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Isomorphic classification of Banach spaces1

The isomorphic classification of finite dimensional Banach
spaces or of Hilbert spaces is easy (thanks to Hilbert bases).

Spaces and subspaces will always be separable Banach
spaces of infinite dimension.

As we shall see, the case of infinite dimensional spaces is
extremely complicated.

However, there exist two directions for a “loose” classification of
Banach spaces.

1The author received the support of CAPES, processo AEX 0713/09-0
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Isomorphic classification of Banach spaces

However, there exist two directions for a “loose” classification of
Banach spaces.

(1) the measure of the complexity of a space X , seen as the
complexity of isomorphism between its subspaces,

(2) a classification by the presence in X of elementary
subspaces (Gowers’ project), either from a

(a) “theoretical” point of view, by structural dichotomy
theorems, or from an

(b) “empirical” point of view, by the study or construction of
examples.
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Isomorphic classification of Banach spaces

The two directions are related:

I A Banach space will be at least as complex as each of the
elementary subspaces it contains.

I Inversely, some spaces will be labelled elementary or
simple when isomorphism (or embedding, or biembedding)
between their subspaces is simple.
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Gowers’ results

At the beginning of the 1990’s, Gowers revolutionated the
theory of Banach spaces.

Theorem (Gowers: Banach’s hyperplane problem, 1932)
There exists a Banach space Gu which is not isomorphic to its
proper subspaces.
In that sense, Gu is said to be exotic.

Theorem (Gowers - Maurey: the unconditional basic
sequence problem, 1940’s)
There exists a Banach space GM which does not contain any
unconditional basic sequence.
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Gowers’ results

Theorem (Gowers - Maurey: the indecomposable space
problem, 1970’s)
Furthermore, GM is HI: none of its subspaces is decomposable
(isomorphic to a direct sum of subspaces).

Theorem (Gowers, Komorowski - Tomczak-Jagermann,
Banach’s homogeneous space problem, 1932)
Any homogeneous Banach space (isomorphic to all its
subspaces) is isomorphic to the Hilbert space.

Tsirelson’s space T (1974) is an ancester of the spaces GM
and Gu. It was the first known example of a space which did not
contain a copy of c0 or `p, 1 ≤ p < +∞.
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Gowers’ results

In his paper “An infinite Ramsey theorem and some Banach
space dichotomies”, Gowers proved that these spaces form an
inevitable list of Banach spaces.

Theorem (Gowers, 1995)
Every Banach space contains a subspace:

I either of the type of GM,
I or of the type of Gu,
I or of the type of T ,
I or of the type of c0 and `p.
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Gowers’ results

In his paper “An infinite Ramsey theorem and some Banach
space dichotomies”, Gowers proved that these spaces form an
inevitable list of Banach spaces.

Theorem (Gowers, 1995)
Every Banach space contains a subspace which:

I either is HI, as GM,
I or of the type of Gu,
I or of the type of T ,
I or of the type of c0 or `p.
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Gowers’ results

In his paper “An infinite Ramsey theorem and some Banach
space dichotomies”, Gowers proved that these spaces form an
inevitable list of Banach spaces.

Theorem (Gowers, 1995)
Every Banach space contains a subspace which:

I either is HI, as GM,
I or has an unconditional basis such that disjointly

supported subspaces never are isomorphic, as Gu,
I or of the type of T ,
I or of the type of c0 or `p.
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Gowers’ results

In his paper “An infinite Ramsey theorem and some Banach
space dichotomies”, Gowers proved that these spaces form an
inevitable list of Banach spaces.

Theorem (Gowers, 1995)
Every Banach space contains a subspace which:

I either is HI, as GM,
I or has an unconditional basis such that disjointly

supported subspaces never are isomorphic, as Gu,
I or has an unconditional basis, is quasi-minimal, without a

minimal subspace, as T ,
I or of the type of c0 or `p.
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Gowers’ results

In his paper “An infinite Ramsey theorem and some Banach
space dichotomies”, Gowers proved that these spaces form an
inevitable list of Banach spaces.

