Cofinal Types of definable

 DIRECTED ORDERS

 DIRECTED ORDERS}

Tamás Mátrai

University of Toronto
Vienna
June 23, 2009

DIRECTED ORDERS

DIRECTED ORDERS

(P, \leq) partial order is directed if

$$
p, q \in P \Longrightarrow p \vee q \in P \text { (least upper bound })
$$

DIRECTED ORDERS

(P, \leq) partial order is directed if

$$
p, q \in P \Longrightarrow p \vee q \in P \text { (least upper bound) }
$$

Examples:

DIRECTED ORDERS

(P, \leq) partial order is directed if

$$
p, q \in P \Longrightarrow p \vee q \in P \text { (least upper bound) }
$$

Examples:

- $\left([\kappa]^{<\lambda}, \subseteq\right)$

DIRECTED ORDERS

(P, \leq) partial order is directed if

$$
p, q \in P \Longrightarrow p \vee q \in P \text { (least upper bound })
$$

Examples:

- $\left([\kappa]^{<\lambda}, \subseteq\right)$
- ideals in $(\mathcal{P}(\omega), \subseteq)$

DIRECTED ORDERS

(P, \leq) partial order is directed if

$$
p, q \in P \Longrightarrow p \vee q \in P \text { (least upper bound) }
$$

Examples:

- $\left([\kappa]^{<\lambda}, \subseteq\right)$
- ideals in $(\mathcal{P}(\omega), \subseteq)$
- ideals on (\mathbb{R}, \subseteq) : Lebesgue null sets, meager sets, etc.

DIRECTED ORDERS

(P, \leq) partial order is directed if

$$
p, q \in P \Longrightarrow p \vee q \in P \text { (least upper bound) }
$$

Examples:

- $\left([\kappa]^{<\lambda}, \subseteq\right)$
- ideals in $(\mathcal{P}(\omega), \subseteq)$
- ideals on (\mathbb{R}, \subseteq) : Lebesgue null sets, meager sets, etc.
- relative ideals: ideals in $\mathcal{K}\left(2^{\omega}\right)$, etc.

DIRECTED ORDERS

(P, \leq) partial order is directed if

$$
p, q \in P \Longrightarrow p \vee q \in P \text { (least upper bound) }
$$

Examples:

- $\left([\kappa]^{<\lambda}, \subseteq\right)$
- ideals in $(\mathcal{P}(\omega), \subseteq)$
- ideals on (\mathbb{R}, \subseteq) : Lebesgue null sets, meager sets, etc.
- relative ideals: ideals in $\mathcal{K}\left(2^{\omega}\right)$, etc.

Hyperspace: compact subsets of 2^{ω}

Cofinal Types of definable DIRECTED ORDERS

Tamás Mátrai

University of Toronto

Vienna
June 23, 2009

COFINAL TYPES

Cofinal types

$(P, \leq),(Q, \leq)$ directed partial orders

Cofinal types

$(P, \leq),(Q, \leq)$ directed partial orders
Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if
$\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

Cofinal TYPES

$(P, \leq),(Q, \leq)$ directed partial orders
Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if
$\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

$\exists g: Q \rightarrow P$

$$
Y \subseteq Q \text { cofinal } \Longrightarrow g[Y] \subseteq P \text { cofinal }
$$

Cofinal TYPES

$(P, \leq),(Q, \leq)$ directed partial orders
Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if
$\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

$\exists g: Q \rightarrow P$

$$
Y \subseteq Q \text { cofinal } \Longrightarrow g[Y] \subseteq P \text { cofinal }
$$

- $P \leq_{T} Q \Longrightarrow \operatorname{add}(Q) \leq \operatorname{add}(P)$

Cofinal TYPES

$(P, \leq),(Q, \leq)$ directed partial orders
Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if
$\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

$\exists g: Q \rightarrow P$

$$
Y \subseteq Q \text { cofinal } \Longrightarrow g[Y] \subseteq P \text { cofinal }
$$

- $P \leq_{T} Q \Longrightarrow \operatorname{add}(Q) \leq \operatorname{add}(P)$
- $P \leq_{T} Q \Longrightarrow \operatorname{cof}(P) \leq \operatorname{cof}(Q)$

Cofinal types

$(P, \leq),(Q, \leq)$ directed partial orders
Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if
$\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

$\exists g: Q \rightarrow P$

$$
Y \subseteq Q \text { cofinal } \Longrightarrow g[Y] \subseteq P \text { cofinal }
$$

- $P \leq_{T} Q \Longrightarrow \operatorname{add}(Q) \leq \operatorname{add}(P)$
- $P \leq_{T} Q \Longrightarrow \operatorname{cof}(P) \leq \operatorname{cof}(Q)$
- all inequalities in the Cichoń diagram

Cofinal types

$(P, \leq),(Q, \leq)$ directed partial orders
Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if
$\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

$\exists g: Q \rightarrow P$

$$
Y \subseteq Q \text { cofinal } \Longrightarrow g[Y] \subseteq P \text { cofinal }
$$

- $P \leq_{T} Q \Longrightarrow \operatorname{add}(Q) \leq \operatorname{add}(P)$
- $P \leq{ }_{T} Q \Longrightarrow \operatorname{cof}(P) \leq \operatorname{cof}(Q)$
- all inequalities in the Cichoń diagram

Exercise: (P, \leq) directed partial order, $|P|=\kappa \Rightarrow(P, \leq) \leq_{T}\left([\kappa]^{<\omega}, \subseteq\right)$

Cofinal types

$(P, \leq),(Q, \leq)$ directed partial orders
Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if
$\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

$\exists g: Q \rightarrow P$

$$
Y \subseteq Q \text { cofinal } \Longrightarrow g[Y] \subseteq P \text { cofinal }
$$

- $P \leq_{T} Q \Longrightarrow \operatorname{add}(Q) \leq \operatorname{add}(P)$
- $P \leq_{T} Q \Longrightarrow \operatorname{cof}(P) \leq \operatorname{cof}(Q)$
- all inequalities in the Cichoń diagram

Exercise: (P, \leq) directed partial order, $|P|=\kappa \Rightarrow(P, \leq) \leq_{T}\left([\kappa]^{<\omega}, \subseteq\right)$ $f: P \rightarrow \kappa$ arbitrary injection

Cofinal types

$(P, \leq),(Q, \leq)$ directed partial orders
Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if
$\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

$\exists g: Q \rightarrow P$

$$
Y \subseteq Q \text { cofinal } \Longrightarrow g[Y] \subseteq P \text { cofinal }
$$

- $P \leq_{T} Q \Longrightarrow \operatorname{add}(Q) \leq \operatorname{add}(P)$
- $P \leq_{T} Q \Longrightarrow \operatorname{cof}(P) \leq \operatorname{cof}(Q)$
- all inequalities in the Cichoń diagram

Exercise: (P, \leq) directed partial order, $|P|=\kappa \Rightarrow(P, \leq) \leq_{T}\left([\kappa]^{<\omega}, \subseteq\right)$ $f: P \rightarrow \kappa$ arbitrary injection

$$
X \subseteq P \text { unbounded } \Longrightarrow \omega \leq|X| \Longrightarrow f[X] \text { unbounded }
$$

Cofinal types

$(P, \leq),(Q, \leq)$ directed partial orders
Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if
$\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

$\exists g: Q \rightarrow P$

$$
Y \subseteq Q \text { cofinal } \Longrightarrow g[Y] \subseteq P \text { cofinal }
$$

- $P \leq_{T} Q \Longrightarrow \operatorname{add}(Q) \leq \operatorname{add}(P)$
- $P \leq_{T} Q \Longrightarrow \operatorname{cof}(P) \leq \operatorname{cof}(Q)$
- all inequalities in the Cichoń diagram

Exercise: (P, \leq) directed partial order, $|P|=\kappa \Rightarrow(P, \leq) \leq_{T}\left([\kappa]^{<\omega}, \subseteq\right)$ $f: P \rightarrow \kappa$ arbitrary injection

$$
X \subseteq P \text { unbounded } \Longrightarrow \omega \leq|X| \Longrightarrow f[X] \text { unbounded }
$$

Cofinal types

$(P, \leq),(Q, \leq)$ directed partial orders
Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if
$\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

$\exists g: Q \rightarrow P$

$$
Y \subseteq Q \text { cofinal } \Longrightarrow g[Y] \subseteq P \text { cofinal }
$$

- $P \leq_{T} Q \Longrightarrow \operatorname{add}(Q) \leq \operatorname{add}(P)$
- $P \leq_{T} Q \Longrightarrow \operatorname{cof}(P) \leq \operatorname{cof}(Q)$
- all inequalities in the Cichoń diagram

Exercise: (P, \leq) directed partial order, $|P|=\kappa \Rightarrow(P, \leq) \leq_{T}\left([\kappa]^{<\omega}, \subseteq\right)$ $f: P \rightarrow \kappa$ arbitrary injection

$$
X \subseteq P \text { unbounded } \Longrightarrow \omega \leq|X| \Longrightarrow f[X] \text { unbounded }
$$

Cofinal TYpes of Why definable?

