A precipitous club guessing ideal on ω_1

Tetsuya Ishiu

Department of Mathematics and Statistics Miami University

June, 2009 ESI workshop on large cardinals and descriptive set theory

Convention

- Lim denotes the class of all limit ordinals.
- 2 Cof(θ) denotes the class of all limit ordinals of cofinality θ .
- So For sets X and Y of ordinals, we say that X is almost contained in Y and denote X ⊆* Y iff X = Ø or there exists a ζ < sup(X) such that X \ ζ ⊆ Y.</p>
- Throughout this talk, we assume that κ is an uncountable regular cardinal and *S* a stationary subset of κ consisting of limit ordinals.

Definition of club guessing sequences

Definition

We say that a sequence $\langle C_{\delta} : \delta \in S \rangle$ is a tail club guessing (TCG) sequence on *S* iff

- for each $\delta \in S$, C_{δ} is an unbounded subset of δ , and
- If or every club subset *D* of *κ*, there exists a *δ* ∈ *S* such that $C_{\delta} ⊆^* D$.

If \vec{C} satisfies the same condition with $C_{\delta} \subseteq^* D$ replaced by $C_{\delta} \subseteq D$, we say that \vec{C} is a fully club guessing (FCG) sequence on S. When $S = \kappa \cap \text{Lim}$, we simply say that \vec{C} is a TCG(FCG)-sequence on κ .

Club guessing sequences and ideals Club guessing sequences

Relation between FCG and TCG-sequences

Trivially, every FCG-sequence is a TCG-sequence.

The converse fails. If $\langle C_{\delta} : \delta \in S \rangle$ is an FCG-sequence, then $\langle C_{\delta} \cup \{0\} : \delta \in S \rangle$ is a TCG-sequence which is not FCG-sequence. However, every TCG-sequence can be made FCG very easily. Club guessing sequences and ideals

Club guessing sequences

Relation between fully and TCG-sequences (Cont.)

Theorem (T. Ishiu)

Let $\langle C_{\delta} : \delta \in S \rangle$ be a TCG-sequence on *S*. Then, there exists a $\zeta < \kappa$ such that $\langle C_{\delta} \setminus \zeta : \delta \in S \setminus (\zeta + 1) \rangle$ is an FCG-sequence on $S \setminus (\zeta + 1)$.

So, for every stationary subset S, there is an FCG-sequence on S iff there is a TCG-sequence on S.

Order type of a TCG-sequence

Definition

An ordinal ε is indecomposable iff for every ordinal $\alpha, \beta < \varepsilon, \alpha + \beta < \varepsilon$.

Definition

We say that a club guessing sequence $\langle C_{\delta} : \delta \in S \rangle$ has order type ε iff for club many $\delta \in S$, $otp(C_{\delta}) = \varepsilon$.

Remark

Not every club guessing sequence has an order type.

Club guessing sequences and ideals Club guessing sequences

Order type of a TCG-sequence (Cont.)

Fact

Let $\vec{C} = \langle C_{\delta} : \delta \in S \rangle$ be a TCG-sequence on S such that $otp(C_{\delta}) < \delta$ for club many $\delta \in S$. Then, there exist a TCG-sequence $\vec{C}' = \langle C'_{\delta} : \delta \in S' \rangle$ of some indecomposable order type ε on $S' \subseteq S$ such that C'_{δ} is a tail of C_{δ} . So, $\vec{C} \upharpoonright S'$ and \vec{C}' are essentially the same as TCG-sequences.

Existence of a club guessing sequence

Trivially, \clubsuit_{κ} implies the existence of an FCG-sequence on κ . \longrightarrow For every uncountable regular cardinal κ , it is consistent that there is an FCG-sequence on κ . However, S. Shelah proved the following surprising theorem.

Theorem (S. Shelah)

Let θ and κ be regular cardinals with $\theta^+ < \kappa$. Let *S* be a stationary subset of κ with $S \subseteq Cof(\theta)$. Then, there is an FCG-sequence on *S*.

In particular, if $\kappa \geq \aleph_2$, then there exists an FCG-sequence on κ .

Strong club guessing sequences

Definition

We say that a sequence $\langle C_{\delta} : \delta \in S \rangle$ is a strong club guessing sequence on *S* iff

- for each $\delta \in S$, C_{δ} is an unbounded subset of δ , and
- If for every club subset D of κ, there exists a club subset E of κ such that for every δ ∈ E ∩ S, C_δ ⊆* D.

