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This is joint work with Steve Jackson and Brandon Seward.

A coloring property for countable groups, to appear in the
Mathematical Proceedings of the Cambridge Philosophical Society.

Group colorings and Bernoulli subflows, in preparation.
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Part I: Definitions and Problems

In this first part we give the basic definitions for group colorings
and raise the main problems about their descriptive complexity.
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Free Bernoulli Subflows

Let G be a countable group.

Bernoulli G -flow: the G -space 2G = {0, 1}G with the shift action

(g · x)(h) = x(g−1h)

subflow: closed invariant subset of 2G

free subflow: closed invariant subset of F (G ), the free part of 2G

Theorem (GJS)
For every countably infinite group G there exists a free Bernoulli
subflow.
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Constructing free subflows

⇐⇒

constructing x ∈ 2G so that [x ] ⊆ F (G )

i.e., x ∈ 2G such that every y ∈ [x ] is aperiodic
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2-Colorings

Let G be a countable group. A 2-coloring on G is a function
x : G → {0, 1} such that

for any s ∈ G with s 6= 1G , there is a finite set T ⊆ G
such that

∀g ∈ G ∃t ∈ T x(gst) 6= x(gt).

Lemma (GJS, Pestov)
x is a 2-coloring on G iff [x ] is a free subflow.
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for any s ∈ G with s 6= 1G , there is a finite set T ⊆ G
such that

∀g ∈ G ∃t ∈ T x(gst) 6= x(gt).
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Descriptive Complexity

Observation The set of all 2-colorings for any G is Π0
3.

Problem Given any countably infinite group G , is the set of all
2-colorings on G Π0

3-complete?
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Minimality

Let G be a countably infinite group. x ∈ 2G is minimal if [x ] is a
minimal subflow, i.e., if [y ] is dense in [x ] for every y ∈ [x ].

Lemma x is minimal iff

for every finite A ⊆ G there is a finite T ⊆ G such that

∀g ∈ G ∃t ∈ T ∀a ∈ A x(gta) = x(a)

Corollary The set of all minimal elements of 2G is Π0
3.
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Summary of Problems

Problem 1 Given any countably infinite group G , is the set of all
2-colorings on G Π0

3-complete?

Problem 2 Given any countably infinite group G , is the set of all
minimal elements in 2G Π0

3-complete?

Problem 3 Given any countably infinite group G , is there a
simultaneous reduction for Π0

3-completeness of minimality and
2-colorings?
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Simultaneous reduction for Π0
3-completeness of minimality

and 2-colorings

P = {x ∈ 2ω×ω : ∀n ∃m ∀k ≥ m x(n, k) = 0}

For any countably infinite group G , is there a continuous function

ϕ : 2ω×ω → 2G

such that

x ∈ P =⇒ ϕ(x) is a minimal 2-coloring on G

x 6∈ P =⇒ ϕ(x) is neither minimal nor a 2-coloring?

Su Gao The Descriptive Complexity of Free Bernoulli Subflows



Basic Definitions and Problems
Solutions and flecc groups
The Isomorphism Relation

The canonical construction
Additional ideas toward Π0

3-completeness
Conclusions

Part II: Solutions and flecc Groups

What was thought as a routine application of descriptive set
theoretic concepts and a minor generalization of previous proofs
took a surprising turn...
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The Canonical Construction of Colorings

Given a countably infinite group G , we first define infinitely many
layers of marker sets and regions with the following properties:

Fn: a finite “basic” marker region on the n-th layer

∆n: the n-th layer marker set serving as the centers of the marker
regions

Each marker region other than Fn itself is a translate of Fn, i.e., of
the form γFn where γ ∈ ∆n

The marker regions {γFn : γ ∈ ∆n} form a maximal disjoint
family in G
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Cofinality:
⋃

n Fn = G

Coherence: Fn ⊆ Fn+1, ∆n ⊇ ∆n+1; in fact, each Fn+1 is the
union of a number of disjoint translates of Fn with other disjoint
successive translates of Fm, m < n

These are achieved by starting with preliminary finite but confinal
regions

H0 ⊆ H1 ⊆ H2 ⊆ . . .

with
⋃

n Hn = G , and successively “filling” Hn+1 by disjoint
translates of Fm, m ≤ n
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Next we introduce a partial coloring c of G in such a way that
elements of ∆n can be detected by a membership test:

g ∈ ∆1 ⇐⇒ ∀f ∈ λ1F0 c(gf ) = c(f )

for some fixed element λ1 ∈ F1

g ∈ ∆n ⇐⇒ ∀f ∈ Λn c(gf ) = c(f )

for some fixed finite set Λn ⊆ Fn

In particular, if γ ∈ ∆n and η 6∈ ∆n, then there is some f ∈ Fn

such that
c(γf ) 6= c(ηf )
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If we are lucky we are done:
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To be independent of luck we have to work more:

The partial coloring c also has the property that there exist at least
two elements an, bn ∈ Fn such that for any γ ∈ ∆n,
γan, γbn 6∈ dom(c), i.e, each marker region γFn contains at least
two “free” elements to be colored at strategic positions
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In this situation

γ′ = gst = (gt)t−1st = γt−1st

and so
γ−1γ′ ∈ F−1

n FnFnFnF−1
n
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We are done if we made sure that

for any two elements γ, γ′ ∈ ∆n with γ−1γ ∈ F−1
n F 3

n F−1
n , some of

the “an−1” points in γFn and in γ′Fn are colored differently.

