Generic constructions of Banach spaces

J. Lopez-Abad

Instituto de Ciencias Matemáticas CSIC (joint work with S. Todorcevic)

June 2009

-Introduction

Main goal:

Study of generic constructions of directed limits of finite dimensional normed spaces (polyhedral spaces). Equivalently, study of inverse limits of compact convex sets (simplexes).

Applications:

- 1 Lindenstrauss spaces (preduals of L1)
- 2 Gurarij spaces
- 3 Distinction between different uncountable substructures of the generic Banach space (e.g. biorthogonal-like systems).

The construction uses the method of forcing, where conditions are a particular kind of finite dimensional normed spaces.

It turns out that by a completeness result of Magidor-Malitz all the generic constructions we obtain can also be done with the diamond principle.

The basic forcing

Similar previous works:

- 1 Shelah's work (1985) on Banach spaces with few operators (done using diamond).
- 2 Bell-Ginsburg-Todorcevic (1982) construction of a generic non-metrizable compactum which is Hereditarily separable in all powers (done with the natural forcing for this with finite conditions).

Understanding the generic constructions

Notation

Given a set *X* and $0 \in Y \subseteq \mathbb{R}$, let $c_{00}(X, Y)$ be the set of all functions $f : X \to Y$ such that its *support* supp $f = \{x \in X : f(x) \neq 0\}$ is finite. Suppose that $0, 1 \in Y \subseteq \mathbb{R}$. Given $x \in X$, let $u_x \in c_{00}(X, Y)$ be the mapping with value 1 in *x* and 0 otherwise. If *Y* is closed under \lor and \land , then $c_{00}(X, Y)$ is a lattice.

Let \mathbb{P} be a set of conditions $p = (D_p, \|\cdot\|_p)$, where 1 D_p is a finite subset of ω . 2 $\|\cdot\|_p$ is a norm on $c_{00}(D_p, \mathbb{R})$. The extension $p \le q$ is $D_q \subseteq D_p$ and $\|\cdot\|_p \upharpoonright c_{00}(D_q) = \|\cdot\|_q$.

Given a $\mathbb G$ be a generic filter of $\mathbb P$ we define

$$D_{\mathbb{G}} := \bigcup_{p \in \mathbb{G}} D_p,$$

and for each $x \in c_{00}(D_{\mathbb{G}})$ we define

$$\|x\|_{\mathbb{G}} := \|x\|_p$$

where $p \in \mathbb{G}$ is such that $x \in c_{00}(D_p)$.

Then $(c_{00}(D_{\mathbb{G}}), \|\cdot\|_{\mathbb{G}})$ is a normed space. Let $X_{\mathbb{G}}$ be its completion.

Suppose that \mathbb{P}_0 consists of **all** finite dimensional spaces $(D_p, \|\cdot\|_p)$. Then \mathbb{P} is not ccc: For each real number $1 < r < \infty$ consider $p_r = (\{0, 1\}, \|\cdot\|_r)$ where

$$\|(a,b)\|_r = \sqrt[r]{|a|^r + |b|^r}.$$

Since for $r \neq s$ one has that $\|\cdot\|_r \neq \|\cdot\|_s$, it follows that \mathbb{P}_0 is not ccc. Indeed it collapses ω_1 .

The problem is that in \mathbb{P}_0 there are *too many* norms

Given $D \subseteq \mathbb{N}$ finite and $F \subseteq c_{00}(D, \mathbb{Q})$ also finite, we define for $x \in c_{00}(D)$, $\|x\|_F := \sup\{|\langle f, x \rangle| : f \in F\}.$

This is always a seminorm.

If in addition the set *F* defines a norm, then we call $(c_{00}(D), F)$ a \mathbb{Q} -finite dimensional space (\mathbb{Q} -f.d.).

Observe that there are countably many of them, so, it is ccc. A sufficient condition to ensure that $\|\cdot\|_F$ is a norm is for example that for every $n \in D$ there is some $f_n \in F$ such that $f_n(u_n) := \langle f_n, u_n \rangle = 1$ and $f_n(u_m) = 0$ for all m < n in D.

The basic forcing

Examples of Q-f.d. spaces are

$$\ell_{\infty}^{n} := (c_{00}(n), \{u_{i}\}_{i < n})$$

for every $n \in \mathbb{N}$.

Indeed, the ℓ_{∞}^n 's is a cofinal family on the class of \mathbb{Q} -f.d. spaces. Moreover the class of \mathbb{Q} -f.d. spaces is very rich:

For every finite dimensional normed space X and every $\varepsilon > 0$ there is a Q-f.d. space Y and an $1 + \varepsilon$ -isomorphism onto $T : X \to Y$.