Tamás Mátrai

University of Toronto
Vienna
June 23, 2009

S. Todorčević

I.E. COFINAL TYPES OF DIRECTED ORDERS ON ω_{1}

S. TODORČEVIĆ

I.E. COFINAL TYPES OF DIRECTED ORDERS ON ω_{1}

$\mathrm{CH} \Longrightarrow \exists 2^{\omega_{1}}$ many different cofinal types of directed orders on ω_{1}

S. TODORČEVIĆ

I.E. COFINAL TYPES OF DIRECTED ORDERS ON ω_{1}

$\mathrm{CH} \Longrightarrow \exists 2^{\omega_{1}}$ many different cofinal types of directed orders on ω_{1}
$\operatorname{Con}\left(\left\{1, \omega, \omega_{1}, \omega \times \omega_{1},\left[\omega_{1}\right]^{<\omega}\right\}\right.$ are all the cofinal types of directed orders $\left.\leq_{T}\left[\omega_{1}\right]^{<\omega}\right)$

S. TODORČEVIĆ

I.E. COFINAL TYPES OF DIRECTED ORDERS ON ω_{1}

$\mathrm{CH} \Longrightarrow \exists 2^{\omega_{1}}$ many different cofinal types of directed orders on ω_{1}
$\operatorname{Con}\left(\left\{1, \omega, \omega_{1}, \omega \times \omega_{1},\left[\omega_{1}\right]^{<\omega}\right\}\right.$ are all the cofinal types of directed orders $\left.\leq_{T}\left[\omega_{1}\right]^{<\omega}\right)$

Additional structure:

S. Todorčević

I.E. COFINAL TYPES OF DIRECTED ORDERS ON ω_{1}

$\mathrm{CH} \Longrightarrow \exists 2^{\omega_{1}}$ many different cofinal types of directed orders on ω_{1}
$\operatorname{Con}\left(\left\{1, \omega, \omega_{1}, \omega \times \omega_{1},\left[\omega_{1}\right]^{<\omega}\right\}\right.$ are all the cofinal types of directed orders $\left.\leq_{T}\left[\omega_{1}\right]^{<\omega}\right)$

Additional structure:
-- Ultrafilters (recall the talk of N. Dobrinen)

S. Todorčević

I.E. COFINAL TYPES OF DIRECTED ORDERS ON ω_{1}

$\mathrm{CH} \Longrightarrow \exists 2^{\omega_{1}}$ many different cofinal types of directed orders on ω_{1}
$\operatorname{Con}\left(\left\{1, \omega, \omega_{1}, \omega \times \omega_{1},\left[\omega_{1}\right]^{<\omega}\right\}\right.$ are all the cofinal types of directed orders $\left.\leq_{T}\left[\omega_{1}\right]^{<\omega}\right)$

Additional structure:
-- Ultrafilters (recall the talk of N. Dobrinen)
-- For us: analytic ideals in $(\mathcal{P}(\omega), \subseteq)$

S. Todorčević

I.E. COFINAL TYPES OF DIRECTED ORDERS ON ω_{1}

$\mathrm{CH} \Longrightarrow \exists 2^{\omega_{1}}$ many different cofinal types of directed orders on ω_{1}
$\operatorname{Con}\left(\left\{1, \omega, \omega_{1}, \omega \times \omega_{1},\left[\omega_{1}\right]^{<\omega}\right\}\right.$ are all the cofinal types of directed orders $\left.\leq_{T}\left[\omega_{1}\right]^{<\omega}\right)$

Additional structure:
-- Ultrafilters (recall the talk of N. Dobrinen)

- For us: analytic ideals in $(\mathcal{P}(\omega), \subseteq)$
i.e. $\mathcal{I} \subseteq \mathcal{P}(\omega)$ analytic, ideal

BASE PROBLEMS

BASE PROBLEMS

Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if $\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

BASE PROBLEMS

Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if $\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

1. $\mathcal{I}, \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideals,

$$
\mathcal{I} \leq_{T} \mathcal{J} \xlongequal{?} \exists f: \mathcal{I} \rightarrow \mathcal{J} \text { definable Tukey reduction }
$$

BASE PROBLEMS

Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if $\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

1. $\mathcal{I}, \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideals, Borel/Souslin/Baire measurable, etc.

$$
\mathcal{I} \leq_{T} \mathcal{J} \xlongequal{?} \exists f: \mathcal{I} \rightarrow \mathcal{J} \text { definable Tukey reduction }
$$

BASE PROBLEMS

Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if $\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

1. $\mathcal{I}, \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideals, Borel/Souslin/Baire measurable, etc.

$$
\mathcal{I} \leq_{T} \mathcal{J} \xrightarrow{?} \exists f: \mathcal{I} \rightarrow \mathcal{J} \text { definable Tukey reduction }
$$

2. $\mathcal{I}, \mathcal{J}, \mathcal{K} \subseteq \mathcal{P}(\omega)$ analytic ideals

$$
\mathcal{I} \leq_{T} \mathcal{J} \oplus \mathcal{K} \xlongequal{?} \leq_{T} \mathcal{J} \text { or } \mathcal{I} \leq_{T} \mathcal{K}
$$

BASE PROBLEMS

Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if $\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

1. $\mathcal{I}, \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideals, Borel/Souslin/Baire measurable, etc.

$$
\mathcal{I} \leq_{T} \mathcal{J} \xrightarrow{?} \exists f: \mathcal{I} \rightarrow \mathcal{J} \text { definable Tukey reduction }
$$

2. $\mathcal{I}, \mathcal{J}, \mathcal{K} \subseteq \mathcal{P}(\omega)$ analytic ideals

$$
\mathcal{I} \leq_{T} \mathcal{J} \oplus \mathcal{K} \xlongequal{?} \leq_{T} \mathcal{J} \text { or } \mathcal{I} \leq_{T} \mathcal{K}
$$

$$
\mathcal{J} \oplus \mathcal{K}=\{(J, K): J \in \mathcal{J}, K \in \mathcal{K}\}, \subseteq \text { coordinatewise }
$$

BASE PROBLEMS

Tukey reducibility: $(P, \leq) \leq_{T}(Q, \leq)$ if $\exists f: P \rightarrow Q$

$$
X \subseteq P \text { unbounded } \Longrightarrow f[X] \subseteq Q \text { unbounded }
$$

1. $\mathcal{I}, \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideals, Borel/Souslin/Baire measurable, etc.

$$
\mathcal{I} \leq_{T} \mathcal{J} \xrightarrow{?} \exists f: \mathcal{I} \rightarrow \mathcal{J} \text { definable Tukey reduction }
$$

2. $\mathcal{I}, \mathcal{J}, \mathcal{K} \subseteq \mathcal{P}(\omega)$ analytic ideals

$$
\mathcal{I} \leq_{T} \mathcal{J} \oplus \mathcal{K} \xlongequal{?} \mathcal{I} \leq_{T} \mathcal{J} \text { or } \mathcal{I} \leq_{T} \mathcal{K}
$$

$$
\mathcal{J} \oplus \mathcal{K}=\{(J, K): J \in \mathcal{J}, K \in \mathcal{K}\}, \subseteq \text { coordinatewise }
$$

1. Definability problem
2. Primality problem

S. Solecki, S. Todorčević

I.E. THEORY OF DIRECTED BASIC ORDERS

S. Solecki, S. Todorčević

I.E. THEORY OF DIRECTED BASIC ORDERS
(P, \leq) is basic if ...

S. Solecki, S. Todorčević

I.E. THEORY OF DIRECTED BASIC ORDERS

(P, \leq) is basic if \ldots
"separable metric+every convergent sequence has a bounded subsequence"

S. Solecki, S. Todorčević

I.E. THEORY OF DIRECTED BASIC ORDERS

(P, \leq) is basic if \ldots
"separable metric+every convergent sequence has a bounded subsequence"
...e.g. analytic $\mathrm{P}_{\text {-ideals }}$ in $\mathcal{P}(\omega)$, (relative) σ-ideals of compact sets

S. Solecki, S. Todorčević

I.E. THEORY OF DIRECTED BASIC ORDERS

(P, \leq) is basic if \ldots
"separable metric+every convergent sequence has a bounded subsequence"
...e.g. analytic P -ideals in $\mathcal{P}(\omega)$, (relative) σ-ideals of compact sets
Theorem. $(P, \leq),(Q, \leq)$ basic,
$P \leq_{T} Q \Longrightarrow \exists f: P \rightarrow Q$ Souslin measurable Tukey reduction
$\mathcal{I}_{\text {MAX }}$
I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$
$\underline{\mathcal{I}}_{\text {MAX }}$
I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$
$[\mathfrak{c}]^{<\omega}$ maximal cofinal type of analytic ideals
$\underline{\mathcal{I}_{\mathrm{MAX}}}$
I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$
$[\mathfrak{c}]^{<\omega}$ maximal cofinal type of analytic ideals $[\mathfrak{c}]^{<\omega} \rightsquigarrow\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{K}\left(2^{\omega}\right)$ is F_{σ}
$\underline{\mathcal{I}_{\mathrm{MAX}}}$
I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathfrak{c}]<\omega$ maximal cofinal type of analytic ideals $[\mathfrak{c}]^{<\omega} \rightsquigarrow\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{K}\left(2^{\omega}\right)$ is F_{σ}

$$
\Omega=2^{<\omega}
$$

$\underline{\mathcal{I}_{\text {MAX }}}$
I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathfrak{c}]^{<\omega}$ maximal cofinal type of analytic ideals $[\mathfrak{c}]^{<\omega} \rightsquigarrow\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{K}\left(2^{\omega}\right)$ is F_{σ}

