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Regularity properties

Regularity Properties: Lebesgue measurability, Baire
property, the perfect set property...

Problem. ZFC does not prove that all projective sets are
“regular”. For instance, the model L has a ∆1

2 set that is
not Lebesgue measurable and does not have the Baire and
perfect set property.

Q. Can we characterize the following statements in
set-theoretic terms:

LM(∆1
2) : “every ∆1

2 set is Lebesgue measurable”

LM(Σ1
2) : “every Σ1

2 set is Lebesgue measurable”
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Random reals

Theorem (Solovay). LM(Σ1
2) if and only if for every x , the

set of random reals over L[x ] is a measure one set.

Solovay-style characterization theorem

Remember that a real is random over M if and only if it is
not a member of any measure zero Borel set with a Borel
code in M.

ω1 is inaccessible by reals: “for all x , ω
L[x]
1 is countable.”

Proposition. If ω1 is inaccessible by reals, then LM(Σ1
2).

Proof. The union of all null sets coded in L[x ] is a union of

size ω
L[x]
1 < ω1 of null sets, so it has measure zero. But its

complement is the set of random reals. q.e.d.
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At the ∆1
2-level

Theorem (Judah-Shelah). LM(∆1
2) if and only if for every

x , there is a random real over L[x ].

Judah-Shelah-style characterization theorem

Corollary. In the ω1-iteration of random forcing, LM(∆1
2)

holds.

Corollary. LM(∆1
2) is strictly weaker than “ω1 is

inaccessible by reals”.
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Generalisations (1)

The two characterisation theorems are not just true in the
case of random forcing. For instance:

Theorem. BP(Σ1
2) if and only if for every x , the set of

Cohen reals over L[x ] is a comeager set.

Proposition. If ω1 is inaccessible by reals, then BP(Σ1
2).

Theorem. BP(∆1
2) if and only if for every x , there is a

Cohen real over L[x ].

Proposition. BP(∆1
2) is strictly weaker than “ω1 is

inaccessible by reals”.
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Generalisations (2)

Even more generally, a forcing notion P defines an ideal IP,
a corresponding notion of measurability, and a notion of
genericity. We write MeasP(Γ) for “all sets in Γ are
P-measurable”.

A false hope:

I MeasP(Σ1
2) if and only if for every x , the set of

P-generics over L[x ] is co-IP. (“Solovay Theorem”)

I MeasP(∆1
2) if and only if for every x , there is a

P-generic over L[x ]. (“Judah-Shelah Theorem”)

It will turn out that these are not true in general, and a
refinement is necessary.
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A concrete example: Hechler forcing

Hechler forcing D consists of pairs 〈s, f 〉 where s ∈ ω<ω and
f ∈ ωω with

〈s, f 〉 ≤ 〈t, g〉 iff s ⊇ t and ∀n ≥ lh(t)(g(n) ≤ f (n)) (1)

and ∀n ∈ lh(s)\lh(t)(g(n) ≤ s(n)) (2)

The conditions of Hechler forcing define a topology called
the dominating topology. We call a set D-measurable if it
has the Baire property in the dominating topology and let
the ideal ID be the set of all sets meager in the dominating
topology.

Again, a real is Hechler over M if it is not an element of any
Borel set meager in the dominating topology and coded in
M.



Eventually
different forcing at
the second level of

the projective
hierarchy

Benedikt Löwe
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Theorem (Brendle-L. 1998). The following are equivalent:

I MeasD(Σ1
2),

I for every x , the set of Hechler reals over L[x ] is
co-meager in the dominating topology,

I ω1 is inaccessible by reals.

Solovay-style characterization

Theorem (Brendle-L. 1998). The following are equivalent:

I MeasD(∆1
2),

I for every x , there is a Hechler real over L[x ],

I BP(Σ1
2).

Judah-Shelah-style characterization
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A diagram of implications
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Abstract Solovay and Judah-Shelah theorems.

We mentioned a (vain) hope for abstract Solovay and
Judah-Shelah theorems:

I MeasP(Σ1
2) if and only if for every x , the set of

P-generics over L[x ] is co-IP. Solovay

I MeasP(∆1
2) if and only if for every x , there is a

P-generic over L[x ]. Judah-Shelah

Definition (Brendle-Halbeisen-L.-Ikegami). A real x is
P-quasigeneric over M if if for all Borel codes c ∈ M such
that Bc ∈ I∗P, we have that r /∈ Bc . Here,

I∗P := {X ; ∀T ∈ P∃S ∈ P(S ≤ T ∧ [S ] ∩ X ∈ IP)}.

For random, Cohen and Hechler reals, being generic is
equivalent to being quasigeneric.
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I MeasP(Σ1
2) if and only if for every x , the set of P-generics over L[x] is

co-IP. Solovay

I MeasP(∆1
2) if and only if for every x , there is a P-generic over L[x].

Judah-Shelah

A real x is P-quasigeneric over M if if for all Borel codes c ∈ M such that
Bc ∈ I∗P , we have that r /∈ Bc . Here,

I∗P := {X ; ∀T ∈ P∃S ∈ P(S ≤ T ∧ [S] ∩ X ∈ IP)}.

