Eventually different forcing at the second level of the projective hierarchy

Benedikt Löwe

joint work with Jörg Brendle, Kobe (Japan)

ESI Workshop on Large Cardinals and Descriptive Set Theory
Vienna, June 14-27, 2009
Wednesday, 17 June 2009, 11:00-11:50 am
Regularity properties

Regularity Properties: Lebesgue measurability, Baire property, the perfect set property...

Problem. ZFC does not prove that all projective sets are “regular”. For instance, the model \(L \) has a \(\Delta^1_2 \) set that is not Lebesgue measurable and does not have the Baire and perfect set property.

Q. Can we characterize the following statements in set-theoretic terms:

\[
\text{LM}(\Delta^1_2) : \text{“every } \Delta^1_2 \text{ set is Lebesgue measurable”}
\]
\[
\text{LM}(\Sigma^1_2) : \text{“every } \Sigma^1_2 \text{ set is Lebesgue measurable”}
\]
Random reals

Theorem (Solovay). $\text{LM}(\Sigma^1_2)$ if and only if for every x, the set of random reals over $L[x]$ is a measure one set.

Solovay-style characterization theorem

Remember that a real is random over M if and only if it is not a member of any measure zero Borel set with a Borel code in M.

ω_1 is inaccessible by reals: “for all x, $\omega_1^{L[x]}$ is countable.”

Proposition. If ω_1 is inaccessible by reals, then $\text{LM}(\Sigma^1_2)$.

Proof. The union of all null sets coded in $L[x]$ is a union of size $\omega_1^{L[x]} < \omega_1$ of null sets, so it has measure zero. But its complement is the set of random reals. q.e.d.
At the Δ^1_2-level

Theorem (Judah-Shelah). $\text{LM}(\Delta^1_2)$ if and only if for every x, there is a random real over $L[x]$.

Judah-Shelah-style characterization theorem

Corollary. In the ω_1-iteration of random forcing, $\text{LM}(\Delta^1_2)$ holds.

Corollary. $\text{LM}(\Delta^1_2)$ is strictly weaker than “ω_1 is inaccessible by reals”.
Generalisations (1)

The two characterisation theorems are not just true in the case of random forcing. For instance:

Theorem. $\text{BP}(\Sigma^1_2)$ if and only if for every x, the set of Cohen reals over $L[x]$ is a comeager set.

Proposition. If ω_1 is inaccessible by reals, then $\text{BP}(\Sigma^1_2)$.

Theorem. $\text{BP}(\Delta^1_2)$ if and only if for every x, there is a Cohen real over $L[x]$.

Proposition. $\text{BP}(\Delta^1_2)$ is strictly weaker than “ω_1 is inaccessible by reals”.
Generalisations (2)

Even more generally, a forcing notion \mathbb{P} defines an ideal $\mathcal{I}_\mathbb{P}$, a corresponding notion of measurability, and a notion of genericity. We write $\text{Meas}_\mathbb{P}(\Gamma)$ for “all sets in Γ are \mathbb{P}-measurable”.

A false hope:

- $\text{Meas}_\mathbb{P}(\Sigma^1_2)$ if and only if for every x, the set of \mathbb{P}-generics over $L[x]$ is $\text{co-}\mathcal{I}_\mathbb{P}$. ("Solovay Theorem")
- $\text{Meas}_\mathbb{P}(\Delta^1_2)$ if and only if for every x, there is a \mathbb{P}-generic over $L[x]$. ("Judah-Shelah Theorem")

It will turn out that these are not true in general, and a refinement is necessary.
A concrete example: Hechler forcing

Hechler forcing \mathbb{D} consists of pairs $\langle s, f \rangle$ where $s \in \omega^{<\omega}$ and $f \in \omega^\omega$ with

$$\langle s, f \rangle \leq \langle t, g \rangle \text { iff } s \supseteq t \text { and } \forall n \geq \text{lh}(t)(g(n) \leq f(n)) \quad (1)$$

and

$$\forall n \in \text{lh}(s) \setminus \text{lh}(t)(g(n) \leq s(n)) \quad (2)$$

The conditions of Hechler forcing define a topology called the **dominating topology**. We call a set \mathbb{D}-measurable if it has the Baire property in the dominating topology and let the ideal $\mathcal{I}_\mathbb{D}$ be the set of all sets meager in the dominating topology.

Again, a real is **Hechler** over M if it is not an element of any Borel set meager in the dominating topology and coded in M.
Theorem (Brendle-L. 1998). The following are equivalent:

- $\text{Meas}_D(\Sigma^1_2)$,
- for every x, the set of Hechler reals over $L[x]$ is co-meager in the dominating topology,
- ω_1 is inaccessible by reals.

