### The Axiom of Real Blackwell Determinacy

Daisuke Ikegami, David de Kloet and Benedikt Löwe

June 16th, 2009

#### From now on...

Work in  $ZF+AC_{\omega}(\mathbb{R})$ .

 $AC_{\omega}(\mathbb{R})$ : for any countable family  $(A_n \mid n \in \omega)$  of non-empty sets of reals, there is a function  $f: \omega \to \mathbb{R}$  such that  $f(n) \in A_n$  for every n.

### Perfect & imperfect information for games

Perfect information: Players know about the history of plays by both players.

E.g. Gale-Stewart games.

Imperfect information: Players do not know about what the other player does.

E.g. Blackwell games.

l's turn.



I has played.



II's turn.



II has played.



l's turn again.



### After infinitely many times...



Player I wins if x is in the payoff set and otherwise Player II wins.

l's turn.



I has played.



II's turn.



II has played.



l's turn again.



### After infinitely many times...



Calculate the probability as below.



Player I wins if the probability of the payoff set is 1. Player II wins if the probability of the payoff set is 0.

## Formal definitions; Gale-Stewart games

#### Given $A \subseteq {}^{\omega}2$ .

- $\sigma$  is a strategy for I if  $\sigma: 2^{\mathsf{Even}} \to 2$ .
- $\tau$  is a strategy for II if  $\tau: 2^{\text{Odd}} \to 2$ .
- For a strategy  $\sigma$  for I and a strategy  $\tau$  for II, define  $\sigma * \tau \colon \omega \to 2$  as follows:

$$\sigma * \tau(n) = \begin{cases} \sigma(\sigma * \tau \upharpoonright n) & \text{if } n \text{ is even,} \\ \tau(\sigma * \tau \upharpoonright n) & \text{if } n \text{ is odd.} \end{cases}$$

- A strategy  $\sigma$  for I is winning in A if for any strategy  $\tau$  for II,  $\sigma * \tau \in A$ .
- A strategy  $\tau$  for II is winning in A if for any strategy  $\sigma$  for I,  $\sigma * \tau \notin A$ .
- A is determined if either I or II has a winning strategy in A.
- AD: every  $A \subseteq {}^{\omega}2$  is determined.

We can define  $AD_X$  for any set X in the same way.



### Formal definitions; Blackwell games

- $\sigma$  is a *mixed strategy for I* if  $\sigma: 2^{\mathsf{Even}} \to \mathsf{Prob}(2)$ .
- $\tau$  is a mixed strategy for II if  $\tau: 2^{\text{Odd}} \to \text{Prob}(2)$ .
- For a mixed strategy  $\sigma$  for I and a mixed strategy  $\tau$  for II, define  $\sigma * \tau \colon {}^{<\omega}2 \to \mathsf{Prob}(2)$  as follows:

$$\sigma * \tau(s) = \begin{cases} \sigma(s) & \text{if } \mathsf{lh}(s) \text{ is even,} \\ \tau(s) & \text{if } \mathsf{lh}(s) \text{ is odd.} \end{cases}$$

Then define  $\mu_{\sigma,\tau} : {}^{<\omega}2 \to [0,1]$  as follows:

$$\mu_{\sigma,\tau}(s) = \prod_{i < \mathsf{lh}(s)} \sigma * \tau(s \upharpoonright i)(s(i)).$$

We can uniquely extend  $\mu_{\sigma,\tau}$  to a Borel probability measure.



### Formal definitions; Blackwell games ctd.

Given  $A \subseteq {}^{\omega}2$ .

- A mixed strategy  $\sigma$  for I is *optimal in A* if for any mixed strategy  $\tau$  for II,  $\mu_{\sigma,\tau}(A)=1$ .
- A mixed strategy  $\tau$  for II is *optimal in A* if for any mixed strategy  $\sigma$  for I,  $\mu_{\sigma,\tau}(A) = 0$ .
- A is Blackwell determined if either I or II has an optimal strategy in A.
- BI-AD: every  $A \subseteq {}^{\omega}2$  is Blackwell determined.

We can define BI-AD<sub>X</sub> for a set X if we have AC<sub>\omega</sub>( $\mathbb{R} \times {}^{\omega}X$ ), especially we can define BI-AD<sub>\mathbb{R}</sub> using AC<sub>\omega</sub>( $\mathbb{R}$ ).

Note: there is another formulation of Blackwell games coming from game theory.

### AD vs BI-AD

- AD implies BI-AD.
- Under AC, there is a set which is Blackwell-determined but not determined. (Hjorth)
- BI-AD implies that every set of reals is Lebesgue measurable. (Vervoort)
- **1** Bl-AD implies that  $\omega_1$  is measurable. (Löwe)

### Conjecture (Martin)

BI-AD implies AD.



### $\mathsf{AD}_\mathbb{R}$ vs $\mathsf{Bl} ext{-}\mathsf{AD}_\mathbb{R}$

- $\bullet$  AD $_{\mathbb{R}}$  implies Bl-AD $_{\mathbb{R}}$ .
- ullet BI-AD $_{\mathbb{R}}$  implies that every relation on the reals can be uniformized, (equivalently, finite games on the reals are determined). (Löwe)

### Theorem (de Kloet, Löwe and I.)

 $\mathsf{BI}\text{-}\mathsf{AD}_\mathbb{R}$  implies that  $\mathbb{R}^\#$  exists.

