Different ways to construct non-special ω_2 -Aronszajntrees

Bernhard Koenig

June 21, 2009

Bernhard Koenig Different ways to construct non-special ω_2 -Aronszajntrees

If \mathbb{P}_{κ} is the Mitchell collapse of a large cardinal κ to $\omega_{2},$ then

• $V^{\mathbb{P}_{\kappa}} \models$ "there are no ω_2 -Aronszajntrees", if κ is weakly compact

• $V^{\mathbb{P}_{\kappa}} \models$ "there are no special ω_2 -Aronszajntrees", if κ is Mahlo This was first proved by Mitchell. Let $\Box(\omega_2)$ be the statement that there is a sequence $(C_{\alpha} : \alpha < \omega_2)$ such that

- $C_{\alpha} \subseteq \alpha$ is club
- if α is a limit point of C_{β} then $C_{\beta} \cap \alpha = C_{\alpha}$
- ► there is no "trivializing" club C ⊆ ω₂ such that C ∩ α = C_α for all limit points α of C

We know that the failure of $\Box(\omega_2)$ has consistency strength exactly a weakly compact (one direction given by Mitchell's result above). Then we have the following theorem of Todorcevic:

Theorem

Assume $\Box(\omega_2)$. Then there is a non-special ω_2 -Aronszajntree.

This with the above mentioned independence result shows that the statement

• "all ω_2 -Aronszajntrees are special"

(or "there are no non-special ω_2 -Aronszajntrees")

has consistency strength exactly a weakly compact. The consistency strength of

 "all ω₂-Aronszajntrees have an unbounded antichain" (or "there are no ω₂-Suslintrees")

is still open.

[Attention: the consistency strength of "there are no special ω_2 -Aronszajntrees" is just a Mahlo.]

We want to prove some new equiconsistency results, so we look at a certain type of ω_2 -Aronszajntrees with some helpful properties.

Definition

Say that an ω_2 -Aronszajntree is *fin-coherent* if it is generated by a sequence of functions

$$(f_{lpha}: lpha < \omega_2)$$

in the following sense

•
$$f_{\alpha}: \alpha \longrightarrow 2$$
 for all $\alpha < \omega_2$

- ▶ if $\alpha < \beta$ then f_{α} and $f_{\beta} \upharpoonright \alpha$ differ in only finitely many values
- b the fin-coherent tree T is the set of all functions f : α → 2 that differ from f_α in only finitely many values (for some α < ω₂).

Fin-coherent trees are *strongly homogeneous* in the sense that's there is a family $\{h_{t_0,t_1} : t_0, t_1 \in T_\alpha, \alpha < \kappa\}$ of automorphisms with the following properties:

- ▶ h_{t0,t1} moves T^{t0} to T^{t1} and vice versa, so t0 is mapped to t1. h_{t0,t1} is the identity in all other parts of the tree. h_{t,t} is the identity on T.
- (commutativity) $h_{s_0,s_2}(t_0) = h_{s_1,s_2}(h_{s_0,s_1}(t_0))$ holds for all $s_0, s_1, s_2 \in T_{\alpha}$ with $s_0 \leq t_0$.
- (uniformity) If $s_0, s_1 \in T_\alpha$ with $s_0 \leq t_0$ and $s_1 \leq h_{s_0,s_1}(t_0) = t_1$ then $h_{t_0,t_1} \upharpoonright T^{t_0} = h_{s_0,s_1} \upharpoonright T^{t_0}$.
- (transitivity) If α is a limit ordinal and $t_0, t_1 \in T_{\alpha}$, then there exist $s_0, s_1 \in T_{<\alpha}$ such that $h_{s_0, s_1}(t_0) = t_1$.

We actually get an equivalence result:

Theorem (K.)

Strongly homogeneous trees are fin-coherent and vice versa.

It was shown that there can be non-special fin-coherent $\omega_2\text{-}\mathsf{Aronszajntrees},$ even stronger:

Theorem (Velickovic)

Assume a strong combinatorial principle true in the constructible universe (called "square with built-in-diamond"). Then there is a fin-coherent ω_2 -Suslintree.

What about fin-coherent ω_2 -Aronszajntrees?

Theorem (K.)

Assume $\Box(\omega_2)$. Then there is a fin-coherent ω_2 -Aronszajntree T. Even stronger, we can construct a T generated by the sequence $(f_{\alpha} : \alpha < \omega_2)$ such that

(+) $f_{\alpha} = f_{\beta} \upharpoonright \alpha$ iff α is a limit point of C_{β}

The property (+) then implies straightforwardly that

The tree T of the statement above is special iff the □(ω₂)-sequence used in its construction is special.

So we get:

Corollary

Assume $\Box(\omega_2)$. Then there is a non-special strongly homogeneous ω_2 -Aronszajntree.

It turns out that fin-coherent trees have some additional helpful properties.

Lemma

Assume T is strongly homogeneous and it has a club antichain. Then T is special.

So we get:

Corollary

Assume $\Box(\omega_2)$. Then there is a strongly homogeneous ω_2 -Aronszajntree without any club antichains.

Proof.

We know we can get a non-special one by the previous results. So it cannot have a club antichain by the last lemma. $\hfill\square$

This gives the following equiconsistency result:

Corollary

The following is equiconsistent with a weakly compact:

"every ω₂-Aronszajntree has a club antichain"

We end with a "coffeehouse" result: another non-standard construction of a non-special ω_2 -Aronszajntree.

Theorem

Assume CH and NS_{ω_1} is saturated. Then there is an ω_2 -Suslintree.

PS: Assaf Rinot notified me that that this theorem has already been pointed out by Shelah in the 1980s.

Proof.

By classical results of Solovay/Ketonen we have $2^{\aleph_1} = \aleph_2$. So we can deduce $\Diamond_{\omega_2}(\operatorname{cof} \omega)$. Now split into two cases:

- 1. either we have a non-reflecting stationary subset of $\omega_2 \cap \operatorname{cof} \omega$. Then we're done by classical results of Gregory.
- 2. if we have no such non-reflecting set, then we can do a Gregory type argument to step up $\Diamond_{\omega_2}(\operatorname{cof} \omega)$ to $\Diamond_{\omega_2}(\operatorname{cof} \omega_1)$ (this uses saturation). But then CH and $\Diamond_{\omega_2}(\operatorname{cof} \omega_1)$ easily construct an ω_2 -Suslintree (seal off antichains at uncountable cofinalities).

In either case, we have an ω_2 -Suslintree.