Remark

Its existence is consistent. For example, V = L implies that κ carries a strong club guessing sequence iff κ is not ineffable. It can be also added by forcing. Club guessing sequences and ideals Club guessing ideals

Definition of club guessing ideals

Definition

Let $\vec{C} = \langle C_{\delta} : \delta \in S \rangle$ be a TCG-sequence. We define the tail club guessing (TCG) filter TCG(\vec{C}) associated with \vec{C} as the filter on κ generated by the sets of the form { $\delta \in S : C_{\delta} \subseteq^* D$ } for club subset D of κ . The tail club guessing (TCG) ideal means the dual ideal TČG(\vec{C}) of the TCG-filter.

This is a typical 'natural ideal', which is definable possibly from simple parameters. Every TCG-ideal is κ -complete and normal.

Definition of precipitous ideals

Definition

Let *I* be an ideal on κ . We define an equivalence class \sim_I on $\mathcal{P}(\kappa)$ by $X \sim_I Y$ iff $(X \setminus Y) \cup (Y \setminus X) \in I$. Let $\mathcal{P}(\kappa)/I = \{[X]_I : X \subseteq \kappa \text{ and } X \notin I\}$, which is ordered by $[X]_I \leq [Y]_I$ iff $X \setminus Y \in I$.

Definition

An ideal *I* on κ is precipitous iff for every generic filter $G \subseteq \mathcal{P}(\kappa)/I$, the ultrapower $(V^{\kappa} \cap V)/G$ is well-founded.

Club guessing sequences and ideals

Precipitousness

Consistency of precipitous ideals on a small cardinal

Theorem (T. Jech, M. Magidor, W. Mitchell, and K. Prikry)

The following are equiconsistent.

- There is a measurable cardinal.
- 2 There is a precipitous ideal on ω_1 .
- **3** NS $_{\omega_1}$ *is precipitous.*

Saturatedness

Definition

An ideal *I* on κ is saturated iff $\mathcal{P}(\kappa)/I$ is κ^+ -cc.

Fact

(R. Solovay) Every saturated ideal on κ is precipitous. In fact, saturated ideals behave nicely as precipitous ideals.

There are (at least) two reasons to consider the precipitousness of natural ideals.

- We can often apply special arguments to prove the precipitousness (e.g. the ones of M. Foreman, M. Magidor, and S. Shelah).
- The definition of the ideal often gives us some information about the generic elementary embedding (Details on the next slide).

Precipitousness of natural ideals

Motivation

Generic elementary embedding from a TCG-ideal

Definition

Let *W* be some model and κ an uncountable regular cardinal in *W*. We say that a club subset *C* of κ is a fast club over *W* iff for every club subset $D \in W$ of κ , $C \subseteq^* D$.

Let \vec{C} be a TCG-sequence on κ such that $T\breve{C}G(\vec{C})$ is precipitous. Let $j: V \to M$ be a generic elementary embedding built from $T\breve{C}G(\vec{C})$. Then there is a fast club subset $C \in M$ of κ over V. Moreover, if \vec{C} has order type ε , then we can have $otp(C) = \varepsilon$.

Motivation

Generic elementary embedding from $NS_{\kappa} \upharpoonright S$

Suppose that $NS_{\kappa} \upharpoonright S$ is precipitous and there is no strong club guessing sequence on *S*. Let $j : V \to M$ be a generic elementary embedding built from $NS_{\kappa} \upharpoonright S$. Then there is no fast club subset $C \in M$ of κ over *V*.

Thus, there is a clearly distinguishable difference between these two generic elementary embeddings.

A precipitous club guessing ideal

Known results

Precipitous TCG-ideals that are equal to $NS_{\kappa} \upharpoonright S$

Theorem (H. Woodin)

It is consistent relative to ZF +AD that there exists a strong club guessing sequence \vec{C} on ω_1 such that TČG(\vec{C}) is saturated.

Theorem (P. Komjáth and M. Foreman)

It is consistent relative to a huge cardinal above an uncountable regular cardinal κ that there exists a strong club guessing sequence \vec{C} on a stationary subset S of κ such that $T\check{C}G(\vec{C})$ is saturated.

Known results

Precipitous TCG-ideals not of the form $NS_{\kappa} \upharpoonright S$

Both theorems in the previous slide produce precipitous tail club guessing ideals, but they are of the form $NS_{\kappa} \upharpoonright S$. Is it necessary? $\longrightarrow NO!$

Theorem (T. Ishiu)

It is consistent relative to a Woodin cardinal above an uncountable regular cardinal κ that every TCG-ideal on κ is precipitous and there is no strong club guessing sequence on κ .

