Ramsey-like Cardinals

Victoria Gitman

The City University of New York vgitman@nylogic.org http://websupport1.citytech.cuny.edu/faculty/vgitman

ESI Workshop on Large Cardinals and Descriptive Set Theory June 19, 2009

Victoria Gitman (CUNY)

・ロト ・回ト ・ヨト ・ヨト

This is a joint work with Philip Welch (University of Bristol, UK).

Large cardinals and elementary embeddings

- Measurable cardinals and most stronger large cardinals κ assert the existence of elementary embeddings $j: V \to M$ with critical point κ from the universe of sets to an inner model.
- Many smaller large cardinals κ assert the existence of elementary embeddings $j: M \to N$ with critical point κ from a weak κ -model (or κ -model) to a transitive set.
- A weak κ -model M is a transitive set of size κ satisfying ZFC without the Power Set Axiom and having $\kappa \in M$.
- A κ -model M is a weak κ -model such that $M^{<\kappa} \subseteq M$. (important in indestructibility arguments)

Examples

- If κ^{<κ} = κ, then κ is weakly compact if every A ⊆ κ is contained in a weak κ-model M for which there exists an elementary embedding j : M → N with critical point κ.
- If κ^{<κ} = κ, then κ is strongly unfoldable if for every α ∈ Ord, every A ⊆ κ is contained in a weak κ-model M for which there exists an elementary embedding j : M → N with critical point κ, j(κ) > α, and V_α ⊆ N.

Preliminaries

Iterating ultrafilters

If $j: V \to M$ is an elementary embedding with critical point κ , then $U = \{A \subseteq \kappa \mid \kappa \in j(A)\}$ is a normal ultrafilter on κ . (closed under diagonal intersections of length κ) We can iterate U to construct an *Ord*-length directed system of elementary embeddings of inner models:

$$V \xrightarrow{j_{01}}_{\text{by } U} M_1 \xrightarrow{j_{12}}_{\text{by } j_{01}(U)} M_2 \xrightarrow{j_{23}}_{\text{by } j_{02}(U)} \cdots \longrightarrow M_n \xrightarrow{j_{nn+1}}_{\text{by } j_{0n}(U)} M_{n+1} \longrightarrow \cdots \xrightarrow{dir \text{ lim }} M_{\omega} \xrightarrow{j_{\omega \omega + 1}}_{\text{by } j_{0\omega}(U)} M_{\omega + 1} \longrightarrow \cdots \longrightarrow M_{\omega} \xrightarrow{j_{\omega \omega + 1}}_{\text{by } j_{0\omega}(U)} M_{\omega} \longrightarrow \dots$$

Theorem (Kunen, 70's)

If U is a countably complete ultrafilter on κ , then every stage of the iteration is well-founded.

Iterating M-ultrafilters

If *M* is a weak κ -model and $j : M \to N$ is an elementary embedding with critical point κ , then $U = \{A \subseteq \kappa \mid \kappa \in j(A)\}$ is a normal *M*-ultrafilter. That is $\langle M, \in, U \rangle \models U$ is a normal ultrafilter.

• *M*-ultrafilters need not have well-founded ultrapowers.

Question

Can M-ultrafilters that have well-founded ultrapowers be iterated?

PROBLEM: U need not be an element of M! How do we obtain the next ultrafilter?

IDEA: Take the ultrapower of $\langle M, \in, U \rangle$ to obtain the structure $\langle N, \in, "j(U)" \rangle$.

PROBLEM: $[f] \in "j(U)"$ iff $\{\xi \in \kappa \mid f(\xi) \in U\} \in U$. But $\langle M, \in, U \rangle$ need not satisfy Comprehension! So $\{\xi \in \kappa \mid f(\xi) \in U\}$ need not be an element of M.

Definition

If *M* is a weak κ -model and *U* is an *M*-ultrafilter on κ , then *U* is weakly amenable if for every $\langle A_{\xi} | \xi \in \kappa \rangle \in M$, the set $\{\xi \in \kappa | A_{\xi} \in U\} \in M$.

Weakly amenable *M*-ultrafilters

Proposition (Folklore)

Suppose *M* is a weak κ -model, *U* is a weakly amenable *M*-ultrafilter on κ with a well-founded ultrapower, and $\langle N, \in, "j(U)" \rangle$ is the ultrapower of $\langle M, \in, U \rangle$ by *U*. Then "j(U)" is a weakly amenable *N*-ultrafilter on $j(\kappa)$.

Definition

Suppose M is weak κ -model. An elementary embedding $j: M \to N$ is κ -powerset preserving if it has critical point κ and M and N have the same subsets of κ .

Proposition (Folklore)

Suppose M is a weak κ -model.

- If $j : M \to N$ is κ -powerset preserving, then the M-ultrafilter U obtained from it is weakly amenable.
- If U is a weakly amenable M-ultrafilter having a well-founded ultrapower, then the ultrapower embedding is κ-powerset preserving.

