Easton function and large cardinals

Radek Honzik
http://www.logic.univie.ac.at/~radek/
radek.honzik@ff.cuni.cz
Charles University, Department of Logic

Vienna ESI/KGRC conference in
Large cardinal and Descriptive set theory,
June 15, 2009
Definition 1 \(F \) is an Easton function if for all regular cardinals \(\kappa, \mu \):

(i) If \(\kappa < \mu \), then \(F(\kappa) \leq F(\mu) \);
(ii) \(\kappa < \text{cf}(F(\kappa)) \).

By results of W.B. Easton, if we assume GCH then every Easton function \(F \) is a continuum function \((\kappa \mapsto 2^\kappa) \) on regular cardinals in some cofinality-preserving generic extension.

Note however that the (product-style) Easton’s forcing will typically destroy large cardinals which existed in \(V \). And also, some \(F \)'s are incompatible with large cardinals.

Hence this is a result concerning what is provable about the continuum function in \textit{ZFC}, not extensions of the type \textit{ZFC} + \varphi, where \(\varphi \) is a large cardinal axiom.
Question: How can we generalize Easton’s result to large cardinals?

Ideally, we can formulate the task as follows:

Given: V satisfying GCH, a property $\varphi(x)$ defining a large cardinal (such as “x is measurable”), a class E of cardinals satisfying $\varphi(x)$, and an Easton function F.

Aim: Find a cofinality preserving extension V^* realising F and preserving $\varphi(x)$ for all elements in E.

We look for the most general properties of F which F needs to satisfy to allow the above construction.
The question of optimality.

(1) Large cardinal strength. Typically, to show that $\kappa \in E$ still satisfies the large cardinal property $\varphi(x)$ in V^*, we will need to assume that cardinals in E satisfy a stronger large cardinal property $\varphi_0(x)$ back in V. The result will be optimal if consistency strength of $\varphi_0(x)$ will be optimal for $\varphi(x)$.

For instance if $\varphi(x)$ is “to be measurable” and $2^\kappa = \kappa^{++}$ in V^*, then κ needs to be more than measurable back in V ($o(\kappa) = \kappa^{++}$).
(2) \textit{Restrictions on F.} Due to reflection properties at large cardinals, not all F’s which worked for Easton in the context of ZFC can work in the large cardinal context. The result will be optimal if every F which does not contradict the consequences of the existence of large cardinals in E can be realised.

For instance $2^\kappa > \kappa^+$ and κ is measurable in V^* imply that on a large set below κ, GCH must fail. Thus if back in V, F prescribes that $F(\alpha) > \alpha^+$ on a large set below κ, then an optimal construction should realise F (if this restriction is the only one governing continuum function for measurable cardinals).
For Theorem 2 below, let us assume that F satisfies the property that every measurable cardinal κ in V is a closure point of F: $(\forall \alpha < \kappa) F(\alpha) < \kappa$ (so that κ remains strongly inaccessible if F is realised).

Note we say that κ is $F(\kappa)$-strong (or $F(\kappa)$-hypermeasurable) when $H(F(\kappa))$ is included in M for some $j : V \rightarrow M$ with $j(\kappa) > F(\kappa)$.

Theorem 2 (Friedman,H.) Let F be an Easton function and $E = \{\kappa \mid \kappa \text{ is } F(\kappa) \text{-strong}\}$. Then if for every $\kappa \in E$ there is an embedding j witnessing $F(\kappa)$-strength of κ such that

$$F(\kappa) \leq j(F)(\kappa),$$

then there is a cofinality-preserving extension V^* realising F where every cardinal in E remains measurable.
This theorem is “almost optimal” in both senses mentioned above.

- The consistency strength of $2^\kappa = F(\kappa)$ if $F(\kappa) > \kappa^+$ is by work of M.Gitik and W.Mitchell only slightly weaker than $F(\kappa)$-strength.
- If κ is measurable and $j : V \rightarrow M$ is a measure ultrapower and embedding, then $2^\kappa \leq (2^\kappa)^M$; we can write this as

 $$C(\kappa) \leq j(C)(\kappa),$$

 where C denotes the continuum function in V. It follows that “morally” our assumption that there exists j such that $F(\kappa) \leq j(F')(\kappa)$ is necessary.
Sketch of proof: Iterate reverse-Easton style products composed of Cohens and Sacks with iteration points given by the closure points of F. Show that in the generic extension, one can lift the embedding j ensured by the assumption on elements in E. Key points:

- Use Sacks($\alpha, F(\alpha)$) at every iteration point (and Cohens elsewhere). The inclusion of the Sacks forcing at this point allows for uniform lifting (using κ^+-fusion of Sacks at κ, and the “tuning-fork argument” of S.Friedman and K.Thompson).