$\underline{\mathcal{I}_{\mathrm{MAX}}}$

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathfrak{c}]<\omega$ maximal cofinal type of analytic ideals $[\mathfrak{l}]^{<\omega} \rightsquigarrow\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{K}\left(2^{\omega}\right)$ is F_{σ}

$$
A \subseteq 2^{\omega} \text { closed }
$$

$$
A=[\mathcal{A}], \mathcal{A} \subseteq 2^{<\omega} \text { pruned tree }
$$

2^{ω}

$\underline{\mathcal{I}_{\mathrm{MAX}}}$

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathfrak{c}]<\omega$ maximal cofinal type of analytic ideals $[\mathfrak{l}]^{<\omega} \rightsquigarrow\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{K}\left(2^{\omega}\right)$ is F_{σ}

$$
A \subseteq 2^{\omega} \text { closed }
$$

$$
A=[\mathcal{A}], \mathcal{A} \subseteq 2^{<\omega} \text { pruned tree }
$$

$$
\xi
$$

2^{ω}

$$
\mathcal{A} \in \mathcal{P}(\Omega)
$$

$\mathcal{I}_{\text {MAX }}$

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$ $[\mathrm{c}]<\omega$ maximal cofinal type of analytic ideals $[\mathfrak{c}]^{<\omega} \rightsquigarrow\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{K}\left(2^{\omega}\right)$ is $F_{\sigma} \rightsquigarrow \mathcal{I}_{\text {max }} \subseteq \mathcal{P}(\Omega)$ is F_{σ}

$A \subseteq 2^{\omega}$ closed
$A=[\mathcal{A}], \mathcal{A} \subseteq 2^{<\omega}$ pruned tree主
2^{ω}

$$
\mathcal{A} \in \mathcal{P}(\Omega)
$$

$\underline{\mathcal{I}_{\mathrm{MAX}}}$

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$
$[\mathfrak{c}]<\omega$ maximal cofinal type of analytic ideals
$[\mathfrak{c}]^{<\omega} \rightsquigarrow\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{K}\left(2^{\omega}\right)$ is $F_{\sigma} \rightsquigarrow I_{\max } \subseteq \mathcal{P}(\Omega)$ is F_{σ}
2^{Ω}

$$
\Omega=2^{<\omega}
$$

$A \subseteq 2^{\omega}$ closed
主
$A=[\mathcal{A}], \mathcal{A} \subseteq 2^{<\omega}$ pruned tree子
$\mathcal{A} \in \mathcal{P}(\Omega)$
$\mathcal{I}_{\text {max }}$ is NOT basic (Solecki-Todorčević theory does not apply)

$\underline{\mathcal{I}_{\mathrm{MAX}}}$

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$
$[\mathfrak{c}]<\omega$ maximal cofinal type of analytic ideals
$[\mathfrak{c}]<\omega \leadsto\left[2^{\omega}\right]<\omega \subseteq \mathcal{K}\left(2^{\omega}\right)$ is $F_{\sigma} \rightsquigarrow I_{\max } \subseteq \mathcal{P}(\Omega)$ is F_{σ}
2^{Ω}

$$
\Omega=2^{<\omega}
$$

$$
A \subseteq 2^{\omega} \text { closed }
$$

$$
\text { \} }
$$

$$
\begin{gathered}
A=[\mathcal{A}], \mathcal{A} \subseteq 2^{<\omega} \text { pruned tree } \\
\xi \\
\mathcal{A} \in \mathcal{P}(\Omega)
\end{gathered}
$$

$\mathcal{I}_{\text {max }}$ is NOT basic (Solecki-Todorčević theory does not apply)
"separable metric+every convergent sequence has a bounded subsequence"

$\underline{\mathcal{I}_{\mathrm{MAX}}}$

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$
$[\mathfrak{c}]<\omega$ maximal cofinal type of analytic ideals
$[\mathfrak{c}]^{<\omega} \rightsquigarrow\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{K}\left(2^{\omega}\right)$ is $F_{\sigma} \rightsquigarrow I_{\max } \subseteq \mathcal{P}(\Omega)$ is F_{σ}
2^{Ω}

$$
\Omega=2^{<\omega}
$$

$A \subseteq 2^{\omega}$ closed
主
$A=[\mathcal{A}], \mathcal{A} \subseteq 2^{<\omega}$ pruned tree子
$\mathcal{A} \in \mathcal{P}(\Omega)$
$\mathcal{I}_{\text {max }}$ is NOT basic (Solecki-Todorčević theory does not apply)

$\underline{\mathcal{I}_{\mathrm{MAX}}}$

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$
$[\mathfrak{c}]<\omega$ maximal cofinal type of analytic ideals
$[\mathfrak{c}]^{<\omega} \leadsto\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{K}\left(2^{\omega}\right)$ is $F_{\sigma} \rightsquigarrow I_{\max } \subseteq \mathcal{P}(\Omega)$ is F_{σ}
2^{Ω}

$$
\begin{gathered}
\Omega=2^{<\omega} \\
A \subseteq 2^{\omega} \text { closed } \\
\dot{3}=[\mathcal{A}], \mathcal{A} \subseteq 2^{<\omega} \text { pruned tree } \\
\dot{z} \\
\mathcal{A} \in \mathcal{P}(\Omega)
\end{gathered}
$$

$\mathcal{I}_{\text {max }}$ is NOT basic (Solecki-Todorčević theory does not apply)
Particular problems: $\mathcal{J}, \mathcal{K} \subseteq \mathcal{P}(\omega)$ analytic ideals

$\underline{\mathcal{I}_{\mathrm{MAX}}}$

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$
$[\mathfrak{c}]<\omega$ maximal cofinal type of analytic ideals
$[\mathfrak{c}]<\omega \leadsto\left[2^{\omega}\right]<\omega \subseteq \mathcal{K}\left(2^{\omega}\right)$ is $F_{\sigma} \rightsquigarrow I_{\max } \subseteq \mathcal{P}(\Omega)$ is F_{σ}
2^{Ω}

$$
\begin{gathered}
\Omega=2^{<\omega} \\
A \subseteq 2^{\omega} \text { closed } \\
\dot{3}=[\mathcal{A}], \mathcal{A} \subseteq 2^{<\omega} \text { pruned tree } \\
\dot{z} \\
\mathcal{A} \in \mathcal{P}(\Omega)
\end{gathered}
$$

$\mathcal{I}_{\text {max }}$ is NOT basic (Solecki-Todorčević theory does not apply)
Particular problems: $\mathcal{J}, \mathcal{K} \subseteq \mathcal{P}(\omega)$ analytic ideals

1. $\mathcal{I}_{\max } \leq_{T} \mathcal{J} \xlongequal{\longrightarrow} \exists f: \mathcal{I}_{\max } \rightarrow \mathcal{J}$ definable Tukey reduction

$\underline{\mathcal{I}_{\mathrm{MAX}}}$

I.E. HOW TO COPY IDEALS OF COMPACT SETS INTO $\mathcal{P}(\omega)$
$[\mathfrak{c}]<\omega$ maximal cofinal type of analytic ideals
$[\mathfrak{c}]^{<\omega} \rightsquigarrow\left[2^{\omega}\right]^{<\omega} \subseteq \mathcal{K}\left(2^{\omega}\right)$ is $F_{\sigma} \rightsquigarrow I_{\max } \subseteq \mathcal{P}(\Omega)$ is F_{σ}
2^{Ω}

$$
\begin{gathered}
\Omega=2^{<\omega} \\
A \subseteq 2^{\omega} \text { closed } \\
\dot{3}=[\mathcal{A}], \mathcal{A} \subseteq 2^{<\omega} \text { pruned tree } \\
\dot{z} \\
\mathcal{A} \in \mathcal{P}(\Omega)
\end{gathered}
$$

$\mathcal{I}_{\text {max }}$ is NOT basic (Solecki-Todorčević theory does not apply)
Particular problems: $\mathcal{J}, \mathcal{K} \subseteq \mathcal{P}(\omega)$ analytic ideals

1. $\mathcal{I}_{\max } \leq_{T} \mathcal{J} \xlongequal{?} \exists f: \mathcal{I}_{\max } \rightarrow \mathcal{J}$ definable Tukey reduction
2. $\mathcal{I}_{\max } \leq_{T} \mathcal{J} \oplus \mathcal{K} \xlongequal{?} \mathcal{I}_{\max } \leq_{T} \mathcal{J}$ or $\mathcal{I}_{\max } \leq_{T} \mathcal{K}$

S. Todorčević

I.E. PRIMALITY of $\mathcal{I}_{\text {max }}$ FOR Souslin measurable Reductions

S. TODORČEVIĆ

I.E. PRIMALITY of $\mathcal{I}_{\text {max }}$ FOR Souslin measurable Reductions
$\mathcal{J}, \mathcal{K} \subseteq \mathcal{P}(\omega)$ analytic ideals,

S. TODORČEVIĆ

I.E. PRIMALITY of $\mathcal{I}_{\text {max }}$ FOR Souslin measurable Reductions
$\mathcal{J}, \mathcal{K} \subseteq \mathcal{P}(\omega)$ analytic ideals,

$$
\begin{gathered}
\mathcal{I}_{\max } \leq S T \mathcal{J} \oplus \mathcal{K} \\
\Downarrow \\
\mathcal{I}_{\max } \leq_{T} \mathcal{J} \text { or } \mathcal{I}_{\max } \leq_{T} \mathcal{K}
\end{gathered}
$$

