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Generalized Stationarity

Notation

For a set X , let Pω1(X ) denote the set {a ⊆ X : |a| < ω1}.

Let X be an uncountable set.

Definition

A set S ⊆ Pω1(X ) is stationary if for any function F : [X ]<ω → X ,
there is a set b in S which is closed under F .
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Generalized Stationarity

Definition

A set C ⊆ Pω1(X ) is club if:

whenever 〈an : n < ω〉 is an increasing sequence of sets in C ,
then

⋃
n<ω an ∈ C ,

for all b in Pω1(X ), there is c ∈ C with b ⊆ c .

Proposition

A set S ⊆ Pω1(X ) is stationary iff S has non-empty intersection
with every club C ⊆ Pω1(X ).
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Weak Reflection Principle

Foreman-Magidor-Shelah (1988) introduced the Weak Reflection
Principle, in the context of Martin’s Maximum.

Notation

Let X ⊆ Y be uncountable sets, and let S ⊆ Pω1(Y ) be stationary.
We say that S reflects to X if S ∩ Pω1(X ) is stationary in Pω1(X ).
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Weak Reflection Principle

Definition

Let λ ≥ ω2 be a cardinal. The Weak Reflection Principle for λ, or
WRP(λ), is the statement: for every stationary set S ⊆ Pω1(λ),
there is a set X ⊆ λ of size ℵ1, with ℵ1 ⊆ X , such that S reflects
to X .

Definition

The Weak Reflection Principle, or WRP, is the statement that
WRP(λ) holds for all cardinals λ ≥ ω2.
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Models of WRP

Theorem

Martin’s Maximum implies the Weak Reflection Principle.

Theorem

Suppose κ is a supercompact cardinal. Then the Lévy collapse
Coll(ω1, <κ) forces the Weak Reflection Principle.
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WRP and MM

As set-theoretic principles, the Weak Reflection Principle has
similar consequences as Martin’s Maximum, and so captures (some
of) its large cardinal strength.

Theorem

Martin’s Maximum implies:

1 2ω = ω2,

2 the non-stationary ideal on ω1 is saturated,

3 (Strong) Chang’s Conjecture

4 Singular Cardinal Hypothesis

5 ¬�κ for all cardinals κ ≥ ω1.
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In comparison:

Theorem

The Weak Reflection Principle implies:

1 2ω ≤ ω2,

2 the non-stationary ideal on ω1 is presaturated,

3 (Strong) Chang’s Conjecture,

4 Singular Cardinal Hypothesis

5 ¬�κ for all cardinals κ ≥ ω1.
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The Reflection Principle

The Reflection Principle is a variation of the Weak Reflection
Principle.

Definition

Let λ ≥ ω2 be a regular cardinal. The Reflection Principle for λ, or
RP(λ), is the statement that for every stationary set S ⊆ Pω1(λ),
there is a set X ⊆ λ of size ℵ1, with ℵ1 ⊆ X , and cf(ot(X )) = ω1,
such that S reflects to X .

Definition

The Reflection Principle, or RP, is the statement that RP(λ) holds
for all regular λ ≥ ω2.
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Models of RP

It is easy to see RP(λ) implies WRP(λ) for any regular λ ≥ ω2,
and RP implies WRP.

Theorem

Martin’s Maximum implies the Reflection Principle.

Theorem

If κ is a supercompact cardinal, then the Lévy collapse
Coll(ω1, <κ) forces the Reflection Principle.
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WRP Versus RP

The following questions are obvious and natural, and have been
open for some time.

Question

Does the Weak Reflection Principle imply the Reflection Principle?

Question

For particular values of regular cardinals λ ≥ ω2, does WRP(λ)
imply RP(λ)?
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An Example in Singular Cardinal Combinatorics

Definition

Let κ be a cardinal. ADSκ is the statement that there exists a
sequence 〈Ai : i < κ+〉 satisfying:

each Ai is a cofinal subset of κ with order type cf(κ),

for all β < κ+, there is a function g : β → κ such that
〈Ai \ g(i) : i < β〉 is a pairwise disjoint sequence.