<ロ> (日) (日) (日) (日) (日)

Hierarchy of iterability: the $\alpha\text{-}\mathsf{good}$ ultrafilters

Question

Can we iterate weakly amenable *M*-ultrafilters that have well-founded ultrapowers?

Definition (G.)

Suppose *M* is a weak κ -model. An *M*-ultrafilter on κ is

- 0-good if it has a well-founded ultrapower,
- 1-good if it is 0-good and weakly amenable,
- α -good if it gives rise to the directed system of elementary embeddings of well-founded models of length α .

EX:
$$M_0 \xrightarrow{j_{01}}_{by \ U} M_1 \xrightarrow{j_{12}}_{by \ "j_{01}(U)"} M_2 \xrightarrow{j_{12}}_{by \ "j_{02}(U)"} M_3$$
 is the directed system of length 3.

Theorem (Gaifman, 70's)

If M is a weak κ -model and U is an ω_1 -good M-ultrafilter, then U is α -good for every α .

Ramsey-like cardinals: the $\alpha\text{-iterable}$ Cardinals

Definition (G., 08)

 κ is α -iterable if every $A \subseteq \kappa$ is contained in a weak κ -model M for which there exists an α -good M-ultrafilter on κ .

Examples

- If $\kappa^{<\kappa} = \kappa$, then κ is weakly compact iff it is 0-iterable.
- We also call 1-iterable cardinals weakly Ramsey.
- κ is Ramsey iff every A ⊆ κ is contained in a weak κ-model M for which there is a weakly amenable countably complete M-ultrafilter. Thus, Ramsey cardinals are ω₁-iterable. [Dodd, Mitchell,...]
- ω_1 -iterable cardinals imply 0[#].
- ω_1 -iterable cardinals are strongly unfoldable in *L*.

The hierarchy of α -iterable cardinals

Theorem (G. and Welch, 08)

If $0^{\#}$ exists, then the Silver indiscernibles are α -iterable in L for $\alpha < \omega_1^L$.

Sketch of proof: Every Silver indiscernible is a critical point of an elementary embedding $j: L \rightarrow L$ that produces an ω_1 -iterable *L*-ultrafilter. Build in *L*, a tree of height ω of approximations to a directed system of iterated ultrapowers of countable length. Argue that the iteration that exists in *V* is a branch through the tree. The tree is ill-founded in *V*, and hence in *L*. Thus, there is a directed system of iterated ultrapowers in *L* as well.

Theorem (G. and Welch, 08)

 α -iterable cardinals are downward absolute to L for $\alpha < \omega_1^L$.

Theorem (G. and Welch, 08)

 α -iterable cardinals form a hierarchy of strength for all $\alpha \leq \omega_1$.

Theorem (Sharpe and Welch, 07)

 ω_1 -iterable cardinals are strictly weaker than Ramsey cardinals.

Weakly Compact Cardinals

- Theorem (Folklore)
- If $\kappa^{<\kappa} = \kappa$, then TFAE:
 - κ is weakly compact.
 - Every A ⊆ κ is contained in a weak κ-model M for which there exists an elementary embedding j : M → N with critical point κ.
 - Every A ⊆ κ is contained in a κ-model M for which there exists an elementary embedding j : M → N with critical point κ.
 - Every $A \subseteq \kappa$ is contained in a κ -model $M \prec H_{\kappa^+}$ for which there exists an elementary embedding $j : M \to N$ with critical point κ .
 - For every κ-model M there exists an elementary embedding j : M → N with critical point κ.
 - This equivalence holds for strongly unfoldable cardinals as well.

Question

What happens if we add the requirement that the embeddings have to be $\kappa\text{-powerset}$ preserving?

Victoria Gitman (CUNY)

Other Ramsey-like Cardinals

Example

 κ is weakly Ramsey if every $A \subseteq \kappa$ is contained in a weak κ -model M for which there exists a κ -powerset preserving elementary embedding $j : M \to N$.

Definition (G., 07)

 κ is strongly Ramsey if every $A \subseteq \kappa$ is contained in a κ -model M for which there exists a κ -powerset preserving elementary embedding $j : M \to N$.

• Strongly Ramsey cardinals are Ramsey since an *M*-ultrafilter for a κ -model *M* must be countably complete.

Definition (G., 07)

 κ is super Ramsey if every $A \subseteq \kappa$ is contained in a κ -model $M \prec H_{\kappa^+}$ for which there exists a κ -powerset preserving elementary embedding $j : M \to N$.

Theorem (G., 07)

It is inconsistent to assume that there is a cardinal κ such that every κ -model has a κ -powerset preserving elementary embedding $j : M \to N$.

The hierarchy

Measurable cardinals Super Ramsey cardinals Strongly Ramsey cardinals Ramsey cardinals ω_1 -iterable cardinals α -iterable cardinals Weakly Ramsey cardinals Weakly compact cardinals

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A