MeasP(Σ1
2) if and only if for every x , the set of

P-quasigenerics over L[x ] is co-IP. (“Solovay Theorem”)

MeasP(∆1
2) if and only if for every x , there is a

P-quasigeneric over L[x ]. (“Judah-Shelah Theorem”)

The characterizations of Brendle-L. (1998) for Sacks, Miller,
and Laver forcing fit into this template and become
Judah-Shelah-style characterizations.
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Abstract Judah-Shelah Theorem (Ikegami 2007). If P is a
proper and strongly arboreal forcing notion such that {c ; c
is a Borel code and Bc ∈ I∗P} is Σ1

2, then the following are
equivalent:

1. Σ1
3-P-absoluteness,

2. every ∆1
2 set is P-measurable, and

3. for every real x and every T ∈ P, there is a
I∗P-quasigeneric real in [T ] over L[x ].

Abstract Solovay Theorem (Ikegami 2007). If P is a
proper and strongly arboreal forcing notion such that {c ; c
is a Borel code and Bc ∈ I∗P} is Σ1

2 and IP is Borel
generated, then the following are equivalent:

1. every Σ1
2 set is P-measurable, and

2. for every real x , the set {y ; y is not I∗P-quasigeneric
over L[x ]} belongs to I∗P.
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Eventually different forcing (1).

Eventually different forcing E consists of pairs 〈s,F 〉, where
s ∈ ω<ω and F is a finite set of reals with

〈s,F 〉 ≤ 〈t,G 〉 iff t ⊆ s, G ⊆ F , and

∀i ∈ dom(s\t) ∀g ∈ G (s(i) 6= g(i)).

Eventually different forcing is a c.c.c. forcing that generates
the eventually different topology refining the standard
topology on Baire space.

Proposition ( Labȩdzki 1997). The meager sets in the
eventually different topology form an ideal IE which has a
basis of Borel sets.

Theorem ( Labȩdzki 1997). A real x is E-generic over M if
and only if it is E-quasigeneric over M.
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Eventually different forcing (2).

Let 〈fα;α < ω1〉 be a family of eventually different functions.
Let

Eα := {x ∈ ωω;∃∞k ∈ ω(x(k) = fα(k))}.

These sets are nowhere dense in the eventually different
topology.

Theorem (Brendle). If G is meager in the eventually
different topology and 〈fα;α < ω1〉 a family of eventually
different functions then the set {α; Eα ⊆ G} is countable.

Corollary ( Labȩdzki). The additivity of ID is ℵ1.
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A Solovay theorem for E.
Abstract Solovay Theorem (Ikegami 2007). If P is a proper and strongly arboreal forcing notion such

that {c ; c is a Borel code and Bc ∈ I∗P } is Σ1
2 and IP is Borel generated, then the following are

equivalent:

1. every Σ1
2 set is P-measurable, and

2. for every real x , the set {y ; y is not I∗P -quasigeneric over L[x]} belongs to I∗P .

Theorem. The following are equivalent:

1. MeasE(Σ1
2) and

2. for every x , the set of E-generics over L[x ] is comeager
in the eventually different topology.

3. ω1 is inaccessible by reals.

Eα := {x ∈ ωω ; ∃∞k ∈ ω(x(k) = fα(k))}.

Theorem (Brendle). If G is meager in the eventually different topology and 〈fα;α < ω1〉 a family of
eventually different functions then the set {α; Eα ⊆ G} is countable.

Proof. “(ii)⇒(iii)”: Suppose ω
L[x]
1 = ω1. In L[x ], there is a family

〈fα;α < ω1〉 of eventually different functions. All Eα are nowhere
dense and coded in L[x ], so no E-generic over L[x ] can lie in one
of the Eα. So, the complement of the generic reals cannot be
meager by Brendle’s theorem. Contradiction! q.e.d.
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A Judah-Shelah theorem for E.

Abstract Judah-Shelah Theorem (Ikegami 2007). If P is a proper and
strongly arboreal forcing notion such that {c ; c is a Borel code and
Bc ∈ I∗P} is Σ1

2, then the following are equivalent:

1. Σ1
3-P-absoluteness,

2. every ∆1
2 set is P-measurable, and

3. for every real x and every T ∈ P, there is a I∗P -quasigeneric real in
[T ] over L[x ].

Theorem. The following are equivalent:

1. MeasE(∆1
2), and

2. for every x , there is an E-generic over L[x ].
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Locating ∆1
2(E)

I The ω1-iteration of E produces a model of MeasE(∆1
2)

without dominating or random reals, therefore LM(∆1
2)

and MeasL(∆1
2) are false there. In particular,

MeasE(Σ1
2) and MeasE(∆1

2) are not equivalent.

I In the ω1-iteration of Cohen forcing, we do not have an
eventually different real. In particular, MeasE(∆1

2) is
false.

I Every E-generic is also Cohen generic, so MeasE(∆1
2)

implies BP(∆1
2).

I Since the ω1-iteration of random forcing does not add
Cohen reals, MeasE(∆1

2) is false there.
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We still have to give a model of MeasD(∆1
2) ∧ ¬MeasE(∆1

2).

Dichotomy for iterated Hechler forcing. Let
(Pα, Ḋα ; α < γ) be a finite support iteration of Hechler
forcing. Let x be a real in the Pγ-generic extension. Then

1. either x is dominating over V

2. or x is not eventually different over V .

Corollary. In the ω1-finite support iteration of Hechler
forcing, MeasE(∆1

2) fails.
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