say that the class C is surjectively strongly
bounded if for every analytic subset A of C there exists Y ∈ C
such that every X ∈ A is a quotient of Y .

Theorem (D)
The class NCℓ1 is surjectively strongly bounded.



The “dual” property, II

Fact
Every separable Banach space is a quotient of ℓ1.

Theorem (D)
Let C ⊆ SB. Then the following are equivalent.

(i) There exists a separable Banach space Y not containing
ℓ1 such that every X ∈ C is a quotient of Y .

(ii) We have sup{φNCℓ1
(X ) : X ∈ C} < ω1.

(iii) There exists an analytic subset A of NCℓ1 such that C ⊆ A.



Proof of the structural results: methodology

• Although for each class one has to develop different tools,
a clear methodology has been developed which can be
summarized in the following basic steps.

Step 1 One treats the case of analytic classes of separable
Banach spaces with a Schauder basis.

Step 2 The general case is reduced to the previous one as follows.
An appropriate embedding result is proved. That is, given
a property (P) of Banach spaces and a separable Banach
space X with property (P) one constructs a Banach space
Y (X ) with a Schauder basis and with property (P) and
such that Y (X ) contains an isomorphic copy of X .

Step 3 We parameterize the construction described in Step 2.



Analytic classes of Banach spaces with a Schauder
basis, I

• Let A be an analytic subset of SB such that every Y ∈ A
has a Schauder basis. The goal is to amalgamate the
spaces in the class A in a very particular way.

Definition (Argyros-D)
Let X be a Banach space, T a pruned tree on a countable set Λ
and (xt )t∈T a normalized sequence in X indexed by the tree T .
We say that X = (X ,T ,Λ, (xt)t∈T ) is a Schauder tree basis if
the following are satisfied.

(i) X = span{xt : t ∈ T}.

(ii) For every σ ∈ [T ] the sequence (xσ|n) is a (bi-monotone)
Schauder basic sequence.



Analytic classes of Banach spaces with a Schauder
basis, II

• We have the following representation result.

Lemma (Argyros-D)
Let A be an analytic subset of SB such that every Y ∈ A has a
Schauder basis. Then there exists a Schauder tree basis
X = (X ,T ,Λ, (xt)t∈T ) such that the following are satisfied.

(i) For every Y ∈ A there exists σ ∈ [T ] such that Y ∼= Xσ and

(ii) for every σ ∈ [T ] there exists Y ∈ A such that Xσ

∼= Y

where Xσ = span{xσ|n : n ∈ N} for every σ ∈ [T ].

The proof uses a classical construction due to A.
Pełczyński and “unfolding”.



Analytic classes of Banach spaces with a Schauder
basis, III

Definition (Argyros-D)

Let X = (X ,T ,Λ, (xt )t∈T ) be a Schauder tree basis. The ℓ2

Baire sum associated to X, denoted by T X

2 , is defined to be the
completion of c00(T ) equipped with the norm

‖z‖T X

2
= sup

{(

k
∑

i=0

‖
∑

t∈si

z(t)xt‖
2
X

)1/2}

where the above supremum is taken over all finite families
(si)

k
i=0 of pairwise incomparable segments of T .

• The definition of the space T X

2 is a variant of a classical
construction due to R. C. James.



Analytic classes of Banach spaces with a Schauder
basis, IV

• The standard Hamel basis (et)t∈T of c00(T ) defines a
normalized (bi-monotone) Schauder basis of T X

2 .

• For every σ ∈ [T ] the subspace Xσ = span{eσ|n : n ∈ N} of
T X

2 is isometric to Xσ and it is one-complemented in T X

2 via
the natural projection Pσ : T X

2 → Xσ. Therefore, the space
T X

2 contains a complemented copy of every space in the
class coded by the Schauder tree basis.

• The space T X

2 , however, contains other subspaces. For
instance, it always contains an isomorphic copy of c0.



Analytic classes of Banach spaces with a Schauder
basis, V

Theorem (D-Lopez Abad)
Let X = (X ,T ,Λ, (xt )t∈T ) be a Schauder tree basis and Y be a
subspace of T X

2 . Then, either

(i) there exist a subspace Z of Y and σ ∈ [T ] such that Z is
isomorphic to a subspace of Xσ, or

(ii) Y contains a Schauder basic sequence (yn) satisfying an
upper ℓ2 estimate (in particular, the subspace of Y
spanned by the sequence (yn) contains no ℓp for any
1 ≤ p < 2).

• The proof of this result uses functional-analytic and
combinatorial tools (mainly Ramsey theoretical).



Interpolation, I

• Interpolation is a powerful functional-analytic method to
factorize operators. There are many variants. We will use
the interpolation scheme invented by W. J. Davis, T. Fiegel,
W. B. Johnson and A. Pełczyński.