S. TODORČEVIĆ

I.E. PRIMALITY of $\mathcal{I}_{\text {max }}$ FOR Souslin measurable Reductions
$\mathcal{J}, \mathcal{K} \subseteq \mathcal{P}(\omega)$ analytic ideals,

Tukey reducibility witnessed by Souslin measurable function

$$
\begin{gathered}
\mathcal{I}_{\max } \leq S T \mathcal{J} \oplus \mathcal{K} \\
\Downarrow \\
\mathcal{I}_{\max } \leq_{T} \mathcal{J} \text { or } \mathcal{I}_{\max } \leq_{T} \mathcal{K}
\end{gathered}
$$

$\left\langle\bigcup_{\alpha \in \omega_{1} \cup\{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}}<\omega}([\operatorname{TP}(x)=\alpha])\right\rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM

$\left\langle\bigcup_{\alpha \in \omega_{1} \cup\{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}}<\omega}([\operatorname{TP}(x)=\alpha])\right\rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$\left\langle\bigcup_{\alpha \in \omega_{1} \cup\{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}}<\omega}([\operatorname{TP}(x)=\alpha])\right\rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal $\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in[\mathcal{H}]^{\omega}$ we have $\cup H \notin \mathcal{J}$

$\left\langle\bigcup_{\alpha \in \omega_{1} \cup\{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}}<\omega}([\operatorname{TP}(x)=\alpha])\right\rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal $\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in[\mathcal{H}]^{\omega}$ we have $\cup H \notin \mathcal{J}$

$$
[\kappa]^{<\omega} \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text { strongly unbounded: }|\mathcal{H}|=\kappa
$$

$\left\langle\bigcup_{\alpha \in \omega_{1} \cup\{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}}<\omega}([\operatorname{TP}(x)=\alpha])\right\rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal $\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in[\mathcal{H}]^{\omega}$ we have $\cup H \notin \mathcal{J}$

$$
[\kappa]^{<\omega} \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text { strongly unbounded: }|\mathcal{H}|=\kappa
$$

$\Leftarrow: f:[\kappa]^{<\omega} \rightarrow \mathcal{H}$ injective

$\left\langle\bigcup_{\alpha \in \omega_{1} \cup\{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}}<\omega}([\operatorname{TP}(x)=\alpha])\right\rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal $\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in[\mathcal{H}]^{\omega}$ we have $\cup H \notin \mathcal{J}$

$$
[\kappa]^{<\omega} \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text { strongly unbounded: }|\mathcal{H}|=\kappa
$$

$\Leftarrow: f:[\kappa]^{<\omega} \rightarrow \mathcal{H}$ injective
\Rightarrow : if $f:[\kappa]^{<\omega} \rightarrow \mathcal{J}$ is Tukey, $\mathcal{H}=f\left[[k]^{<\omega}\right]$,

$\left\langle\bigcup_{\alpha \in \omega_{1} \cup\{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}}<\omega}([\operatorname{TP}(x)=\alpha])\right\rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal $\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in[\mathcal{H}]^{\omega}$ we have $\cup H \notin \mathcal{J}$

$$
[\kappa]^{<\omega} \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text { strongly unbounded: }|\mathcal{H}|=\kappa
$$

$\Leftarrow: f:[\kappa]^{<\omega} \rightarrow \mathcal{H}$ injective
\Rightarrow : if $f:[k]^{<\omega} \rightarrow \mathcal{J}$ is Tukey, $\mathcal{H}=f\left[[k]^{<\omega}\right]$,

- $|\mathcal{H}|=\kappa$ (f is Tukey hence finite-to-one),

$\left\langle\bigcup_{\alpha \in \omega_{1} \cup\{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}}<\omega}([\operatorname{TP}(x)=\alpha])\right\rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal
$\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in[\mathcal{H}]^{\omega}$ we have $\cup H \notin \mathcal{J}$

$$
[\kappa]^{<\omega} \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text { strongly unbounded: }|\mathcal{H}|=\kappa
$$

$\Leftarrow: f:[\kappa]^{<\omega} \rightarrow \mathcal{H}$ injective
\Rightarrow : if $f:[k]^{<\omega} \rightarrow \mathcal{J}$ is Tukey, $\mathcal{H}=f\left[[k]^{<\omega}\right]$,

- $|\mathcal{H}|=\kappa(f$ is Tukey hence finite-to-one $)$,
- $\mathcal{H} \subseteq \mathcal{J}$ is strongly unbounded (f is Tukey).

$\left\langle\bigcup_{\alpha \in \omega_{1} \cup\{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}}<\omega}([\operatorname{TP}(x)=\alpha])\right\rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal
$\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in[\mathcal{H}]^{\omega}$ we have $\cup H \notin \mathcal{J}$

$$
[\kappa]^{<\omega} \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text { strongly unbounded: }|\mathcal{H}|=\kappa
$$

$\Leftarrow: f:[\kappa]^{<\omega} \rightarrow \mathcal{H}$ injective
\Rightarrow : if $f:[\kappa]^{<\omega} \rightarrow \mathcal{J}$ is Tukey, $\mathcal{H}=f\left[[k]^{<\omega}\right]$,

- $|\mathcal{H}|=\kappa(f$ is Tukey hence finite-to-one),
- $\mathcal{H} \subseteq \mathcal{J}$ is strongly unbounded (f is Tukey).

Theorem. $\exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:

$\left\langle\bigcup_{\alpha \in \omega_{1} \cup\{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}}<\omega}([\operatorname{TP}(x)=\alpha])\right\rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal
$\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in[\mathcal{H}]^{\omega}$ we have $\cup H \notin \mathcal{J}$

$$
[\kappa]^{<\omega} \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text { strongly unbounded: }|\mathcal{H}|=\kappa
$$

$\Leftarrow: f:[\kappa]^{<\omega} \rightarrow \mathcal{H}$ injective
\Rightarrow : if $f:[k]^{<\omega} \rightarrow \mathcal{J}$ is Tukey, $\mathcal{H}=f\left[[k]^{<\omega}\right]$,

- $|\mathcal{H}|=\kappa(f$ is Tukey hence finite-to-one $)$,
- $\mathcal{H} \subseteq \mathcal{J}$ is strongly unbounded (f is Tukey).

Theorem. $\exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:
$+\left[\omega_{1}\right]^{<\omega} \leq_{T} \mathcal{J}$, i.e. \mathcal{J} has an uncountable strongly unbounded subset;

$\left\langle\bigcup_{\alpha \in \omega_{1} \cup\{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}}<\omega}([\operatorname{TP}(x)=\alpha])\right\rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal
$\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in[\mathcal{H}]^{\omega}$ we have $\cup H \notin \mathcal{J}$

$$
[\kappa]^{<\omega} \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text { strongly unbounded: }|\mathcal{H}|=\kappa
$$

$\Leftarrow: f:[\kappa]^{<\omega} \rightarrow \mathcal{H}$ injective
\Rightarrow : if $f:[k]^{<\omega} \rightarrow \mathcal{J}$ is Tukey, $\mathcal{H}=f\left[[k]^{<\omega}\right]$,

- $|\mathcal{H}|=\kappa(f$ is Tukey hence finite-to-one $)$,
- $\mathcal{H} \subseteq \mathcal{J}$ is strongly unbounded (f is Tukey).

Theorem. $\exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:
$-\left[\omega_{1}\right]^{<\omega} \leq_{T} \mathcal{J}$, i.e. \mathcal{J} has an uncountable strongly unbounded subset; $-\left[\omega_{2}\right]^{<\omega} \not{ }_{T} \mathcal{J}$;

$\left\langle\bigcup_{\alpha \in \omega_{1} \cup\{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}}<\omega}([\operatorname{TP}(x)=\alpha])\right\rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal
$\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in[\mathcal{H}]^{\omega}$ we have $\bigcup H \notin \mathcal{J}$

$$
[\kappa]^{<\omega} \leq T \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text { strongly unbounded: }|\mathcal{H}|=\kappa
$$

$\Leftarrow: f:[\kappa]^{<\omega} \rightarrow \mathcal{H}$ injective
\Rightarrow : if $f:[\kappa]^{<\omega} \rightarrow \mathcal{J}$ is Tukey, $\mathcal{H}=f\left[[\kappa]^{<\omega}\right]$,

- $|\mathcal{H}|=\kappa(f$ is Tukey hence finite-to-one),
- $\mathcal{H} \subseteq \mathcal{J}$ is strongly unbounded (f is Tukey).

Theorem. $\exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:
$-\left[\omega_{1}\right]^{<\omega} \leq_{T} \mathcal{J}$, i.e. \mathcal{J} has an uncountable strongly unbounded subset;
$-\left[\omega_{2}\right]^{<\omega} \not \leq T \mathcal{J}$;
$-\mathcal{J}$ has no non-empty perfect strongly unbounded subset.

$\left\langle\bigcup_{\alpha \in \omega_{1} \cup\{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}}<\omega}([\operatorname{TP}(x)=\alpha])\right\rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal
$\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in[\mathcal{H}]^{\omega}$ we have $\bigcup H \notin \mathcal{J}$

$$
[\kappa]^{<\omega} \leq{ }_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text { strongly unbounded: }|\mathcal{H}|=\kappa
$$

$\Leftarrow: f:[\kappa]^{<\omega} \longrightarrow \mathcal{H}$ injective
\Rightarrow : if $f:[\kappa]<\omega \longrightarrow \mathcal{J}$ is Tukey, $\mathcal{H}=f\left[[\kappa]^{<\omega}\right]$,

- $|\mathcal{H}|=\kappa(f$ is Tukey hence finite-to-one),
- $\mathcal{H} \subseteq \mathcal{J}$ is strongly unbounded (f is Tukey).