If κ is regular, then ADSκ holds.

If κ is singular and �κ holds, then ADSκ holds.
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RP and the Singular Cardinal Hypothesis

Theorem (Cummings, Foreman, Magidor)

Let λ be a singular cardinal with cofinality ω. Then RP(λ+)
implies ¬ADSλ.

This theorem gives an elegant proof that RP implies SCH.

By pcf theory, if λ is the least cardinal where SCH fails, then
cf(λ) = ω and ADSλ holds.

So RP implies SCH.
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WRP and the Singular Cardinal Hypothesis

By a much more difficult argument Shelah proved:

Theorem

WRP implies SCH.

Generally, it tends to be easier to prove things from RP(λ) than
from WRP(λ).
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WRP(ω2) versus RP(ω2)

Question

For particular values of regular cardinals λ, does RP(λ) imply
WRP(λ)?

The most basic case of this question is when λ equals ω2.

Question

Does WRP(ω2) imply RP(ω2)?
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WRP(ω2) versus RP(ω2)

Lemma

WRP(ω2) holds iff for any stationary set S ⊆ Pω1(ω2), there is an
uncountable ordinal α in ω2 such that S reflects to α.

Lemma

RP(ω2) holds iff for any stationary set S ⊆ Pω1(ω2), there is an
ordinal α in ω2 with cofinality ω1 such that S reflects to α.

John Krueger WRP Versus RP



Weak Reflection Principle
WRP and RP

Partial Solutions
Solution

Consistency of RP(ω2)

Theorem

If κ is a weakly compact cardinal, then the Lévy collapse
Coll(ω1, <κ) forces RP(ω2).

Theorem

WRP(ω2) and RP(ω2) are both equiconsistent with a weakly
compact cardinal.
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Consequences of WRP(ω2)

Although relatively weak in large cardinal strength, the Weak
Reflection Principle for ω2 has some interesting combinatorial
consequences.

Theorem

WRP(ω2) implies:

1 2ω ≤ ω2,

2 ¬�ω1 ,

3 for every stationary set S ⊆ ω2 ∩ cof(ω), there is an ordinal α
in ω2 ∩ cof(ω1) such that S ∩ α is stationary in α,

4 if CH fails, then there does not exist a special Aronszajn tree
on ω2.
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Diamonds

Question

Does WRP(ω2) imply RP(ω2)?

In other words, if every stationary subset of Pω1(ω2) reflects to an
uncountable ordinal in ω2, does this imply every stationary subset
of Pω1(ω2) reflects to an ordinal in ω2 ∩ cof(ω1)?

A standard argument shows:

Proposition

Suppose ♦A holds for every stationary set A ⊆ ω2 ∩ cof(ω).

Then every stationary set S ⊆ Pω1(ω2) has a stationary subset T
which does not reflect to any ordinal in ω2 ∩ cof(ω).
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Proof.

Let S ⊆ Pω1(ω2) be stationary.

Let A = {α ∈ ω2 ∩ cof(ω) : S reflects to α}.

Case 1: A is non-stationary.
Then let C ⊆ ω2 be club with A ∩ C = ∅.
Let T = {a ∈ S : sup(a) ∈ C}.

Case 2: A is stationary.
Let 〈fα : α ∈ A〉 be a ♦A-sequence.
For each α in A, S reflects to α.
So choose bα in S with sup(bα) = α such that bα is closed under
fα.
Let T = {bα : α ∈ A}.
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Corollary

Suppose ♦A holds for every stationary set A ⊆ ω2 ∩ cof(ω).
Then WRP(ω2) implies RP(ω2).

Proof.

Let S ⊆ Pω1(ω2).

Choose a stationary set T ⊆ S which does not reflect to any
ordinal in ω2 ∩ cof(ω).