Definition (Davis-Fiegel-Johnson-Pełczyński)
Let X be a Banach space and W be a closed, convex, bounded
and symmetric subset of X . For every n ∈ N with n ≥ 1 by ‖ · ‖n

we denote the equivalent norm on X induced by the Minkowski
gauge of the set 2nW + 2−nBX . That is,

‖x‖n = inf
{

λ > 0 :
x
λ
∈ 2nW + 2−nBX

}

for every x ∈ X .



Interpolation, II

Definition (Davis-Fiegel-Johnson-Pełczyński)
Let X be a Banach space and W be a closed, convex, bounded
and symmetric subset of X . Let also 1 < p < +∞. For every
x ∈ X we set

|x |p =
(

∑

n≥1

‖x‖p
n

)1/p
.

The p-interpolation space of the pair (X ,W ) is the vector
subspace of X

{x ∈ X : |x |p < +∞}

equipped with the | · |p norm.



Amalgamated spaces, I

Definition (Argyros-D)
Let X be a Schauder tree basis and consider the ℓ2 Baire sum
T X

2 associated to X. We set

WX = conv
{

⋃

σ∈[T ]

BXσ

}

.

• Notice that WX is closed, convex, bounded and symmetric.

Definition (Argyros-D)
Let X be a Schauder tree basis and 1 < p < +∞. The
p-amalgamation space associated to X, denoted by AX

p , is
defined to be the p-interpolation space of the pair (T X

2 ,WX).



Amalgamated spaces, II

• The space AX
p also has a Schauder basis and contains a

complemented copy of every space in the class coded by
the Schauder tree basis.

• However, the space AX
p is a much “smaller” space than T X

2 .
In particular, we have the following dichotomy.



Amalgamated spaces, III

Theorem (Argyros-D)

Let X be a Schauder tree basis and 1 < p < +∞. Let Y be a
subspace of AX

p . Then, either

(i) the space Y contains an isomorphic copy of ℓp, or

(ii) there exist σ0, ..., σk ∈ [T ] such that Y is isomorphic to a
subspace of Xσ0 ⊕ ...⊕ Xσk .

Moreover, if for every σ ∈ [T ] the space Xσ is reflexive, then AX
p

is reflexive too.



Amalgamated spaces, IV

• The proof of this basic dichotomy requires several steps.
The arguments in its proof are also functional-analytic and
combinatorial.

• Amalgamated spaces were used by A. Louveau, V.
Ferenczi and C. Rosendal to show that the relation of
isomorphism (linear and Lipschitz) between separable
Banach spaces is a complete analytic equivalence relation.

• Recent progress on the equivalence relation of uniform
homeomorphism between separable Banach spaces was
made by S. Jackson, S. Gao and B. Sari.



The general case

• The machinery presented so far is very efficient for
producing universal spaces for analytic classes of Banach
spaces with a Schauder basis.

• As we have mentioned, for the general case we will use
appropriate embedding results.



The classes REFL and SD: shrinking bases, I

Definition
Let (xn) be a Schauder basis of a Banach space X . The
sequence (xn) is said to be shrinking if the bi-orthogonal
functionals (x∗

n ) associated to (xn) is a Schauder basis of X ∗.

• Clearly if (xn) is a shrinking Schauder basis of X , then X ∗

is separable. We point out, however, that the converse is
not true; that is, if (xn) is a Schauder basis of a Banach
space X with separable dual, then (xn) is not necessarily
shrinking.

• An old problem in Banach Space Theory asked whether
every Banach space with separable dual embeds into a
space with a shrinking Schauder basis.



The classes REFL and SD: Zippin’s embedding
theorem, II

Theorem (Zippin)
The following hold.

(i) Every separable reflexive Banach space embeds into a
reflexive space with a Schauder basis.

(ii) Every Banach with separable dual embeds into a space
with a shrinking Schauder basis.



The classes REFL and SD: parameterizing Zippin’s
theorem, III

• Based on an alternative proof of Zippin’s theorem due to N.
Ghoussoub, B. Maurey and W. Schachermayer, B.
Bossard parameterized Zippin’s theorem as follows.

Theorem (Bossard)
Let B be a Borel subset of SD. Then the relation Z ⊆ B × SB
defined by

(X ,Y ) ∈ Z ⇔ Y is isomorphic to Z (X )

is analytic, where Z (X ) denotes the
Ghoussoub-Maurey-Schachermayer space associated to X.



The classes REFL and SD: parameterizing Zippin’s
theorem, IV

• The proof of Zippin’s theorem given by N. Ghoussoub, B.
Maurey and W. Schachermayer uses interpolation and a
powerful selection procedure (called as “dessert
selection”).