Theorem. $\exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:
$-\left[\omega_{1}\right]^{<\omega} \leq_{T} \mathcal{J}$, i.e. \mathcal{J} has an uncountable strongly unbounded subset;
$-\left[\omega_{2}\right]^{<\omega} \not \mathbb{Z}_{T} \mathcal{J}$;
$-\mathcal{J}$ has no non-empty perfect strongly unbounded subset.
Corollary. $\mathrm{CH} \Longrightarrow \exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:

$\left\langle\bigcup_{\alpha \in \omega_{1} \cup\{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}}<\omega}([\operatorname{TP}(x)=\alpha])\right\rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal
$\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in[\mathcal{H}]^{\omega}$ we have $\bigcup H \notin \mathcal{J}$

$$
[\kappa]^{<\omega} \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text { strongly unbounded: }|\mathcal{H}|=\kappa
$$

$\Leftarrow: f:[\kappa]^{<\omega} \longrightarrow \mathcal{H}$ injective
\Rightarrow : if $f:[\kappa]<\omega \longrightarrow \mathcal{J}$ is Tukey, $\mathcal{H}=f\left[[\kappa]^{<\omega}\right]$,

- $|\mathcal{H}|=\kappa(f$ is Tukey hence finite-to-one),
- $\mathcal{H} \subseteq \mathcal{J}$ is strongly unbounded (f is Tukey).

Theorem. $\exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:
$-\left[\omega_{1}\right]^{<\omega} \leq_{T} \mathcal{J}$, i.e. \mathcal{J} has an uncountable strongly unbounded subset;
$-\left[\omega_{2}\right]^{<\omega} \not \mathbb{Z}_{T} \mathcal{J}$;
-- \mathcal{J} has no non-empty perfect strongly unbounded subset.
Corollary. $\mathrm{CH} \Longrightarrow \exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:
$-\left[\omega_{1}\right]^{<\omega}=[\mathfrak{l}]^{<\omega}=\mathcal{I}_{\text {max }} \leq_{T} \mathcal{J}$;

$\left\langle\bigcup_{\alpha \in \omega_{1} \cup\{\infty\}} \mathcal{K}_{\mathrm{RK}_{\mathrm{CB}}<\omega}([\operatorname{TP}(x)=\alpha])\right\rangle$

I.E. CONSISTENT NEGATIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal
$\mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $\forall H \in[\mathcal{H}]^{\omega}$ we have $\bigcup H \notin \mathcal{J}$

$$
[\kappa]^{<\omega} \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text { strongly unbounded: }|\mathcal{H}|=\kappa
$$

$\Leftarrow: f:[\kappa]^{<\omega} \longrightarrow \mathcal{H}$ injective
\Rightarrow : if $f:[\kappa]<\omega \longrightarrow \mathcal{J}$ is Tukey, $\mathcal{H}=f\left[[\kappa]^{<\omega}\right]$,

- $|\mathcal{H}|=\kappa(f$ is Tukey hence finite-to-one),
- $\mathcal{H} \subseteq \mathcal{J}$ is strongly unbounded (f is Tukey).

Theorem. $\exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:
$-\left[\omega_{1}\right]^{<\omega} \leq_{T} \mathcal{J}$, i.e. \mathcal{J} has an uncountable strongly unbounded subset;
$-\left[\omega_{2}\right]^{<\omega} \not \leq T \mathcal{J}$;
-- \mathcal{J} has no non-empty perfect strongly unbounded subset.
Corollary. $\mathrm{CH} \Longrightarrow \exists \mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal:
$-\left[\omega_{1}\right]^{<\omega}=[\mathfrak{l}]^{<\omega}=\mathcal{I}_{\text {max }} \leq_{T} \mathcal{J}$;
$\dagger f: \mathcal{I}_{\max } \rightarrow \mathcal{J}$ Tukey $\Rightarrow f\left[\mathcal{I}_{\max }\right]$ has no non-empty perfect subset.

InFInITE DIMENSIONAL PERFECT SET THMS

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM

Infinite dimensional perfect set Thms

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM
$\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

Infinite dimensional perfect set Thms

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM
$\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\mathscr{I} \forall \mathcal{C} \in[\mathcal{H}]^{\omega} \cup \mathcal{C} \notin \mathcal{J}
$$

$$
[\mathfrak{c}]^{<\omega}=\mathcal{I}_{\max } \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text { strongly unbounded: }|\mathcal{H}|=\mathfrak{C}
$$

InFINITE DIMENSIONAL PERFECT SET THMS

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM
$\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\mathscr{I} \forall \mathcal{C} \in[\mathcal{H}]^{\omega} \cup \mathcal{C} \notin \mathcal{J}
$$

$[\mathfrak{c}]^{<\omega}=\mathcal{I}_{\text {max }} \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $|\mathcal{H}|=\mathfrak{C}$

$$
\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\} \text { is } \sigma\left(\Sigma_{1}^{1}\right)
$$

Infinite dimensional perfect set Thms

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM
$\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\mathfrak{q} \forall \mathcal{C} \in[\mathcal{H}]^{\omega} \cup \mathcal{C} \notin \mathcal{J}
$$

$[\mathfrak{l}]^{<\omega}=\mathcal{I}_{\text {max }} \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $|\mathcal{H}|=\mathfrak{l}$

$$
\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\} \text { is } \sigma\left(\Sigma_{1}^{1}\right)
$$

IS $S_{\omega}(\mathcal{H})$: injective $\omega \rightarrow \mathcal{H}$ functions

Infinite dimensional perfect set Thms

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM
$\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\mathscr{I} \forall \mathcal{C} \in[\mathcal{H}]^{\omega} \cup \mathcal{C} \notin \mathcal{J}
$$

$[\mathfrak{C}]^{<\omega}=\mathcal{I}_{\text {max }} \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $|\mathcal{H}|=\mathfrak{C}$

$$
\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\} \text { is } \sigma\left(\sum_{1}^{1}\right)
$$

IS ${ }_{\omega}(\mathcal{H})$: injective $\omega \rightarrow \mathcal{H}$ functions
$\mathcal{H} \subseteq \mathcal{J}$ strongly unbdd $\Leftrightarrow I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J}$

Infinite dimensional perfect set Thms

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM
$\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\mathfrak{q} \forall \mathcal{C} \in[\mathcal{H}]^{\omega} \cup \mathcal{C} \notin \mathcal{J}
$$

$[\mathfrak{l}]^{<\omega}=\mathcal{I}_{\max } \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $|\mathcal{H}|=\mathfrak{C}$
$\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\}$ is $\sigma\left(\Sigma_{1}^{1}\right)$
IS $S_{\omega}(\mathcal{H})$: injective $\omega \rightarrow \mathcal{H}$ functions
$\mathcal{H} \subseteq \mathcal{J}$ strongly unbdd $\Leftrightarrow I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Leftrightarrow \mathcal{H}$ is \mathbb{J}-homogeneous

Infinite dimensional perfect set Thms

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM
$\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\mathfrak{q} \forall \mathcal{C} \in[\mathcal{H}]^{\omega} \cup \mathcal{C} \notin \mathcal{J}
$$

$[\mathfrak{l}]^{<\omega}=\mathcal{I}_{\max } \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $|\mathcal{H}|=\mathfrak{l}$

$$
\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\} \text { is } \sigma\left(\Sigma_{1}^{1}\right)
$$

IS $S_{\omega}(\mathcal{H})$: injective $\omega \rightarrow \mathcal{H}$ functions
$\mathcal{H} \subseteq \mathcal{J}$ strongly unbdd $\Leftrightarrow I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Leftrightarrow \mathcal{H}$ is \mathbb{J}-homogeneous
Theorem. Under suitable assumptions,

Infinite dimensional perfect set Thms

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM
$\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\mathfrak{q} \forall \mathcal{C} \in[\mathcal{H}]^{\omega} \cup \mathcal{C} \notin \mathcal{J}
$$

$$
[\mathfrak{l}]^{<\omega}=\mathcal{I}_{\max } \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J} \text { strongly unbounded: }|\mathcal{H}|=\mathfrak{c}
$$

$$
\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\} \text { is } \sigma\left(\Sigma_{1}^{1}\right)
$$

IS $S_{\omega}(\mathcal{H})$: injective $\omega \rightarrow \mathcal{H}$ functions
$\mathcal{H} \subseteq \mathcal{J}$ strongly unbdd $\Leftrightarrow I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Leftrightarrow \mathcal{H}$ is \mathbb{J}-homogeneous
Theorem. Under suitable assumptions,
$-\exists \mathcal{H} \subseteq \mathcal{J}:|\mathcal{H}|=\mathfrak{l}, I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J}$ perfect: $I S_{\omega}(P) \subseteq \mathbb{J}$

InFINITE DIMENSIONAL PERFECT SET THMS

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM
$\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\nsucceq \forall \mathcal{C} \in[\mathcal{H}]^{\omega} \cup \mathcal{C} \notin \mathcal{J}
$$