We consider \mathbb{P}_1 to be the class of all $p = (c_{00}(D_p), \{u_n\}_{n \in D_p})$. Let \mathbb{G} be a generic filter for \mathbb{P}_1 .

Question

What is the generic space $X_{\mathbb{G}}$?

Answer

 $X_{\mathbb{G}}$ is $c_0(\mathbb{N})$, the space of converging sequences to zero $(a_n)_n$ with the suppremum norm $||(a_n)_n|| = \sup_n |a_n|$.

We consider now the partial ordering \mathbb{P}_2 consisting on all the \mathbb{Q} -f.d. spaces. Let \mathbb{G} be a generic filter for \mathbb{P}_2 .

Question

What is the generic space $X_{\mathbb{G}}$?

Observe that the subfamily $\{\ell_{\infty}^n\}_n$ is cofinal in \mathbb{P}_2 . However

Answer

 $X_{\mathbb{G}}$ is the separable Gurarij space \mathfrak{G} .

This space is very rich:

For every $\varepsilon > 0$ every separable Banach space can be $1 + \varepsilon$ -isomorphically embedded into \mathfrak{G} .

The separable Gurarij space can be introduced as the closure of the limit of certain Fraisse class.

The basic forcing

Basic Forcing

Let \mathbb{P}_b be the set of $p = (D_p, F_p, \sigma_p, H_p)$, called *conditions*, with the following properties:

(C.0) $D_{\rho} \subseteq \omega_1$ and $\sigma_{\rho} \subseteq \mathbb{N} \times c_{00}(D_{\rho}, \mathbb{Q} \cap [-1, 1])$ are finite.

(C.1) $F_{\rho} \subseteq c_{00}(D_{\rho}, \mathbb{Q} \cap [-1, 1])$ is finite and it has in addition the following properties:

(C.2)
$$H_{\rho} = \{h_{s}^{(\rho)}\}_{s \in \sigma_{\rho}} \subseteq F_{\rho} \text{ is a subset of } F_{\rho} \text{ indexed by } \sigma_{\rho} \text{ such that}$$

for every $s = (n, x) \in \sigma_{\rho}$ with $x \neq 0$ one has that
 $h_{(n, x)}^{(\rho)} \upharpoonright \min \operatorname{supp} x = 0.$

(C.3) (Large density + separation) $\{0\} \times \{u_{\gamma}\}_{\gamma \in D_{p}} \subseteq \sigma_{p}$ and $(h_{(0,u_{\gamma})}^{(p)})_{\gamma} = 1$ for every $\gamma \in D_{p}$.

The basic forcing

Basic Forcing

The ordering $p \leq_b q$ is defined by: (0.0) $D_q \subseteq D_p$ and $\sigma_q \subseteq \sigma_p$. (0.1) $F_q \subseteq F_p \upharpoonright D_q = \{f \upharpoonright D_q : f \in F_p\} \subseteq \operatorname{co}_{\mathbb{Q}}(\pm F_q)$. (0.2) For every $s \in \sigma_q$ one has that $h_s^{(p)} \upharpoonright D_q = h_s^{(q)}$.

A forcing notion \mathbb{P} is any subset of \mathbb{P}_b partially ordered by \leq_b .

The norms

We define naturally the following seminorms on the f.d. vector space $c_{00}(D_p)$. Given $x \in c_{00}(D_p)$ let

$$\|x\|_{\rho} := \max\{|\langle f, x \rangle| : f \in F_{\rho}\}$$
(1)

The formula (1) defines clearly a seminorm. Indeed, an easy inductive argument shows that (C.3) implies that $\|\cdot\|_p$ is a norm. We denote this normed space by X_p .

The condition (C.3) also implies that that for every $\gamma < \eta$ in $\textit{D}_{\rm P}$ one has that

$$\|u_{\eta}-u_{\gamma}\|_{p}\geq 1,$$

so $(u_{\gamma})_{\gamma \in D_p}$ is a 1-separated sequence. This will give as a consequence that the direct limit of these *p*'s will be a non-separable space.

The basic forcing

Some remarks:

1 Each
$$X_p$$
 is a \mathbb{Q} -f.d. space.

2 Observe that the condition (O.1) is equivalent to:

(0.1') For every $f \in F_{\rho}$ one has that $f \upharpoonright D_q \in F_q$ and for every $x \in c_{00}(D_q)$ one has that $||x||_{\rho} = ||x||_q$.