Theorem (Gowers, 1995)
Every Banach space contains a subspace which:

I either is HI, as GM,
I or has an unconditional basis such that disjointly

supported subspaces never are isomorphic, as Gu,
I or has an unconditional basis, is quasi-minimal, without a

minimal subspace, as T ,
I or has an unconditional basis and is minimal, as c0 or `p.
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Gowers’ results

The inevitability of this list of of Banach spaces is defined by
Gowers as follows:

a) if a space X belongs to a class, then all its subspaces
belong to this same class (or all its block subspaces in the
case of a property related to a Schauder basis of X ),

b) every space has a subspace in one of the classes,
c) the classes are obviously disjoint,
d) belonging to a class gives a lot of information on the

operators defined on the space and its subspaces.
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Some questions of Gowers

In that article, Gowers formulates three questions:

Question (Gowers’ 1st question)
How is it possible to refine Gowers’ inevitable list?

In particular, the more regular class of the list should be the
class of spaces isomorphic to c0 or `p, and not the class of
minimal spaces, which contains other spaces (such as the dual
T ∗ of T or Schlumprecht’s space S).
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Some questions of Gowers

In that article, Gowers formulates three questions:

Question (Gowers’ 1st question)
How is it possible to refine Gowers’ inevitable list?

Question (Gowers’ 2nd question)
How is it possible to relate Gowers’ list to Banach’s hyperplane
problem?

One should know, for each class of the list, whether spaces in
that class may or may not be isomorphic to their proper
subspaces.
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Some questions of Gowers

In that article, Gowers formulates three questions:

Question (Gowers’ 1st question)
How is it possible to refine Gowers’ inevitable list?

Question (Gowers’ 2nd question)
How is it possible to relate Gowers’ list to Banach’s hyperplane
problem?

Question (Gowers’ 3rd question)
For every space X, let P(X ) be the set of subspaces of X
equiped with the relation of isomorphic embeddability, modulo
biembeddability. What is the possible structure of P(X )?
More precisely, Gowers asks for which partially ordered sets P
one may find an X such that not only P(X ) ' P, but also every
subspace Y of X contains a subspace Z such that P(Z ) ' P.
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Some questions of Gowers

In that article, Gowers formulates three questions:

Question (Gowers’ 1st question)
How is it possible to refine Gowers’ inevitable list?

Question (Gowers’ 2nd question)
How is it possible to relate Gowers’ list to Banach’s hyperplane
problem?

Question (Gowers’ 3rd question)
For every space X, let P(X ) be the set of subspaces of X
equiped with the relation of isomorphic embeddability, modulo
biembeddability. What is the possible structure of P(X )?

Let us note that when |P(X )| = 1, X embeds into all of its
subspaces; X is then said to be minimal.
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Some questions of Gowers

In that article, Gowers formulates three questions:

Question (Gowers’ 1st question)
How is it possible to refine Gowers’ inevitable list?

Question (Gowers’ 2nd question)
How is it possible to relate Gowers’ list to Banach’s hyperplane
problem?

Question (Gowers’ 3rd question)
For every space X, let P(X ) be the set of subspaces of X
equiped with the relation of isomorphic embeddability, modulo
biembeddability. What is the possible structure of P(X )?

We now give partial answers to these three questions.
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1st question: Gowers’ two dichotomies

Gowers’ inevitable list of classes is based on two dichotomies.

Theorem (Gowers’ 1st dichotomy, 1993)
Every Banach space contains a HI subspace or a subspace
with an unconditional basis.

Theorem (Gowers’ 2nd dichotomy, 1995)
Every Banach space contains a quasi minimal subspace (any
two subspaces have isomorphic subspaces) or a subspace with
a basis such that disjointly supported subspaces never are
isomorphic.
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1st question: Gowers’ two dichotomies

Recall that if X is a space with a Schauder basis (en), then
I the support supp x of x =

∑
i aiei ∈ X is the set of i such

that ai 6= 0. The range of x is the interval of integers
[min supp x , max supp x ].

I A block basis of X is a sequence (yn) of successive
vectors (or blocks) of X , that is such that for every n,
max supp xn < min supp xn+1.

I A block subspace Y is a subspace of X generated by a
block basis (yn) of X ; in this case one writes Y = [yn] and
observes that (yn) is a Schauder basis of Y .
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1st question: Gowers’ two dichotomies

Since every subspace of a given Banach space contains a
perturbation of a block subspace, it is possible, for dichotomy
theorems, to restrict oneself to block subspaces.

