Nonseparable UHF algebras
(or: Graphs, groups, and noncommutative tori)

Ilijas Farah

ESI, June 19, 2009
Hilbert space

\[H: \text{ a complex Hilbert space} \]

\[\mathcal{B}(H), +, \cdot, *, \| \cdot \|): \text{ the algebra of bounded linear operators on } H \]

Definition

A (concrete) \(C^* \)-algebra is a norm-closed subalgebra of \(\mathcal{B}(H) \).

Theorem (Gelfand–Naimark–Segal)

A Banach algebra with involution \(A \) is isomorphic to a concrete \(C^* \)-algebra if and only if

\[\| aa^* \| = \| a \|^2 \]

for all \(a \in A \).
The simplest C*-algebras

\[\mathcal{B}(H) \]

\[M_n(\mathbb{C}), \text{ for } n \in \mathbb{N}. \]

Full matrix algebras
(Unital) embeddings

\[M_2(\mathbb{C}) \hookrightarrow M_4(\mathbb{C}) \]

via

\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\mapsto
\begin{pmatrix}
a_{11} & a_{12} & 0 & 0 \\
a_{21} & a_{22} & 0 & 0 \\
0 & 0 & a_{11} & a_{12} \\
0 & 0 & a_{21} & a_{22}
\end{pmatrix}
\]

or, in short

\[a \mapsto a \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

Fact

All embeddings between C-algebras are norm-preserving.*
CAR (Fermion) algebra: ‘the E_0 of C*-algebras’

$$M_2(\mathbb{C}) \hookrightarrow M_4(\mathbb{C}) \hookrightarrow M_8(\mathbb{C}) \hookrightarrow M_{16}(\mathbb{C}) \hookrightarrow \ldots$$

$$M_{2\infty}(\mathbb{C}) = \lim_{\longrightarrow} M_{2^n}(\mathbb{C}) = \bigotimes_{n \in \mathbb{N}} M_2(\mathbb{C}).$$

(where \lim_{\longrightarrow} means ‘completion of the direct limit.’)
Uniformly Hyperfinite algebras, Approximately Matricial algebras and Locally Matricial algebras

Definition

1. A is UHF if A is a tensor product of full matrix algebras.
2. A is AM if A is a direct limit of full matrix algebras.
3. A is LM if $\forall \varepsilon > 0$ and for every finite $F \subseteq A$ there is a full matrix algebra $M \subseteq A$ such that $F \subseteq_{\varepsilon} M$.
The question

Theorem (J. Glimm)

If A is separable and unital then

\[UHF \iff AM \iff LM \]

Question (J. Dixmier)

If A is unital, does

\[UHF \iff AM \iff LM? \]

We have a complete answer to the problem, but I will concentrate on AM vs. UHF in this talk.
Characterizing $M_2(\mathbb{C})$

\[
\begin{align*}
 u &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & v &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\
 u^2 &= 1 & v^2 &= 1 \\
 uv &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} & vu &= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
\end{align*}
\]

Lemma

A is isomorphic to $M_2(\mathbb{C})$ if and only if $A = C^(\{u, v\})$, with $u^2 = v^2 = 1$ and $uv = -vu$.*

Proof.

(\Leftarrow) A is a linear span of u, v, uv, and 1.

The only noncommutative C^*-algebra that is 4-dimensional as a vector space is $M_2(\mathbb{C})$. \square
Graphs and noncommutative tori

\[M_2(\mathbb{C}) \]

means

\[uv = -vu \]

(and \(u^2 = v^2 = 1 \)).
More graphs and noncommutative tori

\[uv = vu \]

(And \(u^2 = v^2 = 1 \)).
Example 2

Which C^*-algebra is coded by the following graph?

\[
\begin{array}{c}
\bullet_{v_1} \\
\downarrow \\
\bullet_{u_1} \\
\end{array}
\quad
\begin{array}{c}
\bullet_{v_2} \\
\downarrow \\
\bullet_{u_2} \\
\end{array}
\]

\[M_4(\mathbb{C})\]

means

\[M_2(\mathbb{C}) \otimes M_2(\mathbb{C})\]
Example # 3

Which C*-algebra is coded by the following graph?

\[M_4(\mathbb{C}) \]
Examples \#4—\(\omega + 1\)

Let's denote this algebra by \(B(\kappa)\), where \(\kappa = |G|\).

\[M_4(\mathbb{C})M_8(\mathbb{C})M_{16}(\mathbb{C})M_{2\infty}(\mathbb{C}) — the\text{CAR algebra}\]
Analysis of $B(\aleph_0)$

So we have proved

Lemma

$B(\aleph_0)$ is isomorphic to $M_{2\alpha}(\mathbb{C})$.
For every infinite κ, $B(\kappa)$ is AM.
Relative commutant

Definition
If A is a subalgebra of B, let

$$Z_B(A) = \{ b \in B : ab = ba \text{ for all } a \in A \}.$$

Let $Z(A) = Z_A(A)$.

Fact
1. if A is LM (or AM, or UHF) then $Z(A) = \mathbb{C}I$.
2. $Z_{A \otimes B}(A) \supseteq B$.
Complemented subalgebras

A subalgebra A of B is complemented in B if

$$C^*(A, Z_B(A)) = B.$$

Note that A is complemented in $A \otimes C$.

Lemma

If A is UHF then club many of its separable subalgebras are complemented.

Theorem (Farah–Katsura)

$B(\kappa)$ is AM but not UHF if κ is uncountable.

Proof.

