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Borel ideals

An ideal is a subset of P(ω)

containing all finite sets

closed under finite unions

closed under subsets.

If I is an ideal, we denote by

I∗ the dual filter, and

I+ the family of I-positive sets.

Given X ∈ I+, I � X = {I ∩ X : I ∈ I}.

An ideal is considered as a subspace of P(ω), with the Cantor
set (product) topology. So Borel, analytic, ... refer to this
topology.
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Examples of Borel ideals

nwd . . . the ideal of nowhere dense subsets of the rationals

R . . . the ideal generated by the cliques and free sets in
the Random graph

Z . . . the ideal of sets of asymptotic density zero.

ED . . . the ideal on ω × ω generated by vertical sections
and graphs of functions.

EDfin . . . the ideal ED restricted to the set below the
diagonal.

fin × fin . . . the Fubini product of fin with itself.

conv is the ideal on the rationals in the unit interval
generated by convergent sequences.
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Katětov order

Definition

Given two ideals I, J , we say that I is Katětov below J
(I ≤K J ) if there is a function f : ω −→ ω such that
f −1[I ] ∈ J for every I ∈ I.
We will say that I is Katětov-Blass below J (I ≤KB J ) if the
function f above is finite-to-one.

The Katětov order is both downward and upward directed with
the minimal element fin, the ideal of finite sets.

Moreover, an ideal I is tall (dense) if and only if I 6≤K fin
(I 6'K fin).
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Katětov order
on Borel ideals

Michael
Hrušák
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Destructibility of ideals by forcing

Definition

Given an ideal I and a forcing notion P, we say that P destroys
I if there is a P-name Ẋ for an infinite subset of ω such that


P ”I ∩ Ẋ is finite for every I ∈ I”.

Question: When does a given forcing destroy a given ideal?

Let Γ be the class of forcings P of the form Borel(ωω)/I , where
I is a σ-ideal of Borel sets, such that P is proper, continuously
homogeneous with the continuous reading of names.

Cohen, Random, Sacks, Miller, Laver, Mathias,... are all in Γ.
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Trace ideals

Theorem (H.-Zapletal)

For every P ∈ Γ there is an ideal JP such that for any ideal I,

P destroys I if and only if I ≤K JP.

Theorem (H.-Zapletal)

For every P ∈ Γ, the forcing P(ω)/JP is proper and

P(ω)/JP ' P ∗ Q̇,

where Q does not add reals.

Example: nwd is JCohen.
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Ultrafilters

Let U be an ultrafilter and U∗ the dual ideal. Then

U is selective iff ED 6≤K U∗ iff R 6≤K U∗,
U is a P-point iff fin × fin 6≤K U∗ iff conv 6≤K U∗,
U is a nowhere dense ultrafilter iff nwd 6≤K U∗.
U is a Q-point iff EDfin 6≤KB U∗,
U is rapid iff I 6≤KB U∗ for any analytic P-ideal I,
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Embedding of P(ω)/fin into Borel ideals with the
Katětov order

Theorem (H.-Meza)

There is an embedding of P(ω)/fin into Borel ideals with the
Katětov order.

There are antichains (families of pairwise incomparable
ideals) of size c.

There are increasing (and decreasing) chains of length b.
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Search for minimal ideals in the Katětov order

Question: Is there a Katětov-minimal tall Borel ideal? Is there
one which is locally minimal?

An Borel ideal J is locally minimal if for every Borel ideal I
there is an X ∈ I+ such that J ≤K I � X .

Observation: Let I be an ideal.

ω −→ (I+)2
2 iff R 6≤K I, i.e.

R is locally minimal if the following has a positive answer:

Question: Is I+ 6−→ (I+)2
2 true for every tall Borel ideal?

Theorem (H.-Meza)

I+ 6−→ (I+)2
2 holds for all tall Borel ideals such that P(ω)/I

is proper.
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Category dichotomy

Theorem (H.)

Let I be a Borel ideal. Then either I ≤K nwd or there is an
X ∈ I+ such that ED ≤K I � X .