The set of block subspaces has a good topological structure,
and this allows Gowers to prove a Ramsey type theorem for
block bases and deduce from it his two dichotomies.

Unless specified otherwise, subspaces will be block subspaces.
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Gowers’ 1st question: three new dichotomies

There exist three new dichotomies related to different forms of
minimality.

Theorem (3rd dichotomy, Ferenczi - Rosendal, 2007)
Every Banach space contains a minimal subspace or a tight
subspace.

Theorem (4th dichotomy, Ferenczi - Rosendal, 2007)
Every Banach space contains a sequentially minimal subspace
or a subspace which is tight by range.

Theorem (5th dichotomy, Ferenczi - Rosendal, 2007)
Every Banach space contains a locally minimal subspace or a
subspace which is tight with constants.
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1st question: diagram of dichotomies

The relations between the different dichotomies may be
visualized in the following diagram:

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Disjointly sup. non ' ∗ 2nd dichotomy ∗ Quasi minimal
⇓ ⇑

Tight by range ∗ 4th dichotomy ∗ Seq. minimal
⇓ ⇑

Tight ∗ 3rd dichotomy ∗ Minimal
⇑ ⇓

Tight with const. ∗ 5th dichotomy ∗ Loc. minimal
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Gowers’ 1st question: the 3rd dichotomy

Definition (Rosenthal)
A Banach space X is minimal if every subspace of X contains
an isomorphic copy of X .

Examples: c0, `p, 1 ≤ p < +∞, but also T ∗ or S.
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Gowers’ 1st question: the 3rd dichotomy

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Disjointly sup. non ' ∗ 2nd dichotomy ∗ Quasi minimal
⇑

Minimal

A space X is minimal if every subspace of X contains an
isomorphic copy of X . Examples: c0, `p, but also T ∗ or S.
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Gowers’ 1st question: the 3rd dichotomy

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Disjointly sup. non ' ∗ 2nd dichotomy ∗ Quasi minimal
⇓ ⇑

No minimal subspace ∗ ? ∗ Minimal

A space X is minimal if every subspace of X contains an
isomorphic copy of X . Examples: c0, `p, but also T ∗ or S.
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Gowers’ 1st question: the 3rd dichotomy

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Disjointly sup. non ' ∗ 2nd dichotomy ∗ Quasi minimal
⇓ ⇑

Tight ∗ 3rd dichotomy ∗ Minimal

A space X is minimal if every subspace of X contains an
isomorphic copy of X . Examples: c0, `p, but also T ∗ or S.
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Gowers’ 1st question: the 3rd dichotomy

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Disjointly sup. non ' ∗ 2nd dichotomy ∗ Quasi minimal
⇓ ⇑

Tight ∗ 3rd dichotomy ∗ Minimal

Definition
A space X with a Schauder basis (en) is tight if for every
subspace Y of X there exists a successive sequence
I0 < I1 < I2 < · · · of subsets of N such that for every infinite
subset A of N, Y 6↪→ [en, n /∈ ∪i∈AIi ].
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Gowers’ 1st question: the 3rd dichotomy

Definition
A space X with a Schauder basis (en) is tight if for every
subspace Y of X there exists a successive sequence
I0 < I1 < I2 < · · · of subsets of N such that for every infinite
subset A of N, Y 6↪→ [en, n /∈ ∪i∈AIi ].

Examples: Tsirelson’s space T , Gowers’ space Gu.

In the case of Gu, one may choose Ik = supp yk if Y = [yk ];
therefore we shall say that Gu is tight by support.

A tight space admits few embeddings of any space Y , and in
particular may not contain a minimal subspace.
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Gowers’ 1st question: the 3rd dichotomy

The proof of the 3rd dichotomy combines:
I results on infinite asymptotic games (Rosendal, 2006),

evolving from ideas of Odell - Schlumprecht (2002),
I the notion of generalized asymptotic game (Ferenczi,

2006),
I techniques of Pełczar (2003) then Ferenczi (2006) for

relational games.
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Gowers’ 1st question: generalized games

I n0 n1 n2 . . . . . .

II x0 ≥ n0 x1 ≥ n1 x2 ≥ n2 . . . . . .