$[\mathfrak{l}]^{<\omega}=\mathcal{I}_{\max } \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $|\mathcal{H}|=\mathfrak{c}$
$\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\}$ is $\sigma\left(\Sigma_{1}^{1}\right)$
IS $S_{\omega}(\mathcal{H})$: injective $\omega \rightarrow \mathcal{H}$ functions
$\mathcal{H} \subseteq \mathcal{J}$ strongly unbdd $\Leftrightarrow I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Leftrightarrow \mathcal{H}$ is \mathbb{J}-homogeneous
Theorem. Under suitable assumptions,
$\div \exists \mathcal{H} \subseteq \mathcal{J}:|\mathcal{H}|=\mathfrak{\mathfrak { l }}, I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J}$ perfect: $I S_{\omega}(P) \subseteq \mathbb{J}$
$-\exists \mathcal{H} \subseteq \mathcal{J}$ strongly unbdd, $|\mathcal{H}|=\mathfrak{c}$

$$
\Rightarrow \exists P \subseteq \mathcal{J} \text { perfect strongly unbdd }
$$

INFINITE DIMENSIONAL PERFECT SET THMS

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM
$\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
q \forall \mathcal{C} \in[\mathcal{H}]^{\omega} \cup \mathcal{C} \notin \mathcal{J}
$$

$[\mathfrak{l}]^{<\omega}=\mathcal{I}_{\text {max }} \leq_{T} \mathcal{J} \Leftrightarrow \exists \mathcal{H} \subseteq \mathcal{J}$ strongly unbounded: $|\mathcal{H}|=\mathfrak{c}$
$\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\}$ is $\sigma\left(\Sigma_{1}^{1}\right)$
IS $S_{\omega}(\mathcal{H})$: injective $\omega \rightarrow \mathcal{H}$ functions
$\mathcal{H} \subseteq \mathcal{J}$ strongly unbdd $\Leftrightarrow I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Leftrightarrow \mathcal{H}$ is \mathbb{J}-homogeneous
Theorem. Under suitable assumptions,
$-\exists \mathcal{H} \subseteq \mathcal{J}:|\mathcal{H}|=\mathfrak{\mathfrak { l }}, I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J}$ perfect: $I S_{\omega}(P) \subseteq \mathbb{J}$
$-\exists \mathcal{H} \subseteq \mathcal{J}$ strongly unbdd, $|\mathcal{H}|=\mathfrak{c}$

$$
\Rightarrow \exists P \subseteq \mathcal{J} \text { perfect strongly unbdd }
$$

$\dashv \mathcal{I}_{\max } \leq_{T} \mathcal{J} \Rightarrow \exists f: \mathcal{I}_{\max } \rightarrow \mathcal{J}$ continuous Tukey map

Product games

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Product games

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game

PRODUCT GAMES

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$

Product games

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$
$I: U(0) \quad U(1) \quad \ldots \quad U(n-1)$
II :
$V(0)$
$V(1) \ldots$

$$
V(n-1) \quad \ldots
$$

Product games

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$
$I: U(0) \quad U(1) \quad \ldots \quad U(n-1)$
II: $V(0) \quad V(1) \ldots(n-1) \ldots$

- $U(n), V(n) \subseteq X(n<\omega)$ non-empty open sets

Product games

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$
$I: U(0) \quad U(1) \quad \ldots \quad U(n-1)$
II: $V(0) \quad V(1) \ldots(n-1) \ldots$

- $U(n), V(n) \subseteq X(n<\omega)$ non-empty open sets
- $\operatorname{diam}(U(n)), \operatorname{diam}(V(n))<2^{-n}(n<\omega)$

Product games

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$
$I: U(0) \quad U(1) \quad \ldots \quad U(n-1)$
II: $V(0) \quad V(1) \ldots(n-1) \ldots$

- $U(n), V(n) \subseteq X(n<\omega)$ non-empty open sets
- $\operatorname{diam}(U(n)), \operatorname{diam}(V(n))<2^{-n}(n<\omega)$
- $U(n+1) \subseteq V(n) \subseteq U(n)(n<\omega)$

Product games

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$
$I: U(0) \quad U(1) \quad \ldots \quad U(n-1)$
II: $V(0) \quad V(1) \ldots(n-1) \ldots$

- $U(n), V(n) \subseteq X(n<\omega)$ non-empty open sets
- $\operatorname{diam}(U(n)), \operatorname{diam}(V(n))<2^{-n}(n<\omega)$
- $U(n+1) \subseteq V(n) \subseteq U(n)(n<\omega)$
// wins $\Leftrightarrow x=\bigcap_{n<\omega} U(n)=\bigcap_{n<\omega} V(n) \in A$.

Product games

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$
$I: U(0) \quad U(1) \quad \ldots \quad U(n-1)$
II: $\quad V(0) \quad V(1) \ldots(n-1) \ldots$

- $U(n), V(n) \subseteq X(n<\omega)$ non-empty open sets
- $\operatorname{diam}(U(n)), \operatorname{diam}(V(n))<2^{-n}(n<\omega)$
- $U(n+1) \subseteq V(n) \subseteq U(n)(n<\omega)$

I/ wins $\Leftrightarrow x=\bigcap_{n<\omega} U(n)=\bigcap_{n<\omega} V(n) \in A$.
Theorem.

+ I has a winning strategy $\Leftrightarrow \exists U$ non-empty open: $A \cap U$ is meager

PRODUCT GAMES

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X, payoff set: $A \subseteq X$
$I: U(0) \quad U(1) \quad \ldots \quad U(n-1)$
II: $\quad V(0) \quad V(1) \ldots(n-1) \ldots$

- $U(n), V(n) \subseteq X(n<\omega)$ non-empty open sets
- $\operatorname{diam}(U(n)), \operatorname{diam}(V(n))<2^{-n}(n<\omega)$
- $U(n+1) \subseteq V(n) \subseteq U(n)(n<\omega)$
// wins $\Leftrightarrow x=\bigcap_{n<\omega} U(n)=\bigcap_{n<\omega} V(n) \in A$.
Theorem.
- I has a winning strategy $\Leftrightarrow \exists U$ non-empty open: $A \cap U$ is meager
-- I/ has a winning strategy $\Leftrightarrow X \backslash A$ is meager

PRODUCT GAMES

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω}, payoff set: $A \subseteq X^{\omega}$

```
I
I\primeV V(O) V(1) ... V(n-1)
```

$U(n), V(n) \subseteq x(n<\omega)$ non-empty open sets

- diam $(U(n))$, diam $(V(n))<2-n(n<\omega)$
$U(n+1) \subseteq V(n) \subseteq U(n)(n<\omega)$
$/ /$ wins $\Leftrightarrow x=\prod_{n<\omega} U(n)=\prod_{n<\omega} V(n) \in A$.

Theorem.

+ I has a winning strategy $\Leftrightarrow \exists U$ non-empty open: $A \cap U$ is meager
-- I/ has a winning strategy $\Leftrightarrow X \backslash A$ is meager

Product games

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω}, payoff set: $A \subseteq X^{\omega}$
! $\quad U(0) \quad U(1) \quad \cdots \quad u(n-1)$
1" V(0) V(1) \cdots V(n-1) ...

- $U(n), V(n) \subseteq X(n<\omega)$ non-empty open sets
- diam $(U(n))$, diam $(V(n))<2^{-n}(n<\omega)$
- $U(n+1) \subseteq V(n) \subseteq U(n)(n<\omega)$
$/ /$ wins $\Leftrightarrow x=\cap_{n<\omega} U(n)=\cap_{n<\omega} V(n) \in A$.
$n^{\text {th }}$ move: $U_{0}(n-1) \times \cdots \times U_{n-1}(n-1) \times X^{\omega} \backslash n$,

$$
V_{0}(n-1) \times \cdots \times V_{n-1}(n-1) \times X^{\omega \backslash n}
$$

Theorem.

- I has a winning strategy $\Leftrightarrow \exists U$ non-empty open: $A \cap U$ is meager
+- I/ has a winning strategy $\Leftrightarrow X \backslash A$ is meager

PRODUCT GAMES

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω}, payoff set: $A \subseteq X^{\omega}$

```
I
I\primeV V(O) V(1) ... V(n-1)
```

$U(n), V(n) \subseteq x(n<\omega)$ non-empty open sets

- diam $(U(n))$, diam $(V(n))<2-n(n<\omega)$
$U(n+1) \subseteq V(n) \subseteq U(n)(n<\omega)$
$/ /$ wins $\Leftrightarrow x=\prod_{n<\omega} U(n)=\prod_{n<\omega} V(n) \in A$.

Theorem.

+ I has a winning strategy $\Leftrightarrow \exists U$ non-empty open: $A \cap U$ is meager
-- I/ has a winning strategy $\Leftrightarrow X \backslash A$ is meager

Product games

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω}, payoff set: $A \subseteq X^{\omega}$
$1: U(0) \quad U(1) \cdots(n-1)$
$\mu=V(O) V(1) \cdots(n-1) \quad レ \cdot$

- $U(n), V(n) \subseteq X(n<\omega)$ non-empty open sets
- diam $(U(n))$, diam $(V(n))<2^{-n}(n<\omega)$
- $U(n+1) \subseteq V(n) \subseteq U(n)(n<\omega)$
$/ /$ wins $\Leftrightarrow x=\bigcap_{n<\omega} U(n)=\bigcap_{n<\omega} V(n) \in A$.
meager $\rightsquigarrow \mathcal{Z}=\left\{Z \subseteq X^{\omega}: \exists M_{n} \subseteq X^{n}\right.$ meager $\left.\left(Z \subseteq \bigcup_{0<n<\omega} M_{n} \times X^{\omega \backslash n}\right)\right\}$

Theorem.