By WRP(ω2), there is an uncountable α in ω2 such that T reflects
to α.

By the choice of T , cf(α) = ω1.

Since T ⊆ S , S reflects to α.John Krueger WRP Versus RP
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Diamonds

Classically, the existence of such diamonds was known to follow
from GCH (Gregory 1976).

More recently, Shelah proved they follow from 2ω1 = ω2.

Theorem (Shelah)

Assume 2ω1 = ω2. Then for every stationary set A ⊆ ω2 ∩ cof(ω),
♦A holds.

Corollary

Assume 2ω1 = ω2.
Then WRP(ω2) implies RP(ω2).
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Diamonds

This conclusion was known somewhat earlier than Shelah’s
theorem on diamonds, by a different argument.

Theorem (Koenig-Larson-Yoshinobu, 2007)

Assume 2ω1 = ω2. Then WRP(ω2) implies RP(ω2).
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WRP(ω2) ∧ ¬RP(ω2)

Consider the possibility WRP(ω2) ∧ ¬RP(ω2).

(1) By ¬RP(ω2), there exists a stationary set S ⊆ Pω1(ω2) which
does not reflect to any ordinal in ω2 with cofinality ω1.

(2) By WRP(ω2), every stationary subset of S reflects to an
uncountable ordinal in ω2.

So by (1) and (2), every stationary subset of S reflects to an
uncountable ordinal in ω2 with cofinality ω.
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Sakai’s Theorem

Recently Hiroshi Sakai constructed a model satisfying this
conclusion.

Theorem (Sakai, 2008)

Assume GCH and �ω1 . Then there is a forcing poset P which
forces that there exists a stationary set S ⊆ Pω1(ω2) such that
every stationary subset of S reflects to an uncountable ordinal in
ω2 with cofinality ω.

Note that this “local reflection” is obtained without assuming any
large cardinals.

John Krueger WRP Versus RP



Weak Reflection Principle
WRP and RP

Partial Solutions
Solution

Sakai’s Theorem

Let 〈cα : α ∈ ω2〉 be a �ω1-sequence.

Define S = {a ∈ Pω1(ω2) : ot(csup(a)) ∈ a ∩ ω1}.

Lemma

The set S is a stationary subset of Pω1(ω2) which does not reflect
to any ordinal in ω2 ∩ cof(ω1).

Theorem (Sakai)

There exists a countably distributive, ω2-c.c. forcing iteration
which destroys the stationarity of every stationary subset of S
which does not reflect to any uncountable ordinal in ω2 ∩ cof(ω).
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But WRP(ω2) ⇒ ¬�ω1

Sakai’s proof depends on the �ω1-sequence from which the set S is
defined.

However, WRP(ω2) implies ¬�ω1 .

So Sakai’s Theorem cannot be applied directly to prove the
consistency of WRP(ω2) ∧ ¬RP(ω2).
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Reflection using an Elementary Embedding

Let us consider the traditional method for obtaining reflection in
Pω1(ω2).

In some model W of ZFC, we have an elementary embedding

j : V → M

with critical point ωV
2 , where V and M are inner models.
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Reflection using an Elementary Embedding

For example, let κ be a measurable cardinal in a model V0, with
elementary embedding j : V0 → M0.

Let H be a generic filter for j(Coll(ω1, <κ)) over V0, and let
G = H ∩Coll(ω1, <κ).

Let W = V0[H], V = V0[G ], and M = M0[H].

Since j ′′G = G ⊆ H, in W we can extend j to j : V → M with
critical point κ = ωV

2 .
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Reflection using an Elementary Embedding

In W we have j : V → M with critical point ωV
2 .

Let T be a stationary subset of Pω1(ω2) in V .

For each a in T , a = j(a) ∈ j(T ). So T ⊆ j(T ) ∩ Pω1(ω
V
2 ).