Infinite asymptotic game

I n0 n1 . . .

II m0 ≥ n0, x0, m1 ≥ n1, x1,
supp x0 ⊂ [n0, m0] supp x1 ⊂ [n0, m0] ∪ [n1, m1]

Generalized asymptotic game
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Gowers’ 1st question: generalized games

I Y0 Y1 Y2 . . . . . .

II x0 ∈ Y0 x1 ∈ Y1 x2 ∈ Y2 . . . . . .

Infinite Gowers game

I Y0 Y1 . . .

II F0 ⊂ Y0, F1 ⊂ Y1 F2 ⊂ Y2
x0 ∈ F0 x1 ∈ F0 + F1 x2 ∈ F0 + F1 + F2

Generalized Gowers game
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Gowers’ 1st question: generalized games

I n0 ≤ x0 ⊆ L n1 ≤ x1 ⊆ L . . .
m0 m1

II n0 m0 ≤ y0 ⊆ M m1 ≤ y1 ⊆ M
n1 n2

Asymptotic relational game PL,M

I n0 ≤ E0 ⊆ L n1 ≤ E1 ⊆ L
x0 ∈ E0, m0 x1 ∈ E0 + E1, m1

II n0 m0 ≤ F0 ⊆ M . . .
y0 ∈ F0, n1

Generalized relational game GL,M
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Gowers’ 1st question: generalized games

While Gowers obtains winning strategies for II to play inside an
analytic set in his game, we obtain winning strategies for II to
play inside a closed set in the generalized game.
In other words, to work in a more general setting, we must
restrict our attention to more simple sets.

Observe that in T ∗, there is no winning strategy in Gowers’
game for II to produce a block sequence spanning a subspace
isomorphic to T ∗, but there is a strategy in the generalized
Gowers’ game to produce a (non block) sequence with such a
property.
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Gowers’ 1st question: the 4th dichotomy

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Tight by support ∗ 2nd dichotomy ∗ Quasi minimal

⇓ ⇑

Tight ∗ 3rd dichotomy ∗ Minimal
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Gowers’ 1st question: the 4th dichotomy

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Tight by support ∗ 2nd dichotomy ∗ Quasi minimal

Subseq. minimal
⇑

Tight ∗ 3rd dichotomy ∗ Minimal

A space X = [xn] is subsequentially minimal if every subspace
of X contains a copy of a subsequence of (xn).

Examples: all minimal spaces with a Schauder basis, T .
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Gowers’ 1st question: the 4th dichotomy

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Tight by support ∗ 2nd dichotomy ∗ Quasi minimal
⇑

Seq. minimal
⇑

Tight ∗ 3rd dichotomy ∗ Minimal

A space X = [xn] is subsequentially minimal if every subspace
of X contains a copy of subsequence of (xn).

One may also define a hereditary form of this property, called
sequential minimality.
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Gowers’ 1st question: the 4th dichotomy

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Tight by support ∗ 2nd dichotomy ∗ Quasi minimal
⇓ ⇑

Tight by range ∗ 4th dichotomy ∗ Seq. minimal
⇓ ⇑

Tight ∗ 3rd dichotomy ∗ Minimal

A space X = [xn] is tight by range if it is tight and if for every
Y = [yk ], one may choose Ik = ran yk .
Examples: Gu, G.

It may be observed that such a space is never isomorphic to its
proper subspaces.
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Gowers’ 1st question: the 5th dichotomy

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Tight by support ∗ 2nd dichotomy ∗ Quasi minimal
⇓ ⇑

Tight by range ∗ 4th dichotomy ∗ Seq. minimal
⇓ ⇑

Tight ∗ 3rd dichotomy ∗ Minimal
⇑

Tight with const.

A space is tight with constants if it is tight and if for every Y ,
one may choose Ik such that Y 6↪→k [en, n /∈ Ik ].
Examples: T , T (p), and more generally, every strongly
asymptotically `p space which does not contain a copy of `p,
1 ≤ p < +∞.
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Gowers’ 1st question: the 5th dichotomy

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Tight by support ∗ 2nd dichotomy ∗ Quasi minimal
⇓ ⇑

Tight by range ∗ 4th dichotomy ∗ Seq. minimal
⇓ ⇑

Tight ∗ 3rd dichotomy ∗ Minimal
⇑ ⇓

Tight with const. ∗ 5th dichotomy ∗ Loc. minimal

A space X is locally minimal if for some K ≥ 1, every subspace
of X contains a K -isomorphic copy of every finite dimensional
subspace of X .