• I have parameterized the selection result of Ghoussoub,
Maurey and Schachermayer (this yields a different proof of
Bossard’s result). The arguments are similar to the proof of
the “strategic uniformization theorem” and use (classical)
boundedness in an essential way.



The classes NU, NCX and US: L∞ spaces, I

Definition
Let X and Y be two isomorphic Banach spaces. The
Banach-Mazur distance between X and Y is defined by

d(X ,Y ) = inf
{

‖T‖ · ‖T−1‖ : T : X → Y is isomorphism
}

.

Definition (Lindenstrauss-Pełczyński)
Let X be an infinite-dimensional Banach space and λ ≥ 1. The
space X is said to be a L∞,λ space if for every ε > 0 and every
finite dimensional subspace F of X there exists a finite
dimensional subspace G of X with F ⊆ G and such that
d(G, ℓk

∞) ≤ λ+ ε where k = dim(G).
The space X is said to be L∞ if it is L∞,λ for some λ ≥ 1.



The classes NU, NCX and US: L∞ spaces, II

• The class of L∞ was introduced with the hope to
characterize C(K ) spaces by local means.

• The local structure of L∞ spaces imposes some global
regularity properties. For instance:

Theorem (Johnson-Rosenthal-Zippin)
Every separable L∞ space has a Schauder basis.



The classes NU, NCX and US: the Bourgain-Pisier
construction, III

Theorem (Bourgain-Pisier)
Let X be a separable Banach space and λ > 1. Then X
embeds isometrically into a L∞,λ space, denote by Lλ[X ], in
such a way that the quotient Lλ[X ]/X is “small” in the sense
that it has the Schur and the Radon-Nikodym properties.

• A Banach space X has the Schur property if every weakly
null sequence in X is automatically norm convergent. By
Rosenthal’s dichotomy, a Schur space is hereditarily ℓ1.

• Roughly speaking, a space with the Radon-Nikodym
property “looks like” a dual space (and, in fact, all
separable dual spaces have the Radon-Nikodym property).



The classes NU, NCX and US: the Bourgain-Pisier
construction, IV

• The Bourgain-Pisier construction was the outcome of the
combination of two major achievements of Banach Space
Theory during the 1980s:
(a) the Bourgain-Delbaen space, the first example of a L∞

space not containing an isomorphic copy of c0, and
(b) Pisier’s scheme for producing counterexamples to an
old conjecture of A. Grothendieck.

• The building blocks of the space Lλ[X ] are obtained using
a method for extending operators invented by S. V.
Kisliakov.



The classes NU, NCX and US: parameterizing the
Bourgain-Pisier construction, V

Theorem (D)
For every λ > 1 the relation Lλ ⊆ SB × SB defined by

(X ,Y ) ∈ Lλ ⇔ Y is isometric to Lλ[X ]

is analytic.

• The idea of the proof is to “code” step-by-step the
Bourgain-Pisier construction along the branches of a tree
in an appropriate selected Polish space.



The “dual” results: the class NCℓ1, I

Theorem (D)
For every separable Banach space X there exists a separable
Banach space EX with the following properties.

(i) The space EX has a Schauder basis.

(ii) X is a quotient of EX .

(iii) Every subspace Y of EX either contains a subspace of X
or a copy of c0.

(iv) The set E ⊆ SB × SB defined by

(X ,Y ) ∈ E ⇔ Y is isometric to EX

is analytic.

(v) E∗
X is separable if and only if X ∗ is separable.



The “dual” results: the class NCℓ1, II

• The proof is based on a number of different ideas and
combines functional analytic tools, Descriptive Set Theory
and Ramsey theory for trees (Halpern-Läuchli theorem and
its consequences and Stern’s theorem).



Further consequences, I

• We know that there exist separable Banach spaces without
a Schauder basis. Nevertheless:

Corollary (D)
There exists a map f : ω1 → ω1 such that for every ξ < ω1 every
separable Banach space X with φNU(X ) ≤ ξ embeds into a
Banach space Y with a Schauder basis satisfying
φNU(Y ) ≤ f (ξ).

• The proof is heavily based on the machinery discussed so
far. No concrete bounds are known.



Further consequences, II

Corollary (D)

For every λ > 1 there exists a family {Y λ
ξ : ξ < ω1} of separable

Banach spaces with the following properties.

(i) For every ξ < ω1 the space Y λ
ξ is non-universal and L∞,λ.

(ii) If ξ < ζ < ω1, then Y λ
ξ embeds into Y λ

ζ .

(iii) For every ξ < ω1 every separable Banach space X with
φNU(X ) ≤ ξ embeds into Y λ

ξ .



A final comment

• Beside its intrinsic functional-analytic interest, the fact that
many classes of separable Banach spaces are strongly
bounded makes it reasonable to expect that the
phenomenon is not as rare as might be seen from a first
glance and more examples should exist.


