

Tamás Mátrai

UNIVERSITY OF TORONTO

Vienna June 23, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 (P, \leq) partial order is *directed* if

$$p, q \in P \implies p \lor q \in P$$
 (least upper bound)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 (P, \leq) partial order is *directed* if

$$p, q \in P \implies p \lor q \in P$$
 (least upper bound)

Examples:

 (P, \leq) partial order is *directed* if

$$p, q \in P \implies p \lor q \in P$$
 (least upper bound)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Examples:

•
$$([\kappa]^{<\lambda}, \subseteq)$$

 (P, \leq) partial order is *directed* if

$$p, q \in P \implies p \lor q \in P$$
 (least upper bound)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples:

- ([κ]^{< λ}, \subseteq)
- ideals in $(\mathcal{P}(\omega), \subseteq)$

 (P, \leq) partial order is *directed* if

$$p, q \in P \implies p \lor q \in P$$
 (least upper bound)

Examples:

- $([\kappa]^{<\lambda}, \subseteq)$
- ideals in $(\mathcal{P}(\omega), \subseteq)$
- ideals on (\mathbb{R}, \subseteq) : Lebesgue null sets, meager sets, etc.

 (P, \leq) partial order is *directed* if

 $p, q \in P \implies p \lor q \in P$ (least upper bound)

Examples:

- $([\kappa]^{<\lambda}, \subseteq)$
- ideals in $(\mathcal{P}(\omega),\subseteq)$
- ideals on (\mathbb{R}, \subseteq) : Lebesgue null sets, meager sets, etc.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• relative ideals: ideals in $\mathcal{K}(2^{\omega})$, etc.

 (P, \leq) partial order is *directed* if

 $p, q \in P \implies p \lor q \in P$ (least upper bound)

Examples:

- $([\kappa]^{<\lambda}, \subseteq)$
- ideals in $(\mathcal{P}(\omega),\subseteq)$
- ideals on (ℝ,⊆): Lebesgue null sets, meager sets, etc.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• relative ideals: ideals in $\mathcal{K}(2^{\omega})$, etc.

 \nearrow Hyperspace: compact subsets of 2^{ω}

Tamás Mátrai

UNIVERSITY OF TORONTO

Vienna June 23, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(P,\leq) , (Q,\leq) directed partial orders

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 (P, \leq) , (Q, \leq) directed partial orders Tukey reducibility: $(P, \leq) \leq_T (Q, \leq)$ if $\exists f: P \rightarrow Q$

 $X \subseteq P$ unbounded $\Longrightarrow f[X] \subseteq Q$ unbounded

 $(P, \leq), (Q, \leq)$ directed partial orders Tukey reducibility: $(P, \leq) \leq_T (Q, \leq)$ if $\exists f : P \to Q$ $X \subseteq P$ unbounded $\Longrightarrow f[X] \subseteq Q$ unbounded $\exists g : Q \to P$ $Y \subseteq Q$ cofinal $\Longrightarrow g[Y] \subseteq P$ cofinal

 $(P, \leq), (Q, \leq) \text{ directed partial orders}$ Tukey reducibility: $(P, \leq) \leq_T (Q, \leq)$ if $\exists f \colon P \to Q$ $X \subseteq P \text{ unbounded } \Longrightarrow f[X] \subseteq Q \text{ unbounded}$ $\exists g \colon Q \to P$ $Y \subseteq Q \text{ cofinal } \Longrightarrow g[Y] \subseteq P \text{ cofinal}$ • $P \leq_T Q \Longrightarrow \text{add}(Q) \leq \text{add}(P)$

 $(P, \leq), (Q, \leq)$ directed partial orders Tukey reducibility: $(P, \leq) \leq_T (Q, \leq)$ if $\exists f : P \to Q$ $X \subseteq P$ unbounded $\Longrightarrow f[X] \subseteq Q$ unbounded $\exists g : Q \to P$ $Y \subseteq Q$ cofinal $\Longrightarrow g[Y] \subseteq P$ cofinal

•
$$P \leq_T Q \Longrightarrow \operatorname{add}(Q) \leq \operatorname{add}(P)$$

•
$$P \leq_T Q \Longrightarrow \operatorname{cof}(P) \leq \operatorname{cof}(Q)$$

 $(P, \leq), (Q, \leq)$ directed partial orders Tukey reducibility: $(P, \leq) \leq_T (Q, \leq)$ if $\exists f : P \to Q$ $X \subseteq P$ unbounded $\Longrightarrow f[X] \subseteq Q$ unbounded $\exists g : Q \to P$ $Y \subseteq Q$ cofinal $\Longrightarrow g[Y] \subseteq P$ cofinal

- $P \leq_T Q \Longrightarrow \operatorname{add}(Q) \leq \operatorname{add}(P)$
- $P \leq_T Q \Longrightarrow \operatorname{cof}(P) \leq \operatorname{cof}(Q)$
- all inequalities in the Cichoń diagram

 $(P, \leq), (Q, \leq)$ directed partial orders Tukey reducibility: $(P, \leq) \leq_T (Q, \leq)$ if $\exists f : P \to Q$ $X \subseteq P$ unbounded $\Longrightarrow f[X] \subseteq Q$ unbounded $\exists g : Q \to P$ $Y \subseteq Q$ cofinal $\Longrightarrow g[Y] \subseteq P$ cofinal

•
$$P \leq_T Q \Longrightarrow \operatorname{add}(Q) \leq \operatorname{add}(P)$$

- $P \leq_T Q \Longrightarrow \operatorname{cof}(P) \leq \operatorname{cof}(Q)$
- all inequalities in the Cichoń diagram

Exercise: (P, \leq) directed partial order, $|P| = \kappa \Rightarrow (P, \leq) \leq_T ([\kappa]^{<\omega}, \subseteq)$

 $(P, \leq), (Q, \leq)$ directed partial orders Tukey reducibility: $(P, \leq) \leq_T (Q, \leq)$ if $\exists f : P \to Q$ $X \subseteq P$ unbounded $\Longrightarrow f[X] \subseteq Q$ unbounded $\exists g : Q \to P$ $Y \subseteq Q$ cofinal $\Longrightarrow g[Y] \subseteq P$ cofinal

•
$$P \leq_T Q \Longrightarrow \operatorname{add}(Q) \leq \operatorname{add}(P)$$

- $P \leq_T Q \Longrightarrow \operatorname{cof}(P) \leq \operatorname{cof}(Q)$
- all inequalities in the Cichoń diagram

Exercise: (P, \leq) directed partial order, $|P| = \kappa \Rightarrow (P, \leq) \leq_T ([\kappa]^{<\omega}, \subseteq)$ $f: P \rightarrow \kappa$ arbitrary injection

 $(P, \leq), (Q, \leq)$ directed partial orders Tukey reducibility: $(P, \leq) \leq_T (Q, \leq)$ if $\exists f : P \to Q$ $X \subseteq P$ unbounded $\Longrightarrow f[X] \subseteq Q$ unbounded $\exists g : Q \to P$ $Y \subseteq Q$ cofinal $\Longrightarrow g[Y] \subseteq P$ cofinal

•
$$P \leq_T Q \Longrightarrow \operatorname{add}(Q) \leq \operatorname{add}(P)$$