Examples: all minimal spaces, GM∗, G∗
u,...
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Gowers’ 1st question: the 5th dichotomy

Unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Tight by support ∗ 2nd dichotomy ∗ Quasi minimal
⇓ ⇑

Tight by range ∗ 4th dichotomy ∗ Seq. minimal
⇓ ⇑

Tight ∗ 3rd dichotomy ∗ Minimal
⇑ ⇓

Tight with const. ∗ 5th dichotomy ∗ Loc. minimal

The 4th and 5th dichotomies are a consequence of certain
aspects of Gowers’ Ramsey theorem (in the version of Bagaria
and López-Abad) and of ideas of coding due to López-Abad.
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Gowers’ 1st question: the 6 dichotomies

St. as. `p, 1 ≤ p < +∞ ∗ Tcaciuc ∗ Unif. inhomogeneous
⇓ ⇑

unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Tight by support ∗ 2nd dichotomy ∗ Quasi minimal
⇓ ⇑

Tight by range ∗ 4th dichotomy ∗ Seq. minimal
⇓ ⇑

Tight ∗ 3rd dichotomy ∗ Minimal
⇑ ⇓

Tight with const. ∗ 5th dichotomy ∗ Loc. minimal

Finally there exists a 6th dichotomy, due to A. Tcaciuc,
opposing strongly asymptotically `p spaces to uniformly
inhomogeneous spaces, such as S, Gu, or all HI spaces.
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Gowers’ 1st question: the 6 dichotomies

St. as. `p, 1 ≤ p < +∞ ∗ Tcaciuc ∗ Unif. inhomogeneous
⇓ ⇑

unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Tight by support ∗ 2nd dichotomy ∗ Quasi minimal
⇓ ⇑

Tight by range ∗ 4th dichotomy ∗ Seq. minimal
⇓ ⇑

Tight ∗ 3rd dichotomy ∗ Minimal
⇑ ⇓

Tight with const. ∗ 5th dichotomy ∗ Loc. minimal

By combining the 6 dichotomies, 26 = 64 classes of Banach
spaces should be obtained, but because of the different
relations between the properties, there are only 19 classes.
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Gowers’ 1st question: the 6 dichotomies

St. as. `p, 1 ≤ p < +∞ ∗ Tcaciuc ∗ Unif. inhomogeneous
⇓ ⇑

unconditional basis ∗ 1st dichotomy ∗ Hered. indecomp.
⇑ ⇓

Tight by support ∗ 2nd dichotomy ∗ Quasi minimal
⇓ ⇑

Tight by range ∗ 4th dichotomy ∗ Seq. minimal
⇓ ⇑

Tight ∗ 3rd dichotomy ∗ Minimal
⇑ ⇓

Tight with const. ∗ 5th dichotomy ∗ Loc. minimal

More precisely, 6 classes are obtained by using the first 4
dichotomies, and 19 subclasses by also using the last two.
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Gowers’ 1st question: a list of 19 classes

Theorem (Ferenczi - Rosendal, 2007)
Every infinite dimensional Banach space contains a subspace
of one of the following 19 types:

Type Properties Examples
(1a)-(1b) HI, tight by range G∗ (1b), G
(2a)-(2b) HI, tight, sequentially minimal ?
(3a)-(3d) tight by support G∗

u (3b), Xu (3c),
X ∗

u (3d), Gu
(4a)-(4d) unc. basis, quasi min., tight by range ?
(5a)-(5d) unc. basis, tight, seq. minimal T , T (p)

(6a)-(6c) unconditional basis, minimal S, S∗ (6a), T ∗

(6b), c0, `p (6c)
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Gowers’ 1st question: a list of 19 classes

Theorem (Ferenczi - Rosendal, 2007)
Every infinite dimensional Banach space contains a subspace
of one of the following 19 types:

Type Properties Examples
(1a) HI, tight by range and with const. ?
(1b) HI, tight by range, loc. min. G∗