But ωV
2 < j(ωV

2 ) = ωM
2 .
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Reflection using an Elementary Embedding

It follows that if T is stationary in M, then j(T ) reflects to an
uncountable ordinal in ωM

2 .

By elementarity, in V , T reflects to an uncountable ordinal in ω2.
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Reflection using an Elementary Embedding

Typically, T is shown to be stationary in M by arguing that M is a
generic extension by a proper forcing poset.

For example, consider the case above of j : V0[G ] → M0[H], where
H is a generic filter for the Lévy collapse j(Coll(ω1, <κ)) and
G = H ∩Coll(ω1, <κ).

If T is stationary in Pω1(κ) in V0[G ], it is also stationary in M0[G ],
and M = M0[H] = M0[G ][H ′], where H ′ is a generic filter for the
proper forcing poset Coll(ω1, [κ, j(κ))).

Since Coll(ω1, [κ, j(κ))) is proper, T remains stationary in M.
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Two Methods for Obtaining Reflection

Thus we have two separate methods for obtaining reflection.

(1) The traditional method of using an elementary embedding.

(2) Sakai’s argument for obtaining local reflection using iterated
forcing.
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Combining Both Methods

We had the idea to combine parts of Sakai’s argument with the
traditional method of obtaining reflection using an elementary
embedding, to obtain a model satisfying WRP(ω2) ∧ ¬RP(ω2).

WRP(ω2) can be factored into two separate “local reflection”
statements, by the following easy lemma.

Lemma

Suppose S is a stationary subset of Pω1(ω2). Assume:

every stationary subset of S reflects to an uncountable ordinal
in ω2 with cofinality ω,

every stationary subset of Pω1(ω2) \ S reflects to an
uncountable ordinal in ω2 with cofinality ω1.

Then WRP(ω2) holds.
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Combining Both Methods

We would like a stationary set S ⊆ Pω1(ω2) satisfying:

1 every stationary subset of S reflects to an uncountable ordinal
in ω2 with cofinality ω,

2 every stationary subset of Pω1(ω2) \ S reflects to an
uncountable ordinal in ω2 with cofinality ω1.

We obtain (1) using a Sakai-style iteration

We obtain (2) using an elementary embedding.

The set S is added generically, rather than defined using a
�ω1-sequence.
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WRP(ω2) does not imply RP(ω2)

Theorem (K., 2009)

Assume κ is a κ+-supercompact cardinal and 2κ = κ+. Then there
is a forcing poset P which collapses κ to become ω2, and forces:

WRP(ω2) ∧ ¬RP(ω2).
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Comments on the Proof

Fix a cardinal κ which is κ+-supercompact and 2κ = κ+.

The forcing poset P in the theorem is of the form:

Coll(ω1, <κ) ∗ Ṗκ ∗ Q̇,

where:

(1) Coll(ω1, <κ) is the Lévy collapse for collapsing κ to become
ω2,

(2) Pκ generically adds a stationary set S ⊆ Pω1(ω2), using
countable conditions, which does not reflect to any ordinal in
ω2 ∩ cof(ω1),

(3) Q is a Sakai-style iteration with countable support which
destroys the stationarity of every subset of S which does not reflect
to an ordinal in ω2 ∩ cof(ω).
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Comments on the Proof

A particularly difficult part of the proof is to show that in a generic
extension by P:

Every stationary subset of Pω1(ω2) \ S reflects to an ordinal in
ω2 ∩ cof(ω1).

The forcing poset P is not proper, so in general does not preserve
stationary sets.

The proof involves a complicated factoring of j(P), which has a tail
forcing which preserves stationary subsets of Pω1(ω2) which are
disjoint from S .
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Open Questions

Question

Does WRP(ω3) imply RP(ω3)?

Question

Does WRP imply RP(ω2)?

Question

Is the supercompactness used in the proof of the theorem
necessary?
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For a preprint which includes a proof of the main theorem of the
talk, see my website:

http://math.berkeley.edu/∼jkrueger
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