- $P \leq_T Q \Longrightarrow \operatorname{cof}(P) \leq \operatorname{cof}(Q)$
- all inequalities in the Cichoń diagram

Exercise: (P, \leq) directed partial order, $|P| = \kappa \Rightarrow (P, \leq) \leq_T ([\kappa]^{<\omega}, \subseteq)$ $f: P \rightarrow \kappa$ arbitrary injection

 $X \subseteq P$ unbounded $\Longrightarrow \omega \leq |X| \Longrightarrow f[X]$ unbounded

 $(P, \leq), (Q, \leq)$ directed partial orders Tukey reducibility: $(P, \leq) \leq_T (Q, \leq)$ if $\exists f : P \to Q$ $X \subseteq P$ unbounded $\Longrightarrow f[X] \subseteq Q$ unbounded $\exists g : Q \to P$ $Y \subseteq Q$ cofinal $\Longrightarrow g[Y] \subseteq P$ cofinal

•
$$P \leq_T Q \Longrightarrow \operatorname{add}(Q) \leq \operatorname{add}(P)$$

- $P \leq_T Q \Longrightarrow \operatorname{cof}(P) \leq \operatorname{cof}(Q)$
- all inequalities in the Cichoń diagram

Exercise: (P, \leq) directed partial order, $|P| = \kappa \Rightarrow (P, \leq) \leq_T ([\kappa]^{<\omega}, \subseteq)$ $f: P \rightarrow \kappa$ arbitrary injection

 $X \subseteq P$ unbounded $\Longrightarrow \omega \leq |X| \Longrightarrow f[X]$ unbounded

 $(P, \leq), (Q, \leq)$ directed partial orders Tukey reducibility: $(P, \leq) \leq_T (Q, \leq)$ if $\exists f : P \to Q$ $X \subseteq P$ unbounded $\Longrightarrow f[X] \subseteq Q$ unbounded $\exists g : Q \to P$ $Y \subseteq Q$ cofinal $\Longrightarrow g[Y] \subseteq P$ cofinal

•
$$P \leq_T Q \Longrightarrow \operatorname{add}(Q) \leq \operatorname{add}(P)$$

- $P \leq_T Q \Longrightarrow \operatorname{cof}(P) \leq \operatorname{cof}(Q)$
- all inequalities in the Cichoń diagram

Exercise: (P, \leq) directed partial order, $|P| = \kappa \Rightarrow (P, \leq) \leq_T ([\kappa]^{<\omega}, \subseteq)$ $f: P \rightarrow \kappa$ arbitrary injection

 $X \subseteq P$ unbounded $\Longrightarrow \omega \leq |X| \Longrightarrow f[X]$ unbounded

Tamás Mátrai

UNIVERSITY OF TORONTO

Vienna June 23, 2009

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

S. TODORČEVIĆ

I.E. COFINAL TYPES OF DIRECTED ORDERS ON ω_1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\mathsf{CH} \Longrightarrow \exists \ 2^{\omega_1} \text{ many different cofinal types of directed orders on } \omega_1$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathsf{CH} \Longrightarrow \exists \ 2^{\omega_1} \text{ many different cofinal types of directed orders on } \omega_1$

 $\begin{array}{l} \operatorname{Con}(\{1,\omega,\omega_1,\omega\times\omega_1,[\omega_1]^{<\omega}\} \text{ are all the cofinal types} \\ & \text{ of directed orders } \leq_{\mathcal{T}} [\omega_1]^{<\omega}) \end{array}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathsf{CH} \Longrightarrow \exists \ 2^{\omega_1} \text{ many different cofinal types of directed orders on } \omega_1$

 $\begin{array}{l} \operatorname{Con}(\{1, \omega, \omega_1, \omega \times \omega_1, [\omega_1]^{<\omega}\} \text{ are all the cofinal types} \\ \text{ of directed orders } \leq_{\mathcal{T}} [\omega_1]^{<\omega}) \end{array}$

Additional structure:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathsf{CH} \Longrightarrow \exists \ 2^{\omega_1} \text{ many different cofinal types of directed orders on } \omega_1$

 $\begin{aligned} & \operatorname{Con}(\{1, \omega, \omega_1, \omega \times \omega_1, [\omega_1]^{<\omega}\} \text{ are all the cofinal types} \\ & \text{ of directed orders } \leq_{\mathcal{T}} [\omega_1]^{<\omega}) \end{aligned}$

Additional structure:

- Ultrafilters (recall the talk of N. Dobrinen)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathsf{CH} \Longrightarrow \exists \ 2^{\omega_1} \text{ many different cofinal types of directed orders on } \omega_1$

 $\begin{array}{l} \operatorname{Con}(\{1,\omega,\omega_1,\omega\times\omega_1,[\omega_1]^{<\omega}\} \text{ are all the cofinal types} \\ & \text{ of directed orders } \leq_{\mathcal{T}} [\omega_1]^{<\omega}) \end{array}$

Additional structure:

--- Ultrafilters (recall the talk of N. Dobrinen) --- For us: analytic ideals in $(\mathcal{P}(\omega), \subseteq)$

 $\mathsf{CH} \Longrightarrow \exists \ 2^{\omega_1} \text{ many different cofinal types of directed orders on } \omega_1$

 $\begin{array}{l} \operatorname{Con}(\{1,\omega,\omega_1,\omega\times\omega_1,[\omega_1]^{<\omega}\} \text{ are all the cofinal types} \\ & \text{ of directed orders } \leq_{\mathcal{T}} [\omega_1]^{<\omega}) \end{array}$

Additional structure:

→ Ultrafilters (recall the talk of N. Dobrinen) → For us: analytic ideals in $(\mathcal{P}(\omega), \subseteq)$

i.e. $\mathcal{I} \subseteq \mathcal{P}(\omega)$ analytic, ideal

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Tukey reducibility: $(P, \leq) \leq_{\mathcal{T}} (Q, \leq)$ if $\exists f \colon P \to Q$

 $X \subseteq P$ unbounded $\Longrightarrow f[X] \subseteq Q$ unbounded

Tukey reducibility: $(P, \leq) \leq_T (Q, \leq)$ if $\exists f \colon P \to Q$

 $X \subseteq P \text{ unbounded } \Longrightarrow f[X] \subseteq Q \text{ unbounded}$

1. $\mathcal{I}, \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideals,

 $\mathcal{I} \leq_{\mathcal{T}} \mathcal{J} \xrightarrow{\mathbf{2}} \exists f : \mathcal{I} \to \mathcal{J} \text{ definable Tukey reduction}$

Tukey reducibility: $(P, \leq) \leq_T (Q, \leq)$ if $\exists f \colon P \to Q$

 $X \subseteq P$ unbounded $\implies f[X] \subseteq Q$ unbounded

1. $\mathcal{I}, \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideals, Borel/Souslin/Baire measurable, etc. $\mathcal{I} \leq_{\mathcal{T}} \mathcal{J} \xrightarrow{\mathbf{2}} \exists f : \mathcal{I} \to \mathcal{J}$ definable Tukey reduction

Tukey reducibility: $(P, \leq) \leq_T (Q, \leq)$ if $\exists f \colon P \to Q$

 $X \subseteq P$ unbounded $\implies f[X] \subseteq Q$ unbounded

I, J ⊆ P(ω) analytic ideals, Borel/Souslin/Baire measurable, etc.
 I ≤_T J ⇒ ∃f: I → J definable Tukey reduction
 I, J, K ⊆ P(ω) analytic ideals
 I ≤_T J ⊕ K ♀ I ≤_T J or I ≤_T K