(2) HI, tight, sequentially minimal ?
(3) tight by support Gu, G∗

u, Xu, X ∗
u

(4) unc. basis, quasi min., ?
tight by range

(5) unc. basis, tight, seq. minimal T , T (p)

(6) unconditional basis, minimal c0,`p,T ∗, S,S∗
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Gowers’ 1st question: a list of 19 classes

Theorem (Ferenczi - Rosendal, 2007)
Every infinite dimensional Banach space contains a subspace
of one of the following 19 types:

Type Properties Examples
(1) HI, tight by range G, G∗

(2) HI, tight, sequentially minimal ?
(3) tight by support Gu, G∗

u, Xu, X ∗
u

(4) unc. basis, quasi min., ?
tight by range

(5) unc. basis, tight, seq. minimal T , T (p)

(6) unconditional basis, minimal c0,`p,T ∗, S,S∗
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Gowers’ 1st question: a list of 19 classes

Theorem (Ferenczi - Rosendal, 2007)
Every infinite dimensional Banach space contains a subspace
of one of the following 19 types:

Type Properties Examples
(1) HI, tight by range G, G∗

(2) HI, tight, sequentially minimal ?
(3) tight by support and
(3a) with constants, unif. inhomogeneous ?
(3b) locally minimal, unif. inhomogeneous G∗

u
(3c) strongly as. `p, 1 ≤ p < ∞ Xu
(3d) strongly as. `∞ X ∗

u
(4) unc. basis, quasi min., tight by range ?
(5) unc. basis, tight, seq minimal T , T (p)

(6) unconditional basis, minimal c0,`p,T ∗, S,S∗

Valentin Ferenczi, Universidade de São Paulo Complexity and list of Gowers



Gowers’ 1st question: a list of 19 classes

Theorem (Ferenczi - Rosendal, 2007)
Every infinite dimensional Banach space contains a subspace
of one of the following 19 types:

Type Properties Examples
(1) HI, tight by range G, G∗

(2) HI, tight, sequentially minimal ?
(3) tight by support Gu, G∗

u, Xu, X ∗
u

(4) unc. basis, quasi min., tight by range ?
(5) unc. basis, tight, seq. minimal T , T (p)

(6) unconditional basis, minimal c0,`p,T ∗, S,S∗
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Gowers’ 1st question: a list of 19 classes

Theorem (Ferenczi - Rosendal, 2007)
Every infinite dimensional Banach space contains a subspace
of one of the following 19 types:

Type Properties Examples
(1) HI, tight by range G, G∗

(2) HI, tight, sequentially minimal ?
(3) tight by support Gu, G∗

u, Xu, X ∗
u

(4) unc. basis, quasi min., tight by range ?
(5) unc. basis, seq. minimal, tight, and
(5a) tight with constants, unif. inhomog., ?
(5b) loc. minimal, unif. inhomog. ?
(5c) tight with cons., st. as. `p, 1 ≤ p < ∞, T , T (p)

(5d) st. as. `∞ ?
(6) unconditional basis, minimal c0, `p, T ∗, S, S∗
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Gowers’ 1st question: a list of 19 classes

Theorem (Ferenczi - Rosendal, 2007)
Every infinite dimensional Banach space contains a subspace
of one of the following 19 types:

Type Properties Examples
(1) HI, tight by range G, G∗

(2) HI, tight, sequentially minimal ?
(3) tight by support Gu, G∗

u, Xu, X ∗
u

(4) unc. basis, quasi min., ?
tight by range

(5) unc. basis, tight, seq. minimal T , T (p)

(6) unconditional basis, minimal, and
(6a) unif. inhomogeneous S,S∗

(6b) reflexive, st. as. `∞ T ∗

(6c) isomorphic to c0 or `p, 1 ≤ p < ∞ c0, `p
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Gowers’ 2nd question: exotic spaces

Let us reformulate the second question of Gowers:

Question (Gowers’ 2nd question)
How is it possible to relate the six dichotomies and Banach’s
hyperplane problem?

