ESI workshop on Large Cardinals and Descriptive Set Theory

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibili of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problem

Katětov order on Borel ideals

Michael Hrušák

UNAM Mexico michael@matmor.unam.mx

> Vienna June 2009

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibilit of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

1 Borel ideals

Destructibility of ideals by forcing

3 Katětov order and ultrafilters

4 Katětov order

5 Analytic P-ideals

6 Open problems

Borel ideals

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibilit of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

An *ideal* is a subset of $\mathcal{P}(\omega)$

- containing all finite sets
- closed under finite unions
- closed under subsets.

If ${\mathcal I}$ is an ideal, we denote by

- \mathcal{I}^* the dual filter, and
- \mathcal{I}^+ the family of \mathcal{I} -positive sets.
- Given $X \in \mathcal{I}^+$, $\mathcal{I} \upharpoonright X = \{I \cap X : I \in \mathcal{I}\}.$

An ideal is considered as a subspace of $\mathcal{P}(\omega)$, with the Cantor set (product) topology. So Borel, analytic, ... refer to this topology.

Examples of Borel ideals

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibilit of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

- *nwd* ... the ideal of nowhere dense subsets of the rationals
- $\blacksquare \ \mathcal{R} \ \ldots$ the ideal generated by the cliques and free sets in the Random graph
- $\blacksquare \mathcal{Z} \dots$ the ideal of sets of asymptotic density zero.
- \mathcal{ED} ... the ideal on $\omega \times \omega$ generated by vertical sections and graphs of functions.
- \mathcal{ED}_{fin} ... the ideal \mathcal{ED} restricted to the set below the diagonal.
- $fin \times fin \dots$ the Fubini product of *fin* with itself.
- conv is the ideal on the rationals in the unit interval generated by convergent sequences.

Katětov order

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibility of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problem:

Definition

Given two ideals \mathcal{I} , \mathcal{J} , we say that \mathcal{I} is Katětov below \mathcal{J} $(\mathcal{I} \leq_{\mathcal{K}} \mathcal{J})$ if there is a function $f : \omega \longrightarrow \omega$ such that $f^{-1}[I] \in \mathcal{J}$ for every $I \in \mathcal{I}$.

We will say that \mathcal{I} is Katětov-Blass below \mathcal{J} ($\mathcal{I} \leq_{KB} \mathcal{J}$) if the function f above is finite-to-one.

The Katětov order is both downward and upward directed with the minimal element *fin*, the ideal of finite sets.

Moreover, an ideal \mathcal{I} is *tall (dense)* if and only if $\mathcal{I} \not\leq_{\mathcal{K}} fin$ $(\mathcal{I} \not\simeq_{\mathcal{K}} fin)$.

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibility of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

1 Borel ideals

2 Destructibility of ideals by forcing

B Katětov order and ultrafilters

4 Katětov order

Destructibility of ideals by forcing

Katětov order on Borel ideals

> Michael Hrušák

Borel ideals

Destructibility of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

Definition

Given an ideal \mathcal{I} and a forcing notion \mathbb{P} , we say that \mathbb{P} destroys \mathcal{I} if there is a \mathbb{P} -name \dot{X} for an infinite subset of ω such that $\Vdash_{\mathbb{P}} "I \cap \dot{X} \text{ is finite for every } I \in \mathcal{I}".$

Question: When does a given forcing destroy a given ideal?

Let Γ be the class of forcings \mathbb{P} of the form $Borel(\omega^{\omega})/I$, where I is a σ -ideal of Borel sets, such that \mathbb{P} is proper, continuously homogeneous with the continuous reading of names.

Cohen, Random, Sacks, Miller, Laver, Mathias,... are all in F.

Trace ideals

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibility of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problem

Theorem (H.-Zapletal)

For every $\mathbb{P} \in \Gamma$ there is an ideal $\mathcal{J}_{\mathbb{P}}$ such that for any ideal \mathcal{I} ,

 \mathbb{P} destroys \mathcal{I} if and only if $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}_{\mathbb{P}}$.

Theorem (H.-Zapletal)

For every $\mathbb{P}\in \mathsf{\Gamma}$, the forcing $\mathcal{P}(\omega)/\mathcal{J}_{\mathbb{P}}$ is proper and

$$\mathcal{P}(\omega)/\mathcal{J}_{\mathbb{P}}\simeq\mathbb{P}\ast\dot{\mathbb{Q}},$$

where \mathbb{Q} does not add reals.

Example: *nwd* is \mathcal{J}_{Cohen} .