3 It follows from the Hahn-Banach theorem that

$$\operatorname{co}_{\mathbb{R}}(\pm F_{\rho}) = B_{(X_{\rho})^*}, \qquad (2)$$

and so,

$$\operatorname{Ext}(B_{(X_{\rho})^*}) \subseteq F_{\rho}.$$
(3)

The generic space

Given a generic filter $\mathbb G$ for a forcing notion $\mathbb P,$ we define $X_{\mathbb G}$ as above: First we define

$$D_{\mathbb{G}} := \bigcup_{p \in \mathbb{G}} D_p$$

and then for $x \in c_{00}(D_{\mathbb{G}})$ we define

$$\|x\|_{\mathbb{G}} := \|x\|_{\mu}$$

where $p \in \mathbb{G}$ is such that $x \in c_{00}(D_p)$.

The basic forcing

The generic space $X_{\mathbb{G}}$ is the completion of $(c_{00}(D_{\mathbb{G}}), \|\cdot\|_{\mathbb{G}})$.

For all the forcing notions $\ensuremath{\mathbb{P}}$ we consider one has that

For every $\gamma < \omega_1$ one has that

$$\mathcal{D}_{\gamma} := \{ \boldsymbol{p} \in \mathbb{P} : \gamma \in \boldsymbol{D}_{\boldsymbol{p}} \}$$

is dense.

It follows that $D_{\mathbb{G}} = \omega_1$ for every generic filter \mathbb{G} . Another dense argument will give that most of the generic spaces $X_{\mathbb{G}}$ are *Gurarij*.

The basic forcing

Property K

One also has that every forcing notion \mathbb{P} considered has the property K: This follows from the fact that

Every uncountable sequence $(p_{\alpha})_{\alpha < \omega_1}$ of conditions of \mathbb{P} has an uncountable subsequence forming a Δ -system of isomorphic conditions.

Since the posets \mathbb{P} we consider are always closed under a *minimal* amalgamation of finite such Δ -systems, it will follow that \mathbb{P} has the property *K*.

Uncountable structures. Ramsey quantifiers

To prove properties of the generic spaces we use two kind of arguments:

- 1 Dense arguments: This will give cofinal properties of the generic space, as for example the Gurarij property.
- 2 Study of uncountable ∆-system of isomorphic conditions. This will give a full understanding of *uncountable substructures* of the generic spaces.

Uncountable structures. Ramsey quantifiers

Let \mathbb{G} be a generic filter for a forcing notion \mathbb{P} . We say that a configuration $\mathfrak{P}(\vec{v}_0, \ldots, \vec{v}_k)$, $\vec{v}_i = (v_0^{(i)}, \ldots, v_{n-1}^{(i)})$, is *unavoidable* for the sequences $(y_{\alpha}^{(0)})_{\alpha < \omega_1}, \ldots, (y_{\alpha}^{(k)})_{\alpha < \omega_1}$ of points of $c_{00}(\omega_1, \mathbb{Q})$ if

for every uncountable $\Gamma \subseteq \omega_1$ there are $\xi_0 < \cdots < \xi_{n-1}$ in Γ such that $\mathfrak{P}((y_{\alpha_{\xi_i}}^{(0)})_{i < n}, \ldots, (y_{\alpha_{\xi_i}}^{(k)})_{i < n})$ holds in $X_{\mathbb{G}}$, i.e. holds in $(\langle y_{\alpha_{\xi_i}}^{(j)} \rangle_{j \le k, i < n}, \|\cdot\|_{\mathbb{G}})$.

Uncountable structures. Ramsey quantifiers

A configuration $\mathfrak{P}(\vec{v}_0, \ldots, \vec{v}_k)$ is unavoidable in $X_{\mathbb{G}}$ if it is unavoidable for k + 1 many uncountable sequences of points of $X_{\mathbb{G}}$ which are in $c_{00}(\omega_1, \mathbb{Q})$. We say that the configuration $\mathfrak{P}(\vec{v}_0, \ldots, \vec{v}_k)$ is *unavoidable for* \mathbb{P} if it is unavoidable in every generic space of \mathbb{P} .

Uncountable structures. Ramsey quantifiers

Examples of configurations

Example 1

$$\|v_0 - \frac{1}{n}\sum_{i=1}^n v_i\| \leq \frac{1}{n}.$$

Example 2

Given a \mathbb{Q} -f.d. space $X = (c_{00}(n), F)$ we consider the configuration

 $(v_i)_{i < n}$ is 1-equivalent to $(u_i)_{i < n}$ of X.