The witnessing model is obtained by Levy-collapse of the Woodin cardinal to κ^+ . So, there are many different TCG-sequences on κ .

Questions

Question

What is the consistency strength of the existence of a precipitous TCG-ideal?

Question

For an uncountable regular cardinal κ , if NS_{κ} is precipitous, then is there a precipitous TCG-ideal on κ ? Vice versa?

I will present the solutions to these questions on the rest of my talk.

Recall how they built a model from a measurable cardinal in which NS_{ω_1} is precipitous.

- Let κ be a measurable cardinal.
- 2 Levy-collapse κ to ω_1 . Then, there is a precipitous ideal on ω_1 .
- Solution Soluti Solution Solution Solution Solution Solution Solution Solu

Remark

The fact that this indeed works is far from trivial.

A precipitous club guessing ideal A precipitous club guessing ideal from a measurable cardinal

Shooting a TCG-measure one set

Definition

Let $\vec{C} = \langle C_{\delta} : \delta \in S \rangle$ be a TCG-sequence. For a TCG(\vec{C})-positive subset X of κ , the poset $R(\vec{C}, X)$ to shoot a TCG(\vec{C})-measure one set through X is defined as the set of all closed bounded subsets p of ω_1 such that for every $\delta \in p \cap (S \setminus X)$, $C_{\delta} \not\subseteq^* p$. Ordered by end-extension.

 $R(\vec{C}, X)$ is proper and forces that \vec{C} remains a TCG-sequence on S and $X \in \text{TCG}(\vec{C})$.

The forcing

Let $P = \text{Coll}(\omega, <\kappa)$. In V^P , there is a precipitous ideal I on $\omega_1^{V^P} = \kappa$.

In V^P , let Q be the countable support iteration that

- **(**) generically adds a TCG-sequence \vec{C} at the zero-th stage, and
- Shoots $TCG(\vec{C})$ -measure one sets through all elements of \check{I} at the remaining stages. (In fact, *I* changes as we extend the model, but it remains precipitous).

Then, in $V^{P*\dot{Q}}$, *I* is an \aleph_1 -complete normal precipitous ideal and $I \subseteq T\check{C}G(\vec{C})$.

- NS_{ω_1} is the least \aleph_1 -complete normal ideal on ω_1 , so the precipitous ideal in the model of JMMP is equal to NS_{ω_1} .
- But this argument does not work for $TCG(\vec{C})$. Then does $I = TCG(\vec{C})$ really hold?
- Well, the forcing is smart enough to guarantee it (though it took me long time to realize the fact).

A precipitous club guessing ideal A precipitous club guessing ideal from a measurable cardinal

A precipitous TCG-ideal from a measurable cardinal

So, we obtained the following result.

Theorem (T. Ishiu)

It is consistent relative to a measurable cardinal that there is a precipitous TCG-ideal on ω_1 that is not a restriction of NS $_{\omega_1}$.

It solves our first question: the existence of a precipitous TCG-ideal (on ω_1) is equiconsistent to that of a measurable cardinal.

Toward the second question

Now, what about the second question? Particularly,

Question

Is NS_{ω_1} precipitous in the obtained model?

In fact, NS_{ω_1} is nowhere precipitous if we begin with the model of the form L[U] where U is a measure on κ .

Some facts about *L*[*U*]

Recall some facts about the model L[U].

- If κ is a measurable cardinal, then there is a unique U such that U ∈ L[U] and L[U] ⊨'U is a κ-complete normal filter on κ'.
- 2 Let *I* be a normal precipitous ideal on κ . Then, $I \cap L[U] = U$.

NS_{ω_1} is nowhere precipitous

Suppose V = L[U] is the ground model. Let $P = \text{Coll}(\omega, <\kappa)$ and Q the iteration we defined. Let $G * H \subseteq P * \dot{Q}$ be generic. Suppose that in V[G][H] = L[U][G][H], $NS_{\omega_1} \upharpoonright S$ is precipitous for some stationary subset S of ω_1 . Let $j' : L[U][G][H] \rightarrow L[\hat{U}'][\hat{G}'][\hat{H}']$ be the generic elementary embedding obtained from $NS_{\omega_1} \upharpoonright S$ where

- $L[\hat{U}'] \vDash \hat{U}'$ is a unique $j'(\kappa)$ -complete normal filter on $j'(\kappa)$ ',
- \hat{G}' is a j'(P)-generic filter over $L[\hat{U}']$, and
- \hat{H}' is a j'(Q)-generic filter over $L[\hat{U}'][\hat{G}']$.