Tukey reducibility: $(P, \leq) \leq_T (Q, \leq)$ if $\exists f \colon P \to Q$

 $X \subseteq P$ unbounded $\implies f[X] \subseteq Q$ unbounded

I, J ⊆ P(ω) analytic ideals, Borel/Souslin/Baire measurable, etc.
 I ≤_T J ⇒ ∃f: I → J definable Tukey reduction
 I, J, K ⊆ P(ω) analytic ideals
 I ≤_T J ⊕ K ♀ I ≤_T J or I ≤_T K
 J ⊕ K = {(J, K): J ∈ J, K ∈ K}, ⊂ coordinatewise

BASE PROBLEMS

Tukey reducibility: $(P, \leq) \leq_T (Q, \leq)$ if $\exists f \colon P \to Q$

 $X \subseteq P$ unbounded $\Longrightarrow f[X] \subseteq Q$ unbounded

I, J ⊆ P(ω) analytic ideals, Borel/Souslin/Baire measurable, etc.
 I ≤_T J ⇒ ∃f: I → J definable Tukey reduction
 I, J, K ⊆ P(ω) analytic ideals
 I ≤_T J ⊕ K ♀ I ≤_T J or I ≤_T K
 J ⊕ K = {(J, K): J ∈ J, K ∈ K}, ⊂ coordinatewise

1. Definability problem

2. Primality problem

I.E. THEORY OF DIRECTED **BASIC** ORDERS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

I.E. THEORY OF DIRECTED BASIC ORDERS

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 (P, \leq) is basic if ...

I.E. THEORY OF DIRECTED BASIC ORDERS

 (P, \leq) is basic if ...

"separable metric+every convergent sequence has a bounded subsequence"

I.E. THEORY OF DIRECTED **BASIC** ORDERS

 (P, \leq) is basic if ...

"separable metric+every convergent sequence has a bounded subsequence"

... e.g. analytic P -ideals in $\mathcal{P}(\omega)$, (relative) σ -ideals of compact sets

I.E. THEORY OF DIRECTED BASIC ORDERS

 (P, \leq) is basic if . . .

"separable metric+every convergent sequence has a bounded subsequence"

...e.g. analytic P-ideals in $\mathcal{P}(\omega)$, (relative) σ -ideals of compact sets

Theorem. $(P, \leq), (Q, \leq)$ basic,

 $P \leq_T Q \Longrightarrow \exists f : P \to Q$ Souslin measurable Tukey reduction

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ [\mathfrak{l}]^{< ω} maximal cofinal type of analytic ideals

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathfrak{l}]^{<\omega}$ maximal cofinal type of analytic ideals $[\mathfrak{l}]^{<\omega} \rightsquigarrow [2^{\omega}]^{<\omega} \subseteq \mathcal{K}(2^{\omega})$ is F_{σ}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathfrak{l}]^{<\omega}$ maximal cofinal type of analytic ideals $[\mathfrak{l}]^{<\omega} \rightsquigarrow [2^{\omega}]^{<\omega} \subseteq \mathcal{K}(2^{\omega})$ is F_{σ}

$$\Omega = 2^{<\omega}$$

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathfrak{c}]^{<\omega}$ maximal cofinal type of analytic ideals $[\mathfrak{c}]^{<\omega} \rightarrow [2^{\omega}]^{<\omega} \subseteq \mathcal{K}(2^{\omega})$ is F_{σ}

$$\Omega = 2^{<\omega}$$

$$A \subseteq 2^{\omega}$$
 closed

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathfrak{c}]^{<\omega}$ maximal cofinal type of analytic ideals $[\mathfrak{c}]^{<\omega} \rightarrow [2^{\omega}]^{<\omega} \subseteq \mathcal{K}(2^{\omega})$ is F_{σ}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathfrak{c}]^{<\omega}$ maximal cofinal type of analytic ideals $[\mathfrak{c}]^{<\omega} \rightarrow [2^{\omega}]^{<\omega} \subseteq \mathcal{K}(2^{\omega})$ is F_{σ}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathfrak{c}]^{<\omega}$ maximal cofinal type of analytic ideals $[\mathfrak{c}]^{<\omega} \rightarrow [2^{\omega}]^{<\omega} \subseteq \mathcal{K}(2^{\omega})$ is $F_{\sigma} \rightarrow \mathcal{I}_{\max} \subseteq \mathcal{P}(\Omega)$ is F_{σ}

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathbf{t}]^{<\omega}$ maximal cofinal type of analytic ideals $[\mathfrak{c}]^{<\omega} \rightsquigarrow [2^{\omega}]^{<\omega} \subseteq \mathcal{K}(2^{\omega}) \text{ is } F_{\sigma} \rightsquigarrow \mathcal{I}_{\max} \subseteq \mathcal{P}(\Omega) \text{ is } F_{\sigma}$ 2^{Ω} $\Omega = 2^{<\omega}$ $A \subseteq 2^{\omega}$ closed £ $A = [A], A \subseteq 2^{<\omega}$ pruned tree £ 2^{ω} $\mathcal{A} \in \mathcal{P}(\Omega)$

 \mathcal{I}_{max} is NOT basic (Solecki-Todorčević theory does not apply)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathbf{t}]^{<\omega}$ maximal cofinal type of analytic ideals $[\mathfrak{c}]^{<\omega} \rightsquigarrow [2^{\omega}]^{<\omega} \subseteq \mathcal{K}(2^{\omega}) \text{ is } F_{\sigma} \rightsquigarrow \mathcal{I}_{\max} \subseteq \mathcal{P}(\Omega) \text{ is } F_{\sigma}$ 2^{Ω} $\Omega = 2^{<\omega}$ $A \subseteq 2^{\omega}$ closed £ $A = [A], A \subseteq 2^{<\omega}$ pruned tree £ 2^{ω} $\mathcal{A} \in \mathcal{P}(\Omega)$

 \mathcal{I}_{max} is NOT basic (Solecki-Todorčević theory does not apply)

"separable metric+every convergent sequence has a bounded subsequence"

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathbf{t}]^{<\omega}$ maximal cofinal type of analytic ideals $[\mathfrak{c}]^{<\omega} \rightsquigarrow [2^{\omega}]^{<\omega} \subseteq \mathcal{K}(2^{\omega}) \text{ is } F_{\sigma} \rightsquigarrow \mathcal{I}_{\max} \subseteq \mathcal{P}(\Omega) \text{ is } F_{\sigma}$ 2^{Ω} $\Omega = 2^{<\omega}$ $A \subseteq 2^{\omega}$ closed £ $A = [A], A \subseteq 2^{<\omega}$ pruned tree £ 2^{ω} $\mathcal{A} \in \mathcal{P}(\Omega)$

 \mathcal{I}_{max} is NOT basic (Solecki-Todorčević theory does not apply)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 \mathcal{I}_{\max} is NOT basic (Solecki-Todorčević theory does not apply) Particular problems: $\mathcal{J}, \mathcal{K} \subseteq \mathcal{P}(\omega)$ analytic ideals