Uncountable structures. Ramsey quantifiers

The forcing Theorem.

Theorem

Let \mathbb{P} be an arbitrary forcing notion, and let $\mathfrak{P}((v_j^{(0)})_{j < n}, \dots, (v_j^{(k)})_{j < n})$ be a configuration. TFAE

- (a) $\mathfrak{P}((v_j^{(0)})_{j < n}, \dots, (v_j^{(k)})_{j < n})$ is unavoidable for \mathbb{P} .
- (b) Whenever (p_j, (v_j⁽ⁱ⁾)_{i≤k})_{j≤n} is a Δ-sequence of extended isomorphic conditions in ℙ there is a condition p ∈ ℙ such that

(b.0)
$$p \le p_j$$
 for every $j < n$ and
(b.1) $\mathfrak{P}((\mathbf{v}_j^{(0)})_{j < n}, \dots, (\mathbf{v}_j^{(k)})_{j < n})$ holds in X_p .

No uncountable biorthogonal

Let *X* be a Banach space, and κ be a cardinal. A sequence $(x_{\alpha}, f_{\alpha})_{\alpha < \kappa} \in (X \times X^*)^{\kappa}$ is called a *biorthogonal system* if

$$f_{\alpha}(\mathbf{x}_{\beta}) = \delta_{\alpha,\beta}.$$

Let $X_{\mathbb{G}}$ be a generic space for the basic forcing \mathbb{P}_b . Then $X_{\mathbb{G}}$ does not have uncountable biorthogonal systems:

We consider the configuration $\mathfrak{P}_n(v_0, \ldots, v_n)$:

$$\|v_0 - \frac{1}{n}\sum_{i=1}^n v_i\| \leq \frac{1}{n}.$$

It is clear that if $X_{\mathbb{G}}$ has an uncountable biorthogonal sequence then there is an uncountable sequence $(x_{\alpha})_{\alpha}$ of points in $c_{00}(\omega_1)$ and $m \in \mathbb{N}$ such that

$$\|x_{\alpha_0} - rac{1}{n}\sum_{i=1}^n x_{\alpha_i}\| > rac{1}{m} ext{ for every } lpha_0 < \cdots < lpha_n.$$

This means that \mathfrak{P}_m is **not** unavoidable.

By using the Forcing Theorem one proves that indeed each \mathfrak{P}_n is unavoidable:

We fix *n*, and a Δ -system of isomorphic conditions $(p_i, v_i)_{i \le n}$ with root *R*. Let $t = (N, F, \sigma, H, v)$ be its *type*, and $\theta_i : N \to D_{p_i}$ be the corresponding isomorphisms.

Let $p = (D_p, F_p, \sigma_p, H_p)$ be the following condition:

1
$$D_{p} = \bigcup_{i \leq n} D_{p_i}, \sigma_{p} = \bigcup_{i \leq n} \sigma_{p_i}.$$

- 2 F_p is formed by:
 - $\bigvee_{i \leq n} \theta_i(f)$ for every $f \in F$.
 - $h_{(m,x)}^{(\overline{p_i})}$ for every $(m, x) \in \sigma_{p_i}$ with $i \ge 1$ and R < x.

- 3 For every $1 \le i \le n$ and $s = (m, x) \in \sigma_i$ with R < x one has that $h_s^{(p)} = h_s^{(p_i)}$.
- 4 For every $0 \le i \le n$ and $s = (m, x) \in \sigma_i$ with min supp $x \in R$ one has that $h_s^{(p)} = \bigvee_{i \le n} \theta_i(h)$.
- 5 For every $s = (m, x) \in \sigma_0$ with R < x one has that $h_s^{(p)} = \bigvee_{i \le n} \theta_i(h)$, where *h* is the type of $h_{(m,x)}^{(p_0)}$.

Then *p* is a basic condition, $p \le p_i$ for every $i \le n$ and \mathfrak{P}_n holds in X_p .

No supported sets

Recall that a sequence $(x_{\alpha}, f_{\alpha})_{\alpha < \kappa} \in (X \times X^{*})^{\kappa}$ is called semi-biorthogonal system if $f_{\alpha}(x_{\alpha}) = 1$, $f_{\alpha}(x_{\beta}) = 0$ and $f_{\beta}(x_{\alpha}) \ge 0$ for $\alpha < \beta$.

The generic space $X_{\mathbb{G}}$ for the basic forcing does not have supported sets, i.e. no uncountable semibiorthogonal sequences.