This is achieved by

I making sure there are enough copies of Fn−1 in Fn (so that
2s(n) > |Fn|5)

I pairs of marker points related as above are assigned different
binary labels of length s(n)
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Additional Ideas Toward Π0
3-Completeness

We need to uniformly create cx ∈ 2G according to whether an
“index” x belongs to 2G

so that
x ∈ P ⇐⇒ cx is a coloring

where

P = {x ∈ 2ω×ω : ∀n ∃m ∀k ≥ m x(n, k) = 0}
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At stage n we consider the digits

x(0, n), x(1, n), . . . , x(n, n)

If x(k , n) = 1 (where k is the least such) a periodic pattern with a
specific period sk is used

If x(k , n) = 0 for all k ≤ n, then the canonical construction is
followed
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If x 6∈ P then by a compactness argument we can obtain y ∈ [x ]
with period sk

Otherwise we will obtain colorings as before

In the implementation of this idea a number of things have to be
fixed before the coding starts:

I the “free” coding region

I the specific periods sk for all k
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It turns out there is an obstacle when the group satisfies the
following condition:

there exists a finite set A ⊆ G − {1G} such that for all
g ∈ G − {1G} there is i ∈ Z and h ∈ G such that

hg ih−1 ∈ A.

We call such groups flecc.
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Theorem Let G be a countable non-flecc group. Then the set of
all 2-colorings on G is Π0

3-complete. In fact, there is a simultaneous
reduction from P to the set of all minimal 2-colorings.
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A Characterization of Flecc Groups

Given any group G and g ∈ G , the extended conjugacy class of g
is defined as the set

C (g) = {hg ih−1 : i ∈ Z, h ∈ G}.

For g of infinite order, we call the set
⋂

n∈N C (gn) the limit
extended conjugacy class (lecc) of g .

If g is of finite order, a lecc of g is any C (gk) where order(g)/k is
prime.

A group G is flecc iff

I for any g ∈ G of infinite order, the lecc of g is not {1G}, and

I there are only finitely many distinct lecc’s in G .
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Examples of Flecc Groups

Z(p∞): the additive group of all p-adic rationals mod 1

Flecc groups are closed under finite products, but not under
infinite direct sums.

Every countable torsion-free group is the subgroup of a flecc group
(in fact, every countable group is the subgroup of a group with
only two conjugacy classes).
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Theorem If G is a countably infinite flecc group, then the set of
all 2-colorings on G is Σ0

2-complete.

Summary For a countably infinite group G , the set of all
2-colorings on G is Π0

3-complete iff G is not flecc.
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The proof of the last theorem is surprisingly simple:

First it is easy to see that for every infinite group G the set of
2-colorings on G is Σ0

2-hard.

Now, let G be flecc. We show that the set of all 2-colorings on G
is Σ0

2.

Fix a finite set A ⊆ G such that for all g ∈ G there is i ∈ Z and
h ∈ G such that hg ih−1 ∈ A.

We claim that c is a 2-coloring iff for all s ∈ A there exists a finite
set F such that for all g ∈ G there is t ∈ Fs such that
c(gst) 6= c(gt). The claim gives a Σ0

2 computation for the set of
2-colorings.
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To show the nontrivial direction of the claim, suppose c is not a
2-coloring. Then there is a periodic element y ∈ [c] with period g :
g · y = y . By flecc-ness there is i ∈ Z and h ∈ G with hg ih−1 ∈ A,
and we have (hg ih−1) · (h · y) = h · y . This means that there is
s = hg ih−1 ∈ A and z = h · y ∈ [c] such that s · z = z .

Let Fs be the finite set given by the assumption. Since z ∈ [c]
there is g ∈ G such that g · c and z agree on all elements of Fs .
Then in particular for any t ∈ Fs ,

s · (g · c)(t) = (g · c)(t).

This means that
c(g−1st) = c(g−1t),

contradicting the assumption.
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Part III: The Isomorphism Relation

We consider the problem of classifying minimal free Bernoulli
subflows up to (conjugacy) isomorphism.
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Isomorphism Relation

Given any countably infinite group G and two subflows S ,T ⊆ 2G ,
S and T are isomorphic, denoted S ∼= T , if there is a
G -homeomorphism φ from S onto T , i.e., a homeomorphism
φ : S → T such that for any g ∈ G and x ∈ S ,

φ(g · x) = g · φ(x).

Problem What is the complexity of the isomorphism relation for
all Bernoulli subflows?
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The Space of All Bernoulli Subflows

Given a countable group G , consider the standard Borel space
F (2G ) of all closed subsets of 2G , equipped with the Effros Borel
structure. The space of all Bernoulli subflows

S = {S ∈ F (2G ) : S is G -invariant}

is a Borel subspace of F (2G ), and hence a standard Borel space.

The space of all free Bernoulli subflows

F = {F ∈ S : ∀g ∈ G ∀x ∈ F g · x 6= x }

is also a standard Borel space.

Likewise for the space of all minimal Bernoulli subflows

M = {M ∈ S : M is minimal }.
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Theorem The isomorphism relation ∼= on S is a countable Borel
equivalence relation.

For G = Z this is a theorem of Curtis–Hedlund–Lyndon.
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Theorem (Clemens)
The isomorphism relation ∼= for Bernoulli subshifts (i.e. G = Z) is
a universal countable Borel equivalence relation.

Questions
What about general G ?
What about free Bernoulli subflows?
What about minimal free Bernoulli subflows?
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Theorem
For any countably infinite group G , the isomorphism relation on
the minimal free Bernoulli subflows Borel reduces E0.

Theorem
If G is a countably infinite locally finite group (i.e., for any finite
subset F of G , 〈F 〉 is finite), then the isomorphism relation for the
minimal free Bernoulli subflows is exactly E0.
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Questions

I What is the complexity of the isomorphism relation for general
Bernoulli G -subflows for an arbitrary G ?

I What about free Bernoulli subflows?

I What about minimal free Bernoulli subflows?
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