Especially, BI-AD $_{\mathbb{R}}$  implies the consistency of AD.

## What's $\mathbb{R}^{\#}$ ?

 $\mathbb{R}^{\#}$  is the complete theory of  $L(\mathbb{R})$  in the language of set theory with constants for reals,  $\mathbb{R}$  and  $\omega$ -many indicernibles over  $L(\mathbb{R})$  with appropriate properties.

Compared to  $0^{\#}$ ,

- We use weak Skolem terms instead of Skolem terms.
- ullet Every existential sentence in  $\mathbb{R}^{\#}$  can be witnessed by a weak Skolem term with constants for indicernibles only appearing in that sentence.

The latter condition is called "witness condition".

### Theorem (Solovay)

 $\mathsf{AD}_\mathbb{R}$  implies that  $\mathbb{R}^\#$  exists.

# From $BI-AD_{\mathbb{R}}$ to Con(AD)

- ① By the result of Martin-Neeman-Vervoort,  $AD^{L(\mathbb{R})}$  is true regarding that  $BI-AD^{L(\mathbb{R})}$  follows from  $BI-AD_{\mathbb{R}}$ .
- ② By our theorem, we get  $\mathbb{R}^{\#}$ .
- **③** From  $\mathbb{R}^{\#}$ , we get a set-sized elementary submodel of L( $\mathbb{R}$ ), which witnesses Con(AD).

## Proof of Solovay's theorem

### Theorem (Solovay)

 $\mathsf{AD}_\mathbb{R}$  implies that  $\mathbb{R}^\#$  exists.

Step 1: There is a  $\sigma$ -complete normal fine ultrafilter U on  $\mathcal{P}_{\omega_1}(\mathbb{R})$ , where

(Fineness)

$$(\forall x \in \mathbb{R}) \{S \mid x \in S\} \in U,$$

(Normality)

$$(\forall \langle A_x \in U \mid x \in \mathbb{R} \rangle) \ \triangle_{x \in \mathbb{R}} A_x = \{ S \mid (\forall x \in S) \ S \in A_x \} \in U.$$

# Proof of Solovay's theorem

### Theorem (Solovay)

 $\mathsf{AD}_\mathbb{R}$  implies that  $\mathbb{R}^\#$  exists.

Step 1: There is a  $\sigma$ -complete normal fine ultrafilter U on  $\mathcal{P}_{\omega_1}(\mathbb{R})$ .

#### Proof.

Given a subset A of  $\mathcal{P}_{\omega_1}(\mathbb{R})$ . Play the game

Then

- Player I wins if  $\bigcup_{i \in \omega} a_i \in A$ .
- Player II wins if  $\bigcup_{i\in\omega} a_i \notin A$ .

Set  $A \in U$  if Player I has a winning strategy in the game above.

### Proof of Solovay's theorem, ctd.

### Theorem (Solovay)

 $\mathsf{AD}_\mathbb{R}$  implies that  $\mathbb{R}^\#$  exists.

Step 1: There is a  $\sigma$ -complete normal fine ultrafilter U on  $\mathcal{P}_{\omega_1}(\mathbb{R})$ .

Step 2: Let A be as follows: for a sentence  $\phi$  in the language for  $\mathrm{L}(\mathbb{R})$ ,

$$\phi \in A \iff \{S \in \mathcal{P}_{\omega_1}(\mathbb{R}) \mid L(S) \cap \mathbb{R} = S, \phi \in S^\#\} \in U.$$

Then  $A=\mathbb{R}^{\#}$  .



#### Proof of Theorem

#### Theorem (de Kloet, Löwe and I.)

 $\mathsf{BI}\text{-}\mathsf{AD}_\mathbb{R}$  implies that  $\mathbb{R}^\#$  exists.

Especially,  $\mathsf{BI}\text{-}\mathsf{AD}_\mathbb{R}$  implies the consistency of AD.

Idea: Mimic the proof of Solovay's theorem.

Step 1: There is a  $\sigma$ -complete normal fine ultrafilter U on  $\mathcal{P}_{\omega_1}(\mathbb{R})$ .

Do the same argument in a Blackwell way.

Step 2: Exactly the same as before.

### What can we do more with BI-AD $\mathbb{R}$ ?

#### Assume BI-AD $_{\mathbb{R}}$ .

- Every set of reals has the perfect set property. (I.)
- ② If every set of reals has the Baire property, then every set of reals is  $\infty$ -Borel. (I.)
- If every set of reals has the Baire property, then every set of reals is Ramsey. (1.)

#### Question

#### Assume Bl-AD $\mathbb{R}$ .

- Does every set of reals have the Baire property?
- Is Blackwell-Wadge order well-founded?
- **Our Proof** Does  $AD_{\mathbb{R}}$  hold?

Vielen Dank für Ihre Aufmerksamkeit!!