This is a consequence of the fact that for every *n* the configuration $\mathfrak{P}_n(v_0, \ldots, v_{3n})$

$$\| - \sum_{i=0}^{2n-1} v_i + n \cdot v_{2n} + \sum_{i=2n+1}^{3n} v_i \| \le 2$$

is unavoidable.

The role of H_p

Both C(K) for K being the Kunen space and the Shelah space S (which is our $X_{\mathbb{G}}$ for the basic forcing) are hereditarily Lindelöf in all powers, when considered with their weak topology. By declaring the appropriate additional structure in H_p , we have examples of generic spaces $X_{\mathbb{G}}$ such that

1 $(X_{\mathbb{G}}, w)$ is hereditarily Lindelöf but $(X_{\mathbb{G}}, w)^2$ is not. This is the configuration $\mathfrak{P}(v_0, \ldots, v_n)$:

For every $f_0, \ldots, f_{m-1} \in B_{X^*}$ there is $1 \le i \le n$ with $\max_{j \le m} |f_j(v_0) - f_j(v_i)| \le \varepsilon \max_{k \le n} ||v_k||.$

2 $(X_{\mathbb{G}}, w)$ is not HL, i.e. it has an uncountable right separated family, but it has no uncountable convexly separated family, i.e. a sequence $(x_{\alpha})_{\alpha}$ such that $x_{\alpha} \notin \overline{\operatorname{co}(x_{\beta})_{\beta \neq \alpha}}$.

Other examples

- 1 A generic space with a *K*-basis but no uncountable K'-basic sequence for K' < K.
- 2 A generic space with uncountable 1⁺-basic sequences but no uncountable monotone basic sequence.

More properties

All the generic spaces $X_{\mathbb{G}}$ we consider have the following properties:

- Every operator from a subspace X ⊆ X_G into X_G is a multiple of the identity plus a separable range operator.
- 2 Every basic sequence can be 1⁺-finitely block represented in any uncountable separated sequence of $X_{\mathbb{G}}$

Generic Compacta

The dual balls of our generic spaces are also interesting compacta:

- 1 C(K) without supported sets and such that $(C(K), w)^n$ is Hereditarily Lindelöf.
- 2 Poulsen and Bauer simplexes.
- 3 ...

- Open Problems

Question 1:

Is it possible to have these generic constructions with density $> \omega_1$ and not having uncountable biorthogonal systems?

Question 2:

Is it possible to have these generic constructions being *Asplund*? In general, explore forcing notions with a restricted family of norms, e.g. asymptotic ℓ_1 , with non-trivial co-type,... - Open Problems

Definition

Let *X* be a Banach space, and κ be a cardinal. A sequence $(x_{\alpha}, f_{\alpha})_{\alpha < \kappa} \in (X \times X^{*})^{\kappa}$ is called a *biorthogonal system* if $f_{\alpha}(x_{\beta}) = \delta_{\alpha,\beta}$. The sequence $(x_{\alpha}, f_{\alpha})_{\alpha}$ is called *fundamental* if $\overline{\langle x_{\alpha} \rangle_{\alpha < \kappa}} = X$. The sequence $(x_{\alpha}, f_{\alpha})_{\alpha}$ is called *total* if $\overline{\langle f_{\alpha} \rangle_{\alpha}}^{W^{*}} = X^{*}$. A fundamental and total biorthogonal system is called a *Markushevich* basis of *X* (or simply *M*-basis). - Open Problems

Theorem (Markushevich)

Every separable Banach space has a M-basis.

Every Schauder basis is a Markushevich basis.

Theorem (Enflo)

It is not true that every separable Banach space has a Schauder basis.

Question 3

Is it true that if X has an uncountable Markushevich basis then X has an uncountable basic sequence?

- Open Problems

Definition

A sequence $(x_{\alpha})_{\alpha < \kappa}$ in *X* is called ω -independent if for every sequence increasing $(\alpha_n)_n$ and every sequence $(a_n)_n$ of scalars if $(\sum_{n=1}^m a_n x_n)_n$ converges in norm to 0, then $a_n = 0$ for every *n*.

Remark

If $(x_{\alpha}, f_{\alpha})_{\alpha}$ is a biorthogonal sequence then $(x_{\alpha})_{\alpha}$ is an ω -independent family.

Remark

A separable Banach space does not have uncountable independent families (Fremlin and Sersouri).

-Open Problems

Question 4:

Is it true that if a Banach space have an uncountable ω -independent family, then it has an uncountable biorthogonal system?

Remark

If X has an uncountable ω -sequence then it has uncountable ε -biorthogonal sequences for every $\varepsilon > 0$.