- I has a winning strategy $\Leftrightarrow \exists U$ non-empty open: $A \cap U$ is meager
- I/ has a winning strategy $\Leftrightarrow X \backslash A$ is meager

Product games

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω}, payoff set: $A \subseteq X^{\omega}$
$ノ=U(0) \quad \cdots(1) \cdots(n-1)$
$I I=V(O) V(1) \cdots(n-1) \quad v \quad \cdots$

- $U(n), V(n) \subseteq X(n<\omega)$ non-empty open sets
- diam $(U(n))$, diam $(V(n))<2^{-n}(n<\omega)$
- $U(n+1) \subseteq V(n) \subseteq U(n)(n<\omega)$
$/ /$ wins $\Leftrightarrow x=\bigcap_{n<\omega} U(n)=\bigcap_{n<\omega} V(n) \in A$.
meager $\rightsquigarrow \mathcal{Z}=\left\{Z \subseteq X^{\omega}: \exists M_{n} \subseteq X^{n}\right.$ meager $\left.\left(Z \subseteq \bigcup_{0<n<\omega} M_{n} \times X^{\omega \backslash n}\right)\right\}$
open set \rightsquigarrow open "tower" (not even box open)
Theorem.
- I has a winning strategy $\Leftrightarrow \exists U$ non-empty open: $A \cap U$ is meager
-- // has a winning strategy $\Leftrightarrow X \backslash A$ is meager

Product games

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω}, payoff set: $A \subseteq X^{\omega}$
$ノ=U(0) \quad \cdots(1) \cdots(n-1)$
$I I=V(O) V(1) \cdots(n-1) \quad v \quad \cdots$
$U(n), V(n) \subseteq x(n<\omega)$ non-empty open sets

- diam $(U(n))$, diam $(V(n))<2-n(n<\omega)$
$U(n+1) \subseteq V(n) \subseteq U(n)(n<\omega)$
$/ /$ wins $\Leftrightarrow x=\bigcap_{n<\omega} U(n)=\bigcap_{n<\omega} V(n) \in$ A.

open set \rightsquigarrow open "tower" (not even box open)
Theorem.
$-I$ has a winning strategy $\Leftrightarrow \exists \mathcal{U}$ non-empty open tower: $A \cap[\mathcal{U}] \in \mathcal{Z}$
-- II has a winning strategy $\Leftrightarrow X^{\omega} \backslash A \in \mathcal{Z}$

Product games

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω}, payoff set: $A \subseteq X^{\omega}$
$ノ=U(0) \quad \cdots(1) \cdots(n-1)$

```
II: V(O) V(\Perp)
```

- $U(n), V(n) \subseteq X(n<\omega)$ non-empty open sets
- diam $(U(n))$, diam $(V(n))<2^{-n}(n<\omega)$
- $U(n+1) \subseteq V(n) \subseteq U(n)(n<\omega)$
$/ /$ wins $\Leftrightarrow x=\bigcap_{n<\omega} U(n)=\bigcap_{n<\omega} V(n) \in A$.
meager $\rightsquigarrow \mathcal{Z}=\left\{Z \subseteq X^{\omega}: \exists M_{n} \subseteq X^{n}\right.$ meager $\left.\left(Z \subseteq \bigcup_{0<n<\omega} M_{n} \times X^{\omega \backslash n}\right)\right\}$
open set \rightsquigarrow open "tower" (not even box open)
Theorem.
$+I$ has a winning strategy $\Leftrightarrow \exists \mathcal{U}$ non-empty open tower: $A \cap[\mathcal{U}] \in \mathcal{Z}$ $\rightsquigarrow R \subseteq X$ everywhere non-meager $\Rightarrow I S_{\omega}(R) \nsubseteq A$
-- I/ has a winning strategy $\Leftrightarrow X^{\omega} \backslash A \in \mathcal{Z}$

Product games

I.E. HOW TO GET INFINITE DIMENSIONAL PERFECT SET THMS

Example: Banach-Mazur game Playground: X^{ω}, payoff set: $A \subseteq X^{\omega}$
$1: U(O) \quad U(1) \cdots(n-1)$
$11: V(O) \quad レ(1) \cdots(n-1) \cdots \cdots$
$U(n), V(n) \subseteq x(n<\omega)$ non-empty open sets

- diam $(U(n))$, diam $(V(n))<2-n(n<\omega)$
$U(n+1) \subseteq V(n) \subseteq U(n)(n<\omega)$
$/ /$ wins $\Leftrightarrow x=\bigcap n<\omega \in(n)=\bigcap_{n<\omega} V(n) \in$.

open set \rightsquigarrow open "tower" (not even box open)
Theorem.
- I has a winning strategy $\Leftrightarrow \exists \mathcal{U}$ non-empty open tower: $A \cap[\mathcal{U}] \in \mathcal{Z}$ $\leadsto R \subseteq X$ everywhere non-meager $\Rightarrow I S_{\omega}(R) \nsubseteq A$
-- I/ has a winning strategy $\Leftrightarrow X^{\omega} \backslash A \in \mathcal{Z}$
$\rightsquigarrow \exists P \subseteq X$ perfect: $I S_{\omega}(P) \subseteq A$

To summarize. . .

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM

To summarize. . .

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

To summarize...

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\} \text { is } \sigma\left(\sum_{1}^{1}\right)
$$

To summarize...

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\} \text { is } \sigma\left(\sum_{1}^{1}\right)
$$

Theorem. Under suitable assumptions,
$-\exists \mathcal{H} \subseteq \mathcal{J}:|\mathcal{H}|=\mathfrak{l}, I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J}$ perfect: $I S_{\omega}(P) \subseteq \mathbb{J}$
$-\exists \mathcal{H} \subseteq \mathcal{J}$ strongly unbdd, $|\mathcal{H}|=\mathfrak{C}$ $\Rightarrow \exists P \subseteq \mathcal{J}$ perfect strongly unbd
$\div \mathcal{I}_{\text {max }} \leq_{T} \mathcal{J} \Rightarrow \exists f: \mathcal{I}_{\text {max }} \rightarrow \mathcal{J}$ continuous Tukey map

To summarize...

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\} \text { is } \sigma\left(\Sigma_{1}^{1}\right)
$$

Theorem. Under suitable assumptions, $\leftarrow \exists \mathcal{H} \subseteq \mathcal{J}:|\mathcal{H}|=\mathfrak{l}, I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J}$ perfect: $I S_{\omega}(P) \subseteq \mathbb{J}$

To summarize...

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\} \text { is } \sigma\left(\Sigma_{1}^{1}\right)
$$

Theorem. Under suitable assumptions, $-\exists \mathcal{H} \subseteq \mathcal{J}:|\mathcal{H}|=\mathfrak{l}, I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J}$ perfect: $I S_{\omega}(P) \subseteq \mathbb{J}$
Assumptions:

1. $\mathcal{H} \subseteq \mathcal{P}(\omega),|\mathcal{H}|=\mathfrak{\imath} \Rightarrow \mathcal{H}$ is not perfectly meager

To summarize...

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\} \text { is } \sigma\left(\Sigma_{1}^{1}\right)
$$

Theorem. Under suitable assumptions, $-\exists \mathcal{H} \subseteq \mathcal{J}:|\mathcal{H}|=\mathfrak{\mathfrak { l }}, I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J}$ perfect: $I S_{\omega}(P) \subseteq \mathbb{J}$
Assumptions:

1. $\mathcal{H} \subseteq \mathcal{P}(\omega),|\mathcal{H}|=\mathfrak{l} \Rightarrow \mathcal{H}$ is not perfectly meager
2. $\sigma\left(\Sigma_{1}^{1}\right)$ games are determined (now superfluous)

To summarize...

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\} \text { is } \sigma\left(\sum_{1}^{1}\right)
$$

Theorem. Under suitable assumptions, $-\exists \mathcal{H} \subseteq \mathcal{J}:|\mathcal{H}|=\mathfrak{\mathfrak { l }}, I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J}$ perfect: $I S_{\omega}(P) \subseteq \mathbb{J}$
Assumptions:

1. $\mathcal{H} \subseteq \mathcal{P}(\omega),|\mathcal{H}|=\mathfrak{l} \Rightarrow \mathcal{H}$ is not perfectly meager
2. $\sigma\left(\Sigma_{1}^{1}\right)$ games are determined (now superfluous)

Recall:
\ldots I has a winning strategy $\rightsquigarrow \mathcal{H} \subseteq X$ everywhere non-meager

$$
\Rightarrow I S_{\omega}(\mathcal{H}) \nsubseteq \mathbb{J}
$$

To summarize...