HI spaces (Gowers-Maurey 1993), spaces of type (3) (Gowers
1991), but also those of type (4) do not have subspaces which
embed in further subspaces.
Minimal spaces (type (6)), the space T are saturated with
subspaces which embed in further subspaces.
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Gowers’ 2nd question: exotic spaces

Theorem (Ferenczi - Rosendal, 2007)
Every infinite dimensional Banach space contains a subspace
of one of the following 19 types:

Type Properties Examples
all subs. non-' to further subs.

(1) HI, tight by range G, G∗

(2) HI, tight, sequentially minimal ?
(3) tight by support Gu, G∗

u, Xu, X ∗
u

(4) unc. basis, quasi min., tight by range ?
?

(5) unc. basis, tight, seq. minimal T , T (p),?
all subs. ' to further subs.

(6) unconditional basis, minimal c0, `p, T ∗, S, S∗
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Gowers’ 2nd question: exotic spaces

Theorem (Ferenczi-Rosendal, 2007)
Every Banach space contains either a negative answer to
Banach’s hyperplane problem, either a subspace with a
subsequential form of minimality.
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Gowers’ 2nd question: complex structures

There exists a totally different direction of research to compare
a space and its hyperplanes.

Definition
Let X be a real space. Then X admits a complex structure if
there exists an operateur J on X such that J2 = −Id.

Theorem (Ferenczi - Galego, 2008)
There exist real even Banach spaces, in the sense that they
admit a complex structure, but their hyperplanes do not.
Examples: some HI spaces, some C(K ) due to P. Koszmider,
some spaces with an unconditional basis.

Note that even Banach spaces are structurally different from
their hyperplanes.
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Gowers’ 3rd question

Question (Gowers’ 3rd question)
For every space X, let P(X ) be the set of subspaces of X
equiped with the relation of isomorphic embeddability, modulo
biembeddability. What is the possible structure of P(X )?

Theorem (Ferenczi - Rosendal, 2007)
Let X be a Banach space. Then

I either X contains a minimal subspace Y - and therefore
(Sev(Y ), ↪→) is trivial,

I or X does not contain a minimal subspace - and then the
relation of inclusion up to finite sets on P(N) embeds into
(Sev(X ), ↪→)
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Gowers’ 3rd question

Question (Gowers’ 3rd question)
For every space X, let P(X ) be the set of subspaces of X
equiped with the relation of isomorphic embeddability, modulo
biembeddability. For which partially ordered sets P may one
find an X such that P(X ) ' P and every subspace Y of X
contains a subspace Z such that P(Z ) ' P?

The previous theorem implies that such P ’s
I either are of cardinality 1, when X is minimal,
I or are extremely complex, in particular

(a) every partial order of order at most ℵ1 embeds into P,
(b) every closed partial order on a Polish space embeds into P.
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Complexity of isomorphism: Godefroy’s question

Theorem (Gowers, Komorowski - Tomczak-Jaegermann,
1990’s)
Any homogeneous Banach space is isomorphic to the Hilbert
space.

Question (Godefroy, 1999)
How many mutually non isomorphic subspaces must a
non-Hilbertian space contain?

The question of Godefroy takes its interest in the context of the
theory of complexity of analytic equivalence relations on Polish
spaces.
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Complexity of isomorphism

One may see separable Banach spaces as closed subspaces
of U = C([0, 1]) with Effros Borel structure.

The relation of isomorphism between separable Banach spaces
(as well as isometry, biembeddability,...) is then analytic.
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Complexity of isomorphism

Theorem (Ferenczi - Louveau - Rosendal, 2006)
The complexity of isomorphism between separable Banach
spaces is Emax , the ≤B-maximum relation among analytic
relations on Polish spaces.

The same result holds for
I isomorphic biembeddability, complemented isomorphic

biembeddability, Lipschitz isomorphism of separable
Banach spaces,

I permutative equivalence of normalized Schauder bases,
I uniform homemorphism of complete metric spaces,
I isomorphism of Polish groups,
I ...
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Complexity of separable Banach spaces

Definition
For any separable Banach space X, we define the complexity
of X as the complexity of the relation of isomorphism between
the subspaces of X .
Examples: the complexity of `2 is trivial, and the complexity of
the universal unconditional space P of Pełczýnski is Emax .

We may therefore reformulate the question of Godefroy in the
following manner:

Question
Let X be a space which is not isomorphic to the Hilbert space.
What is the complexity of X?
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Complexity of separable Banach spaces

Question
Let X be a space which is not isomorphic to the Hilbert space.
What is the complexity of X?