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibilit of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

1 Borel ideals

Destructibility of ideals by forcing

3 Katětov order and ultrafilters

4 Katětov order

Ultrafilters

Katětov order on Borel ideals

Michael Hrušák

Borel ideal

Destructibilit of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems Let ${\mathcal U}$ be an ultrafilter and ${\mathcal U}^*$ the dual ideal. Then

- \mathcal{U} is selective iff $\mathcal{ED} \not\leq_{\mathcal{K}} \mathcal{U}^*$ iff $\mathcal{R} \not\leq_{\mathcal{K}} \mathcal{U}^*$,
- \mathcal{U} is a P-point iff $fin \times fin \not\leq_{K} \mathcal{U}^{*}$ iff $conv \not\leq_{K} \mathcal{U}^{*}$,
- \mathcal{U} is a nowhere dense ultrafilter iff $nwd \not\leq_{\mathcal{K}} \mathcal{U}^*$.
- \mathcal{U} is a Q-point iff $\mathcal{ED}_{fin} \not\leq_{KB} \mathcal{U}^*$,
- \mathcal{U} is rapid iff $\mathcal{I} \not\leq_{KB} \mathcal{U}^*$ for any analytic P-ideal \mathcal{I} ,

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibilit of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

1 Borel ideals

Destructibility of ideals by forcing

3 Katětov order and ultrafilters

4 Katětov order

Embedding of $\mathcal{P}(\omega)/\textit{fin}$ into Borel ideals with the Katětov order

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibility of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

Theorem (H.-Meza)

There is an embedding of $\mathcal{P}(\omega)/\textit{fin}$ into Borel ideals with the Katětov order.

- There are antichains (families of pairwise incomparable ideals) of size c.
- There are increasing (and decreasing) chains of length b.

Search for minimal ideals in the Katětov order

Katětov order on Borel ideals

> Michael Hrušák

Borel ideals

Destructibility of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems **Question:** Is there a Katětov-minimal tall Borel ideal? Is there one which is locally minimal?

An Borel ideal \mathcal{J} is *locally minimal* if for every Borel ideal \mathcal{I} there is an $X \in \mathcal{I}^+$ such that $\mathcal{J} \leq_{\kappa} \mathcal{I} \upharpoonright X$.

Observation: Let \mathcal{I} be an ideal.

$$\omega \longrightarrow (\mathcal{I}^+)^2_2$$
 iff $\mathcal{R} \not\leq_{\mathcal{K}} \mathcal{I}$, i.e.

 \mathcal{R} is locally minimal if the following has a positive answer: **Question:** Is $\mathcal{I}^+ \not\longrightarrow (\mathcal{I}^+)_2^2$ true for every tall Borel ideal?

Theorem (H.-Meza)

 $\mathcal{I}^+ \not\longrightarrow (\mathcal{I}^+)_2^2$ holds for all tall Borel ideals such that $\mathcal{P}(\omega)/\mathcal{I}$ is proper.

Category dichotomy

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibilit of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problem:

Theorem (H.)

Let \mathcal{I} be a Borel ideal. Then either $\mathcal{I} \leq_{\mathcal{K}} nwd$ or there is an $X \in \mathcal{I}^+$ such that $\mathcal{ED} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$.

The dichotomy can really be understood as a trichotomy: Let ${\cal I}$ be a Borel ideal. Then

1 $\mathcal{I} \leq_{K} nwd$ or

2 there is an $X \in \mathcal{I}^+$ such that $fin \times fin \leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$ or

3 there is an $X \in \mathcal{I}^+$ such that $\mathcal{ED}_{fin} \leq_{KB} \mathcal{I} \upharpoonright X$.

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibilit of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

1 Borel ideals

2 Destructibility of ideals by forcing

3 Katětov order and ultrafilters

4 Katětov order

Submeasures

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibilit of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

Definition

A submesure on a set X is a function $\varphi : \mathcal{P}(X) \longrightarrow [0, \infty]$ such that:

- $\varphi(\emptyset) = 0$
- $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$
- If $A \subseteq B$ then $\varphi(A) \leq \varphi(B)$
 - If, φ satisfies
- $\varphi(A) = \sup\{\varphi(F) : F \in [A]^{<\omega} \text{ we say that } \varphi \text{ is lower semicontinuous.}$

Ideals and submeasures

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibilit of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

Definition

Given a lower semicontinuous submeasure φ on ω , let:

■
$$Fin(\varphi) = \{A \subseteq \omega : \varphi(A) < \infty\}$$

■ $Exh(\varphi) = \{A \subseteq \omega : \lim_{n \to \infty} \varphi(A \cap [n, \infty)) = 0\}$

An ideal \mathcal{I} is a *P-ideal* if for every sequence $\{I_n : n \in \omega\}$ of elements of \mathcal{I} there is an $I \in \mathcal{I}$ such that $I_n \setminus I$ is finite for all $n \in \omega$.