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathbf{t}]^{<\omega}$ maximal cofinal type of analytic ideals $[\mathfrak{l}]^{<\omega} \rightarrow [2^{\omega}]^{<\omega} \subseteq \mathcal{K}(2^{\omega})$ is $F_{\sigma} \rightarrow \mathcal{I}_{\max} \subseteq \mathcal{P}(\Omega)$ is F_{σ} 2^{Ω} $\Omega = 2^{<\omega}$ $A \subseteq 2^{\omega}$ closed $A = [A], A \subseteq 2^{<\omega}$ pruned tree £ 200 $\mathcal{A} \in \mathcal{P}(\Omega)$

 $\mathcal{I}_{\max} \text{ is NOT basic (Solecki-Todorčević theory does not apply)}$ Particular problems: $\mathcal{J}, \mathcal{K} \subseteq \mathcal{P}(\omega)$ analytic ideals
1. $\mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J} \xrightarrow{2} \exists f : \mathcal{I}_{\max} \to \mathcal{J}$ definable Tukey reduction

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathbf{t}]^{<\omega}$ maximal cofinal type of analytic ideals $[\mathfrak{l}]^{<\omega} \rightarrow [2^{\omega}]^{<\omega} \subseteq \mathcal{K}(2^{\omega})$ is $F_{\sigma} \rightarrow \mathcal{I}_{\max} \subseteq \mathcal{P}(\Omega)$ is F_{σ} 2^{Ω} $\Omega = 2^{<\omega}$ $A \subseteq 2^{\omega}$ closed $A = [\mathcal{A}], \mathcal{A} \subseteq 2^{<\omega}$ pruned tree 200 $\mathcal{A} \in \mathcal{P}(\Omega)$

 $\mathcal{I}_{\max} \text{ is NOT basic (Solecki-Todorčević theory does not apply)}$ Particular problems: $\mathcal{J}, \mathcal{K} \subseteq \mathcal{P}(\omega)$ analytic ideals $1. \ \mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J} \xrightarrow{\mathbf{2}} \exists f : \mathcal{I}_{\max} \to \mathcal{J} \text{ definable Tukey reduction}$

2. $\mathcal{I}_{\max} \leq_T \mathcal{J} \oplus \mathcal{K} \xrightarrow{?} \mathcal{I}_{\max} \leq_T \mathcal{J} \text{ or } \mathcal{I}_{\max} \leq_T \mathcal{K}$

S. TODORČEVIĆ

I.E. PRIMALITY OF \mathcal{I}_{MAX} for Souslin measurable reductions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

S. TODORČEVIĆ

I.E. PRIMALITY OF \mathcal{I}_{MAX} FOR SOUSLIN MEASURABLE REDUCTIONS

 $\mathcal{J},\mathcal{K}\subseteq\mathcal{P}(\omega)$ analytic ideals,

S. TODORČEVIĆ

I.E. PRIMALITY OF \mathcal{I}_{MAX} FOR SOUSLIN MEASURABLE REDUCTIONS

 $\mathcal{J},\mathcal{K}\subseteq\mathcal{P}(\omega)$ analytic ideals,

 $\mathcal{I}_{\max} \leq_{\mathsf{ST}} \mathcal{J} \oplus \mathcal{K}$ \Downarrow $\mathcal{I}_{\max} \leq_{\mathsf{T}} \mathcal{J} \text{ or } \mathcal{I}_{\max} \leq_{\mathsf{T}} \mathcal{K}$

S. Todorčević

I.E. PRIMALITY OF \mathcal{I}_{MAX} FOR SOUSLIN MEASURABLE REDUCTIONS

 $\mathcal{J}, \mathcal{K} \subseteq \mathcal{P}(\omega)$ analytic ideals,

Tukey reducibility witnessed by Souslin measurable function

 $\mathcal{I}_{\max} \leq_{\textbf{ST}} \mathcal{J} \oplus \mathcal{K}$

 \downarrow $\mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J} \text{ or } \mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{K}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

 $\langle \bigcup_{\alpha \in \omega_1 \cup \{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}} < \omega}([\mathrm{TP}(\mathbf{x}) = \alpha]) \rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM

$$\langle \bigcup_{\alpha \in \omega_1 \cup \{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}} < \omega}([\mathrm{TP}(\mathbf{x}) = \alpha]) \rangle$$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J}\subseteq\mathcal{P}(\omega)$ analytic ideal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

 $\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in [\mathcal{H}]^{\omega}$ we have $\bigcup H \notin \mathcal{J}$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal $\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in [\mathcal{H}]^{\omega}$ we have $\bigcup H \notin \mathcal{J}$

 $[\kappa]^{<\omega} \leq_T \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbounded: } |\mathcal{H}| = \kappa$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal $\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in [\mathcal{H}]^{\omega}$ we have $\bigcup H \notin \mathcal{J}$ $[\kappa]^{<\omega} \leq_{\mathcal{T}} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $|\mathcal{H}| = \kappa$ $\Leftarrow : f : [\kappa]^{<\omega} \to \mathcal{H}$ injective

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal $\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in [\mathcal{H}]^{\omega}$ we have $\bigcup H \notin \mathcal{J}$ $[\kappa]^{<\omega} \leq_T \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $|\mathcal{H}| = \kappa$ $\Leftarrow : f : [\kappa]^{<\omega} \to \mathcal{H}$ injective $\Rightarrow :$ if $f : [\kappa]^{<\omega} \to \mathcal{J}$ is Tukey, $\mathcal{H} = f[[\kappa]^{<\omega}]$,

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM
\$\mathcal{J} ⊆ \$\mathcal{P}(\omega)\$ analytic ideal
\$\mathcal{H} ⊆ \$\mathcal{J}\$ strongly unbounded: \$\forall H ∈ [\$\mathcal{H}]\$^{\omega} we have \$\boxdot H \nother \$\mathcal{J}\$ and \$\mathcal{L}\$ \$\mathcal{L}\$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM J ⊆ P(ω) analytic ideal
H ⊆ J strongly unbounded: ∀H ∈ [H]^ω we have ∪ H ∉ J [κ]^{<ω} ≤_T J ⇔ ∃H ⊆ J strongly unbounded: |H| = κ
⇐: f: [κ]^{<ω} → H injective
⇒: if f: [κ]^{<ω} → J is Tukey, H = f[[κ]^{<ω}],
|H| = κ (f is Tukey hence finite-to-one),

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $\mathcal{H} \subseteq \mathcal{J}$ is strongly unbounded (*f* is Tukey).

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM
J ⊆ P(ω) analytic ideal
H ⊆ J strongly unbounded: ∀H ∈ [H]^ω we have ∪ H ∉ J
[κ]^{<ω} ≤_T J ⇔ ∃H ⊆ J strongly unbounded: |H| = κ
⇐: f: [κ]^{<ω} → H injective
⇒: if f: [κ]^{<ω} → J is Tukey, H = f[[κ]^{<ω}],
|H| = κ (f is Tukey hence finite-to-one),
H ⊆ J is strongly unbounded (f is Tukey).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem. $\exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM
J ⊆ P(ω) analytic ideal
H ⊆ J strongly unbounded: ∀H ∈ [H]^ω we have ∪ H ∉ J
[κ]^{<ω} ≤_T J ⇔ ∃H ⊆ J strongly unbounded: |H| = κ
⇐: f: [κ]^{<ω} → H injective
⇒: if f: [κ]^{<ω} → J is Tukey, H = f[[κ]^{<ω}],
|H| = κ (f is Tukey hence finite-to-one),

• $\mathcal{H} \subseteq \mathcal{J}$ is strongly unbounded (*f* is Tukey).