Solovay-style characterization

Theorem (Brendle-L. 1998). The following are equivalent:

- $\text{Meas}_D(\Delta^1_2)$,
- for every x, there is a Hechler real over $L[x]$,
- $\text{BP}(\Sigma^1_2)$.

Judah-Shelah-style characterization
Eventually different forcing at the second level of the projective hierarchy

Benedikt Löwe

How regular are the projective sets?

Generic reals and regularity

Ikegami’s characterization theorems

Eventually different forcing:

\[\Sigma^1_2 \]

\[\Delta^1_2 \]

A diagram of implications

\[\Sigma^1_2(R) = \Delta^1_2(R) \]

\[\Sigma^1_2(C) = \Delta^1_2(D) \]

\[\Sigma^1_2(L) = \Delta^1_2(L) \]

\[\Delta^1_2(C) \]

\[\Sigma^1_2(V) \]

\[\Sigma^1_2(M) = \Delta^1_2(M) \]

\[\Delta^1_2(V) \]

\[\Sigma^1_2(S) = \Delta^1_2(S) \]

\[\Sigma^1_2(B) = \Delta^1_2(A) \]

\[\Delta^1_2(B) \]

ev. diff.
Abstract Solovay and Judah-Shelah theorems.

We mentioned a (vain) hope for abstract Solovay and Judah-Shelah theorems:

- $\text{Meas}_P(\Sigma^1_2)$ if and only if for every x, the set of P-generics over $L[x]$ is co-\mathcal{I}_P. *Solovay*
- $\text{Meas}_P(\Delta^1_2)$ if and only if for every x, there is a P-generic over $L[x]$. *Judah-Shelah*

Definition (Brendle-Halbeisen-L.-Ikegami). A real x is P-quasigeneric over M if if for all Borel codes $c \in M$ such that $B_c \in \mathcal{I}_P^*$, we have that $r \notin B_c$. Here,

$$\mathcal{I}_P^* := \{ X ; \forall T \in P \exists S \in P(S \leq T \land [S] \cap X \in \mathcal{I}_P) \}.$$

For random, Cohen and Hechler reals, being generic is equivalent to being quasigeneric.
Meas$_{P}(\Sigma^1_2)$ if and only if for every x, the set of P-generics over $L[x]$ is co-I_P. (Solovay)

Meas$_{P}(\Delta^1_2)$ if and only if for every x, there is a P-generic over $L[x]$. (Judah-Shelah)

A real x is P-quasigeneric over M if if for all Borel codes $c \in M$ such that $B_c \in I_P^*$, we have that $r \notin B_c$. Here,

$$I_P^* := \{X ; \forall T \in P \exists S \in P(S \leq T \land [S] \cap X \in I_P)\}.$$

Meas$_{P}(\Sigma^1_2)$ if and only if for every x, the set of P-quasigenerics over $L[x]$ is co-I_P. (“Solovay Theorem”)

Meas$_{P}(\Delta^1_2)$ if and only if for every x, there is a P-quasigeneric over $L[x]$. (“Judah-Shelah Theorem”)

The characterizations of Brendle-L. (1998) for Sacks, Miller, and Laver forcing fit into this template and become Judah-Shelah-style characterizations.
Abstract Judah-Shelah Theorem (Ikegami 2007). If \mathbb{P} is a proper and strongly arboreal forcing notion such that $\{c; c$ is a Borel code and $B_c \in I^*_\mathbb{P}\}$ is Σ^1_2, then the following are equivalent:

1. Σ^1_3-\mathbb{P}-absoluteness,
2. every Δ^1_2 set is \mathbb{P}-measurable, and
3. for every real x and every $T \in \mathbb{P}$, there is a $I^*_\mathbb{P}$-quasigeneric real in $[T]$ over $L[x]$.

Abstract Solovay Theorem (Ikegami 2007). If \mathbb{P} is a proper and strongly arboreal forcing notion such that $\{c; c$ is a Borel code and $B_c \in I^*_\mathbb{P}\}$ is Σ^1_2 and $I^*_\mathbb{P}$ is Borel generated, then the following are equivalent:

1. every Σ^1_2 set is \mathbb{P}-measurable, and
2. for every real x, the set $\{y; y$ is not $I^*_\mathbb{P}$-quasigeneric over $L[x]\}$ belongs to $I^*_\mathbb{P}$.
Eventually different forcing (1).