The codomain must have this form.

A precipitous club guessing ideal NS_ω, is not precipitous in the model

NS_{ω_1} is nowhere precipitous (Cont.)

It is easy to see that in L[U][G][H], there is no strong club guessing sequence on any stationary subset S of ω_1 . So, there is no fast club subset $C' \in L[\hat{U}'][\hat{G}'][\hat{H}']$ of $\omega_1^{L[U][G][H]}$ over L[U][G][H].

NS_{ω_1} is nowhere precipitous (Cont.)

We can build a generic elementary embedding

 $j: L[U][G][H] \rightarrow L[\hat{U}][\hat{G}][\hat{H}]$ from $T\check{C}G(\vec{C})$ so that $\hat{U} = \hat{U}'$ and $\hat{G} = \hat{G}'$. $\hat{U} = \hat{U}'$ is automatic by the uniqueness.

j(P)/G is regularly embedded into both $\mathcal{P}(\omega_1)/NS_{\omega_1} \upharpoonright S$ and

 $\mathcal{P}(\omega_1)/\mathsf{T}\check{\mathsf{C}}\mathsf{G}(\vec{C})$. So, (if we are careful enough), we can pick a common filter for that part.

NS_{ω_1} is nowhere precipitous (Cont.)

Since $j : L[U][G][H] \to L[\hat{U}][\hat{G}][\hat{H}]$ is built from $T\check{C}G(\vec{C})$, there is a fast club subset $C \in L[\hat{U}][\hat{G}][\hat{H}]$ of $\omega_1^{L[U][G][H]}$ over L[U][G][H].

But we can show that in L[U][G], Q adds no new countable sequence of ordinals. Hence, j(Q) adds no new countable sequence of ordinals in $L[\hat{U}][\hat{G}]$. Thus, $C \in L[\hat{U}][\hat{G}]$.

However, there shouldn't be such a thing in $L[\hat{U}'][\hat{G}'][\hat{H}'] = L[\hat{U}][\hat{G}][\hat{H}']$

Contradiction!

TCG-sequences with (essentially) different order types

With a little modification, for every indecomposable ordinal $\varepsilon < \kappa$, we can arrange that \vec{C} has order type ε .

Let $G * H \subseteq P * \dot{Q}$ be generic. By the same argument as we presented, we can show that in V[G][H] = L[U][G][H], if ε' is an indecomposable ordinal $\neq \varepsilon$ and \vec{C}' is a TCG-sequence on ω_1 of order type ε' , then TČG(\vec{C}') is not precipitous.

This is not vacuous because in L[U][G][H], for every indecomposable ordinal $\varepsilon' < \omega_1$, there is a TCG-sequence \vec{C}' on ω_1 of order type ε' .

As a result...

Theorem (T. Ishiu)

Let κ be a measurable cardinal, and $\varepsilon < \kappa$ an indecomposable ordinal. Let $P = \text{Coll}(\omega, <\kappa)$ and $G \subseteq P$ be generic. Then, in V[G], there exists a forcing notion Q that forces

- there exists a TCG-sequence C
 On ω₁ of order type ε such that TČG(C
- **2** NS $_{\omega_1}$ is nowhere precipitous, and
- Solution for every indecomposable ordinal $\varepsilon' \neq \varepsilon$, for every TCG-sequence \vec{C}' on ω_1 of order type ε' , TČG(\vec{C}') is not precipitous.

What happens in the model of JMMP?

By applying the same argument to the model of JMMP, we can show that

- NS_{ω_1} is precipitous, and
- for every TCG-sequence \vec{C} , $T\breve{C}G(\vec{C})$ is not precipitous.

So, we answered the presented questions!

Conclusion

- **O** Con(\exists measurable) \Leftrightarrow Con(\exists precipitous TCG-ideal on ω_1).
- **2** NS $_{\omega_1}$ is precipitous $\neq \exists$ precipitous TCG-ideal on ω_1 .
- **③** ∃ precipitous TCG-ideal on $\omega_1 \neq NS_{\omega_1}$ is precipitous.
- ∃ precipitous TCG-ideal on $\omega_1 \Rightarrow$ every TCG-ideal on ω_1 is precipitous.

Open questions

Question

Can we distinguish TCG-ideals of the same order type?

Question

What about regular cardinals $\geq \aleph_2$?

Question

What about other natural ideals?

Question

What is the consistency strength of the existence of two 'essentially' different natural precipitous ideals on the same cardinal?