Theorem. $\exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:

 $\leftarrow [\omega_1]^{<\omega} \leq_T \mathcal{J}$, i.e. \mathcal{J} has an uncountable strongly unbounded subset;

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal $\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in [\mathcal{H}]^{\omega}$ we have $\bigcup H \notin \mathcal{J}$ $[\kappa]^{<\omega} \leq_T \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbounded: } |\mathcal{H}| = \kappa$ $\Leftarrow: f: [\kappa]^{<\omega} \to \mathcal{H}$ injective \Rightarrow : if $f: [\kappa]^{<\omega} \to \mathcal{J}$ is Tukey, $\mathcal{H} = f[[\kappa]^{<\omega}]$, • $|\mathcal{H}| = \kappa$ (*f* is Tukey hence finite-to-one), • $\mathcal{H} \subseteq \mathcal{J}$ is strongly unbounded (*f* is Tukey). Theorem. $\exists \mathcal{J} \subset \mathcal{P}(\omega)$ analytic ideal: $\leftarrow [\omega_1]^{<\omega} <_T \mathcal{J}$, i.e. \mathcal{J} has an uncountable strongly unbounded subset;

 $\leftarrow [\omega_1]^{<\omega} \leq_T \mathcal{J}, \text{ i.e. } \mathcal{J} \text{ has an uncountable strongly unbounded subset;}$ $\leftarrow [\omega_2]^{<\omega} \leq_T \mathcal{J};$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM
\$\mathcal{J} \le \mathcal{P}(\omega)\$ analytic ideal
\$\mathcal{H} \le \mathcal{J}\$ strongly unbounded: \$\forall H \in [\mathcal{H}]^\omega\$ we have \$\boxed H \nothing \mathcal{J}\$ \$\boxed\$ \$\vee \mathcal{J}\$ \$\vee \mathcal{J}\$ \$\vee \mathcal{J}\$ \$\vee \mathcal{J}\$ \$\vee \mathcal{L}\$ \$\vee

Theorem. $\exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:

 $\leftarrow [\omega_1]^{<\omega} \leq_T \mathcal{J}, \text{ i.e. } \mathcal{J} \text{ has an uncountable strongly unbounded subset;}$ $\leftarrow [\omega_2]^{<\omega} \not\leq_T \mathcal{J};$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\twoheadleftarrow \mathcal{J}$ has no non-empty perfect strongly unbounded subset.

$\langle \bigcup_{\alpha \in \omega_1 \cup \{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}} < \omega}([\mathrm{TP}(\mathbf{x}) = \alpha]) \rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal $\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in [\mathcal{H}]^{\omega}$ we have $\bigcup H \notin \mathcal{J}$

 $[\kappa]^{<\omega} \leq_{\mathcal{T}} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbounded: } |\mathcal{H}| = \kappa$

 $\begin{array}{l} \Leftarrow: f: [\kappa]^{<\omega} \to \mathcal{H} \text{ injective} \\ \Rightarrow: \text{ if } f: [\kappa]^{<\omega} \to \mathcal{J} \text{ is Tukey, } \mathcal{H} = f[[\kappa]^{<\omega}], \\ \bullet \quad |\mathcal{H}| = \kappa \text{ (} f \text{ is Tukey hence finite-to-one),} \\ \bullet \quad \mathcal{H} \subseteq \mathcal{J} \text{ is strongly unbounded (} f \text{ is Tukey).} \end{array}$

Theorem. $\exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal: $\leftarrow [\omega_1]^{<\omega} \leq_T \mathcal{J}$, i.e. \mathcal{J} has an uncountable strongly unbounded subset; $\leftarrow [\omega_2]^{<\omega} \not\leq_T \mathcal{J}$;

 $\leftarrow \mathcal{J}$ has no non-empty perfect strongly unbounded subset.

Corollary. CH $\Longrightarrow \exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:

$\langle \bigcup_{\alpha \in \omega_1 \cup \{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}} < \omega}([\mathrm{TP}(\mathbf{x}) = \alpha]) \rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal $\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in [\mathcal{H}]^{\omega}$ we have $\bigcup H \notin \mathcal{J}$

 $[\kappa]^{<\omega} \leq_{\mathcal{T}} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbounded: } |\mathcal{H}| = \kappa$

 $\begin{array}{l} \Leftarrow: f: [\kappa]^{<\omega} \to \mathcal{H} \text{ injective} \\ \Rightarrow: \text{ if } f: [\kappa]^{<\omega} \to \mathcal{J} \text{ is Tukey, } \mathcal{H} = f[[\kappa]^{<\omega}], \\ \bullet \quad |\mathcal{H}| = \kappa \text{ (} f \text{ is Tukey hence finite-to-one),} \\ \bullet \quad \mathcal{H} \subseteq \mathcal{J} \text{ is strongly unbounded (} f \text{ is Tukey).} \end{array}$

Theorem. $\exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal: $\leftarrow [\omega_1]^{<\omega} \leq_T \mathcal{J}$, i.e. \mathcal{J} has an uncountable strongly unbounded subset; $\leftarrow [\omega_2]^{<\omega} \not\leq_T \mathcal{J}$;

 $\twoheadleftarrow \mathcal{J}$ has no non-empty perfect strongly unbounded subset.

Corollary. CH $\Longrightarrow \exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:

$$+ [\omega_1]^{<\omega} = [\mathfrak{l}]^{<\omega} = \mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J};$$

$\langle \bigcup_{\alpha \in \omega_1 \cup \{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}} < \omega}([\mathrm{TP}(\mathbf{x}) = \alpha]) \rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal $\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in [\mathcal{H}]^{\omega}$ we have $\bigcup H \notin \mathcal{J}$ $[\kappa]^{<\omega} \leq_T \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $|\mathcal{H}| = \kappa$

 $\begin{array}{l} \Leftarrow: f: [\kappa]^{<\omega} \to \mathcal{H} \text{ injective} \\ \Rightarrow: \text{ if } f: [\kappa]^{<\omega} \to \mathcal{J} \text{ is Tukey, } \mathcal{H} = f[[\kappa]^{<\omega}], \\ \bullet |\mathcal{H}| = \kappa \text{ (} f \text{ is Tukey hence finite-to-one),} \\ \bullet \mathcal{H} \subseteq \mathcal{J} \text{ is strongly unbounded (} f \text{ is Tukey).} \end{array}$

Theorem. $\exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal: $\leftarrow [\omega_1]^{<\omega} \leq_T \mathcal{J}$, i.e. \mathcal{J} has an uncountable strongly unbounded subset; $\leftarrow [\omega_2]^{<\omega} \not\leq_T \mathcal{J}$;

 $\leftarrow \mathcal{J}$ has no non-empty perfect strongly unbounded subset.