Club many of its separable subalgebras are not complemented. \(\square\)
Modifying $M_{2^{\aleph_1}}(\mathbb{C})$ further

$M_{2^{\aleph_1}}(\mathbb{C})$

For $S \subseteq \aleph_1$ let $B(S)$ be given by the graph with vertices

$$\{ u_\gamma, v_\gamma : \gamma < \aleph_1 \} \cup \{ w_\gamma : \gamma \in S \}.$$
Many AM algebras

Theorem (Farah–Katsura)
If $B(S) \cong B(T)$ then $S \Delta T \in NS_{\omega_1}$.

Corollary
There are 2^{\aleph_1} nonisomorphic AM algebras of character density \aleph_1 for any uncountable regular κ.

UHF algebras can be classified
\[\bigotimes_{\kappa_2} M_2(\mathbb{C}) \otimes \bigotimes_{\kappa_3} M_3(\mathbb{C}) \otimes \bigotimes_{\kappa_5} M_5(\mathbb{C}) \otimes \bigotimes_{\kappa_7} M_7(\mathbb{C}) \otimes \ldots \]

so there are only 2^{\aleph_0} in character density \aleph_{ω_1}.
Theorem (Farah–Katsura)

AM \nRightarrow UHF in any uncountable character density.

LM \Leftrightarrow AM in character density \leq \aleph_1.

LM \nRightarrow AM in character density \geq \aleph_2.
Question (M. Takesaki, 2008)

What about C*-algebras faithfully represented on a separable Hilbert space?

Does \(\text{LM} \Rightarrow \text{AM} \) in this case?

A nonseparable UHF algebra cannot be faithfully represented on a separable Hilbert space.
An isomorphic embedding

\[A \xrightarrow{\pi} \mathcal{B}(H) \]

\(\pi \) is an *irreducible representation* (*irrep*) if \(H \) has no nontrivial closed subspace invariant for \(\pi[A] \).
Theorem (Kishimoto–Ozawa–Sakai, 2003)

Assume A is simple and separable. Then its space of irreps is homogeneous: For all irreps π_1, π_2 there exist automorphisms α, β such that

\[
\begin{array}{c}
A \xrightarrow{\pi_1} B(H_1) \\
\downarrow \alpha \\
A \xrightarrow{\pi_2} B(H_1)
\end{array}
\]

\[
\begin{array}{c}
\downarrow \beta
\end{array}
\]

commutes.

There is a nonseparable simple algebra with nonhomogeneous space of irreps.
The class of nuclear C*-algebras is the most studied class of C*-algebras. All LM algebras are nuclear.

Question (Kishimoto–Ozawa–Sakai, 2003)

Assume A is simple and nuclear. Is its space of irreps homogeneous?

A positive answer would imply that \diamondsuit_κ implies there is a counterexample to Naimark’s problem.

(The case $\kappa = \aleph_1$ is a theorem of Akemann–Weaver.)
More graphs

For $\mathbb{A} \subseteq 2^\kappa$ define a bipartite graph $G = G(\kappa, \mathbb{A})$ and a the corresponding C*-algebra $B(\kappa, \mathbb{A})$.

$$V(G) = \kappa \cup \mathbb{A}.$$

For $i \in \kappa$ and $x \in \mathbb{A}$ let u_i and v_x be adjacent if $i \in x$.

$x = \{1, 2, 4\}.$

Lemma

If \mathbb{A} is dense in 2^κ and independent, then $B(\kappa, \mathbb{A})$ is AM and it has a faithful irreducible representation on $\ell_2(\kappa)$.
An answer to a question that Takesaki did not ask

Theorem (Farah–Katsura)

\[AM \not\Rightarrow UHF \text{ for separably represented } C^*\text{-algebras.} \]

Proof.
Take \(M(\mathbb{N}, \mathbb{A}) \) for an uncountable dense independent family \(\mathbb{A} \subseteq 2^\mathbb{N} \). It is nonseparable, AM, and has a faithful irreducible representation on \(\ell_2(\mathbb{N}) \). So it cannot be UHF.

Proposition (Farah–Katsura)

CH implies that for separably represented algebras LM implies AM.
The dual of \mathcal{A}

For \mathcal{A} define the dual $\hat{\mathcal{A}} = \{ y_i : i \in \kappa \} \subseteq 2^\mathcal{A}$ by

$$x \in y_i \iff i \in x$$

Lemma

$B(\kappa, \mathcal{A}) \cong B(\mathcal{A}, \hat{\mathcal{A}})$.

Lemma

1. $\hat{\hat{\mathcal{A}}} = \mathcal{A}$.
2. \mathcal{A} is dense iff $\hat{\mathcal{A}}$ is independent.
3. \mathcal{A} is independent iff $\hat{\mathcal{A}}$ is dense.
Theorem (Farah)

There is an AM (therefore simple nuclear) C^*-algebra that has nonhomogeneous space of irreps.

Proof.
Take a dense, independent $A \subseteq 2^\mathbb{N}$ of cardinality 2^{\aleph_0}. Then $B(\mathbb{N}, A) \cong B(2^{\aleph_0}, \hat{A})$ has irreps on $\ell_2(\mathbb{N})$ and on $\ell_2(2^{\aleph_0})$. \qed
Recall that the UHF algebras can be classified

\[M_2(\mathbb{C}) \otimes M_3(\mathbb{C}) \otimes M_5(\mathbb{C}) \otimes M_7(\mathbb{C}) \otimes \ldots \]
An embarrassing open problem.

Question

Does $\bigotimes_{\kappa_1} M_2(\mathbb{C})$ embed into $\bigotimes_{\kappa_0} M_2(\mathbb{C}) \otimes \bigotimes_{\kappa_1} M_3(\mathbb{C})$ for all κ?

(The answer is ‘no’ for smaller cardinals.)