- To fill in generics **in the middle interval** $[\kappa, F(\kappa)]$ on the M-side, the construction essentially needs that κ is $F(\kappa)$-strong back in V.

The case when $F(\kappa)$ is singular is particularly tricky: A two-dimensional matrix of partial master conditions must be constructed in order to show that the intersection of a generic on the V side with M will give a generic.
More optimality in a special case (work in progress).

Theorem 3 (H.) Assume that V satisfies GCH and F is an Easton function. Let X be the class

$$X = \{ \kappa \mid F(\kappa) = \kappa^{++}, \exists j : V \to M \text{ s.t. } (\kappa^{++})^M = \kappa^{++}$$

and $F(\kappa) \leq j(F')(\kappa) \}.$

Assume further that all elements in X are closure points of F.

Then there is a cofinality-preserving forcing P such that V^P realises F and satisfies for every $\kappa \in X$:

$$2^\kappa = \kappa^{++} \text{ and } \kappa \text{ is measurable.}$$
Theorem is optimal in the following sense:

- It achieves the realisation of F and preservation measurability of κ from the optimal consistency strength of $o(\kappa) = \kappa^{++}$, while realising F.
Sketch of proof: Modify the above forcing to include Sacks not only at closure points of F, but also at double successors of closure points.

The use of Sacks at κ^{++} of M enables us to use a fusion construction meeting κ^{++}-many dense-open sets in the forcing $\text{Sacks}(\kappa^{++}, j(F)(\kappa))$, and to derive a master-condition. Using homogeneity of Sacks forcing, this ensure the existence of a generic for this stage of construction.
Generalization to models where cofinality changes. A natural generalization of above constructions considers cardinal-preserving forcings which change cofinalities to obtain a model where F is realised and instead of keeping measurability of κ’s in E, all these κ’s are turned into singular strong limit cardinals of cof ω. This can be used to derive some results concerning interactions between cardinals failing SCH and the continuum function.

Definition 4 We say that an Easton function F is toggle-like if $F(\alpha) \in \{\alpha^+, \alpha^{++}\}$ for every regular α, and $F(\kappa^+) = \kappa^{++}$ for every κ a Mahlo cardinal.
Theorem 5 (H.) Let F be a toggle-like Easton function and let X be any subclass of $\{\kappa \mid \kappa$ is κ^{++}-strong and $F(\kappa) = \kappa^{++}\}$. Then there is a cardinal-preserving extension V^P which realises F and where all elements in X are strong limit singular cardinals of $\text{cof} \omega$. In particular, SCH fails exactly at elements of X.

Corollary 6 Unlike in the case of singular strong limit cardinals of uncountable cofinalities, no reflection is provable for singular strong limit cardinals of $\text{cof} \omega$ (where the reflection is formulated in terms of preservation/failure of GCH below κ).
Sketch of proof. The forcing is a two-stage forcing. Let θ_E denote all $\kappa \in X$ such that there is a witnessing embedding j with $j(F)(\kappa) = \kappa^+$. Let $\theta_P = X \setminus \theta_E$.

- First force reverse-Easton style to realise F everywhere except at cardinals in θ_E. All cardinal in θ_P will satisfy $2^\kappa = \kappa^{++}$ and remain measurable (using the fact that every embedding witnessing κ^{++}-strength of $\kappa \in \theta_P$ satisfies $F(\kappa) \leq j(F)(\kappa)$).
- Iterate Prikry-type forcings with Easton support to simultaneously singularize all cardinals in θ_P and blow up the powerset and singularize cardinals in θ_E (using extender-based Prikry forcing for elements in θ_E and the simple Prikry forcing for elements in θ_P).
Open questions.

(1) Is possible to extend the construction for relevant κ's from the optimal cardinal-strength to include the cases where $F(\kappa) > \kappa^{++}$?

(2) Is it possible to extend the construction for relevant κ’s concerning the failure of SCH to include the cases where $F(\kappa) > \kappa^{++}$?