Corollary. CH $\Longrightarrow \exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:

$$\leftarrow [\omega_1]^{<\omega} = [\mathfrak{l}]^{<\omega} = \mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J};$$

 $\leftarrow f: \mathcal{I}_{\max} \to \mathcal{J} \text{ Tukey} \Rightarrow f[\mathcal{I}_{\max}] \text{ has no non-empty perfect subset.}$

INFINITE DIMENSIONAL PERFECT SET THMS

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

INFINITE DIMENSIONAL PERFECT SET THMS

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $[\boldsymbol{\mathfrak{l}}]^{<\omega} = \mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbounded: } |\mathcal{H}| = \boldsymbol{\mathfrak{l}}$

$$\begin{split} [\mathbf{\mathfrak{l}}]^{<\omega} &= \mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbounded: } |\mathcal{H}| = \mathbf{\mathfrak{l}} \\ \mathbb{J} &= \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1) \end{split}$$

(日) (同) (三) (三) (三) (○) (○)

$$\begin{bmatrix} \mathbf{\mathfrak{l}} \end{bmatrix}^{<\omega} = \mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbounded: } |\mathcal{H}| = \mathbf{\mathfrak{l}}$$
$$\mathbb{J} = \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $IS_{\omega}(\mathcal{H})$: injective $\omega \to \mathcal{H}$ functions

$$[\mathbf{\mathfrak{l}}]^{<\omega} = \mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbounded: } |\mathcal{H}| = \mathbf{\mathfrak{l}}$$
$$\mathbb{J} = \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1)$$

 $IS_{\omega}(\mathcal{H})$: injective $\omega \to \mathcal{H}$ functions

 $\mathcal{H} \subseteq \mathcal{J}$ strongly unbdd $\Leftrightarrow \mathit{IS}_{\omega}(\mathcal{H}) \subseteq \mathbb{J}$

$$\begin{split} [\mathfrak{l}]^{<\omega} &= \mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbounded: } |\mathcal{H}| = \mathfrak{l} \\ \mathbb{J} &= \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1) \\ IS_{\omega}(\mathcal{H}) \colon \text{ injective } \omega \to \mathcal{H} \text{ functions} \end{split}$$

 $\mathcal{H} \subseteq \mathcal{J}$ strongly unbdd $\Leftrightarrow IS_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Leftrightarrow \mathcal{H}$ is \mathbb{J} -homogeneous

INFINITE DIMENSIONAL PERFECT SET THMSI.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$\begin{split} [\mathfrak{l}]^{<\omega} &= \mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbounded: } |\mathcal{H}| = \mathfrak{l} \\ \mathbb{J} &= \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1) \\ IS_{\omega}(\mathcal{H}) \colon \text{ injective } \omega \to \mathcal{H} \text{ functions} \end{split}$$

 $\mathcal{H} \subseteq \mathcal{J}$ strongly unbdd $\Leftrightarrow IS_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Leftrightarrow \mathcal{H}$ is \mathbb{J} -homogeneous

Theorem. Under suitable assumptions,

$$\begin{split} [\mathfrak{l}]^{<\omega} &= \mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbounded: } |\mathcal{H}| = \mathfrak{l} \\ \mathbb{J} &= \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1) \\ IS_{\omega}(\mathcal{H}) \colon \text{ injective } \omega \to \mathcal{H} \text{ functions} \end{split}$$

 $\mathcal{H} \subseteq \mathcal{J}$ strongly unbdd $\Leftrightarrow IS_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Leftrightarrow \mathcal{H}$ is \mathbb{J} -homogeneous

Theorem. Under suitable assumptions, $\dashv \exists \mathcal{H} \subseteq \mathcal{J} : |\mathcal{H}| = \mathfrak{l}, IS_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J} \text{ perfect} : IS_{\omega}(P) \subseteq \mathbb{J}$

$$[\mathfrak{t}]^{<\omega} = \mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbounded: } |\mathcal{H}| = \mathfrak{t}$$
$$\mathbb{J} = \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1)$$

 $IS_{\omega}(\mathcal{H})$: injective $\omega \to \mathcal{H}$ functions

 $\mathcal{H} \subseteq \mathcal{J}$ strongly unbdd $\Leftrightarrow IS_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Leftrightarrow \mathcal{H}$ is \mathbb{J} -homogeneous

Theorem. Under suitable assumptions, $\Rightarrow \exists \mathcal{H} \subseteq \mathcal{J} : |\mathcal{H}| = \mathfrak{l}, IS_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J} \text{ perfect} : IS_{\omega}(P) \subseteq \mathbb{J}$ $\Rightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbdd}, |\mathcal{H}| = \mathfrak{l}$ $\Rightarrow \exists P \subseteq \mathcal{J} \text{ perfect strongly unbdd}$

INFINITE DIMENSIONAL PERFECT SET THMSI.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal $\mathcal{I} \subset \mathcal{P}(\omega)$ analytic ideal

$$\begin{split} [\mathfrak{l}]^{<\omega} &= \mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbounded: } |\mathcal{H}| = \mathfrak{l} \\ \mathbb{J} &= \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1) \\ IS_{\omega}(\mathcal{H}) \colon \text{ injective } \omega \to \mathcal{H} \text{ functions} \end{split}$$

 $\mathcal{H} \subseteq \mathcal{J}$ strongly unbdd $\Leftrightarrow IS_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Leftrightarrow \mathcal{H}$ is \mathbb{J} -homogeneous

Theorem. Under suitable assumptions, $\Rightarrow \exists \mathcal{H} \subseteq \mathcal{J} : |\mathcal{H}| = \mathfrak{l}, IS_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J} \text{ perfect} : IS_{\omega}(P) \subseteq \mathbb{J}$ $\Rightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbdd}, |\mathcal{H}| = \mathfrak{l}$ $\Rightarrow \exists P \subseteq \mathcal{J} \text{ perfect strongly unbdd}$ $\Rightarrow \exists P \subseteq \mathcal{J} \text{ perfect strongly unbdd}$

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$

- $I: U(0) U(1) \dots U(n-1) \dots$
- *II*: V(0) V(1) ... V(n-1) ...

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$

- $I: U(0) U(1) \dots U(n-1) \dots$
- *II*: V(0) V(1) ... V(n-1) ...

• $U(n), V(n) \subseteq X$ $(n < \omega)$ non-empty open sets

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$

- $I: U(0) U(1) \dots U(n-1) \dots$
- *II*: V(0) V(1) ... V(n-1) ...

- $U(n), V(n) \subseteq X (n < \omega)$ non-empty open sets
- diam (U(n)), diam $(V(n)) < 2^{-n} (n < \omega)$

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$

 $I: U(0) U(1) \dots U(n-1) \dots$

II: V(0) V(1) ... V(n-1) ...

• $U(n), V(n) \subseteq X$ $(n < \omega)$ non-empty open sets

- diam (U(n)), diam $(V(n)) < 2^{-n} (n < \omega)$
- $U(n+1) \subseteq V(n) \subseteq U(n) \ (n < \omega)$

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$

 $I: U(0) U(1) \dots U(n-1) \dots$

II: V(0) V(1) ... V(n-1) ...

• $U(n), V(n) \subseteq X$ $(n < \omega)$ non-empty open sets

- diam (U(n)), diam $(V(n)) < 2^{-n} (n < \omega)$
- $U(n+1) \subseteq V(n) \subseteq U(n) \ (n < \omega)$

II wins $\Leftrightarrow x = \bigcap_{n < \omega} U(n) = \bigcap_{n < \omega} V(n) \in A$.

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$

 $I: U(0) U(1) \dots U(n-1) \dots$

II: V(0) V(1) ... V(n-1) ...