Eventually different forcing \mathbb{E} consists of pairs $\langle s, F \rangle$, where $s \in \omega^{<\omega}$ and F is a finite set of reals with

$$\langle s, F \rangle \leq \langle t, G \rangle \quad \text{iff} \quad t \subseteq s, \ G \subseteq F, \ \text{and} \ \forall i \in \text{dom}(s \setminus t) \forall g \in G(s(i) \neq g(i)).$$

Eventually different forcing is a c.c.c. forcing that generates the eventually different topology refining the standard topology on Baire space.

Proposition (Łąbędzki 1997). The meager sets in the eventually different topology form an ideal $I_{\mathbb{E}}$ which has a basis of Borel sets.

Theorem (Łąbędzki 1997). A real x is \mathbb{E}-generic over M if and only if it is \mathbb{E}-quasigeneric over M.
Eventually different forcing (2).

Let \(\langle f_\alpha; \alpha < \omega_1 \rangle \) be a family of eventually different functions. Let

\[
E_\alpha := \{ x \in \omega^\omega; \exists^\infty k \in \omega (x(k) = f_\alpha(k)) \}.
\]

These sets are nowhere dense in the eventually different topology.

Theorem (Brendle). If \(G \) is meager in the eventually different topology and \(\langle f_\alpha; \alpha < \omega_1 \rangle \) a family of eventually different functions then the set \(\{ \alpha; E_\alpha \subseteq G \} \) is countable.

Corollary (Łabędzki). The additivity of \(I_\mathbb{D} \) is \(\aleph_1 \).
A Solovay theorem for \mathbb{E}.

Abstract Solovay Theorem (Ikegami 2007). If P is a proper and strongly arboreal forcing notion such that $\{c ; c \text{ is a Borel code and } B_c \in \mathcal{I}_P^*\}$ is Σ^1_2 and \mathcal{I}_P is Borel generated, then the following are equivalent:

1. every Σ^1_2 set is P-measurable, and
2. for every real x, the set $\{y ; y \text{ is not } \mathcal{I}_P^*-\text{quasigeneric over } \mathbb{L}[x]\}$ belongs to \mathcal{I}_P^*.

Theorem. The following are equivalent:

1. $\text{Meas}_\mathbb{E}(\Sigma^1_2)$ and
2. for every x, the set of \mathbb{E}-generics over $\mathbb{L}[x]$ is comeager in the eventually different topology.
3. ω_1 is inaccessible by reals.

\[E_\alpha := \{x \in \omega^\omega ; \exists^\infty k \in \omega(x(k) = f_\alpha(k))\}. \]

Theorem (Brendle). If G is meager in the eventually different topology and $\langle f_\alpha ; \alpha < \omega_1 \rangle$ a family of eventually different functions then the set $\{\alpha ; E_\alpha \subseteq G\}$ is countable.

Proof. "(ii)\Rightarrow(iii)": Suppose $\omega^\mathbb{L}[x]_1 = \omega_1$. In $\mathbb{L}[x]$, there is a family $\langle f_\alpha ; \alpha < \omega_1 \rangle$ of eventually different functions. All E_α are nowhere dense and coded in $\mathbb{L}[x]$, so no \mathbb{E}-generic over $\mathbb{L}[x]$ can lie in one of the E_α. So, the complement of the generic reals cannot be meager by Brendle’s theorem. Contradiction! q.e.d.
Eventually different forcing at the second level of the projective hierarchy

Benedikt Löwe

How regular are the projective sets?

Generic reals and regularity

Ikegami's characterization theorems

Eventually different forcing: \(\Sigma_2^1 \)

Eventually different forcing: \(\Delta_2^1 \)

The Diagram again

\[
\begin{align*}
\Sigma_2^1(\mathbb{D}) &= \Delta_2^1(\mathbb{B}) = \Delta_2^1(\mathbb{A}) \\
\Sigma_2^1(\mathbb{R}) &= \Delta_2^1(\mathbb{R}) \\
\Sigma_2^1(\mathbb{C}) &= \Delta_2^1(\mathbb{D}) \\
\Sigma_2^1(\mathbb{L}) &= \Delta_2^1(\mathbb{L}) \\
\Sigma_2^1(\mathbb{M}) &= \Delta_2^1(\mathbb{M}) \\
\Sigma_2^1(\mathbb{S}) &= \Delta_2^1(\mathbb{S}) \\
\Sigma_2^1(\mathbb{V}) &= \Delta_2^1(\mathbb{V}) \\
\end{align*}
\]
Eventually different forcing at the second level of the projective hierarchy

Benedikt Löwe

How regular are the projective sets?