Theorem

- 1 (Mazur) For every F_{σ} ideal \mathcal{I} there is a l.s.c.s.m. φ such that $\mathcal{I} = Fin(\varphi)$.
- 2 (Solecki) For every analytic P-ideal \mathcal{I} there is a l.s.c.s.m. φ such that $\mathcal{I} = Exh(\varphi)$.

Measure Dichotomy

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibilit of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

$$\mathcal{Z} = \{I \subseteq \omega : \lim_{n \to \infty} \frac{|I \cap n|}{n} = 0\}.$$

Let
$$\Omega = \{U \in \mathit{Clop}(2^\omega) : \mu(U) = 1/2\}.$$

For
$$x \in 2^{\omega}$$
 let $I_x = \{U \in \Omega : x \in U\}.$

S is the ideal on ω generated by $\{I_x : x \in 2^{\omega}\}$.

Theorem (H.)

Let \mathcal{I} be an analytic P-ideal. Then either $\mathcal{I} \leq_{\mathcal{K}} \mathcal{Z}$ or there is an \mathcal{I} -positive set X such that $\mathcal{I} \upharpoonright X \geq_{\mathcal{K}} S$.

Pathology of submeasures and ideals

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibility of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

Definition

The *degree of pathology* of a submeasure φ on a set X is defined as follows:

$$P(\varphi) = \frac{\varphi(X)}{\sup\{\mu(X) : \mu \text{ a measure on } X \text{ dominated by } \varphi\}}$$

Definition

An analytic P-ideal \mathcal{I} is *non-pathological* if $\mathcal{I} = Exh(\varphi)$, where φ is non-pathological, i.e $\varphi = \sup\{\mu : \mu \text{ a measure on } \omega \text{ dominated by } \varphi\}.$

Kelley's covering number

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibilit of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

Definition

Let *F* be a set and $\mathcal{B} \subseteq \mathcal{P}(F)$. For any finite sequence $S = \langle S_0, \dots, S_n \rangle$ of (not necessarily distinct) elements of \mathcal{B} let

$$m(S) = \min\{|\{i \in n+1 : x \in S_i\}| : x \in F\}.$$

The Kelley's covering number $C(\mathcal{B})$ is defined by:

$$C(\mathcal{B}) = \sup\left\{\frac{m(S)}{|S|}: S \in [\mathcal{B}]^{<\omega}
ight\}.$$

Crucial lemma

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibility of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems The following proposition, crucial for our proof of the Measure dichotomy, is a *quantitative version* of a result of Christensen:

Proposition

Let φ be a normalized submeasure on a (finite) set ${\it F}$ and $\varepsilon>0.$ Let

$$\mathcal{A}_{\varepsilon} = \{ \mathcal{A} \subseteq \mathcal{F} : \varphi(\mathcal{A}) \leq \varepsilon \}.$$

Then

$$\mathcal{C}(\mathcal{A}_arepsilon) \geq 1 - rac{1}{arepsilon \mathcal{P}(arphi)}.$$

Fubini property

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibility of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problem:

Definition

A Borel ideal \mathcal{I} satisfies the *Fubini property* if for every Borel $A \subseteq \omega \times 2^{\omega}$ and $\varepsilon > 0$, if $\{n < \omega : \mu(\{x \in 2^{\omega} : (n, x) \in A\}) > \varepsilon\} \in \mathcal{I}^+$ then $\mu(\{x \in 2^{\omega} : \{n \in \omega : (n, x) \in A\} \in \mathcal{I}^+\}) \ge \varepsilon$.

Corollary

The following are equivalent for an analytic P-ideal ${\cal I}$

- For all $X \in \mathcal{I}^+$, $\mathcal{I} \upharpoonright X \leq_K \mathcal{Z}$,
- For all $X \in \mathcal{I}^+$, $\mathcal{S} \not\leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$,
- \mathcal{I} has the Fubini property,
- *I* is non-pathological.

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibilit of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

1 Borel ideals

Destructibility of ideals by forcing

3 Katětov order and ultrafilters

4 Katětov order

Open problems

Katětov order on Borel ideals

Michael Hrušák

Borel ideals

Destructibilit of ideals by forcing

Katětov order and ultrafilters

Katětov order

Analytic P-ideals

Open problems

Problems

- Is there a (locally) Katětov-minimal tall Borel ideal?
- Is $\mathcal{I}^+ \not\longrightarrow (\mathcal{I}^+)_2^2$ true for every tall Borel ideal?
- Is it true that a Borel ideal \mathcal{I} can be extended to an F_{σ} -ideal if and only if *conv* $\leq_{\mathcal{K}} I$?
- Is it true that a Borel ideal \mathcal{I} can be extended to an $F_{\sigma\delta}$ -ideal if and only if $fin \times fin \not\leq_{K} \mathcal{I}$?
- Can every F_{σδ}-ideal be destroyed by a forcing not adding a dominating real? What about the density zero ideal Z?