• $U(n), V(n) \subseteq X$ $(n < \omega)$ non-empty open sets

- diam (U(n)), diam $(V(n)) < 2^{-n} (n < \omega)$
- $U(n+1) \subseteq V(n) \subseteq U(n) \ (n < \omega)$

II wins $\Leftrightarrow x = \bigcap_{n < \omega} U(n) = \bigcap_{n < \omega} V(n) \in A$. Theorem.

+ *I* has a winning strategy $\Leftrightarrow \exists U$ non-empty open: $A \cap U$ is meager

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$

 $I: U(0) U(1) \dots U(n-1) \dots$

II: V(0) V(1) ... V(n-1) ...

• $U(n), V(n) \subseteq X (n < \omega)$ non-empty open sets

- diam (U(n)), diam $(V(n)) < 2^{-n} (n < \omega)$
- $U(n+1) \subseteq V(n) \subseteq U(n) \ (n < \omega)$

II wins $\Leftrightarrow x = \bigcap_{n < \omega} U(n) = \bigcap_{n < \omega} V(n) \in A$. Theorem.

+ *I* has a winning strategy $\Leftrightarrow \exists U$ non-empty open: $A \cap U$ is meager

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω} , payoff set: $A \subseteq X^{\omega}$

Theorem.

+ *I* has a winning strategy $\Leftrightarrow \exists U$ non-empty open: $A \cap U$ is meager

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω} , payoff set: $A \subseteq X^{\omega}$

Theorem.

+ *I* has a winning strategy $\Leftrightarrow \exists U$ non-empty open: $A \cap U$ is meager

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω} , payoff set: $A \subseteq X^{\omega}$

Theorem.

+ *I* has a winning strategy $\Leftrightarrow \exists U$ non-empty open: $A \cap U$ is meager

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω} , payoff set: $A \subseteq X^{\omega}$

Theorem.

+ *I* has a winning strategy $\Leftrightarrow \exists U$ non-empty open: $A \cap U$ is meager

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω} , payoff set: $A \subseteq X^{\omega}$

open set ~> open "tower" (not even box open)

Theorem.

+ *I* has a winning strategy $\Leftrightarrow \exists U$ non-empty open: $A \cap U$ is meager

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω} , payoff set: $A \subseteq X^{\omega}$

open set ~> open "tower" (not even box open)

Theorem.

+ / has a winning strategy $\Leftrightarrow \exists \mathcal{U}$ non-empty open tower: $A \cap [\mathcal{U}] \in \mathcal{Z}$

 \dashv *II* has a winning strategy $\Leftrightarrow X^{\omega} \setminus A \in \mathcal{Z}$

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω} , payoff set: $A \subseteq X^{\omega}$

open set ~> open "tower" (not even box open)

Theorem.

 $\dashv II \text{ has a winning strategy} \Leftrightarrow X^{\omega} \setminus A \in \mathcal{Z}$

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω} , payoff set: $A \subseteq X^{\omega}$

open set \rightsquigarrow open "tower" (not even box open)

Theorem.

 $\begin{array}{l} \leftarrow I \text{ has a winning strategy} \Leftrightarrow \exists \mathcal{U} \text{ non-empty open tower: } A \cap [\mathcal{U}] \in \mathcal{Z} \\ & \sim R \subseteq X \text{ everywhere non-meager} \Rightarrow IS_{\omega}(R) \not\subseteq A \\ \leftarrow II \text{ has a winning strategy} \Leftrightarrow X^{\omega} \setminus A \in \mathcal{Z} \\ & \sim \exists P \subseteq X \text{ perfect: } IS_{\omega}(P) \subseteq A \\ \end{array}$

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM

 $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J}\subseteq\mathcal{P}(\omega)$ analytic ideal

$$\mathbb{J} = \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J}\subseteq\mathcal{P}(\omega)$ analytic ideal

$$\mathbb{J} = \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1)$$

Theorem. Under suitable assumptions, $:= \exists \mathcal{H} \subseteq \mathcal{J} : |\mathcal{H}| = \mathfrak{l}, IS_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J} \text{ perfect} : IS_{\omega}(P) \subseteq \mathbb{J}$ $:= \exists \mathcal{H} \subseteq \mathcal{J} \text{ strongly unbdd}, |\mathcal{H}| = \mathfrak{l}$ $\Rightarrow \exists P \subseteq \mathcal{J} \text{ perfect strongly unbd}$ $:= \mathcal{I}_{\max} \leq_{T} \mathcal{J} \Rightarrow \exists f : \mathcal{I}_{\max} \to \mathcal{J} \text{ continuous Tukey map}$

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J}\subseteq\mathcal{P}(\omega)$ analytic ideal

$$\mathbb{J} = \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1)$$

Theorem. Under suitable assumptions,

 $\vdash \exists \mathcal{H} \subseteq \mathcal{J} \colon |\mathcal{H}| = \mathfrak{l}, IS_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J} \text{ perfect} \colon IS_{\omega}(P) \subseteq \mathbb{J}$

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J}\subseteq\mathcal{P}(\omega)$ analytic ideal

$$\mathbb{J} = \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1)$$

Theorem. Under suitable assumptions, $\Rightarrow \exists \mathcal{H} \subseteq \mathcal{J} : |\mathcal{H}| = \mathfrak{l}, IS_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J} \text{ perfect} : IS_{\omega}(P) \subseteq \mathbb{J}$ Assumptions:

1. $\mathcal{H} \subseteq \mathcal{P}(\omega), |\mathcal{H}| = \mathfrak{l} \Rightarrow \mathcal{H}$ is **not** perfectly meager

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J}\subseteq\mathcal{P}(\omega)$ analytic ideal

$$\mathbb{J} = \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1)$$

Theorem. Under suitable assumptions,

$$\dashv \exists \mathcal{H} \subseteq \mathcal{J} \colon |\mathcal{H}| = \mathfrak{l}, IS_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J} \text{ perfect} \colon IS_{\omega}(P) \subseteq \mathbb{J}$$

Assumptions:

1. $\mathcal{H} \subseteq \mathcal{P}(\omega), |\mathcal{H}| = \mathfrak{l} \Rightarrow \mathcal{H}$ is not perfectly meager 2. $\sigma(\Sigma_1^1)$ games are determined (now superfluous)

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J}\subseteq\mathcal{P}(\omega)$ analytic ideal

$$\mathbb{J} = \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1)$$

Theorem. Under suitable assumptions,

$$\dashv \exists \mathcal{H} \subseteq \mathcal{J} \colon |\mathcal{H}| = \mathfrak{l}, \textit{IS}_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J} \text{ perfect} \colon \textit{IS}_{\omega}(P) \subseteq \mathbb{J}$$

Assumptions:

1. $\mathcal{H} \subseteq \mathcal{P}(\omega), |\mathcal{H}| = \mathfrak{t} \Rightarrow \mathcal{H} \text{ is not perfectly meager}$ 2. $\sigma(\Sigma_1^1)$ games are determined (now superfluous) Recall:

 $\dashv I \text{ has a winning strategy} \rightsquigarrow \mathcal{H} \subseteq X \text{ everywhere non-meager} \\ \implies IS_{\omega}(\mathcal{H}) \not\subseteq \mathbb{J}$