Generic reals and regularity

Ikegami's characterization theorems

Eventually different forcing: Σ^1_2

Eventually different forcing: Δ^1_2

The Diagram again

The Diagram again

$\Sigma^1_2(R) = \Delta^1_2(R)$

$\Sigma^1_2(L) = \Delta^1_2(L)$

$\Sigma^1_2(M) = \Delta^1_2(M)$

$\Sigma^1_2(S) = \Delta^1_2(S)$

$\Sigma^1_2(\mathbb{E}) = \Sigma^1_2(\mathbb{D})$

$\Sigma^1_2(\mathbb{B}) = \Delta^1_2(\mathbb{A})$

$\Delta^1_2(\mathbb{B})$

$\Sigma^1_2(\mathbb{V})$

$\Delta^1_2(\mathbb{V})$

$\Sigma^1_2(\mathbb{C}) = \Delta^1_2(\mathbb{D})$

$\Delta^1_2(\mathbb{C})$

ev. diff.
A Judah-Shelah theorem for \mathbb{E}.

Abstract Judah-Shelah Theorem (Ikegami 2007). If \mathbb{P} is a proper and strongly arboreal forcing notion such that $\{c : c \text{ is a Borel code and } B_c \in \mathcal{I}_\mathbb{P}^*\}$ is Σ^1_2, then the following are equivalent:

1. Σ^1_3-\mathbb{P}-absoluteness,
2. every Δ^1_2 set is \mathbb{P}-measurable, and
3. for every real x and every $T \in \mathbb{P}$, there is a $\mathcal{I}_\mathbb{P}^*$-quasigeneric real in $[T]$ over $L[x]$.

Theorem. The following are equivalent:

1. $\text{Meas}_{\mathbb{E}}(\Delta^1_2)$, and
2. for every x, there is an \mathbb{E}-generic over $L[x]$.
Locating $\Delta^1_2(E)$

- The ω_1-iteration of E produces a model of $\text{Meas}_E(\Delta^1_2)$ without dominating or random reals, therefore $\text{LM}(\Delta^1_2)$ and $\text{Meas}_L(\Delta^1_2)$ are false there. In particular, $\text{Meas}_E(\Sigma^1_2)$ and $\text{Meas}_E(\Delta^1_2)$ are not equivalent.
- In the ω_1-iteration of Cohen forcing, we do not have an eventually different real. In particular, $\text{Meas}_E(\Delta^1_2)$ is false.
- Every E-generic is also Cohen generic, so $\text{Meas}_E(\Delta^1_2)$ implies $\text{BP}(\Delta^1_2)$.
- Since the ω_1-iteration of random forcing does not add Cohen reals, $\text{Meas}_E(\Delta^1_2)$ is false there.
Eventually different forcing at the second level of the projective hierarchy

Benedikt Löwe

How regular are the projective sets?

Generic reals and regularity

Ikegami’s characterization theorems

Eventually different forcing: Σ^1_2

Eventually different forcing: Δ^1_2
The final diagram

\[
\begin{align*}
\Sigma_2^1(\mathcal{E}) &= \Sigma_2^1(\mathcal{D}) \\
\Sigma_2^1(\mathcal{B}) &= \Delta_2^1(\mathcal{A}) \\
\Sigma_2^1(\mathcal{R}) &= \Delta_2^1(\mathcal{R}) \\
\Sigma_2^1(\mathcal{C}) &= \Delta_2^1(\mathcal{D}) \\
\Delta_2^1(\mathcal{E}) &= \Delta_2^1(\mathcal{E}) \\
\Delta_2^1(\mathcal{B}) &= \Delta_2^1(\mathcal{B}) \\
\Sigma_2^1(\mathcal{L}) &= \Delta_2^1(\mathcal{L}) \\
\Delta_2^1(\mathcal{C}) &= \Delta_2^1(\mathcal{C}) \\
\Sigma_2^1(\mathcal{V}) &= \Sigma_2^1(\mathcal{V}) \\
\Delta_2^1(\mathcal{V}) &= \Delta_2^1(\mathcal{V}) \\
\Sigma_2^1(\mathcal{M}) &= \Delta_2^1(\mathcal{M}) \\
\Delta_2^1(\mathcal{M}) &= \Delta_2^1(\mathcal{M}) \\
\Sigma_2^1(\mathcal{S}) &= \Delta_2^1(\mathcal{S}) \\
\end{align*}
\]
We still have to give a model of $\text{Meas}_D(\Delta^1_2) \land \neg \text{Meas}_E(\Delta^1_2)$.

Dichotomy for iterated Hechler forcing. Let $(P_\alpha, D_\alpha ; \alpha < \gamma)$ be a finite support iteration of Hechler forcing. Let x be a real in the P_γ-generic extension. Then

1. either x is dominating over V
2. or x is not eventually different over V.

Corollary. In the ω_1-finite support iteration of Hechler forcing, $\text{Meas}_E(\Delta^1_2)$ fails.