The dichotomy can really be understood as a trichotomy: Let I
be a Borel ideal. Then

1 I ≤K nwd or

2 there is an X ∈ I+ such that fin × fin ≤K I � X or

3 there is an X ∈ I+ such that EDfin ≤KB I � X .
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Submeasures

Definition

A submesure on a set X is a function ϕ : P(X ) −→ [0,∞] such
that:

ϕ(∅) = 0

ϕ(A ∪ B) ≤ ϕ(A) + ϕ(B)

If A ⊆ B then ϕ(A) ≤ ϕ(B)
If, ϕ satisfies

ϕ(A) = sup{ϕ(F ) : F ∈ [A]<ω we say that ϕ is lower
semicontinuous.
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Ideals and submeasures

Definition

Given a lower semicontinuous submeasure ϕ on ω, let:

Fin(ϕ) = {A ⊆ ω : ϕ(A) <∞}
Exh(ϕ) = {A ⊆ ω : ĺımn→∞ ϕ(A ∩ [n,∞)) = 0}

An ideal I is a P-ideal if for every sequence {In : n ∈ ω} of
elements of I there is an I ∈ I such that In \ I is finite for all
n ∈ ω.

Theorem

1 (Mazur) For every Fσ ideal I there is a l.s.c.s.m. ϕ such
that I = Fin(ϕ).

2 (Solecki) For every analytic P-ideal I there is a l.s.c.s.m.
ϕ such that I = Exh(ϕ).
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Measure Dichotomy

Z = {I ⊆ ω : ĺımn→∞
|I∩n|

n = 0}.

Let Ω = {U ∈ Clop(2ω) : µ(U) = 1/2}.

For x ∈ 2ω let Ix = {U ∈ Ω : x ∈ U}.

S is the ideal on ω generated by {Ix : x ∈ 2ω}.

Theorem (H.)

Let I be an analytic P-ideal. Then either I ≤K Z or there is
an I-positive set X such that I � X ≥K S.
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Pathology of submeasures and ideals

Definition

The degree of pathology of a submeasure ϕ on a set X is
defined as follows:

P(ϕ) =
ϕ(X )

sup{µ(X ) : µ a measure on X dominated by ϕ}

Definition

An analytic P-ideal I is non-pathological if I = Exh(ϕ), where
ϕ is non-pathological, i.e
ϕ = sup{µ : µ a measure on ω dominated by ϕ}.
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Kelley’s covering number

Definition

Let F be a set and B ⊆ P(F ). For any finite sequence
S = 〈S0, . . .Sn〉 of (not necessarily distinct) elements of B let

m(S) = ḿın {|{i ∈ n + 1 : x ∈ Si}| : x ∈ F} .

The Kelley’s covering number C (B) is defined by:

C (B) = sup

{
m(S)

|S |
: S ∈ [B]<ω

}
.
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Crucial lemma

The following proposition, crucial for our proof of the Measure
dichotomy, is a quantitative version of a result of Christensen:

Proposition

Let ϕ be a normalized submeasure on a (finite) set F and
ε > 0. Let

Aε = {A ⊆ F : ϕ(A) ≤ ε}.

Then

C (Aε) ≥ 1− 1

εP(ϕ)
.
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Fubini property

Definition

A Borel ideal I satisfies the Fubini property if for every Borel
A ⊆ ω × 2ω and ε > 0, if
{n < ω : µ({x ∈ 2ω : (n, x) ∈ A}) > ε} ∈ I+ then
µ({x ∈ 2ω : {n ∈ ω : (n, x) ∈ A} ∈ I+}) ≥ ε.

Corollary

The following are equivalent for an analytic P-ideal I
For all X ∈ I+, I � X ≤K Z,

For all X ∈ I+, S 6≤K I � X ,

I has the Fubini property,

I is non-pathological.
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Open problems

Problems

Is there a (locally) Katětov-minimal tall Borel ideal?

Is I+ 6−→ (I+)2
2 true for every tall Borel ideal?

Is it true that a Borel ideal I can be extended to an
Fσ-ideal if and only if conv 6≤K I ?

Is it true that a Borel ideal I can be extended to an
Fσδ-ideal if and only if fin × fin 6≤K I?

Can every Fσδ-ideal be destroyed by a forcing not adding a
dominating real? What about the density zero ideal Z?
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