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$\mathbb{J} = \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1)$$

Theorem. Under suitable assumptions,

$$\dashv \exists \mathcal{H} \subseteq \mathcal{J} \colon |\mathcal{H}| = \mathfrak{l}, IS_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J} \text{ perfect} \colon IS_{\omega}(P) \subseteq \mathbb{J}$$

Assumptions:

- 1. $\mathcal{H} \subseteq \mathcal{P}(\omega), |\mathcal{H}| = \mathfrak{t} \Rightarrow \mathcal{H} \text{ is not perfectly meager}$ 2. $\sigma(\Sigma_1^1)$ games are determined (now superfluous) Recall:
- $\dashv I \text{ has a winning strategy} \rightsquigarrow \mathcal{H} \subseteq X \text{ everywhere non-meager} \\ \Rightarrow IS_{\omega}(\mathcal{H}) \not\subseteq \mathbb{J}$
- \dashv II has a winning strategy $\rightsquigarrow \exists P \subseteq X$ perfect: $IS_{\omega}(P) \subseteq \mathbb{J}$

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J}\subseteq\mathcal{P}(\omega)$ analytic ideal

$$\mathbb{J} = \left\{ (A_n)_{n < \omega} \in \mathcal{P}(\omega)^{\omega} \colon A_n \in \mathcal{J} \ (n < \omega), \bigcup_{n < \omega} A_n \notin \mathcal{J} \right\} \text{ is } \sigma(\Sigma_1^1)$$

Theorem. Under suitable assumptions,

$$\dashv \exists \mathcal{H} \subseteq \mathcal{J} \colon |\mathcal{H}| = \mathfrak{l}, IS_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J} \text{ perfect} \colon IS_{\omega}(P) \subseteq \mathbb{J}$$

Assumptions:

- 1. $\mathcal{H} \subseteq \mathcal{P}(\omega), |\mathcal{H}| = \mathfrak{t} \Rightarrow \mathcal{H} \text{ is not perfectly meager}$ 2. $\sigma(\Sigma_1^1)$ games are determined (now superfluous) Recall:
- $\dashv I \text{ has a winning strategy} \rightsquigarrow \mathcal{H} \subseteq X \text{ everywhere non-meager} \\ \Rightarrow IS_{\omega}(\mathcal{H}) \not\subseteq \mathbb{J}$

 \dashv II has a winning strategy $\rightsquigarrow \exists P \subseteq X$ perfect: $IS_{\omega}(P) \subseteq \mathbb{J}$

Corollary. Under the same assumptions,

 $\mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J} \oplus \mathcal{K} \Longrightarrow \mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{J} \text{ or } \mathcal{I}_{\max} \leq_{\mathcal{T}} \mathcal{K}$

I.E. MANY COFINAL TYPES OF DEFINABLE DIRECTED ORDERS

I.E. MANY COFINAL TYPES OF DEFINABLE DIRECTED ORDERS

 $(\mathcal{P}(\omega) \subset^*)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

		$(\mathcal{F}(\omega), \subseteq)$	
measure leaf \longrightarrow	ţ		
	$\mathcal{Z}_0 \in \{$ ana	alytic <i>P</i> -idea	${ m als}\} \leq_T \mathcal{I}_{1/n}$
$1 <_T \omega <_T \omega^{\omega}$	$\prec_{\mathcal{I}}$		τ
$\begin{array}{c} \overleftarrow{\lambda} \\ \text{category leaf} \longrightarrow \end{array} \end{array} \lambda$	$\mathcal{K} \cap \mathcal{K}(2^\omega)$	$\leq \tau$	$\mathcal{M}\cap\mathcal{K}(2^\omega)$

I.E. MANY COFINAL TYPES OF DEFINABLE DIRECTED ORDERS

I.E. MANY COFINAL TYPES OF DEFINABLE DIRECTED ORDERS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

I.E. MANY COFINAL TYPES OF DEFINABLE DIRECTED ORDERS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

T: tree

 \mathcal{S} : set of subtrees of \mathcal{T}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

T: tree

- \mathcal{S} : set of subtrees of \mathcal{T}
- (P, \leq) is (T, S)-calibrated:

T: tree S: set of subtrees of T $(P, \leq) \text{ is } (T, S)\text{-calibrated}:$ $\exists D: T \to 2^P \text{ with } D(\emptyset) = 2^P \text{ and } D(t) \subseteq \bigcup \{D(t'): t' \in \text{succ}_T(t)\}$ $\forall S \in S$ $\forall d: S \to P \text{ with } d(s) \in D(s) \ (s \in S)$ $\{d(s): s \in S\} \subseteq P \text{ is bounded}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

T: tree S: set of subtrees of T $(P, \leq) \text{ is } (T, S)\text{-calibrated}:$ $\exists D: T \to 2^P \text{ with } D(\emptyset) = 2^P \text{ and } D(t) \subseteq \bigcup \{D(t'): t' \in \text{succ}_T(t)\}$ $\forall S \in S$ $\forall d: S \to P \text{ with } d(s) \in D(s) \text{ } (s \in S)$ $\{d(s): s \in S\} \subseteq P \text{ is bounded}$

Theorem.

T: tree S: set of subtrees of T $(P, \leq) \text{ is } (T, S)\text{-calibrated:}$ $\exists D: T \to 2^P \text{ with } D(\emptyset) = 2^P \text{ and } D(t) \subseteq \bigcup \{D(t'): t' \in \text{succ}_T(t)\}$ $\forall S \in S$ $\forall d: S \to P \text{ with } d(s) \in D(s) \text{ } (s \in S)$ $\{d(s): s \in S\} \subseteq P \text{ is bounded}$

Theorem.

1. $Q \leq_T P$, P is (T, S)-calibrated $\Rightarrow Q$ is (T, S)-calibrated

T: tree S: set of subtrees of T $(P, \leq) \text{ is } (T, S)\text{-calibrated:}$ $\exists D: T \to 2^P \text{ with } D(\emptyset) = 2^P \text{ and } D(t) \subseteq \bigcup \{D(t'): t' \in \text{succ}_T(t)\}$ $\forall S \in S$ $\forall d: S \to P \text{ with } d(s) \in D(s) \text{ } (s \in S)$ $\{d(s): s \in S\} \subseteq P \text{ is bounded}$

Theorem.

1. $Q \leq_T P$, P is (T, S)-calibrated $\Rightarrow Q$ is (T, S)-calibrated 2. $Q \not\leq_T P \Rightarrow \exists (T, S) \colon P$ is (T, S)-calibrated, Q is not (T, S)-calibrated

OPEN TOWERS

X topological space

 $\mathcal{U} = (U_n)_{0 < n < \omega}$ open tower:

- $U_n \subseteq X^n$ open $(0 < n < \omega)$
- $U_n \Delta \Pr_{X^n}(U_{n+1})$ is nowhere dense $(0 < n < \omega)$

OPEN TOWERS

X topological space

 $\mathcal{U} = (U_n)_{0 < n < \omega}$ open tower: $[\mathcal{U}] = \bigcap_{0 < n < \omega} U_n \times X^{\omega \setminus n}$

- $U_n \subseteq X^n$ open $(0 < n < \omega)$
- $U_n \Delta \Pr_{X^n}(U_{n+1})$ is nowhere dense $(0 < n < \omega)$

э