Lower bounds of complexity were obtained for a certain number
of spaces:

I E0 for Gu (Bossard, 2002) and GM (Rosendal, 2004),
I E1 for T and T ∗ (Rosendal, 2003),
I EKσ

for c0 and `p, 1 ≤ p < 2 (Ferenczi - Galego, 2004),
I EKσ

⊗ =+ for Lp, 1 ≤ p < 2 (Ferenczi - Galego, 2004).
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A few lower bounds of complexity

(1,=): `2•

E0: Gu, GM•

T , T (p), T ∗: E1 •

H
H

HH
HH

c0, `p, 1 ≤ p < 2 : EKσ •

E∞

�
��

���•

HHH
HHHHH

H
HHH

• EG

=+•

• EKσ⊗ =+: Lp, 1 ≤ p < 2
@

@
@

@
@

@

������

Emax : P•Z
Z

Z
Z

Z
Z

�
�

�
�

�
�

(3,=): S•
ℵ1 classes: `p, p > 2
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Complexity of separable Banach spaces

Theorem (Ferenczi, 2006)
Every separable Banach space either contains a minimal
subspace, or is of complexity at least E0.

Conjecture
Every separable Banach space which is not isomorphic to the
Hilbert space is of complexity at least E0.
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Complexity and list of Gowers

Finally we may establish a relation between the two directions
of classification by determining lower bounds of complexity for
each type and subtype of the list of Gowers.

Type isomorphism biembeddability
(1)(2) HI, tight E0 E0
(3)(4)(5) unc. basis, tight E0 E0
(6a) minimal, 2 t
unif. inhomogeneous, r
(6b) minimal, E0 i
reflexive, st. as. `∞ v
(6c) - `p, 1 ≤ p < 2 or c0 EKσ

i
- `p, p > 2 ℵ1 classes a
- `2 trivial l

Lower bounds of complexity
for each class of the list of Gowers
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Conclusion

Several notions of regular or classical space may be
distinguished:
(1) any space with sufficiently many homogeneities

(isomorphism with its hyperplanes, with its square,...).
(2) any space equipped with a sufficiently good structure

(unconditional basis, UFDD...),
(3) any space of low complexity in the sense of ≤B,
(4) any sequence space with a norm which is simple to define,

In this context,
I the spaces c0 and `p satisfy (1)(2)(4), and in some sense,

(3),

Valentin Ferenczi, Universidade de São Paulo Complexity and list of Gowers



Conclusion

Several notions of regular or classical space may be
distinguished:
(1) any space with sufficiently many homogeneities

(isomorphism with its hyperplanes, with its square,...).
(2) any space equipped with a sufficiently good structure

(unconditional basis, UFDD...),
(3) any space of low complexity in the sense of ≤B,
(4) any sequence space with a norm which is simple to define,

In this context,
I the space T satisfies (1),(2), and also (4) in comparison

with GM, Gu,
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Conclusion

Several notions of regular or classical space may be
distinguished:
(1) any space with sufficiently many homogeneities

(isomorphism with its hyperplanes, with its square,...).
(2) any space equipped with a sufficiently good structure

(unconditional basis, UFDD...),
(3) any space of low complexity in the sense of ≤B,
(4) any sequence space with a norm which is simple to define,

I but spaces with an unconditional basis en general do not
satisfy (1) (3) nor (4). For (1) however, several problems in
the theory of Banach spaces which have solutions in the
general case, remain open in the unconditional case: for
exemple, the problem of uniqueness of complex structures
(Bourgain, 1986) or the Schroeder-Bernstein problem
(Gowers, 1996).
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Conclusion

Several notions of regular or classical space may be
distinguished:
(1) any space with sufficiently many homogeneities

(isomorphism with its hyperplanes, with its square,...).
(2) any space equipped with a sufficiently good structure

(unconditional basis, UFDD...),
(3) any space of low complexity in the sense of ≤B,
(4) any sequence space with a norm which is simple to define,

Some results were presented here in the direction of the
relations between (1) (2) and (3). But what we wish to mean
exactly by (1), (3), and especially (4), and the exact relations
between (1)-(4), remain to understand.
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