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\} \text { is } \sigma\left(\Sigma_{1}^{1}\right)
$$

Theorem. Under suitable assumptions, $-\exists \mathcal{H} \subseteq \mathcal{J}:|\mathcal{H}|=\mathfrak{\mathfrak { l }}, I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J}$ perfect: $I S_{\omega}(P) \subseteq \mathbb{J}$
Assumptions:

1. $\mathcal{H} \subseteq \mathcal{P}(\omega),|\mathcal{H}|=\mathfrak{i} \Rightarrow \mathcal{H}$ is not perfectly meager
2. $\sigma\left(\Sigma_{1}^{1}\right)$ games are determined (now superfluous)

Recall:

- I has a winning strategy $\rightsquigarrow \mathcal{H} \subseteq X$ everywhere non-meager

$$
\Rightarrow I S_{\omega}(\mathcal{H}) \nsubseteq \mathbb{J}
$$

+ - $/$ has a winning strategy $\rightsquigarrow \exists P \subseteq X$ perfect: $I S_{\omega}(P) \subseteq \mathbb{J}$

To summarize...

I.E. CONSISTENT POSITIVE ANSWER TO DEFINABILITY PROBLEM $\mathcal{J} \subseteq \mathcal{P}(\omega)$ analytic ideal

$$
\mathbb{J}=\left\{\left(A_{n}\right)_{n<\omega} \in \mathcal{P}(\omega)^{\omega}: A_{n} \in \mathcal{J}(n<\omega), \bigcup_{n<\omega} A_{n} \notin \mathcal{J}\right\} \text { is } \sigma\left(\Sigma_{1}^{1}\right)
$$

Theorem. Under suitable assumptions,
$-\exists \mathcal{H} \subseteq \mathcal{J}:|\mathcal{H}|=\mathfrak{\mathfrak { l }}, I S_{\omega}(\mathcal{H}) \subseteq \mathbb{J} \Rightarrow \exists P \subseteq \mathcal{J}$ perfect: $I S_{\omega}(P) \subseteq \mathbb{J}$
Assumptions:

1. $\mathcal{H} \subseteq \mathcal{P}(\omega),|\mathcal{H}|=\mathfrak{l} \Rightarrow \mathcal{H}$ is not perfectly meager
2. $\sigma\left(\Sigma_{1}^{1}\right)$ games are determined (now superfluous)

Recall:

- I has a winning strategy $\rightsquigarrow \mathcal{H} \subseteq X$ everywhere non-meager

$$
\Rightarrow I S_{\omega}(\mathcal{H}) \nsubseteq \mathbb{J}
$$

-- I/ has a winning strategy $\rightsquigarrow \exists P \subseteq X$ perfect: $I S_{\omega}(P) \subseteq \mathbb{J}$
Corollary. Under the same assumptions,

$$
\mathcal{I}_{\max } \leq_{T} \mathcal{J} \oplus \mathcal{K} \Longrightarrow \mathcal{I}_{\max } \leq_{T} \mathcal{J} \text { or } \mathcal{I}_{\max } \leq_{T} \mathcal{K}
$$

TUKEY PICTURE UPDATE

I.E. MANY COFINAL TYPES OF DEFINABLE DIRECTED ORDERS

Tukey Picture update

I.E. MANY COFINAL TYPES OF DEFINABLE DIRECTED ORDERS

$$
\left(\mathcal{P}(\omega), \subseteq^{\star}\right)
$$

$$
\downarrow
$$

measure leaf \longrightarrow

$$
\mathcal{Z}_{0} \in\{\text { analytic } P \text {-ideals }\} \leq T \mathcal{I}_{1 / n}
$$

$1<_{T} \omega<_{T} \omega^{\omega}$
$\stackrel{\rightharpoonup}{ }$
$\stackrel{\rightharpoonup}{\vee}$
category leaf $\longrightarrow \mathcal{N} \cap \mathcal{K}\left(2^{\omega}\right) \quad \leq T \quad \mathcal{M} \cap \mathcal{K}\left(2^{\omega}\right)$

Tukey Picture update

I.E. MANY COFINAL TYPES OF DEFINABLE DIRECTED ORDERS

TUKEY PICTURE UPDATE

I.E. MANY COFINAL TYPES OF DEFINABLE DIRECTED ORDERS
$\left(\mathcal{P}(\omega), \subseteq^{\star}\right)$
$\left\{H \subseteq \omega: \lim _{n<\omega}|H \cap n| / n=0\right\}$ measure leaf \longrightarrow
$\mathcal{Z}_{0} \in\{$ analytic P-ideals $\} \leq_{T} \mathcal{I}_{1 / n}$
$1<T \omega<T \omega^{\omega}$
$\stackrel{\rightharpoonup}{\vee}$
$\stackrel{\rightharpoonup}{ }$
category leaf
r_{λ}

$$
\mathcal{N} \cap \mathcal{K}\left(2^{\omega}\right) \quad \leq T \quad \mathcal{M} \cap \mathcal{K}\left(2^{\omega}\right)
$$

TUKEY PICTURE UPDATE

I.E. MANY COFINAL TYPES OF DEFINABLE DIRECTED ORDERS

TUKEY PICTURE UPDATE

I.E. MANY COFINAL TYPES OF DEFINABLE DIRECTED ORDERS

TUKEY PICTURE UPDATE

I.E. MANY COFINAL TYPES OF DEFINABLE DIRECTED ORDERS

TUKEY PICTURE UPDATE

I.E. MANY COFINAL TYPES OF DEFINABLE DIRECTED ORDERS

TUKEY PICTURE UPDATE

I.E. MANY COFINAL TYPES OF DEFINABLE DIRECTED ORDERS

Tree calibration

Tree calibration

T : tree
\mathcal{S} : set of subtrees of T

Tree calibration

T : tree
\mathcal{S} : set of subtrees of T
(P, \leq) is (T, \mathcal{S})-calibrated:

Tree calibration

T : tree
\mathcal{S} : set of subtrees of T
(P, \leq) is (T, \mathcal{S})-calibrated:
$\exists D: T \rightarrow 2^{P}$ with $D(\emptyset)=2^{P}$ and $D(t) \subseteq \bigcup\left\{D\left(t^{\prime}\right): t^{\prime} \in \operatorname{succ}_{T}(t)\right\}$
$\forall S \in \mathcal{S}$

$$
\begin{aligned}
& \forall d: S \rightarrow P \text { with } d(s) \in D(s)(s \in S) \\
& \qquad\{d(s): s \in S\} \subseteq P \text { is bounded }
\end{aligned}
$$

Tree calibration

T : tree
\mathcal{S} : set of subtrees of T
(P, \leq) is (T, \mathcal{S})-calibrated:
$\exists D: T \rightarrow 2^{P}$ with $D(\emptyset)=2^{P}$ and $D(t) \subseteq \bigcup\left\{D\left(t^{\prime}\right): t^{\prime} \in \operatorname{succ}_{T}(t)\right\}$
$\forall S \in \mathcal{S}$

$$
\begin{aligned}
& \forall d: S \rightarrow P \text { with } d(s) \in D(s)(s \in S) \\
& \qquad\{d(s): s \in S\} \subseteq P \text { is bounded }
\end{aligned}
$$

Theorem.

Tree calibration

T : tree
\mathcal{S} : set of subtrees of T
(P, \leq) is (T, \mathcal{S})-calibrated:
$\exists D: T \rightarrow 2^{P}$ with $D(\emptyset)=2^{P}$ and $D(t) \subseteq \bigcup\left\{D\left(t^{\prime}\right): t^{\prime} \in \operatorname{succ}_{T}(t)\right\}$
$\forall S \in \mathcal{S}$

$$
\forall d: S \rightarrow P \text { with } d(s) \in D(s)(s \in S)
$$

$$
\{d(s): s \in S\} \subseteq P \text { is bounded }
$$

Theorem.

1. $Q \leq_{T} P, P$ is (T, \mathcal{S})-calibrated $\Rightarrow Q$ is (T, \mathcal{S})-calibrated

Tree calibration

T : tree
\mathcal{S} : set of subtrees of T
(P, \leq) is (T, \mathcal{S})-calibrated:
$\exists D: T \rightarrow 2^{P}$ with $D(\emptyset)=2^{P}$ and $D(t) \subseteq \bigcup\left\{D\left(t^{\prime}\right): t^{\prime} \in \operatorname{succ}_{T}(t)\right\}$
$\forall S \in \mathcal{S}$

$$
\forall d: S \rightarrow P \text { with } d(s) \in D(s)(s \in S)
$$

$$
\{d(s): s \in S\} \subseteq P \text { is bounded }
$$

Theorem.

1. $Q \leq_{T} P, P$ is (T, \mathcal{S})-calibrated $\Rightarrow Q$ is (T, \mathcal{S})-calibrated
2. $Q \not \mathbb{Z}_{T} P \Rightarrow \exists(T, \mathcal{S}): P$ is (T, \mathcal{S})-calibrated,
Q is not (T, \mathcal{S})-calibrated

OPEN TOWERS

X topological space
$\mathcal{U}=\left(U_{n}\right)_{0<n<\omega}$ open tower:

- $U_{n} \subseteq X^{n}$ open $(0<n<\omega)$
- $U_{n} \Delta \operatorname{Pr}_{X^{n}}\left(U_{n+1}\right)$ is nowhere dense $(0<n<\omega)$

Open TOWERS

X topological space
$\mathcal{U}=\left(U_{n}\right)_{0<n<\omega}$ open tower: $[\mathcal{U}]=\bigcap_{0<n<\omega} U_{n} \times X^{\omega \backslash n}$

- $U_{n} \subseteq X^{n}$ open $(0<n<\omega)$
- $U_{n} \Delta \operatorname{Pr}_{X^{n}}\left(U_{n+1}\right)$ is nowhere dense $(0<n<\omega)$

